1
|
Eggers MJ, Sigler WA, Kiekover N, Bradley PM, Smalling KL, Parker A, Peterson RKD, LaFave JI. Statewide cumulative human health risk assessment of inorganics-contaminated groundwater wells, Montana, USA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:125810. [PMID: 39922416 DOI: 10.1016/j.envpol.2025.125810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Across the United States, rural residents rely on unregulated and generally unmonitored private wells for drinking water, which may pose serious health risks due to unrecognized contaminants. We assessed the nature, degree, and spatial distribution of cumulative health risks from inorganic contaminants in groundwater. Our analysis included nearly 84,000 data points from 6,500+ wells, across 51 of Montana's 98 watersheds, using a public groundwater database. We compared a drinking water screening level cumulative risk assessment (CRA) for inorganics based on the U.S. Environmental Protection Agency (EPA) protective health thresholds (Maximum Contaminant Level Goals, Health Advisories [MCLG-HAs]) to a CRA based on EPA public supply enforceable Maximum Contaminant Levels (MCLs). Based on median concentrations of 19 inorganics (antimony, arsenic, barium, beryllium, boron, cadmium, chromium, copper, fluoride, manganese, molybdenum, nickel, nitrate, lead, selenium, strontium, thallium, uranium, zinc), 75% of watersheds had MCLG-HA-based cumulative risk values > 1.0; arsenic and uranium contributed the most risk, followed by strontium, fluoride, manganese and boron. Hence, this screening level (Tier I) CRA indicated widespread potential for unrecognized human health risk to private well users from inorganic contaminants considering both carcinogenic and non-carcinogenic risks. Sensitivity analysis showed that benchmarks applied (MCLG-HAs versus MCLs) exerted the largest control on results. Our findings identify priority regions for Tier 2 risk assessments to elucidate local sources and distributions of geogenic versus anthropomorphic contaminants. Our study is the first statewide assessment of cumulative health risk from groundwater that we are aware of, and results support increased statewide drinking water education and testing to reduce human health risks from contaminated private well water.
Collapse
Affiliation(s)
- Margaret J Eggers
- Microbiology and Cell Biology/Land Resources and Environmental Science Departments, Montana State University, PO Box 173120, Bozeman, Montana 59717, United States; Land Resources and Environmental Sciences Department, PO Box 173120, Montana State University, Bozeman, Montana 59717, United States.
| | - W Adam Sigler
- Land Resources and Environmental Sciences Department, PO Box 173120, Montana State University, Bozeman, Montana 59717, United States
| | - Nicklas Kiekover
- Land Resources and Environmental Sciences Department, PO Box 173120, Montana State University, Bozeman, Montana 59717, United States
| | - Paul M Bradley
- U.S. Geological Survey, South Atlantic Water Science Center, Columbia, South Carolina, 29210 United States
| | - Kelly L Smalling
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, New Jersey, 08648 United States
| | - Albert Parker
- Center for Biofilm Engineering, Department of Mathematical Sciences, Montana State University, Bozeman, Montana, United States
| | - Robert K D Peterson
- Land Resources and Environmental Sciences Department, PO Box 173120, Montana State University, Bozeman, Montana 59717, United States
| | - John I LaFave
- Research Division, Montana Bureau of Mines and Geology, Butte, Montana, United States
| |
Collapse
|
2
|
Bradley PM, Romanok KM, Smalling KL, Gordon SE, Huffman BJ, Paul Friedman K, Villeneuve DL, Blackwell BR, Fitzpatrick SC, Focazio MJ, Medlock-Kakaley E, Meppelink SM, Navas-Acien A, Nigra AE, Schreiner ML. Private, public, and bottled drinking water: Shared contaminant-mixture exposures and effects challenge. ENVIRONMENT INTERNATIONAL 2025; 195:109220. [PMID: 39736175 DOI: 10.1016/j.envint.2024.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND Humans are primary drivers of environmental-contaminant exposures worldwide, including in drinking-water (DW). In the United States, point-of-use DW (POU-DW) is supplied via private tapwater (TW), public-supply TW, and bottled water (BW). Differences in management, monitoring, and messaging and lack of directly-intercomparable exposure data influence the actual and perceived quality and safety of different DW supplies and directly impact consumer decision-making. OBJECTIVES The purpose of this paper is to provide a meta-analysis (quantitative synthesis) of POU-DW contaminant-mixture exposures and corresponding potential human-health effects of private-TW, public-TW, and BW by aggregating exposure results and harmonizing apical-health-benchmark-weighted and bioactivity-weighted effects predictions across previous studies by this research group. DISCUSSION Simultaneous exposures to multiple inorganic and organic contaminants of known or suspected human-health concern are common across all three DW supplies, with substantial variability observed in each and no systematic difference in predicted cumulative risk between supplies. Differences in contaminant or contaminant-class exposures, with important implications for DW-quality improvements, were observed and attributed to corresponding differences in regulation and compliance monitoring. CONCLUSION The results indicate that human-health risks from contaminant exposures are common to and comparable in all three DW-supplies, including BW. Importantly, this study's target analytical coverage, which exceeds that currently feasible for water purveyors or homeowners, nevertheless is a substantial underestimation of the breadth of contaminant mixtures in the environment and potentially present in DW. Thus, the results emphasize the need for improved understanding of the adverse human-health implications of long-term exposures to low-level inorganic-/organic-contaminant mixtures across all three distribution pipelines and do not support commercial messaging of BW as a systematically safer alternative to public-TW. Regardless of the supply, increased public engagement in source-water protection and drinking-water treatment is necessary to reduce risks associated with long-term DW-contaminant exposures, especially in vulnerable populations, and to reduce environmental waste and plastics contamination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | | |
Collapse
|
3
|
Smalling KL, Romanok KM, Bradley PM, Hladik ML, Gray JL, Kanagy LK, McCleskey RB, Stavreva DA, Alexander-Ozinskas AK, Alonso J, Avila W, Breitmeyer SE, Bustillo R, Gordon SE, Hager GL, Jones RR, Kolpin DW, Newton S, Reynolds P, Sloop J, Ventura A, Von Behren J, Ward MH, Solomon GM. Mixed contaminant exposure in tapwater and the potential implications for human-health in disadvantaged communities in California. WATER RESEARCH 2024; 267:122485. [PMID: 39368187 DOI: 10.1016/j.watres.2024.122485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024]
Abstract
Water is an increasingly precious resource in California as years of drought, climate change, pollution, as well as an expanding population have all stressed the state's drinking water supplies. Currently, there are increasing concerns about whether regulated and unregulated contaminants in drinking water are linked to a variety of human-health outcomes particularly in socially disadvantaged communities with a history of health risks. To begin to address this data gap by broadly assessing contaminant mixture exposures, the current study was designed to collect tapwater samples from communities in Gold Country, the San Francisco Bay Area, two regions of the Central Valley (Merced/Fresno and Kern counties), and southeast Los Angeles for 251 organic chemicals and 32 inorganic constituents. Sampling prioritized low-income areas with suspected water quality challenges and elevated breast cancer rates. Results indicated that mixtures of regulated and unregulated contaminants were observed frequently in tapwater throughout the areas studied and the types and concentrations of detected contaminants varied by region, drinking-water source, and size of the public water system. Multiple exceedances of enforceable maximum contaminant level(s) (MCL), non-enforceable MCL goal(s) (MCLG), and other health advisories combined with frequent exceedances of benchmark-based hazard indices were also observed in samples collected in all five of the study regions. Given the current focus on improving water quality in socially disadvantaged communities, our study highlights the importance of assessing mixed-contaminant exposures in drinking water at the point of consumption to adequately address human-health concerns (e.g., breast cancer risk). Data from this pilot study provide a foundation for future studies across a greater number of communities in California to assess potential linkages between breast cancer rates and tapwater contaminants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Diana A Stavreva
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Jesus Alonso
- Clean Water Action/Clean Water Fund, Oakland, CA, USA
| | - Wendy Avila
- Communities for a Better Environment, Los Angeles, CA, USA
| | | | | | | | - Gordon L Hager
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Rena R Jones
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Seth Newton
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Peggy Reynolds
- University of California San Francisco, San Francisco, CA, USA
| | - John Sloop
- ORISE, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | - Mary H Ward
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Gina M Solomon
- University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Lin Y, Li G, Rivera MS, Jiang T, Cotto I, Carpenter CMG, Rich SL, Giese RW, Helbling DE, Padilla IY, Rosario-Pabón Z, Alshawabkeh AN, Pinto A, Gu AZ. Long-term impact of Hurricane Maria on point-of-use drinking water quality in Puerto Rico and associated potential adverse health effects. WATER RESEARCH 2024; 265:122213. [PMID: 39173351 PMCID: PMC11749518 DOI: 10.1016/j.watres.2024.122213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
Drinking water security in Puerto Rico (PR) is increasingly challenged by both regulated and emerging anthropogenic contaminants, which was exacerbated by the Hurricane Maria (HM) due to impaired regional water cycle and damaged water infrastructure. Leveraging the NIEHS PROTECT (Puerto Rico Testsite for Exploring Contamination Threats) cohort, this study assessed the long-term tap water (TW) quality changes from March 2018 to November 2018 after HM in PR, by innovatively integrating two different effect-based quantitative toxicity assays with a targeted analysis of 200 organic and 22 inorganic pollutants. Post-hurricane PR TW quality showed recovery after >6-month period as indicated by the decreased number of contaminants showing elevated average concentrations relative to pre-hurricane samples, with significant difference of both chemical and toxicity levels between northern and southern PR. Molecular toxicity profiling and correlation revealed that the HM-accelerated releases of certain pesticides and PPCPs could exert increased cellular oxidative and/or AhR (aryl hydrocarbon receptor)-mediated activities that may persist for more than six months after HM. Maximum cumulative ratio and adverse outcome pathway (AOP) assessment identified the top ranked detected TW contaminants (Cu, Sr, V, perfluorooctanoic acid) that potentially associated with different adverse health effects such as inflammation, impaired reproductive systems, cancers/tumors, and/or organ toxicity. These insights can be incorporated into the regulatory framework for post-disaster risk assessment, guiding water quality control and management for public health protection.
Collapse
Affiliation(s)
- Yishan Lin
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States; School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States
| | - Guangyu Li
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States
| | - Maria Sevillano Rivera
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - Tao Jiang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - Irmarie Cotto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - Corey M G Carpenter
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States
| | - Stephanie L Rich
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States
| | - Roger W Giese
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States
| | - Ingrid Y Padilla
- Department of Civil Engineering and Surveying, University of Puerto Rico, Mayagüez, Puerto Rico 00682, United States
| | - Zaira Rosario-Pabón
- University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00936, United States
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - Ameet Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
5
|
Souza DND, Mounteer AH, Arcanjo GS. Estrogenic compounds in drinking water: A systematic review and risk analysis. CHEMOSPHERE 2024; 360:142463. [PMID: 38821126 DOI: 10.1016/j.chemosphere.2024.142463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/09/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
Estrogenic compounds are the endocrine disruptors that receive major attention because of their ability to imitate the natural female hormone, 17β-estradiol and cause adverse effects on the reproductive system of animals. The presence of estrogenic compounds in drinking water is a warning to assess the risks to which human beings are exposed. The present work has the objectives of carrying out a systematic review of studies that investigated estrogenic compounds in drinking water around the world and estimate the human health and estrogenic activity risks, based on the concentrations of each compound reported. The systematic review returned 505 scientific papers from the Web of Science®, SCOPUS® and PubMED® databases and after careful analysis, 45 papers were accepted. Sixteen estrogenic compounds were identified in drinking water, from the classes of hormones, pharmaceutical drugs and personal care products, plasticizers, corrosion inhibitors, pesticides and surfactants. Di-(2-ethylhexyl) phthalate (DEHP) was the compound found at the highest concentration, reaching a value of 1.43 mg/L. Non-carcinogenic human health risk was classified as high for 17α-ethynilestradiol and DEHP, medium for dibutyl phthalate, and low for bisphenol A. The estrogenic activity risks were negligible for all the compounds, except DEHP, with a low risk. None of the estrogenic compounds presented an unacceptable carcinogenic risk, due to estrogenic activity. However, the risk assessment did not evaluate the interactions between compounds, that occurs in drinking water and can increase the risks and adverse effects to human health. Nonetheless, this study demonstrates the need for improvement of drinking water treatment plants, with more efficient technologies for micropollutant removal.
