1
|
Qi Y, Li D, Zhang S, Li F, Hua T. Electrochemical filtration for drinking water purification: A review on membrane materials, mechanisms and roles. J Environ Sci (China) 2024; 141:102-128. [PMID: 38408813 DOI: 10.1016/j.jes.2023.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 02/28/2024]
Abstract
Electrochemical filtration can not only enrich low concentrations of pollutants but also produce reactive oxygen species to interact with toxic pollutants with the assistance of a power supply, making it an effective strategy for drinking water purification. In addition, the application of electrochemical filtration facilitates the reduction of pretreatment procedures and the use of chemicals, which has outstanding potential for maximizing process simplicity and reducing operating costs, enabling the production of safe drinking water in smaller installations. In recent years, the research on electrochemical filtration has gradually increased, but there has been a lack of attention on its application in the removal of low concentrations of pollutants from low conductivity water. In this review, membrane substrates and electrocatalysts used to improve the performance of electrochemical membranes are briefly summarized. Meanwhile, the application prospects of emerging single-atom catalysts in electrochemical filtration are also presented. Thereafter, several electrochemical advanced oxidation processes coupled with membrane filtration are described, and the related working mechanisms and their advantages and shortcomings used in drinking water purification are illustrated. Finally, the roles of electrochemical filtration in drinking water purification are presented, and the main problems and future perspectives of electrochemical filtration in the removal of low concentration pollutants are discussed.
Collapse
Affiliation(s)
- Yuying Qi
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Donghao Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Shixuan Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Tao Hua
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
2
|
Wang HB, Wu YH, Sun YG, Xu YQ, Chen Z, Xue S, Zhang ZW, Ikuno N, Koji N, Hu HY. Flow-through electrode system (FES): An effective approach for biofouling control of reverse osmosis membranes for municipal wastewater reclamation. WATER RESEARCH 2024; 249:120890. [PMID: 38016222 DOI: 10.1016/j.watres.2023.120890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/01/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
Emerging electrochemical disinfection techniques provide a promising pathway to the biofouling control of reverse osmosis (RO) process. However, the comparative effectiveness and mechanism of it under flow-through conditions with low voltage remains unclear. This study investigated the effect of a flow-through electrode system (FES) with both direct current (DC) and alternating pulse current (AC) on RO biofouling control compared with chlorine disinfection. At the initial stage of biofouling development, the normalized flux of AC-FES (67% on Day 5) was saliently higher than the control group (56% on Day 5). Subsequently, the normalized fluxes of each group tended similarity in their differences until the 20th day. After mild chemical cleaning, the RO membrane in the AC-FES group reached the highest chemical cleaning efficiency of 58%, implying its foulant was more readily removable and the biofouling was more reversible. The biofouling layer in the DC-FES group was also found to be easily cleanable. Morphological analysis suggested that the thickness and compactness of the fouling layers were the major reasons for the fouling behavior difference. The abundance of 4 fouling-related abundant genera (>1%), which were Pseudomonas, Thiobacillus, Sphingopyxis, and Mycobacterium exhibited a salient correlation with the biofouling degree. The operating cost of FES was also lower than that of chlorine disinfection. In summary, AC-FES is a promising alternative to chlorine disinfection in RO biofouling control, as it caused less and easy-cleaning biofouling layer mainly due to two advantages: a) reducing the regrowth potential after disinfection of the bacteria, leading to alleviated initial fouling, (b) reshaping the microbial community to those with weaker biofilm formation capacity.