Collapse
Affiliation(s)
- Deisi N de Souza
- Programa de Pós-Graduação em Meio Ambiente, Águas e Saneamento, Departamento de Engenharia Ambiental, Universidade Federal da Bahia, 40210-630, Salvador, BA, Brazil
| | - Ann H Mounteer
- Programa de Pós-Graduação em Engenharia Civil, Departamento de Engenharia Civil, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Gemima S Arcanjo
- Programa de Pós-Graduação em Meio Ambiente, Águas e Saneamento, Departamento de Engenharia Ambiental, Universidade Federal da Bahia, 40210-630, Salvador, BA, Brazil.
| |
Collapse
|
6
|
Hohweiler K, Krometis LA, Ling EJ, Xia K. Incidence of per- and polyfluoroalkyl substances (PFAS) in private drinking water supplies in Southwest Virginia, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172539. [PMID: 38649039 DOI: 10.1016/j.scitotenv.2024.172539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of man-made contaminants of human health concern due to their resistance to degradation, widespread environmental occurrence, bioaccumulation in living organisms, and potential negative health impacts. Private drinking water supplies may be uniquely vulnerable to PFAS contamination in impacted areas, as these systems are not protected under federal regulations and often include limited treatment or remediation, if contaminated, prior to use. The goal of this study was to determine the incidence of PFAS contamination in private drinking water supplies in two counties in Southwest Virginia, USA (Floyd and Roanoke) that share similar bedrock geologies, are representative of different state Department of Health risk categories, and to examine the potential for reliance on citizen-science based strategies for sample collection in subsequent efforts. Samples for inorganic ions, bacteria, and PFAS analysis were collected on separate occasions by participants and experts at the home drinking water point of use (POU) for comparison. Experts also collected outside tap samples for analysis of 30 PFAS compounds. At least one PFAS was detectable in 95 % of POU samples collected (n = 60), with a mean total PFAS concentration of 23.5 ± 30.8 ppt. PFOA and PFOS, two PFAS compounds which presently have EPA health advisories, were detectable in 13 % and 22 % of POU samples, respectively. On average, each POU sample contained >3 PFAS compounds, and one sample contained as many as 8 compounds, indicating that exposure to a mixture of PFAS in drinking water may be occurring. Although there were significant differences in total PFAS concentrations between expert and participant collected samples (Wilcoxon, alpha = 0.05), collector bias was inconsistent, and may be due to the time of day of sampling (i.e. morning, afternoon) or specific attributes of a given home. Further research is required to resolve sources of intra-sample variability.
Collapse
Affiliation(s)
- Kathleen Hohweiler
- Biological Systems Engineering, Virginia Polytechnic Institute and State University, 155 Ag Quad Lane, Blacksburg, VA 24061-0303, United States of America.
| | - Leigh-Anne Krometis
- Biological Systems Engineering, Virginia Polytechnic Institute and State University, 155 Ag Quad Lane, Blacksburg, VA 24061-0303, United States of America.
| | - Erin J Ling
- Biological Systems Engineering, Virginia Polytechnic Institute and State University, 155 Ag Quad Lane, Blacksburg, VA 24061-0303, United States of America.
| | - Kang Xia
- Virginia Agricultural Experiment Station, the Center for Advanced Innovation in Agriculture, School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, 185 Ag Quad Lane, Blacksburg, VA 24061-0303, United States of America.
| |
Collapse
|
7
|
Rosenblum JS, Liethen A, Miller-Robbie L. Prioritization and Risk Ranking of Regulated and Unregulated Chemicals in US Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6878-6889. [PMID: 38564650 PMCID: PMC11044589 DOI: 10.1021/acs.est.3c08745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 04/04/2024]
Abstract
Drinking water constituents were compared using more than six million measurements (USEPA data) to prioritize and risk-rank regulated and unregulated chemicals and classes of chemicals. Hazard indexes were utilized for hazard- and risk-based chemicals, along with observed (nondetects = 0) and censored (nondetects = method detection limit/2) data methods. Chemicals (n = 139) were risk-ranked based on population exposed, resulting in the highest rankings for inorganic compounds (IOCs) and disinfection byproducts (DBPs), followed by semivolatile organic compounds (SOCs), nonvolatile organic compounds (NVOCs), and volatile organic compounds (VOCs) for observed data. The top 50 risk-ranked chemicals included 15 that were unregulated, with at least one chemical from each chemical class (chromium-6 [#1, IOC], chlorate and NDMA [#11 and 12, DBP], 1,4-dioxane [#25, SOC], PFOS, PFOA, PFHxS [#42, 44, and 49, NVOC], and 1,2,3-trichloropropane [#48, VOC]). These results suggest that numerous unregulated chemicals are of higher exposure risk or hazard in US drinking water than many regulated chemicals. These methods could be applied following each Unregulated Contaminant Monitoring Rule (UCMR) data collection phase and compared to retrospective data that highlight what chemicals potentially pose the highest exposure risk or hazard among US drinking water, which could inform regulators, utilities, and researchers alike.
Collapse
Affiliation(s)
- James S. Rosenblum
- Civil and Environmental Engineering
Department, Colorado School of Mines Golden, Colorado 80401, United States
| | - Alexander Liethen
- Civil and Environmental Engineering
Department, Colorado School of Mines Golden, Colorado 80401, United States
| | - Leslie Miller-Robbie
- Civil and Environmental Engineering
Department, Colorado School of Mines Golden, Colorado 80401, United States
| |
Collapse
|
8
|
Escher BI, Blanco J, Caixach J, Cserbik D, Farré MJ, Flores C, König M, Lee J, Nyffeler J, Planas C, Redondo-Hasselerharm PE, Rovira J, Sanchís J, Schuhmacher M, Villanueva CM. In vitro bioassays for monitoring drinking water quality of tap water, domestic filtration and bottled water. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:126-135. [PMID: 37328620 PMCID: PMC10907286 DOI: 10.1038/s41370-023-00566-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Location-specific patterns of regulated and non-regulated disinfection byproducts (DBPs) were detected in tap water samples of the Barcelona Metropolitan Area. However, it remains unclear if the detected DBPs together with undetected DPBs and organic micropollutants can lead to mixture effects in drinking water. OBJECTIVE To evaluate the neurotoxicity, oxidative stress response and cytotoxicity of 42 tap water samples, 6 treated with activated carbon filters, 5 with reverse osmosis and 9 bottled waters. To compare the measured effects of the extracts with the mixture effects predicted from the detected concentrations and the relative effect potencies of the detected DBPs using the mixture model of concentration addition. METHODS Mixtures of organic chemicals in water samples were enriched by solid phase extraction and tested for cytotoxicity and neurite outgrowth inhibition in the neuronal cell line SH-SY5Y and for cytotoxicity and oxidative stress response in the AREc32 assay. RESULTS Unenriched water did not trigger neurotoxicity or cytotoxicity. After up to 500-fold enrichment, few extracts showed cytotoxicity. Disinfected water showed low neurotoxicity at 20- to 300-fold enrichment and oxidative stress response at 8- to 140-fold enrichment. Non-regulated non-volatile DBPs, particularly (brominated) haloacetonitriles dominated the predicted mixture effects of the detected chemicals and predicted effects agreed with the measured effects. By hierarchical clustering we identified strong geographical patterns in the types of DPBs and their association with effects. Activated carbon filters did not show a consistent reduction of effects but domestic reverse osmosis filters decreased the effect to that of bottled water. IMPACT STATEMENT Bioassays are an important complement to chemical analysis of disinfection by-products (DBPs) in drinking water. Comparison of the measured oxidative stress response and mixture effects predicted from the detected chemicals and their relative effect potencies allowed the identification of the forcing agents for the mixture effects, which differed by location but were mainly non-regulated DBPs. This study demonstrates the relevance of non-regulated DBPs from a toxicological perspective. In vitro bioassays, in particular reporter gene assays for oxidative stress response that integrate different reactive toxicity pathways including genotoxicity, may therefore serve as sum parameters for drinking water quality assessment.
Collapse
Affiliation(s)
- Beate I Escher
- Helmholtz Centre for Environmental Research - UFZ, Department of Cell Toxicology, Leipzig, Germany.
- Eberhard Karls University Tübingen, Environmental Toxicology, Department of Geosciences, Tübingen, Germany.
| | - Jordi Blanco
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Caixach
- Mass Spectrometry Laboratory/Organic Pollutants, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| | - Dora Cserbik
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, UPF, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
| | - Maria J Farré
- Catalan Institute for Water Research, ICRA, Girona, Spain
- University of Girona, Girona, Spain
| | - Cintia Flores
- Mass Spectrometry Laboratory/Organic Pollutants, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| | - Maria König
- Helmholtz Centre for Environmental Research - UFZ, Department of Cell Toxicology, Leipzig, Germany
| | - Jungeun Lee
- Helmholtz Centre for Environmental Research - UFZ, Department of Cell Toxicology, Leipzig, Germany
| | - Jo Nyffeler
- Helmholtz Centre for Environmental Research - UFZ, Department of Cell Toxicology, Leipzig, Germany
| | - Carles Planas
- Mass Spectrometry Laboratory/Organic Pollutants, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| | - Paula E Redondo-Hasselerharm
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, UPF, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
- IMDEA Water, Madrid, Spain
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
- Environmental Engineering Laboratory, Universitat Rovira i Virgili, Tarragona, Spain
| | - Josep Sanchís
- Catalan Institute for Water Research, ICRA, Girona, Spain
- University of Girona, Girona, Spain
- Catalan Water Agency, Barcelona, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Universitat Rovira i Virgili, Tarragona, Spain
| | - Cristina M Villanueva
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, UPF, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
- Hospital del Mar Medical Research Institute, IMIM, Barcelona, Spain
| |
Collapse
|
9
|
DiSalvo RW, Hill EL. Drinking Water Contaminant Concentrations and Birth Outcomes. JOURNAL OF POLICY ANALYSIS AND MANAGEMENT : [THE JOURNAL OF THE ASSOCIATION FOR PUBLIC POLICY ANALYSIS AND MANAGEMENT] 2023; 43:368-399. [PMID: 38983462 PMCID: PMC11230651 DOI: 10.1002/pam.22558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Previous research in the US has found negative health effects of contamination when it triggers regulatory violations. An important question is whether levels of contamination that do not trigger a health-based violation impact health. We study the impact of drinking water contamination in community water systems on birth outcomes using drinking water sampling results data in Pennsylvania. We focus on the effects of water contamination for births not exposed to regulatory violations. Our most rigorous specification employs mother fixed effects and finds changing from the 10th to the 90th percentile of water contamination (among births not exposed to regulatory violations) increases low birth weight by 12% and preterm birth by 17%.
Collapse
Affiliation(s)
- Richard W DiSalvo
- Princeton School of Public and International Affairs, Princeton University
| | - Elaine L Hill
- Department of Public Health Sciences and Department of Economics, University of Rochester & NBER, 265 Crittenden Blvd., Box 420644, Rochester, NY
| |
Collapse
|
10
|
Glassmeyer ST, Burns EE, Focazio MJ, Furlong ET, Gribble MO, Jahne MA, Keely SP, Kennicutt AR, Kolpin DW, Medlock Kakaley EK, Pfaller SL. Water, Water Everywhere, but Every Drop Unique: Challenges in the Science to Understand the Role of Contaminants of Emerging Concern in the Management of Drinking Water Supplies. GEOHEALTH 2023; 7:e2022GH000716. [PMID: 38155731 PMCID: PMC10753268 DOI: 10.1029/2022gh000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 12/30/2023]
Abstract
The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.
Collapse
Affiliation(s)
- Susan T. Glassmeyer
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | | | - Michael J. Focazio
- Retired, Environmental Health ProgramEcosystems Mission AreaU.S. Geological SurveyRestonVAUSA
| | - Edward T. Furlong
- Emeritus, Strategic Laboratory Sciences BranchLaboratory & Analytical Services DivisionU.S. Geological SurveyDenverCOUSA
| | - Matthew O. Gribble
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Michael A. Jahne
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Scott P. Keely
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Alison R. Kennicutt
- Department of Civil and Mechanical EngineeringYork College of PennsylvaniaYorkPAUSA
| | - Dana W. Kolpin
- U.S. Geological SurveyCentral Midwest Water Science CenterIowa CityIAUSA
| | | | - Stacy L. Pfaller
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| |
Collapse
|
11
|
Smalling KL, Romanok KM, Bradley PM, Morriss MC, Gray JL, Kanagy LK, Gordon SE, Williams BM, Breitmeyer SE, Jones DK, DeCicco LA, Eagles-Smith CA, Wagner T. Per- and polyfluoroalkyl substances (PFAS) in United States tapwater: Comparison of underserved private-well and public-supply exposures and associated health implications. ENVIRONMENT INTERNATIONAL 2023; 178:108033. [PMID: 37356308 DOI: 10.1016/j.envint.2023.108033] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
Drinking-water quality is a rising concern in the United States (US), emphasizing the need to broadly assess exposures and potential health effects at the point-of-use. Drinking-water exposures to per- and poly-fluoroalkyl substances (PFAS) are a national concern, however, there is limited information on PFAS in residential tapwater at the point-of-use, especially from private-wells. We conducted a national reconnaissance to compare human PFAS exposures in unregulated private-well and regulated public-supply tapwater. Tapwater from 716 locations (269 private-wells; 447 public supply) across the US was collected during 2016-2021 including three locations where temporal sampling was conducted. Concentrations of PFAS were assessed by three laboratories and compared with land-use and potential-source metrics to explore drivers of contamination. The number of individual PFAS observed ranged from 1 to 9 (median: 2) with corresponding cumulative concentrations (sum of detected PFAS) ranging from 0.348 to 346 ng/L. Seventeen PFAS were observed at least once with PFBS, PFHxS and PFOA observed most frequently in approximately 15% of the samples. Across the US, PFAS profiles and estimated median cumulative concentrations were similar among private wells and public-supply tapwater. We estimate that at least one PFAS could be detected in about 45% of US drinking-water samples. These detection probabilities varied spatially with limited temporal variation in concentrations/numbers of PFAS detected. Benchmark screening approaches indicated potential human exposure risk was dominated by PFOA and PFOS, when detected. Potential source and land-use information was related to cumulative PFAS concentrations, and the number of PFAS detected; however, corresponding relations with specific PFAS were limited likely due to low detection frequencies and higher detection limits. Information generated supports the need for further assessments of cumulative health risks of PFAS as a class and in combination with other co-occurring contaminants, particularly in unmonitored private-wells where information is limited or not available.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
12
|
Pan X, Xu L, He Z, Wan Y. Occurrence, fate, seasonal variability, and risk assessment of twelve triazine herbicides and eight related derivatives in source, treated, and tap water of Wuhan, Central China. CHEMOSPHERE 2023; 322:138158. [PMID: 36806804 DOI: 10.1016/j.chemosphere.2023.138158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Triazine herbicides have been widely used, are frequently detected in aqueous environments and soils, and can cause acute or chronic toxicity to living organisms. We collected source water samples (n = 20) originating from the Hanshui River and the Yangtze River of Wuhan section, treated water samples (n = 20), and tap water samples (n = 169) in Wuhan, Central China during 2019 for determination of twelve triazine herbicides and their eight derivatives (collectively defined as TZs) and characterizing their fate during water treatment. Eighteen of the twenty TZs were detected in the source water. Atrazine (ATZ) had the highest concentrations (median: 22.4 ng/L) in the source water samples while DACT had the highest concentrations (median: 31.4 ng/L) in the treated water. "Tryns" (ametryn, prometryn, simetryn, terbutryn) were efficiently removed by conventional water treatment, while other target analytes were not; interestingly, hydroxypropazine and prometon increased significantly accompanied by prometryn disappearance, which implicated potential transformation pathways. In addition, "tryns" might be transformed into "tons" (atraton, prometon, secbumeton, terbumeton) by ozonation. In the tap water samples, diaminochlorotriazine had the highest concentrations (median: 34.9 ng/L) among the target analytes, followed by ATZ (18.3 ng/L), hydroxyatrazine (5.17 ng/L), deethylatrazine (5.00 ng/L), hydroxypropazine (3.20 ng/L), deisopropylatrazine (2.05 ng/L), hydroxydesethylatrazine (1.68 ng/L), and others. The TZs had the highest cumulative concentration in July in the tap water samples (median: 89.7 ng/L). This study found that ozonation in combination with activated carbon was more efficient in removing triazine herbicides, although "tryns" could also be transformed during conventional treatment. Ecological risk assessment showed moderate risks posed by hydroxyterbuthylazine, prometryn, and simetryn; the Hanshui River had higher risks than the Yangtze River, and July had higher risks than February. Human exposure to the TZs via water ingestion was low compared to the reference doses. This study characterized the occurrence of some new emerging TZs in the source water, their fate during drinking water treatment, and their seasonal variability in the tap water.
Collapse
Affiliation(s)
- Xinyun Pan
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, 430015, People's Republic of China
| | - Li Xu
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, 430015, People's Republic of China
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, 430015, People's Republic of China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, 430015, People's Republic of China.
| |
Collapse
|
13
|
Bradley PM, Kolpin DW, Thompson DA, Romanok KM, Smalling KL, Breitmeyer SE, Cardon MC, Cwiertny DM, Evans N, Field RW, Focazio MJ, Beane Freeman LE, Givens CE, Gray JL, Hager GL, Hladik ML, Hofmann JN, Jones RR, Kanagy LK, Lane RF, McCleskey RB, Medgyesi D, Medlock-Kakaley EK, Meppelink SM, Meyer MT, Stavreva DA, Ward MH. Juxtaposition of intensive agriculture, vulnerable aquifers, and mixed chemical/microbial exposures in private-well tapwater in northeast Iowa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161672. [PMID: 36657670 PMCID: PMC9976626 DOI: 10.1016/j.scitotenv.2023.161672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
In the United States and globally, contaminant exposure in unregulated private-well point-of-use tapwater (TW) is a recognized public-health data gap and an obstacle to both risk-management and homeowner decision making. To help address the lack of data on broad contaminant exposures in private-well TW from hydrologically-vulnerable (alluvial, karst) aquifers in agriculturally-intensive landscapes, samples were collected in 2018-2019 from 47 northeast Iowa farms and analyzed for 35 inorganics, 437 unique organics, 5 in vitro bioassays, and 11 microbial assays. Twenty-six inorganics and 51 organics, dominated by pesticides and related transformation products (35 herbicide-, 5 insecticide-, and 2 fungicide-related), were observed in TW. Heterotrophic bacteria detections were near ubiquitous (94 % of the samples), with detection of total coliform bacteria in 28 % of the samples and growth on at least one putative-pathogen selective media across all TW samples. Health-based hazard index screening levels were exceeded frequently in private-well TW and attributed primarily to inorganics (nitrate, uranium). Results support incorporation of residential treatment systems to protect against contaminant exposure and the need for increased monitoring of rural private-well homes. Continued assessment of unmonitored and unregulated private-supply TW is needed to model contaminant exposures and human-health risks.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mary C Cardon
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | - Nicola Evans
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | | | | | | | | | | | - Rena R Jones
- National Cancer Institute/NIH, Rockville, MD, USA
| | | | | | | | | | | | | | | | | | - Mary H Ward
- National Cancer Institute/NIH, Rockville, MD, USA
| |
Collapse
|
14
|
Warren-Vega WM, Campos-Rodríguez A, Zárate-Guzmán AI, Romero-Cano LA. A Current Review of Water Pollutants in American Continent: Trends and Perspectives in Detection, Health Risks, and Treatment Technologies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4499. [PMID: 36901509 PMCID: PMC10001968 DOI: 10.3390/ijerph20054499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Currently, water pollution represents a serious environmental threat, causing an impact not only to fauna and flora but also to human health. Among these pollutants, inorganic and organic pollutants are predominantly important representing high toxicity and persistence and being difficult to treat using current methodologies. For this reason, several research groups are searching for strategies to detect and remedy contaminated water bodies and effluents. Due to the above, a current review of the state of the situation has been carried out. The results obtained show that in the American continent a high diversity of contaminants is present in the water bodies affecting several aspects, in which in some cases, there exists alternatives to realize the remediation of contaminated water. It is concluded that the actual challenge is to establish sanitation measures at the local level based on the specific needs of the geographical area of interest. Therefore, water treatment plants must be designed according to the contaminants present in the water of the region and tailored to the needs of the population of interest.
Collapse
Affiliation(s)
| | | | - Ana I. Zárate-Guzmán
- Grupo de Investigación en Materiales y Fenómenos de Superficie, Facultad de Ciencias Químicas, Universidad Autónoma de Guadalajara, Av. Patria 1201, Zapopan C.P. 45129, Jalisco, Mexico
| | - Luis A. Romero-Cano
- Grupo de Investigación en Materiales y Fenómenos de Superficie, Facultad de Ciencias Químicas, Universidad Autónoma de Guadalajara, Av. Patria 1201, Zapopan C.P. 45129, Jalisco, Mexico
| |
Collapse
|
15
|
Wu X, Ren J, Xu Q, Xiao Y, Li X, Peng Y. Priority screening of contaminant of emerging concern (CECs) in surface water from drinking water sources in the lower reaches of the Yangtze River based on exposure-activity ratios (EARs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159016. [PMID: 36162578 DOI: 10.1016/j.scitotenv.2022.159016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Surface water provides ecological services such as drinking water supply. However, contaminants of emerging concern (CECs) are rising concerns because they are ubiquitously detected in surface water and pose potential risks to the aquatic environment and human health. This study investigated the occurrence of 165 CECs in surface water from drinking water source areas along the lower reaches of the Yangtze River to prioritize the CECs and to estimate potential biological activity based on exposure-activity ratio (EAR). A total of 70 CECs were detected in the surface water at least once at the selected 17 sampling sites, and their concentrations ranged from 0.592 to 4650 ng/L. Twenty-four CECs were detected at each site, and these were mostly pharmaceutical and personal care products and pesticides. Sucralose, 1H-benzotriazole and carbendazim were the most common CECs with high median concentrations in the study area. Specifically, sucralose, an artificial sweetener, was presented at each site with the highest median concentration (3010 ng/L), which indicated that anthropogenic inputs are an important source of contaminants. Medroxyprogesterone and trenbolone were identified as the priority contaminants of interest, with maximum EARchemical values of 0.389 and 0.183, respectively. Among all the sites, the higher cumulative EARmixture value was found from Nantong City (0.765), which indicated that this site could have a relatively greater potential for biological effects, and these effects were mainly due to medroxyprogesterone and trenbolone. In regard to the bioactivity of all detected CECs, nuclear receptors showed the greatest potential bioactivity in this region, particularly androgen receptor-mediated bioactivity, which is most likely affected organisms residing in the source water area. These results suggest that the drinking water sources from the studied region are contaminated with CECs, and highlight the prioritization of future monitoring and research to protect source waters.