Collapse
Affiliation(s)
- Hao-Bin Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Yi-Ge Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yu-Qing Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Song Xue
- CSCEC SCIMEE Sci.& Tech. Co., Ltd, Chengdu 610045, China
| | - Zhuo-Wei Zhang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Nozomu Ikuno
- Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan
| | - Nakata Koji
- Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| |
Collapse
|
3
|
Sun YG, Wang HB, Wu YH, Cao KF, Chen Z, Ikuno N, Koji N, Hu HY. High-efficiency and low-carbon inactivation of UV resistant bacteria in reclaimed water by flow-through electrode system (FES). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166297. [PMID: 37595918 DOI: 10.1016/j.scitotenv.2023.166297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
With the increasingly serious shortage of water resources globally, it has been paid more attention on how to secure the biosafety of reclaimed water and other non-traditional water sources. However, the 3 most applied disinfection technics, which are chlorine, ultraviolet (UV), and ozone disinfection, all have their disadvantages of selecting undesired bacteria and low energy utilization efficiency. Electrode disinfection is a promising solution, but the current electrode disinfection process still needs to be optimized in terms of the use conditions of the configuration reactivation. In this paper, we built a flow electrode system (FES). To evaluate the disinfection techniques more precisely, we isolated ultraviolet-resistant bacteria (URB) bacteria from the water of the full-scale water plant and tested the disinfection performance of FES and UV. The inactivation rate, reactivation potential, and energy consumption were analyzed. FES could inactivate 99.99 % of the URB and cause irreversible damage to the residual bacteria. FES could make all bacteria strains apoptosis in the subsequent 24 h of storage after alternating pulse current (APC) treatment, 3 V, within 27.7 s. Besides, the energy consumption of FES is about 2 orders lower than that of UV disinfection under the same inactivation rate. In summary, APC-FES is an efficient and low-carbon alternative for future water disinfection, which could achieve the ideal disinfection effect of a high inactivation rate, no reactivation, and low energy consumption.
Collapse
Affiliation(s)
- Yi-Ge Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Hao-Bin Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Ke-Fan Cao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Nozomu Ikuno
- Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan
| | - Nakata Koji
- Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou 215163, PR China
| |
Collapse
|
4
|
Wei S, Chen T, Hou H, Xu Y. Recent Advances in Electrochemical Sterilization. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
5
|
Wei R, Tong H, Zhang J, Sun B, You S. Flow electrochemical inactivation of waterborne bacterial endospores. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130505. [PMID: 36463735 DOI: 10.1016/j.jhazmat.2022.130505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Waterborne pathogens have the risk of spreading waterborne diseases and even pandemics. Some Gram-positive bacteria can form endospores, the hardiest known life form that can withstand heat, radiation, and chemicals. Electrochemical inactivation may offer a promising solution, but is hindered by low inactivation efficiencies resulting from limitation of electrode/endospores interaction in terms of electrochemical reaction selectivity and mass transfer. Herein, these issues were addressed through modifying selectivity of active species formation using electroactive ceramic membrane with high oxygen evolution potential, improving mass transfer property by flow-through operation. In this way, inactivation (6.0-log) of Bacillus atrophaeus endospores was achieved. Theoretical and experimental results demonstrated synergistic inactivation to occur through fragmentation of coat via interfacial electron transfer and electro-produced transient radicals (•OH primarily, •Cl and Cl2•- secondarily), thereby increasing cell permeability to facilitate penetration of electro-produced persistent active chlorine for subsequent rupture of intracellular structures. Numbering-up electrode module strategy was proposed to scale up the system, achieving average 5.3-log inactivation of pathogenic Bacillus anthracis endospores for 30 days. This study demonstrates a proof-of-concept manner for effective inactivation of waterborne bacterial endospores, which may provide an appealing strategy for wide-range applications like water disinfection, bio-safety control and defense against biological warfare.
Collapse
Affiliation(s)
- Rui Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Hailong Tong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Jinna Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Baiming Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
6
|
Liu H, Huang W, Yu Y, Chen D. Lightning-Rod Effect on Nanowire Tips Reinforces Electroporation and Electrochemical Oxidation: An Efficient Strategy for Eliminating Intracellular Antibiotic Resistance Genes. ACS NANO 2023; 17:3037-3046. [PMID: 36715351 DOI: 10.1021/acsnano.2c11811] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Conventional oxidative disinfection methods are usually inefficient to eliminate intracellular antibiotic resistance genes (i-ARGs) due to competitive oxidation of cellular components of antibiotic-resistant bacteria (ARB), resulting in the ubiquitous occurrence of ARGs in drinking water systems. Herein, we developed the strategy of coupling electroporation and electrochemical oxidation on a Co3O4-nanowires-modified electrode to destroy the multiresistant Escherichia coli cells and promote subsequent i-ARG (blaTEM-1 and aac(3)-II) degradation. The lightning-rod effect over nanowire tips can form finite regions with a locally enhanced electric field and highly concentrated charge density, in turn facilitating the electroporation for ARB cell damage and electrochemical reactivity for reactive chlorine/oxygen species generation. Characterization of the ARB membrane integrity and morphology revealed that electroporation-induced cell pores were further enlarged by the oxidation of reactive species, resulting in i-ARG removal at lower applied voltages and with 6-9 times lower energy consumption than the conventional electrochemical oxidation approach with a Co3O4-film-modified electrode. The satisfactory application and effective inhibition of horizontal gene transfer in tap water further demonstrated the great potential of our strategy in the control of the ARG dissemination risk in drinking water systems.