Collapse
Affiliation(s)
- Xinyi Wu
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Jinzhi Ren
- College of Life Science, Jinan University, Guangzhou 510000, China
| | - Qiang Xu
- School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yao Xiao
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xia Li
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ying Peng
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; School of Environment, Beijing Normal University, Beijing 100875, China; School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
16
|
Bradley PM, Romanok KM, Smalling KL, Focazio MJ, Evans N, Fitzpatrick SC, Givens CE, Gordon SE, Gray JL, Green EM, Griffin DW, Hladik ML, Kanagy LK, Lisle JT, Loftin KA, Blaine McCleskey R, Medlock-Kakaley EK, Navas-Acien A, Roth DA, South P, Weis CP. Bottled water contaminant exposures and potential human effects. ENVIRONMENT INTERNATIONAL 2023; 171:107701. [PMID: 36542998 PMCID: PMC10123854 DOI: 10.1016/j.envint.2022.107701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bottled water (BW) consumption in the United States and globally has increased amidst heightened concern about environmental contaminant exposures and health risks in drinking water supplies, despite a paucity of directly comparable, environmentally-relevant contaminant exposure data for BW. This study provides insight into exposures and cumulative risks to human health from inorganic/organic/microbial contaminants in BW. METHODS BW from 30 total domestic US (23) and imported (7) sources, including purified tapwater (7) and spring water (23), were analyzed for 3 field parameters, 53 inorganics, 465 organics, 14 microbial metrics, and in vitro estrogen receptor (ER) bioactivity. Health-benchmark-weighted cumulative hazard indices and ratios of organic-contaminant in vitro exposure-activity cutoffs were assessed for detected regulated and unregulated inorganic and organic contaminants. RESULTS 48 inorganics and 45 organics were detected in sampled BW. No enforceable chemical quality standards were exceeded, but several inorganic and organic contaminants with maximum contaminant level goal(s) (MCLG) of zero (no known safe level of exposure to vulnerable sub-populations) were detected. Among these, arsenic, lead, and uranium were detected in 67 %, 17 %, and 57 % of BW, respectively, almost exclusively in spring-sourced samples not treated by advanced filtration. Organic MCLG exceedances included frequent detections of disinfection byproducts (DBP) in tapwater-sourced BW and sporadic detections of DBP and volatile organic chemicals in BW sourced from tapwater and springs. Precautionary health-based screening levels were exceeded frequently and attributed primarily to DBP in tapwater-sourced BW and co-occurring inorganic and organic contaminants in spring-sourced BW. CONCLUSION The results indicate that simultaneous exposures to multiple drinking-water contaminants of potential human-health concern are common in BW. Improved understandings of human exposures based on more environmentally realistic and directly comparable point-of-use exposure characterizations, like this BW study, are essential to public health because drinking water is a biological necessity and, consequently, a high-vulnerability vector for human contaminant exposures.
Collapse
Affiliation(s)
| | | | | | | | - Nicola Evans
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | | | - Emily M Green
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | - John T Lisle
- U.S. Geological Survey, Saint Petersburg, Florida, USA
| | | | | | | | | | | | - Paul South
- U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Christopher P Weis
- National Institute of Environmental Health Sciences/NIH, Bethesda, MD, USA
| |
Collapse
|
17
|
Bradley PM, Romanok KM, Smalling KL, Focazio MJ, Charboneau R, George CM, Navas-Acien A, O’Leary M, Red Cloud R, Zacher T, Breitmeyer SE, Cardon MC, Cuny CK, Ducheneaux G, Enright K, Evans N, Gray JL, Harvey DE, Hladik ML, Kanagy LK, Loftin KA, McCleskey RB, Medlock-Kakaley EK, Meppelink SM, Valder JF, Weis CP. Tapwater Exposures, Effects Potential, and Residential Risk Management in Northern Plains Nations. ACS ES&T WATER 2022; 2:1772-1788. [PMID: 36277121 PMCID: PMC9578051 DOI: 10.1021/acsestwater.2c00293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 09/12/2022] [Indexed: 05/10/2023]
Abstract
In the United States (US), private-supply tapwater (TW) is rarely monitored. This data gap undermines individual/community risk-management decision-making, leading to an increased probability of unrecognized contaminant exposures in rural and remote locations that rely on private wells. We assessed point-of-use (POU) TW in three northern plains Tribal Nations, where ongoing TW arsenic (As) interventions include expansion of small community water systems and POU adsorptive-media treatment for Strong Heart Water Study participants. Samples from 34 private-well and 22 public-supply sites were analyzed for 476 organics, 34 inorganics, and 3 in vitro bioactivities. 63 organics and 30 inorganics were detected. Arsenic, uranium (U), and lead (Pb) were detected in 54%, 43%, and 20% of samples, respectively. Concentrations equivalent to public-supply maximum contaminant level(s) (MCL) were exceeded only in untreated private-well samples (As 47%, U 3%). Precautionary health-based screening levels were exceeded frequently, due to inorganics in private supplies and chlorine-based disinfection byproducts in public supplies. The results indicate that simultaneous exposures to co-occurring TW contaminants are common, warranting consideration of expanded source, point-of-entry, or POU treatment(s). This study illustrates the importance of increased monitoring of private-well TW, employing a broad, environmentally informative analytical scope, to reduce the risks of unrecognized contaminant exposures.
Collapse
Affiliation(s)
- Paul M. Bradley
- U.S.
Geological Survey, Columbia, South Carolina 29210, United States
| | | | - Kelly L. Smalling
- U.S.
Geological Survey, Lawrenceville, New Jersey 08648, United States
| | | | - Robert Charboneau
- Spirit
Lake Tribe Office of Environmental Health, Fort Totten, North Dakota 58335, United States
| | - Christine Marie George
- Johns
Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Ana Navas-Acien
- Columbia
University Mailman School of Public Health, New York, New York 10032, United States
| | - Marcia O’Leary
- Missouri
Breaks Industries Research Inc., Eagle Butte, South Dakota 57625, United States
| | - Reno Red Cloud
- Oglala
Sioux Tribe Natural Resources Regulatory Agency, Pine Ridge, South Dakota 57770, United States
| | - Tracy Zacher
- Missouri
Breaks Industries Research Inc., Eagle Butte, South Dakota 57625, United States
| | | | - Mary C. Cardon
- U.S.
Environmental Protection Agency, Durham, North Carolina 27709, United States
| | - Christa K. Cuny
- Missouri
Breaks Industries Research Inc., Eagle Butte, South Dakota 57625, United States
| | - Guthrie Ducheneaux
- Missouri
Breaks Industries Research Inc., Eagle Butte, South Dakota 57625, United States
| | - Kendra Enright
- Missouri
Breaks Industries Research Inc., Eagle Butte, South Dakota 57625, United States
| | - Nicola Evans
- U.S.
Environmental Protection Agency, Durham, North Carolina 27709, United States
| | - James L. Gray
- U.S.
Geological Survey, Lakewood, Colorado 80228-3742, United States
| | - David E. Harvey
- Indian Health Service/HHS, Rockville, Maryland 20857, United States
| | | | - Leslie K. Kanagy
- U.S.
Geological Survey, Lakewood, Colorado 80228-3742, United States
| | - Keith A. Loftin
- U.S.
Geological Survey, Lawrence, Kansas 66049, United States
| | | | | | | | - Joshua F. Valder
- U.S. Geological
Survey, Rapid City, South Dakota 57702, United States
| | - Christopher P. Weis
- National Institute of Environmental Health
Sciences/NIH, Bethesda, Maryland 20814, United
States
| |
Collapse
|
18
|
McDonough CA, Li W, Bischel HN, De Silva AO, DeWitt JC. Widening the Lens on PFASs: Direct Human Exposure to Perfluoroalkyl Acid Precursors (pre-PFAAs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6004-6013. [PMID: 35324171 PMCID: PMC10782884 DOI: 10.1021/acs.est.2c00254] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Determining health risks associated with per-/polyfluoroalkyl substances (PFASs) is a highly complex problem requiring massive efforts for scientists, risk assessors, and regulators. Among the most poorly understood pressing questions is the relative importance of pre-PFAAs, which are PFASs that degrade to highly persistent perfluoroalkyl acids. How many of the vast number of existing pre-PFAAs are relevant for direct human exposure, and what are the predominant exposure pathways? What evidence of direct exposure to pre-PFAAs is provided by human biomonitoring studies? How important are pre-PFAAs and their biotransformation products for human health risk assessment? This article outlines recent progress and recommendations toward widening the lens on human PFAS exposure to include the pre-PFAA subclass.
Collapse
Affiliation(s)
- Carrie A. McDonough
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Wenting Li
- Department of Civil & Environmental Engineering, University of California Davis, Davis, CA 95616 USA
| | - Heather N. Bischel
- Department of Civil & Environmental Engineering, University of California Davis, Davis, CA 95616 USA
| | - Amila O. De Silva
- Aquatic Contaminants Research Division, Water Science Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Jamie C. DeWitt
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
19
|
Hu J, Qi D, Chen Q, Sun W. Comparison and prioritization of antibiotics in a reservoir and its inflow rivers of Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25209-25221. [PMID: 34837609 DOI: 10.1007/s11356-021-17723-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of antibiotics in drinking water resources, like reservoirs, is of considerable concern due to their potential risks to ecosystem, human health, and antimicrobial resistance development. Here, we quantified 83 antibiotics in water and sediments of wet and dry seasons from the Miyun reservoir and its inflow rivers in Beijing, China. Twenty-four antibiotics were detected in water with concentrations of ND-11.6 ng/L and 19 antibiotics were observed in sediments with concentrations of ND-6.50 ng/g. Sulfonamides (SAs) were the dominated antibiotics in water in two seasons. SAs and quinolones (QNs) in wet season and macrolides (MLs) and QNs in dry season predominated in sediments. The reservoir and inflow rivers showed significant differences in antibiotic concentrations and compositions in water and sediments. As an important input source of reservoir, the river water showed significantly higher total antibiotic concentrations than those in the reservoir. In contrast, the reservoir sediments are the sink of antibiotics, and had higher total antibiotic concentrations compared with rivers. A prioritization approach based on the overall risk scores and detection frequencies of antibiotics was developed, and 3 (sulfaguanidine, anhydroerythromycin, and sulfamethoxazole) and 5 (doxycycline, sulfadiazine, clarithromycin, roxithromycin, and flumequine) antibiotics with high and moderate priority, respectively, were screened. The study provides a comprehensive insight of antibiotics in the Miyun Reservoir and its inflow rivers, and is significant for future monitoring and pollution mitigation of antibiotics.
Collapse
Affiliation(s)
- Jingrun Hu
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Dianqing Qi
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China.
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China.
| |
Collapse
|
20
|
Hubbard LE, Kolpin DW, Givens CE, Blackwell BR, Bradley PM, Gray JL, Lane RF, Masoner JR, McCleskey RB, Romanok KM, Sandstrom MW, Smalling KL, Villeneuve DL. Food, Beverage, and Feedstock Processing Facility Wastewater: a Unique and Underappreciated Source of Contaminants to U.S. Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1028-1040. [PMID: 34967600 PMCID: PMC9219000 DOI: 10.1021/acs.est.1c06821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Process wastewaters from food, beverage, and feedstock facilities, although regulated, are an under-investigated environmental contaminant source. Food process wastewaters (FPWWs) from 23 facilities in 17 U.S. states were sampled and documented for a plethora of chemical and microbial contaminants. Of the 576 analyzed organics, 184 (32%) were detected at least once, with concentrations as large as 143 μg L-1 (6:2 fluorotelomer sulfonic acid), and as many as 47 were detected in a single FPWW sample. Cumulative per/polyfluoroalkyl substance concentrations up to 185 μg L-1 and large pesticide transformation product concentrations (e.g., methomyl oxime, 40 μg L-1; clothianidin TMG, 2.02 μg L-1) were observed. Despite 48% of FPWW undergoing disinfection treatment prior to discharge, bacteria resistant to third-generation antibiotics were found in each facility type, and multiple bacterial groups were detected in all samples, including total coliforms. The exposure-activity ratios and toxicity quotients exceeded 1.0 in 13 and 22% of samples, respectively, indicating potential biological effects and toxicity to vertebrates and invertebrates associated with the discharge of FPWW. Organic contaminant profiles of FPWW differed from previously reported contaminant profiles of municipal effluents and urban storm water, indicating that FPWW is another important source of chemical and microbial contaminant mixtures discharged into receiving surface waters.
Collapse
Affiliation(s)
| | - Dana W. Kolpin
- U.S. Geological Survey, Iowa City, Iowa 52240, United States
| | | | - Brett R. Blackwell
- U.S. Environmental Protection Agency, Duluth, Minnesota 55084, United States
| | - Paul M. Bradley
- U.S. Geological Survey, Columbia, South Carolina 29210, United States
| | - James L. Gray
- U.S. Geological Survey, Lakewood, Colorado 80225, United States
| | - Rachael F. Lane
- U.S. Geological Survey, Lawrence, Kansas 66049, United States
| | - Jason R. Masoner
- U.S. Geological Survey, Oklahoma City, Oklahoma 73116, United States
| | | | | | | | - Kelly L. Smalling
- U.S. Geological Survey, Lawrenceville, New Jersey 08648, United States
| | | |
Collapse
|
21
|
Conley JM, Lambright CS, Evans N, Cardon M, Medlock-Kakaley E, Wilson VS, Gray LE. A mixture of 15 phthalates and pesticides below individual chemical no observed adverse effect levels (NOAELs) produces reproductive tract malformations in the male rat. ENVIRONMENT INTERNATIONAL 2021; 156:106615. [PMID: 34000504 PMCID: PMC8380680 DOI: 10.1016/j.envint.2021.106615] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 05/10/2023]
Abstract
Humans carry residues of multiple synthetic chemicals at any given point in time. Research has demonstrated that compounds with varying molecular initiating events (MIE) that disrupt common key events can act in concert to produce cumulative adverse effects. Congenital defects of the male reproductive tract are some of the most frequently diagnosed malformations in humans and chemical exposures in utero can produce these effects in laboratory animals and humans. Here, we hypothesized that in utero exposure to a mixture of pesticides and phthalates, each of which produce male reproductive tract defects individually, would produce cumulative effects even when each chemical is present at a no observed adverse effect level (NOAEL) specific for male reproductive effects. Pregnant Sprague-Dawley rats were exposed via oral gavage to a fixed-ratio dilution mixture of 5 pesticides (vinclozolin, linuron, procymidone, prochloraz, pyrifluquinazon), 1 pesticide metabolite (dichlorodiphenyldichloroethylene (DDE)), and 9 phthalates (dipentyl, dicyclohexyl, di-2-ethylhexyl, dibutyl, benzyl butyl, diisobutyl, diisoheptyl, dihexyl, and diheptyl) during the critical window of rat fetal masculinization (gestation day 14-18). The top dose (100% dose) contained each compound at a concentration 2-fold greater than the individual chemical NOAEL followed by a dilution series that represented each chemical at NOAEL, NOAEL/2, NOAEL/4, NOAEL/8, NOAEL/15, NOAEL/100, NOAEL/1000. Reduced fetal testis gene expression occurred at NOAEL/15, reduced fetal testis testosterone production occurred at NOAEL/8, reduced anogenital distance, increased nipple retention, and delayed puberty occurred at NOAEL/4, and severe effects including genital malformations and weight reductions in numerous reproductive tissues occurred at NOAEL/2. This study demonstrates that these phthalates and pesticides acted cumulatively to produce adverse effects at doses below which any individual chemical had been shown to produce an effect alone and even though they have different MIEs.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Christy S Lambright
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Nicola Evans
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Mary Cardon
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Vickie S Wilson
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - L Earl Gray
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| |
Collapse
|
22
|
Bradley PM, Padilla IY, Romanok KM, Smalling KL, Focazio MJ, Breitmeyer SE, Cardon MC, Conley JM, Evans N, Givens CE, Gray JL, Gray LE, Hartig PC, Higgins CP, Hladik ML, Iwanowicz LR, Lane RF, Loftin KA, McCleskey RB, McDonough CA, Medlock-Kakaley E, Meppelink S, Weis CP, Wilson VS. Pilot-scale expanded assessment of inorganic and organic tapwater exposures and predicted effects in Puerto Rico, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147721. [PMID: 34134358 PMCID: PMC8504685 DOI: 10.1016/j.scitotenv.2021.147721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 05/10/2023]
Abstract
A pilot-scale expanded target assessment of mixtures of inorganic and organic contaminants in point-of-consumption drinking water (tapwater, TW) was conducted in Puerto Rico (PR) to continue to inform TW exposures and corresponding estimations of cumulative human-health risks across the US. In August 2018, a spatial synoptic pilot assessment of than 524 organic and 37 inorganic chemicals was conducted in 14 locations (7 home; 7 commercial) across PR. A follow-up 3-day temporal assessment of TW variability was conducted in December 2018 at two of the synoptic locations (1 home, 1 commercial) and included daily pre- and post-flush samples. Concentrations of regulated and unregulated TW contaminants were used to calculate cumulative in vitro bioactivity ratios and Hazard Indices (HI) based on existing human-health benchmarks. Synoptic results confirmed that human exposures to inorganic and organic contaminant mixtures, which are rarely monitored together in drinking water at the point of consumption, occurred across PR and consisted of elevated concentrations of inorganic contaminants (e.g., lead, copper), disinfection byproducts (DBP), and to a lesser extent per/polyfluoroalkyl substances (PFAS) and phthalates. Exceedances of human-health benchmarks in every synoptic TW sample support further investigation of the potential cumulative risk to vulnerable populations in PR and emphasize the importance of continued broad characterization of drinking-water exposures at the tap with analytical capabilities that better represent the complexity of both inorganic and organic contaminant mixtures known to occur in ambient source waters. Such health-based monitoring data are essential to support public engagement in source water sustainability and treatment and to inform consumer point-of-use treatment decision making in PR and throughout the US.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mary C Cardon
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | - Nicola Evans
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | - L Earl Gray
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | - Christopher P Weis
- National Institute of Environmental Health Sciences/National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
23
|
Bradley PM, LeBlanc DR, Romanok KM, Smalling KL, Focazio MJ, Cardon MC, Clark JM, Conley JM, Evans N, Givens CE, Gray JL, Earl Gray L, Hartig PC, Higgins CP, Hladik ML, Iwanowicz LR, Loftin KA, Blaine McCleskey R, McDonough CA, Medlock-Kakaley EK, Weis CP, Wilson VS. Public and private tapwater: Comparative analysis of contaminant exposure and potential risk, Cape Cod, Massachusetts, USA. ENVIRONMENT INTERNATIONAL 2021; 152:106487. [PMID: 33752165 PMCID: PMC8268049 DOI: 10.1016/j.envint.2021.106487] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Humans are primary drivers of environmental contamination worldwide, including in drinking-water resources. In the United States (US), federal and state agencies regulate and monitor public-supply drinking water while private-supply monitoring is rare; the current lack of directly comparable information on contaminant-mixture exposures and risks between private- and public-supplies undermines tapwater (TW) consumer decision-making. METHODS We compared private- and public-supply residential point-of-use TW at Cape Cod, Massachusetts, where both supplies share the same groundwater source. TW from 10 private- and 10 public-supply homes was analyzed for 487 organic, 38 inorganic, 8 microbial indicators, and 3 in vitro bioactivities. Concentrations were compared to existing protective health-based benchmarks, and aggregated Hazard Indices (HI) of regulated and unregulated TW contaminants were calculated along with ratios of in vitro exposure-activity cutoffs. RESULTS Seventy organic and 28 inorganic constituents were detected in TW. Median detections were comparable, but median cumulative concentrations were substantially higher in public supply due to 6 chlorine-disinfected samples characterized by disinfection byproducts and corresponding lower heterotrophic plate counts. Public-supply applicable maximum contaminant (nitrate) and treatment action (lead and copper) levels were exceeded in private-supply TW samples only. Exceedances of health-based HI screening levels of concern were common to both TW supplies. DISCUSSION These Cape Cod results indicate comparable cumulative human-health concerns from contaminant exposures in private- and public-supply TW in a shared source-water setting. Importantly, although this study's analytical coverage exceeds that currently feasible for water purveyors or homeowners, it nevertheless is a substantial underestimation of the full breadth of contaminant mixtures documented in the environment and potentially present in drinking water. CONCLUSION Regardless of the supply, increased public engagement in source-water protection and drinking-water treatment, including consumer point-of-use treatment, is warranted to reduce risks associated with long-term TW contaminant exposures, especially in vulnerable populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Mary C Cardon
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | - Nicola Evans
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | - L Earl Gray
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | | | | | | | | | | | - Christopher P Weis
- U.S. National Institute of Environmental Health Sciences/NIH, Bethesda, MD, USA
| | | |
Collapse
|
24
|
Asami M, Furuhashi Y, Nakamura Y, Sasaki Y, Adachi Y, Maeda N, Matsui Y. A field survey on elution of lead and nickel from taps used in homes and analysis of product test results. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144979. [PMID: 33736143 DOI: 10.1016/j.scitotenv.2021.144979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The elution of lead, and nickel from water supply devices into water is a potential health concern. This study was performed to examine the actual concentrations of nickel and lead in the water from taps in homes and offices, focusing on the differences between first flush and fully flushed water. The water quality management target value and water quality standard in Japan specify nickel and lead concentrations in drinking water <20 and <10 μg/L, respectively. Nickel concentration in the first flush water (100 mL) from 110 household taps revealed 22 cases (20%) > 20 μg/L, while the fully flushed water satisfied the standard after running 5000 mL of water. The nickel concentration decreased gradually in sequential sampling of each 100 mL from the taps. Lead concentration in the first flush water exceeded the standard in 32 cases (29%), while the fully flushed water was below the target value. The concentration in the first flush water tended to decrease with time since the tap installation, and this was significant after 10 years for nickel but not significant for lead. It is important to flush retained water out of the tap after several hours without use. No significant correlation was found with the volume of the test faucet in the market, but bronze-based products showed higher nickel concentrations than brass and plastic products.