Collapse
Affiliation(s)
- Hai Liu
- School of Environment and Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou510632, PR China
| | - Wei Huang
- School of Environment and Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou510632, PR China
| | - Yang Yu
- School of Environment and Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou510632, PR China
| | - Da Chen
- School of Environment and Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou510632, PR China
| |
Collapse
|
7
|
Chu M, Tian W, Zhao J, Zou M, Lu Z, Zhang D, Jiang J. A comprehensive review of capacitive deionization technology with biochar-based electrodes: Biochar-based electrode preparation, deionization mechanism and applications. CHEMOSPHERE 2022; 307:136024. [PMID: 35973487 DOI: 10.1016/j.chemosphere.2022.136024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The recently developed techniques for desalination and wastewater treatment are costly and unsustainable. Therefore, a cost-effective and sustainable approach is essential to achieve desalination through wastewater treatment. Capacitive deionization (CDI), an electrochemical desalination technology, has been developed as a novel water treatment technology with great potential. The electrode material is one of the key factors that promotes the development of CDI technology and broadens the scope of CDI applications. Biochar-based electrode materials have attracted increasing attention from researchers because of their advantages, such as environmentally friendly, economical, and renewable properties. This paper reviews the methods for preparing biochar-based electrode materials and elaborates on the mechanism of CDI ion storage. We then summarize the applications of CDI technology in water treatment, analyze the mechanism of pollutant removal and resource recovery, and discuss the applicability of different CDI configurations, including hybrid CDI systems. In addition, the paper notes that environmentally friendly green activators that facilitate the development of pore structure should be developed more often to avoid the adverse environmental impact. The development of ion-selective electrode materials should be enhanced and it is necessary to comprehensively assess the impact of heteroatoms on selective ion removal and CDI performance. Electrooxidation of organic pollutants should be further promoted to achieve organic degradation by extending to redox reactions.
Collapse
Affiliation(s)
- Meile Chu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, PR China.
| | - Jing Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Mengyuan Zou
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Zhiyang Lu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Dantong Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Junfeng Jiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| |
Collapse
|
8
|
Chen Y, Zhang G, Ji Q, Lan H, Liu H, Qu J. Visualization of Electrochemically Accessible Sites in Flow-through Mode for Maximizing Available Active Area toward Superior Electrocatalytic Ammonia Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9722-9731. [PMID: 35737582 DOI: 10.1021/acs.est.2c01707] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Active chlorine species-mediated electrocatalytic oxidation is a promising strategy for ammonia removal in decentralized wastewater treatment. Flow-through electrodes (FTEs) provide an ideal platform for this strategy because of enhanced mass transport and sufficient electrochemically accessible sites. However, limited insight into spatial distribution of electrochemically accessible sites within FTEs inhibits the improvement of reactor efficiency and the reduction of FTE costs. Herein, a microfluidic-based electrochemical system is developed for the operando observation of microspatial reactions within pore channels, which reveals that reactions occur only in the surface layer of the electrode thickness. To further quantify the spatial distribution, finite element simulations demonstrate that over 75.0% of the current is accumulated in the 20.0% thickness of the electrode surface. Based on these findings, a gradient-coated method for the active layer was proposed and applied to a Ti/RuO2 porous electrode with an optimized pore diameter of ∼25 μm, whose electrochemically accessible surface area was 381.7 times that of the planar electrode while alleviating bubble entrapment. The optimized reactor enables complete ammonia removal with an energy consumption of 60.4 kWh kg-1 N, which was 24.2% and 39.9% less than those with pore diameters of ∼3 μm and ∼90 μm, respectively.