Collapse
Affiliation(s)
- Mari Asami
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan.
| | | | - Yuji Nakamura
- Water Supply and Sewage Bureau, Mito City, Ibaraki, Japan
| | - Yuki Sasaki
- Water Supply and Sewage Bureau, Morioka City, Aomori, Japan
| | - Yoshio Adachi
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan
| | - Nobuko Maeda
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan
| | | |
Collapse
|
25
|
Medlock Kakaley E, Cardon MC, Evans N, Iwanowicz LR, Allen JM, Wagner E, Bokenkamp K, Richardson SD, Plewa MJ, Bradley PM, Romanok KM, Kolpin DW, Conley JM, Gray LE, Hartig PC, Wilson VS. In vitro effects-based method and water quality screening model for use in pre- and post-distribution treated waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144750. [PMID: 33736315 PMCID: PMC8085790 DOI: 10.1016/j.scitotenv.2020.144750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 05/20/2023]
Abstract
Recent urban public water supply contamination events emphasize the importance of screening treated drinking water quality after distribution. In vitro bioassays, when run concurrently with analytical chemistry methods, are effective tools to evaluating the efficacy of water treatment processes and water quality. We tested 49 water samples representing the Chicago Department of Water Management service areas for estrogen, (anti)androgen, glucocorticoid receptor-activating contaminants and cytotoxicity. We present a tiered screening approach suitable to samples with anticipated low-level activity and initially tested all extracts for statistically identifiable endocrine activity; performing a secondary dilution-response analysis to determine sample EC50 and biological equivalency values (BioEq). Estrogenic activity was detected in untreated Lake Michigan intake water samples using mammalian (5/49; median: 0.21 ng E2Eq/L) and yeast cell (5/49; 1.78 ng E2Eq/L) bioassays. A highly sensitive (anti)androgenic activity bioassay was applied for the first time to water quality screening and androgenic activity was detected in untreated intake and treated pre-distribution samples (4/49; 0.93 ng DHTEq/L). No activity was identified above method detection limits in the yeast androgenic, mammalian anti-androgenic, and both glucocorticoid bioassays. Known estrogen receptor agonists were detected using HPLC/MS-MS (estrone: 0.72-1.4 ng/L; 17α-estradiol: 1.3-1.5 ng/L; 17β-estradiol: 1.4 ng/L; equol: 8.8 ng/L), however occurrence did not correlate with estrogenic bioassay results. Many studies have applied bioassays to water quality monitoring using only relatively small samples sets often collected from surface and/or wastewater effluent. However, to realistically adapt these tools to treated water quality monitoring, water quality managers must have the capacity to screen potentially hundreds of samples in short timeframes. Therefore, we provided a tiered screening model that increased sample screening speed, without sacrificing statistical stringency, and detected estrogenic and androgenic activity only in pre-distribution Chicago area samples.
Collapse
Affiliation(s)
- Elizabeth Medlock Kakaley
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America.
| | - Mary C Cardon
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America
| | - Nicola Evans
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America
| | - Luke R Iwanowicz
- U.S. Geological Survey, Leetown Science Center, 11649 Leetown Rd, Kearneysville, WV 25430, United States of America
| | - Joshua M Allen
- University of South Carolina, Department of Chemistry & Biochemistry, Graduate Science Research Center, 631 Sumter St, Columbia, SC 29208, United States of America
| | - Elizabeth Wagner
- University of Illinois at Urbana-Champaign, Department of Crop Sciences, 1102 S. Goodwin Ave, Urbana, IL 61801, United States of America
| | - Katherine Bokenkamp
- University of Illinois at Urbana-Champaign, Department of Crop Sciences, 1102 S. Goodwin Ave, Urbana, IL 61801, United States of America
| | - Susan D Richardson
- University of South Carolina, Department of Chemistry & Biochemistry, Graduate Science Research Center, 631 Sumter St, Columbia, SC 29208, United States of America
| | - Michael J Plewa
- University of Illinois at Urbana-Champaign, Department of Crop Sciences, 1102 S. Goodwin Ave, Urbana, IL 61801, United States of America
| | - Paul M Bradley
- U.S. Geological Survey, South Carolina Water Science Center, 720 Gracern Rd, Columbia, SC 29210, United States of America
| | - Kristin M Romanok
- U.S. Geological Survey, Water Science Center, 3450 Princeton Pike, Lawrenceville, NJ 08648, United States of America
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S Clinton St Room 269, Iowa City, IA 52240, United States of America
| | - Justin M Conley
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America
| | - L Earl Gray
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America
| | - Phillip C Hartig
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America
| | - Vickie S Wilson
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America
| |
Collapse
|
26
|
Alla LNR, Monshi M, Siddiqua Z, Shields J, Alame K, Wahls A, Akemann C, Meyer D, Crofts EJ, Saad F, El-Nachef J, Antoon M, Nakhle R, Hijazi N, Hamid M, Gurdziel K, McElmurry SP, Kashian DR, Baker TR, Pitts DK. Detection of endocrine disrupting chemicals in Danio rerio and Daphnia pulex: Step-one, behavioral screen. CHEMOSPHERE 2021; 271:129442. [PMID: 33476875 DOI: 10.1016/j.chemosphere.2020.129442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 05/27/2023]
Abstract
Anthropogenic surface and ground water contamination by chemicals is a global problem, and there is an urgent need to develop tools to identify and elucidate biological effects. Contaminants of emerging concern (CECs) are not typically monitored or regulated and those with known or suspected endocrine disrupting potential have been termed endocrine disrupting chemicals (EDCs). Many CECs are known to be neurotoxic (e.g., insecticides) and many are incompletely characterized. Behavioral responses can identify chemicals with neuroactive properties, which can be relevant to EDC mechanisms (e.g., neuroendocrine disturbances). Two freshwater species, Daphnia pulex and Danio rerio, were evaluated for swimming behavior alterations resulting from 24-hr exposure to 9 CECs: triclosan, triclocarban, chlorpyrifos, dieldrin, 4-nonylphenol, bisphenol-A, atrazine, metformin, and estrone. This is the first step in the development of a bioassay for detecting estrogenic and/or anti-androgenic activity with the goal to evaluate complex mixtures of uncharacterized contaminants in water samples. The second step, described in a subsequent report, examines transcriptome alterations following chemical exposure. Significant differences in the swimming behavior response and sensitivity were found across chemicals within a species and across species for a given chemical in this unique optical bioassay system. In the concentration ranges studied, significant behavioral alterations were detected for 6 of 9 CECs for D. pulex and 4 of 9 CECs for D. rerio. These results underscore the utility of this bioassay to identify behavioral effects of sublethal concentrations of CECs before exploration of transcriptomic alterations for EDC detection.
Collapse
Affiliation(s)
- Lakshmi Neha Reddy Alla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Manahil Monshi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Zoha Siddiqua
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Jeremiah Shields
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Karim Alame
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Andrea Wahls
- Department of Civil and Environmental Engineering, College of Engineering, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Camille Akemann
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Danielle Meyer
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Emily J Crofts
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Fadie Saad
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Judy El-Nachef
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Merna Antoon
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Raquel Nakhle
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Nemer Hijazi
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Maha Hamid
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | | | - Shawn P McElmurry
- Department of Civil and Environmental Engineering, College of Engineering, Wayne State University, Detroit, MI, USA
| | - Donna R Kashian
- Department of Biological Sciences, College of Liberal Arts, Wayne State University, Detroit, MI, USA
| | - Tracie R Baker
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - David K Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
27
|
Goeppert N, Goldscheider N. Experimental field evidence for transport of microplastic tracers over large distances in an alluvial aquifer. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124844. [PMID: 33383455 DOI: 10.1016/j.jhazmat.2020.124844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/24/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
The transport of microplastic tracer particles in comparison to the solute conservative tracer uranine was experimentally investigated in a shallow alluvial aquifer over distances from 3.1 to 200 m by means of a natural-gradient tracer test. The microplastic particles (MPs) with diameters of 1, 2 and 5 µm were artificially injected into an observation well to simulate microplastic transport; water samples were taken at eleven observation wells further downgradient over a time span of 171 days. In total, 44 individual breakthrough curves of microplastics and uranine were obtained at all sampling sites, allowing a detailed analysis of the size-dependency of microplastics transport in porous media at field scale. Results clearly show that (i) microplastics of 1-5 µm can be transported in significant amounts in sand-and-gravel aquifers; (ii) peak concentrations of microplastics can exceed those of conservative solutes, in particular for longer flow distances; (iii) microplastic peak velocities are in a similar range or exceed those of conservative solutes; (iv) retardation and filtration processes did not efficiently attenuate microplastics in groundwater at the study site. To our best of knowledge, this is the first experimental field evidence for microplastics transport over large distances in an alluvial aquifer.
Collapse
Affiliation(s)
- Nadine Goeppert
- Institute of Applied Geosciences (AGW), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany.
| | - Nico Goldscheider
- Institute of Applied Geosciences (AGW), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
| |
Collapse
|
28
|
Ankley GT, Cureton P, Hoke RA, Houde M, Kumar A, Kurias J, Lanno R, McCarthy C, Newsted J, Salice CJ, Sample BE, Sepúlveda MS, Steevens J, Valsecchi S. Assessing the Ecological Risks of Per- and Polyfluoroalkyl Substances: Current State-of-the Science and a Proposed Path Forward. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:564-605. [PMID: 32897586 PMCID: PMC7984443 DOI: 10.1002/etc.4869] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/13/2020] [Accepted: 08/31/2020] [Indexed: 05/19/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) encompass a large, heterogenous group of chemicals of potential concern to human health and the environment. Based on information for a few relatively well-understood PFAS such as perfluorooctane sulfonate and perfluorooctanoate, there is ample basis to suspect that at least a subset can be considered persistent, bioaccumulative, and/or toxic. However, data suitable for determining risks in either prospective or retrospective assessments are lacking for the majority of PFAS. In August 2019, the Society of Environmental Toxicology and Chemistry sponsored a workshop that focused on the state-of-the-science supporting risk assessment of PFAS. The present review summarizes discussions concerning the ecotoxicology and ecological risks of PFAS. First, we summarize currently available information relevant to problem formulation/prioritization, exposure, and hazard/effects of PFAS in the context of regulatory and ecological risk assessment activities from around the world. We then describe critical gaps and uncertainties relative to ecological risk assessments for PFAS and propose approaches to address these needs. Recommendations include the development of more comprehensive monitoring programs to support exposure assessment, an emphasis on research to support the formulation of predictive models for bioaccumulation, and the development of in silico, in vitro, and in vivo methods to efficiently assess biological effects for potentially sensitive species/endpoints. Addressing needs associated with assessing the ecological risk of PFAS will require cross-disciplinary approaches that employ both conventional and new methods in an integrated, resource-effective manner. Environ Toxicol Chem 2021;40:564-605. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Gerald T. Ankley
- Great Lakes Toxicology and Ecology Division, US Environmental Protection AgencyDuluthMinnesotaUSA
| | - Philippa Cureton
- Science and Risk Assessment Division, Environment and Climate Change Canada, GatineauQuebecCanada
| | | | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, MontrealQuebecCanada
| | - Anupama Kumar
- Land and Water, Commonwealth Scientific and Industrial Research Organisation UrrbraeSouth AustraliaAustralia
| | - Jessy Kurias
- Science and Risk Assessment Division, Environment and Climate Change Canada, GatineauQuebecCanada
| | | | | | | | | | | | - Maria S. Sepúlveda
- Department of Forestry and Natural Resources, Purdue UniversityWest LayetteIndianaUSA
| | - Jeffery Steevens
- US Geological Survey, Columbia Environmental Research CenterColumbiaMissouriUSA
| | - Sara Valsecchi
- Water Research Institute, National Research CouncilBrugherioMonza and BrianzaItaly
| |
Collapse
|
29
|
Pulicharla R, Proulx F, Behmel S, Sérodes JB, Rodriguez MJ. Occurrence and seasonality of raw and drinking water contaminants of emerging interest in five water facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141748. [PMID: 32889468 DOI: 10.1016/j.scitotenv.2020.141748] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
The goal of this work was to investigate the occurrence of contaminants of emerging interest (CEI) in source surface water (SW; river water) and drinking water (DW; tap water) from five drinking water treatment plants (DWTPs) in the Province of Québec, Canada. A total of 28 sampling campaigns were conducted to collect SW and DW samples from each DWTP from June 2016 to July 2017. The seven targeted CEI, including acetaminophen, salicylic acid, caffeine, carbamazepine, ibuprofen, sulfamethoxazole and drospirenone, were analyzed using solid-phase extraction-ultra pressure liquid chromatography-mass spectrometry (SPE-UPLC-MS/MS) for all collected water samples. The selected CEI were detected in all SW and DW samples, with the exception of drospirenone, which occurred in amounts that were below the limit of detection in one DWTP in June and July 2016. In all the SW samples, caffeine was detected and had the highest median concentration range (12.3-91.0 ng/L), followed by acetaminophen (7.9-85.0 ng/L) and salicylic acid (21.6-39.0 ng/L). In the DW samples, salicylic acid was detected and had the highest median concentration range (20.5-50 ng/L), followed by caffeine (5.2-21.8 ng/L), and acetaminophen (5.0-7.7 ng/L). Carbamazepine, ibuprofen, and sulfamethoxazole primarily occurred in amounts between the limit of detection and limit of quantification in SW and occurred below the limit of detection in DW. All the DWTPs exhibited a similar trend in the removal of CEI, which include acetaminophen (≤97.6%), followed by caffeine (71.0-86.5%) and salicylic acid (<50.0%). Varying levels of efficiencies were observed among the removal strategies for CEI under study, which were mainly associated with the contaminant concentration in SW in the case of acetaminophen, and with the treatment processes in the case of caffeine and salicylic acid.
Collapse
Affiliation(s)
- Rama Pulicharla
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, bureau 1616, 2325, rue des Bibliothèques, Université Laval, Québec, QC G1V 0A6, Canada.
| | - François Proulx
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, bureau 1616, 2325, rue des Bibliothèques, Université Laval, Québec, QC G1V 0A6, Canada.
| | | | - Jean-B Sérodes
- Département de Génie civil et génie des eaux, Pavillon Pouliot, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Manuel J Rodriguez
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, bureau 1616, 2325, rue des Bibliothèques, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
30
|
Marshall MM, McCluney KE. Mixtures of co-occurring chemicals in freshwater systems across the continental US. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115793. [PMID: 33069045 DOI: 10.1016/j.envpol.2020.115793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Trace chemicals are common in marine and freshwater ecosystems globally. It is recognized that in the environment, individual chemicals are rarely found in isolation. Insufficient work has examined which chemicals co-occur and which methods best identify these mixtures. Using an existing data set, we found evidence that simple correlation analysis is better at identifying mixtures of commonly co-occurring trace chemicals than more commonly used PCA methods. Moreover, simple correlation analysis, unlike PCA, can be used in cases with unbalanced designs and with data points below reportable limits. Application of this approach allowed identification of 10 groups of chemicals commonly found together in freshwaters of the continental US, representing common "chemical syndromes." Better identification of co-occurring chemical combinations could aid in our understanding of biological and ecological effects of aquatic contaminants. This research provides evidence of correlation analyses as a more effective method for identifying commonly co-occurring aquatic contaminants. We also examined the patterns of these mixtures with a dataset consisting of concentrations of 406 trace chemicals from 38 sample locations across the continental US.
Collapse
Affiliation(s)
- Melanie M Marshall
- Wright State University - Lake Campus, Celina, OH, 45822, United States; Bowling Green State University, Bowling Green, OH, 43402, United States.
| | - Kevin E McCluney
- Bowling Green State University, Bowling Green, OH, 43402, United States
| |
Collapse
|
31
|
Siddiqui S, Conkle JL, Sadovski A. Contiguous U.S. surface water availability and short-term trends of wastewater effluent flows in San Antonio, TX. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115036. [PMID: 32592958 DOI: 10.1016/j.envpol.2020.115036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Surface water is a vital and sometimes stressed resource in the U.S. The quantity of this resource is threatened by population shifts and growth concurrently with climate change intensification. Additionally, growing population centers can impact water quality by discharging treated wastewater effluent, which is typically of lower quality than its receiving surface waters. Depending on baseflow and environmental factors, this could decrease water quality. From a previous model prepared in our lab, this study can improve the understanding of water resource quality and quantity, surface water availability for the contiguous U.S. was estimated for each USGS Hydrologic Unit Code (HUC) during 2015. The Mississippi River generally served as a dividing line for surface water availability, with five of the six regions with very low water availability (<24,000 LD-1Km-2) residing in the west. These same areas also experience more drought as well as more severe droughts than regions in the east. In regions with lower surface water flows, their water quality is more susceptible to the influence of wastewater effluent discharges, especially near large and growing population centers like San Antonio, Texas. A prediction model was established for this city, which found that from 2009 to 2017 wastewater effluent increased by 1.8%. As cities grow, especially in the Southwest and Western U.S. together with intensified climate change, surface water quantity and quality become more crucial to sustainability. This study shows where surface water availability is already an issue and provides a model to estimate, as well as project, wastewater effluent flows into surface water bodies.
Collapse
Affiliation(s)
- Samreen Siddiqui
- Department of Physical & Environmental Sciences, 6300 Ocean Drive, Texas A& M, Corpus Christi, Texas, 78412, USA.
| | - Jeremy L Conkle
- Department of Physical & Environmental Sciences, 6300 Ocean Drive, Texas A& M, Corpus Christi, Texas, 78412, USA
| | - Alexey Sadovski
- Department of Mathematics, 6300 Ocean Drive, Texas A& M, Corpus Christi, Texas, 78412, USA
| |
Collapse
|
32
|
Wang A, Hu X, Wan Y, Mahai G, Jiang Y, Huo W, Zhao X, Liang G, He Z, Xia W, Xu S. A nationwide study of the occurrence and distribution of atrazine and its degradates in tap water and groundwater in China: Assessment of human exposure potential. CHEMOSPHERE 2020; 252:126533. [PMID: 32217410 DOI: 10.1016/j.chemosphere.2020.126533] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
Despite frequent detection of atrazine (ATZ) and its degradates (including hydroxyatrazine, ATZ-OH; deethylatrazine, DEA; deisopropylatrazine, DIA; and deethyldeisopropylatrazine, DACT) in a variety of water bodies, documentation of their occurrence and distribution in tap water in China is still scarce. A nationwide survey about ATZ and its degradates (ATZs) in tap water from 31 provinces in 7 regions of mainland China and Hong Kong was conducted during June 2019. At least one of the analytes was found in all the water samples (n = 884). The median sum concentrations of ATZs (ΣATZs) was 21.0 ng/L (range: 0.02 ng/L-3.04 μg/L). The predominant compounds of ATZs in tap water were ATZ and DEA, with a detection frequency of 99.5% and 98.0%, respectively, followed by ATZ-OH (87.3%), DACT (84.0%), and DIA (78.1%). Significant regional variations (p < 0.05) were found in the concentrations of ATZs in tap water, and the highest concentration of ΣATZs (median: 254 ng/L, range: 0.44 ng/L-3.04 μg/L) was found in Northeastern China, followed by Eastern (37.2 ng/L, 0.02-706 ng/L), Northern (30.2 ng/L, 0.04-317 ng/L), Central (29.3 ng/L, 0.04-256 ng/L), Southern (25.0 ng/L, 0.04-297 ng/L), Southwestern (17.2 ng/L, 0.02-388 ng/L), and Northwestern China (3.22 ng/L, 0.06-214 ng/L). The level of ΣATZs in groundwater from rural area of China was about 1/3 of that found in tap water. ATZs cannot be removed by boiling tap water. The highest estimated daily intake of ΣATZs (248 ng/kg-body weight/day) was found in the infant population of Changchun, Jilin, Northeastern China.
Collapse
Affiliation(s)
- Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Xun Hu
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, 430015, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, 430015, PR China.
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Ying Jiang
- Nanshan District Center for Disease Control and Prevention, Shenzhen, Guangdong, 518054, PR China.
| | - Wenqian Huo
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Xiuge Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Gaodao Liang
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, 430015, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, 430015, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
33
|
Goeppert N, Goldscheider N, Berkowitz B. Experimental and modeling evidence of kilometer-scale anomalous tracer transport in an alpine karst aquifer. WATER RESEARCH 2020; 178:115755. [PMID: 32348930 DOI: 10.1016/j.watres.2020.115755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Karst aquifers are important drinking water resources, but highly vulnerable to contamination. Contaminants can be transported rapidly through a network of fractures and conduits, with only limited sorption or degradation, which usually leads to a fast and strong response at karst springs. During migration, contaminants can also enter less mobile zones, such as pools or water in intra-karstic sediments, or advance from conduits into the adjacent fractured rock matrix. As contaminant concentrations in the main flow path(s) decrease, contaminants may migrate back into the main flow path and reach the karst springs at low (but significant) concentrations over a long time span. This is the conventional interpretation for the oft-observed steep rising limb and the long-tailed falling limb of tracer breakthrough curves in karst systems. Here, field measurements are examined from an alpine karst system in Austria where a series of distinctive, long-tailed breakthrough curves (BTCs) of conservative tracers were observed over distances up to 7400 m. Recognizing that the conventional advection-dispersion equation (ADE) cannot usually quantify such behavior, two other modeling approaches are considered, namely the two-region non-equilibrium (2RNE) model, which explicitly includes mobile and immobile zones, and a continuous time random walk (CTRW) model, which is based on a physically-based, probabilistic approach that describes anomalous (or non-Fickian) transport behavior characteristic of heterogeneous systems such as karst. In most cases, the ADE and 2RNE models do not quantify the low concentrations at longer travel times. The CTRW, in contrast, accounts for the long-tailed breakthrough behavior found in this karst system.
Collapse
Affiliation(s)
- Nadine Goeppert
- Institute of Applied Geosciences (AGW), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany.
| | - Nico Goldscheider
- Institute of Applied Geosciences (AGW), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Brian Berkowitz
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
34
|
Adeyeye AO, Laub BG. Quantification of estrogen concentration in a creek receiving wastewater treatment plant effluent. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:426. [PMID: 32533378 DOI: 10.1007/s10661-020-08394-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Estrogen in streams threatens aquatic animals, especially where wastewater treatment plant (WWTP) effluent contributes to baseflow. We investigated total estrogen (E1+E2+E3) as estradiol equivalent (E2) and ethynylestradiol (EE2) concentration in Cibolo Creek (Cibolo), a groundwater-fed stream near San Antonio, TX, receiving effluent via two WWTP. We collected water samples bi-monthly from late spring to early fall 2018 in Cibolo and WWTP effluent, and used ELISA analysis and discharge measurements to determine concentrations and loads of estrogens. We measured several environmental variables to investigate what factors influenced estrogen concentrations in Cibolo downstream from WWTP inputs. Mean concentrations of WWTP effluent (E2, 41.43 ± 15.48; EE2, 11.40 ± 2.07 ng L-1) were higher compared with concentrations in Cibolo, both downstream (E2, 30.09 ± 25.85; EE2, 6.33 ± 1.92 ng L-1) and upstream (E2, 12.91 ± 11.12; EE2, 4.5 ± 1.38 ng L-1) of WWTP inputs. Both E2 and EE2 concentrations decreased downstream from WWTP inputs, a section of stream without large quantities of fine sediments for sorption, indicating potential dilution or chemical and biological degradation. Effluent into Cibolo via the first, and older, WWTP contributed the most estrogen load in Cibolo. Median concentrations of E2 and EE2 were 19 and 5 ng L-1, respectively, downstream of WWTP inputs, concentrations known to affect reproductive processes of aquatic biota and impair human health. Results suggest estrogens may pose a risk to aquatic ecosystems wherever WWTP effluent comprises a majority of baseflow, though further studies are required in this stream to verify biological impacts.