Collapse
Affiliation(s)
- Yu Chen
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qinghua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Tian C, Dai R, Chen M, Wang X, Shi W, Ma J, Wang Z. Biofouling suppresses effluent toxicity in an electrochemical filtration system for remediation of sulfanilic acid-contaminated water. WATER RESEARCH 2022; 219:118545. [PMID: 35550968 DOI: 10.1016/j.watres.2022.118545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical filtration system (EFS) has received broad interest due to its high efficiency for organic contaminants removal. However, the porous nature of electrodes and flow-through operation mode make it susceptible to potential fouling. In this work, we systematically investigated the impacts of biofouling on sulfanilic acid (SA) removal and effluent toxicity in an EFS. Results showed that the degradation efficiency of SA slightly deteriorated from 92.3% to 81.1% at 4.0 V due to the electrode fouling. Surprisingly, after the occurrence of fouling, the toxicity (in terms of luminescent bacteria inhibition) of the EFS effluent decreased from 72.3% to 40.2%, and cytotoxicity assay exhibited similar tendency. Scanning electron microscopy and confocal laser scanning microscopy analyses revealed that biofouling occurred on the porous cathode, and live microorganisms were the dominant contributors, which are expected to play an important role in toxicity suppression. The relative abundance of Flavobacterium genus, related to the degradation of p-nitrophenol (an aromatic intermediate product of SA), increased on the membrane cathode after fouling. The analysis of degradation pathway confirmed the synergetic effects of electrochemical oxidation and biodegradation in removal of SA and its intermediate products in a bio-fouled EFS, accounting for the decrease of the effluent toxicity. Results of our study, for the first time, highlight the critical role of biofouling in detoxication using EFS for the treatment of contaminated water.
Collapse
Affiliation(s)
- Chenxin Tian
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Tongji Advanced Membrane Technology Center, Shanghai 200092, China.
| |
Collapse
|
10
|
Lu S, Zhang G. Recent advances on inactivation of waterborne pathogenic microorganisms by (photo) electrochemical oxidation processes: Design and application strategies. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128619. [PMID: 35359104 DOI: 10.1016/j.jhazmat.2022.128619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Compared with other conventional water disinfection processes, (photo) electrochemical oxidation (P/ECO) processes have the characteristics of environmental friendliness, convenient installation and operation, easy control and high efficiency of inactivating waterborne pathogenic microorganisms (PMs), so that more and more research work has been focused on this topic, but there is still a huge gap between the research and practical application. Here, the research network of inactivating PMs by P/ECO processes has been comprehensively summarized, and the electrode/reactor/process design strategies based on strengthening direct and indirect oxidation, enhancing mass transfer efficiency and electron transfer efficiency, and improving the effective dose of electrogenerated oxidants are discussed. Furthermore, the factors affecting the inactivation of PMs and the issues regarding to stability and lifetime of the electrode are discussed respectively. Finally, the important research priorities and possible research challenges of P/ECO processes are put forward to make significant progress of this technology.
Collapse
Affiliation(s)
- Sen Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China; School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Guan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China; School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China.
| |
Collapse
|
11
|
Wang Z, Zhang Y, Li K, Guo J, Yang C, Liu H, Wang J. In situ coupling of electrochemical oxidation and membrane filtration processes for simultaneous decontamination and membrane fouling mitigation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Wang T, Brown DK, Xie X. Operando Investigation of Locally Enhanced Electric Field Treatment (LEEFT) Harnessing Lightning-Rod Effect for Rapid Bacteria Inactivation. NANO LETTERS 2022; 22:860-867. [PMID: 34734724 DOI: 10.1021/acs.nanolett.1c02240] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The growth of undesired bacteria causes numerous problems. Here, we show that locally enhanced electric field treatment (LEEFT) can cause rapid bacteria inactivation by electroporation. The bacteria inactivation is studied in situ at the single-cell level on a lab-on-a-chip that has nanowedge-decorated electrodes. Rapid bacteria inactivation occurs at the nanowedge tips where the electric field is enhanced due to the lightning-rod effect. Electroporation induced by the locally enhanced electric field is the predominant mechanism. The antimicrobial performance depends on the strength of the enhanced electric field instead of the applied voltage, and no generation of reactive oxygen species (ROS) is detected when >90% bacteria inactivation is achieved. Quick membrane pore closure under lower voltages confirms that electroporation is induced in LEEFT. This work is the first-time visualization and mechanism elucidation of LEEFT for bacteria inactivation at the single-cell level, and the findings will provide strong support for its future applications.