Collapse
Affiliation(s)
- Adebayo O Adeyeye
- Department of Environmental Science & Ecology, College of Sciences, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Brian G Laub
- Department of Environmental Science & Ecology, College of Sciences, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
35
|
Bibliometric review of research trends on disinfection by-products in drinking water during 1975–2018. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116741] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Bradley PM, Argos M, Kolpin DW, Meppelink SM, Romanok KM, Smalling KL, Focazio MJ, Allen JM, Dietze JE, Devito MJ, Donovan AR, Evans N, Givens CE, Gray JL, Higgins CP, Hladik ML, Iwanowicz LR, Journey CA, Lane RF, Laughrey ZR, Loftin KA, McCleskey RB, McDonough CA, Medlock-Kakaley E, Meyer MT, Putz AR, Richardson SD, Stark AE, Weis CP, Wilson VS, Zehraoui A. Mixed organic and inorganic tapwater exposures and potential effects in greater Chicago area, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020. [PMID: 32126404 DOI: 10.5066/p9voobwt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Safe drinking water at the point of use (tapwater, TW) is a public-health priority. TW exposures and potential human-health concerns of 540 organics and 35 inorganics were assessed in 45 Chicago-area United States (US) homes in 2017. No US Environmental Protection Agency (EPA) enforceable Maximum Contaminant Level(s) (MCL) were exceeded in any residential or water treatment plant (WTP) pre-distribution TW sample. Ninety percent (90%) of organic analytes were not detected in treated TW, emphasizing the high quality of the Lake Michigan drinking-water source and the efficacy of the drinking-water treatment and monitoring. Sixteen (16) organics were detected in >25% of TW samples, with about 50 detected at least once. Low-level TW exposures to unregulated disinfection byproducts (DBP) of emerging concern, per/polyfluoroalkyl substances (PFAS), and three pesticides were ubiquitous. Common exceedances of non-enforceable EPA MCL Goal(s) (MCLG) of zero for arsenic [As], lead [Pb], uranium [U], bromodichloromethane, and tribromomethane suggest potential human-health concerns and emphasize the continuing need for improved understanding of cumulative effects of low-concentration mixtures on vulnerable sub-populations. Because DBP dominated TW organics, residential-TW concentrations are potentially predictable with expanded pre-distribution DBP monitoring. However, several TW chemicals, notably Pb and several infrequently detected organic compounds, were not readily explained by pre-distribution samples, illustrating the need for continued broad inorganic/organic TW characterization to support consumer assessment of acceptable risk and point-of-use treatment options.
Collapse
Affiliation(s)
| | - Maria Argos
- University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | - Michael J Devito
- U.S. National Institute of Environmental Health Sciences/NIH, Durham, NC, USA
| | | | - Nicola Evans
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrea R Putz
- City of Chicago, Department of Water Management, Chicago, IL, USA
| | | | - Alan E Stark
- City of Chicago, Department of Water Management, Chicago, IL, USA
| | - Christopher P Weis
- U.S. National Institute of Environmental Health Sciences/NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
37
|
Bradley PM, Argos M, Kolpin DW, Meppelink SM, Romanok KM, Smalling KL, Focazio MJ, Allen JM, Dietze JE, Devito MJ, Donovan AR, Evans N, Givens CE, Gray JL, Higgins CP, Hladik ML, Iwanowicz LR, Journey CA, Lane RF, Laughrey ZR, Loftin KA, McCleskey RB, McDonough CA, Medlock-Kakaley E, Meyer MT, Putz AR, Richardson SD, Stark AE, Weis CP, Wilson VS, Zehraoui A. Mixed organic and inorganic tapwater exposures and potential effects in greater Chicago area, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137236. [PMID: 32126404 PMCID: PMC9140060 DOI: 10.1016/j.scitotenv.2020.137236] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 05/20/2023]
Abstract
Safe drinking water at the point of use (tapwater, TW) is a public-health priority. TW exposures and potential human-health concerns of 540 organics and 35 inorganics were assessed in 45 Chicago-area United States (US) homes in 2017. No US Environmental Protection Agency (EPA) enforceable Maximum Contaminant Level(s) (MCL) were exceeded in any residential or water treatment plant (WTP) pre-distribution TW sample. Ninety percent (90%) of organic analytes were not detected in treated TW, emphasizing the high quality of the Lake Michigan drinking-water source and the efficacy of the drinking-water treatment and monitoring. Sixteen (16) organics were detected in >25% of TW samples, with about 50 detected at least once. Low-level TW exposures to unregulated disinfection byproducts (DBP) of emerging concern, per/polyfluoroalkyl substances (PFAS), and three pesticides were ubiquitous. Common exceedances of non-enforceable EPA MCL Goal(s) (MCLG) of zero for arsenic [As], lead [Pb], uranium [U], bromodichloromethane, and tribromomethane suggest potential human-health concerns and emphasize the continuing need for improved understanding of cumulative effects of low-concentration mixtures on vulnerable sub-populations. Because DBP dominated TW organics, residential-TW concentrations are potentially predictable with expanded pre-distribution DBP monitoring. However, several TW chemicals, notably Pb and several infrequently detected organic compounds, were not readily explained by pre-distribution samples, illustrating the need for continued broad inorganic/organic TW characterization to support consumer assessment of acceptable risk and point-of-use treatment options.
Collapse
Affiliation(s)
| | - Maria Argos
- University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | - Michael J Devito
- U.S. National Institute of Environmental Health Sciences/NIH, Durham, NC, USA
| | | | - Nicola Evans
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrea R Putz
- City of Chicago, Department of Water Management, Chicago, IL, USA
| | | | - Alan E Stark
- City of Chicago, Department of Water Management, Chicago, IL, USA
| | - Christopher P Weis
- U.S. National Institute of Environmental Health Sciences/NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
38
|
Bradley PM, Romanok KM, Duncan JR, Battaglin WA, Clark JM, Hladik ML, Huffman BJ, Iwanowicz LR, Journey CA, Smalling KL. Exposure and potential effects of pesticides and pharmaceuticals in protected streams of the US National park Service southeast region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135431. [PMID: 31896231 DOI: 10.1016/j.scitotenv.2019.135431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 05/14/2023]
Abstract
Globally, protected areas offer refugia for a broad range of taxa including threatened and endangered species. In the United States (US), the National Park Service (NPS) manages public lands to preserve biodiversity, but increasing park visitation and development of surrounding landscapes increase exposure to and effects from bioactive contaminants. The risk (exposure and hazard) to NPS protected-stream ecosystems within the highly urbanized southeast region (SER) from bioactive contaminants was assessed in five systems based on 334 pesticide and pharmaceutical analytes in water and 119 pesticides in sediment. Contaminant mixtures were common across all sampled systems, with approximately 24% of the unique analytes (80/334) detected at least once and 15% (49/334) detected in half of the surface-water samples. Pharmaceuticals were observed more frequently than pesticides, consistent with riparian buffers and concomitant spatial separation from non-point pesticide sources in four of the systems. To extrapolate exposure data to biological effects space, site-specific cumulative exposure-activity ratios (ΣEAR) were calculated for detected surface-water contaminants with available ToxCast data; common exceedances of a 0.001 ΣEAR effects-screening threshold raise concerns for molecular toxicity and possible, sub-lethal effects to non-target, aquatic vertebrates. The results illustrate the need for continued management of protected resources to reduce contaminant exposure and preserve habitat quality, including prioritization of conservation practices (riparian buffers) near stream corridors and increased engagement with upstream/up-gradient property owners and municipal wastewater facilities.
Collapse
Affiliation(s)
- Paul M Bradley
- U.S. Geological Survey, South Atlantic Water Science Center, Columbia, SC USA.
| | - Kristin M Romanok
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ USA
| | | | | | - Jimmy M Clark
- U.S. Geological Survey, South Atlantic Water Science Center, Columbia, SC USA
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, Sacramento, CA USA
| | - Bradley J Huffman
- U.S. Geological Survey, South Atlantic Water Science Center, Columbia, SC USA
| | - Luke R Iwanowicz
- U.S. Geological Survey, Leetown Science Center , Kearneysville, WV USA
| | - Celeste A Journey
- U.S. Geological Survey, South Atlantic Water Science Center, Columbia, SC USA
| | - Kelly L Smalling
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ USA
| |
Collapse
|
39
|
Affiliation(s)
- Susan D. Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29205, United States
| | - Susana Y. Kimura
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
40
|
Rose LD, Akob DM, Tuberty SR, Corsi SR, DeCicco LA, Colby JD, Martin DJ. Use of high-throughput screening results to prioritize chemicals for potential adverse biological effects within a West Virginia watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 677:362-372. [PMID: 31059879 DOI: 10.1016/j.scitotenv.2019.04.180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Organic chemicals from industrial, agricultural, and residential activities can enter surface waters through regulated and unregulated discharges, combined sewer overflows, stormwater runoff, accidental spills, and leaking septic-conveyance systems on a daily basis. The impact of point and nonpoint contaminant sources can result in adverse biological effects for organisms living in or near surface waters. Assessing the adverse or toxic effects that may result when exposure occurs is complicated by the fact that many commonly used chemicals lack toxicity information or water quality standards. To address these challenges, an exposure-activity ratio (EAR) screening approach was used to prioritize environmental chemistry data in a West Virginia watershed (Wolf Creek). Wolf Creek is a drinking water source and recreation resource with documented water quality impacts from point and nonpoint sources. The EAR screening approach uses high-throughput screening (HTS) data from ToxCast as a method of integrating environmental chemical occurrence and biological effects data. Using water quality schedule 4433, which targets 69 organic waste compounds typically found in domestic and industrial wastewater, chemicals were screened for potential adverse biological affects at multiple sites in the Wolf Creek watershed. Cumulative EAR mixture values were greatest at Sites 2 and 3, where bisphenol A (BPA) and pentachlorophenol exhibited maximum EAR values of 0.05 and 0.002, respectively. Site 2 is downstream of an unconventional oil and gas (UOG) wastewater disposal facility with documented water quality impacts. Low-level organic contaminants were found at all sample sites in Wolf Creek, except Site 10, where Wolf Creek enters the New River. The application of an EAR screening approach allowed our study to extend beyond traditional environmental monitoring methods to identify multiple sites and chemicals that warrant further investigation.
Collapse
Affiliation(s)
- Levi D Rose
- Appalachian State University, Department of Geography and Planning, NC 28607, USA.
| | | | - Shea R Tuberty
- Appalachian State University, Department of Biology, NC 28607, USA
| | | | | | - Jeffrey D Colby
- Appalachian State University, Department of Geography and Planning, NC 28607, USA
| | - Derek J Martin
- Appalachian State University, Department of Geography and Planning, NC 28607, USA
| |
Collapse
|
41
|
Carpenter CMG, Wong LYJ, Gutema DL, Helbling DE. Fall Creek Monitoring Station: Using Environmental Covariates To Predict Micropollutant Dynamics and Peak Events in Surface Water Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8599-8610. [PMID: 31280559 DOI: 10.1021/acs.est.9b02665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This research aimed to further our understanding of how environmental processes control micropollutant dynamics in surface water systems as a means to predict peak concentration events and inform intermittent sampling strategies. We characterized micropollutant concentrations in daily composite samples from the Fall Creek Monitoring Station over 18 months. These data were compiled alongside environmental covariates, including daily measurements of weather, hydrology, and water quality parameters, to generate a novel data set with high temporal resolution. We evaluated the temporal trends of several representative micropollutants, along with cumulative metrics of overall micropollutant contamination, by means of multivariable analyses to determine which combination of covariates best predicts micropollutant dynamics and peak events. Peak events of agriculture-derived micropollutants were best predicted by positive associations with turbidity and UV254 absorbance and negative associations with baseflow index. Peak events of wastewater-derived micropollutants were best predicted by positive associations with alkalinity and negative associations with streamflow rate. We demonstrate that these predictors can be used to inform intermittent sampling strategies aimed at capturing peak events, and we generalize the approach so that it could be applied in other watersheds. Finally, we demonstrate how our approach can be used to contextualize micropollutant data derived from infrequent grab samples.
Collapse
Affiliation(s)
- Corey M G Carpenter
- School of Civil and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Lok Yee J Wong
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Danyeh L Gutema
- School of Civil and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Damian E Helbling
- School of Civil and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|