Collapse
Affiliation(s)
- Ting Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Devin K Brown
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
13
|
Pi SY, Wang Y, Lu YW, Liu GL, Wang DL, Wu HM, Chen D, Liu H. Fabrication of polypyrrole nanowire arrays-modified electrode for point-of-use water disinfection via low-voltage electroporation. WATER RESEARCH 2021; 207:117825. [PMID: 34763279 DOI: 10.1016/j.watres.2021.117825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/09/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Still ∼10% of world's population has no sustainable access to centralized water supply system, causing millions of deaths annually by waterborne diseases. Here, we develop polypyrrole nanowire arrays (PPyNWs)-modified electrodes by polymerization of pyrrole on graphite felt for point-of-use water disinfection via low-voltage electroporation. A flow-through mode is specially applied to alleviate diffusion barrier of pyrrole in the porous graphite felt for uniform PPyNWs growth. The flow-through disinfection device using the optimized PPyNWs electrode achieves above 4-log removal for model virus (MS2) and gram-positive/negative bacteria (E. faecalis and E. coli) at applied voltage of 1.0 V and fluxes below 1000 and 2500 L/m2/h. Electroporation is recognized as the dominant disinfection mechanism by using square-wave alternating voltage of ±1.0 V to eliminate the electrochemical reactions. In-situ sampling experiments reveal that anode acts as the main disinfection function due to its electric field attraction with negatively charged E. coli cells. The live/dead baclight staining experiments indicate an adsorption-desorption process of E. coli cells on anode, and the adsorption-desorption balance determines the disinfection abilities of PPyNWs anode. Under 1.0 V and 2000 L/m2/h, the disinfection device enables above 4-log E. coli removal in tap water within 7-day operation with energy consumption below 20 mJ/L, suggesting its sound application potential for point-of-use water disinfection.
Collapse
Affiliation(s)
- Shuang-Yu Pi
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yang Wang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Ying-Wen Lu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Guang-Li Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Da-Li Wang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Da Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Hai Liu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
14
|
Herraiz-Carboné M, Cotillas S, Lacasa E, Sainz de Baranda C, Riquelme E, Cañizares P, Rodrigo MA, Sáez C. A review on disinfection technologies for controlling the antibiotic resistance spread. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149150. [PMID: 34303979 DOI: 10.1016/j.scitotenv.2021.149150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of antibiotic-resistant bacteria (ARB) in water bodies poses a sanitary and environmental risk. These ARB and other mobile genetic elements can be easily spread from hospital facilities, the point in which, for sure, they are more concentrated. For this reason, novel clean and efficient technologies are being developed for allowing to remove these ARB and other mobile genetic elements before their uncontrolled spread. In this paper, a review on the recent knowledge about the state of the art of the main disinfection technologies to control the antibiotic resistance spread from natural water, wastewater, and hospital wastewater (including urine matrices) is reported. These technologies involve not only conventional processes, but also the recent advances on advanced oxidation processes (AOPs), including electrochemical advanced oxidation processes (EAOPs). This review summarizes the state of the art on the applicability of these technologies and also focuses on the description of the disinfection mechanisms by each technology, highlighting the promising impact of EAOPs on the remediation of this important environmental and health problem.
Collapse
Affiliation(s)
- Miguel Herraiz-Carboné
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain
| | - Salvador Cotillas
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Engracia Lacasa
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Caridad Sainz de Baranda
- Clinical Parasitology and Microbiology Area, University Hospital Complex of Albacete, C/Hermanos Falcó 37, 02006 Albacete, Spain
| | - Eva Riquelme
- Clinical Parasitology and Microbiology Area, University Hospital Complex of Albacete, C/Hermanos Falcó 37, 02006 Albacete, Spain
| | - Pablo Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - Cristina Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| |
Collapse
|
15
|
Wang HB, Wu YH, Luo LW, Yu T, Xu A, Xue S, Chen GQ, Ni XY, Peng L, Chen Z, Wang YH, Tong X, Bai Y, Xu YQ, Hu HY. Risks, characteristics, and control strategies of disinfection-residual-bacteria (DRB) from the perspective of microbial community structure. WATER RESEARCH 2021; 204:117606. [PMID: 34500181 PMCID: PMC8390064 DOI: 10.1016/j.watres.2021.117606] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 05/19/2023]
Abstract
The epidemic of COVID-19 has aroused people's particular attention to biosafety. A growing number of disinfection products have been consumed during this period. However, the flaw of disinfection has not received enough attention, especially in water treatment processes. While cutting down the quantity of microorganisms, disinfection processes exert a considerable selection effect on bacteria and thus reshape the microbial community structure to a great extent, causing the problem of disinfection-residual-bacteria (DRB). These systematic and profound changes could lead to the shift in regrowth potential, bio fouling potential, as well as antibiotic resistance level and might cause a series of potential risks. In this review, we collected and summarized the data from the literature in recent 10 years about the microbial community structure shifting of natural water or wastewater in full-scale treatment plants caused by disinfection. Based on these data, typical DRB with the most reporting frequency after disinfection by chlorine-containing disinfectants, ozone disinfection, and ultraviolet disinfection were identified and summarized, which were the bacteria with a relative abundance of over 5% in the residual bacteria community and the bacteria with an increasing rate of relative abundance over 100% after disinfection. Furthermore, the phylogenic relationship and potential risks of these typical DRB were also analyzed. Twelve out of fifteen typical DRB genera contain pathogenic strains, and many were reported of great secretion ability. Pseudomonas and Acinetobacter possess multiple disinfection resistance and could be considered as model bacteria in future studies of disinfection. We also discussed the growth, secretion, and antibiotic resistance characteristics of DRB, as well as possible control strategies. The DRB phenomenon is not limited to water treatment but also exists in the air and solid disinfection processes, which need more attention and more profound research, especially in the period of COVID-19.
Collapse
Affiliation(s)
- Hao-Bin Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Li-Wei Luo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Tong Yu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, PR China
| | - Ao Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou Jiangsu 215163, PR China
| | - Song Xue
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Gen-Qiang Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Xin-Ye Ni
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Lu Peng
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yun-Hong Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Xin Tong
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yuan Bai
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yu-Qing Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China.
| |
Collapse
|
16
|
Huo ZY, Lee DM, Kim YJ, Kim SW. Solar-induced hybrid energy harvesters for advanced oxidation water treatment. iScience 2021; 24:102808. [PMID: 34308295 PMCID: PMC8283326 DOI: 10.1016/j.isci.2021.102808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Water treatment based on advanced oxidation processes (AOPs) supplies clean water to rural areas lacking electric power supply and/or during natural disasters and pandemics. Considering the abundance of solar energy in the ambient environment, the solar-driven AOPs show an interesting potential to driving the water purification process. Involving the energy harvester (EH) that harvests mechanical or thermal energy into electricity to the solar-driven AOPs can achieve sustainable and self-powered water purification. Herein, we summarize the recent progress in the application of solar-induced hybrid EHs that harvest solar and mechanical/thermal energy simultaneously to drive AOP water treatment. A detailed discussion of the solar-induced hybrid EHs enabling AOP water treatment based on the mechanisms of piezo-, tribo-, pyro-, and thermo-assisted photocatalysis is provided. In addition, this paper explores future opportunities and strategies of the solar-induced hybrid EHs to drive the AOP water treatment in actual situations with unstable and fluctuating environmental conditions.
Collapse
Affiliation(s)
- Zheng-Yang Huo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Dong-Min Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Young-Jun Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sang-Woo Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.,SKKU Advanced Institute of Nanotechnology (SAINT), Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
17
|
|
18
|
Wang J, Li C, Rauf M, Luo H, Sun X, Jiang Y. Gas diffusion electrodes for H 2O 2 production and their applications for electrochemical degradation of organic pollutants in water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143459. [PMID: 33223172 DOI: 10.1016/j.scitotenv.2020.143459] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, it is a great challenge to minimize the negative impact of hazardous organic compounds in the environment. Highly efficient hydrogen peroxide (H2O2) production through electrochemical methods with gas diffusion electrodes (GDEs) is greatly demand for degradation of organic pollutants that present in drinking water and industrial wastewater. The GDEs as cathodic electrocatalyst manifest more cost-effective, lower energy consumption and higher oxygen utilization efficiency for H2O2 production as compared to other carbonaceous cathodes due to its worthy chemical and physical characteristics. In recent years, the crucial research and practical application of GDE for degradation of organic pollutants have been well developed. In this review, we focus on the novel design, fundamental aspects, influence factors, and electrochemical properties of GDEs. Furthermore, we investigate the generation of H2O2 through electrocatalytic processes and degradation mechanisms of refractory organic pollutants on GDEs. We describe the advanced methodologies towards electrochemical kinetics, which include the enhancement of GDEs electrochemical catalytic activity and mass transfer process. More importantly, we also highlight the other technologies assisted electrochemical process with GDEs to enlarge the practical application for water treatment. In addition, the developmental prospective and the existing research challenges of GDE-based electrocatalytic materials for real applications in H2O2 production and wastewater treatment are forecasted. According to our best knowledge, only few review articles have discussed GDEs in detail for H2O2 production and their applications for degradation of organic pollutants in water.
Collapse
Affiliation(s)
- Jingwen Wang
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Chaolin Li
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| | - Muhammad Rauf
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Haijian Luo
- Education Center of Experiments and Innovations, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Xue Sun
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Yiqi Jiang
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| |
Collapse
|
19
|
Liu H, Wu YH, Ni XY, Chen Z, Peng L, Huo ZY, Wang Q, Hu HY. Construction and optimization mechanisms of carbon fiber-based flow-through electrode system (FES) with stackable multi-cathode units for water disinfection. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123065. [PMID: 32540707 DOI: 10.1016/j.jhazmat.2020.123065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The stackable carbon fiber-based flow-through systems (m(nC + 1A)) were constructed, where the multi-cathode units (nC + 1A) were equipped with multiple cathodes (nC) and a counter anode (1A), and the m was the stackable numbers of the nC + 1A units. The configuration of the m(nC + 1A) systems with m and n values from 1 to 6 was optimized by comparing their disinfection performance toward a model pathogen (Escherichia coli) from the aspects of disinfection ability, energy consumption and HRT. For multi-cathode units (nC + 1A), increasing the cathode numbers (n) promoted the E. coli inactivation by the predominant direct oxidation on the anode. Among the stackable m(nC + 1A) modules, the 3(3C + 1A) module was recommended as the best configuration. In the stackable 3(3C + 1A) module with consecutive reduction-oxidation processes, the E. coli inactivation mechanisms were attributed to the direct oxidation on the anodes and H2O2-induced indirect oxidation on the cathodes. The synergistic effect between the stackable 3C + 1A units promoted the electro-redox of the electrodes and their disinfection ability, which was also accompanied by the enhancement of energy consumption for O2/H2O2 mutual transformation on the electrodes. In turn, the modules with excessive stackable unit numbers (m > 3) over-promoted the competitive reaction of O2/H2O2 mutual transformation, restraining the disinfection performance.
Collapse
Affiliation(s)
- Hai Liu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Xin-Ye Ni
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Lu Peng
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China
| | - Zheng-Yang Huo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Qi Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China
| |
Collapse
|
20
|
Liu Y, Liu F, Ding N, Hu X, Shen C, Li F, Huang M, Wang Z, Sand W, Wang CC. Recent advances on electroactive CNT-based membranes for environmental applications: The perfect match of electrochemistry and membrane separation. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Ni XY, Liu H, Xin L, Xu ZB, Wang YH, Peng L, Chen Z, Wu YH, Hu HY. Disinfection performance and mechanism of the carbon fiber-based flow-through electrode system (FES) towards Gram-negative and Gram-positive bacteria. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135993] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Huo ZY, Du Y, Chen Z, Wu YH, Hu HY. Evaluation and prospects of nanomaterial-enabled innovative processes and devices for water disinfection: A state-of-the-art review. WATER RESEARCH 2020; 173:115581. [PMID: 32058153 DOI: 10.1016/j.watres.2020.115581] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/13/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
This study provided an overview of established and emerging nanomaterial (NM)-enabled processes and devices for water disinfection for both centralized and decentralized systems. In addition to a discussion of major disinfection mechanisms, data on disinfection performance (shortest contact time for complete disinfection) and energy efficiency (electrical energy per order; EEO) were collected enabling assessments firstly for disinfection processes and then for disinfection devices. The NM-enabled electro-based disinfection process gained the highest disinfection efficiency with the lowest energy consumption compared with physical-based, peroxy-based, and photo-based disinfection processes owing to the unique disinfection mechanism and the direct mean of translating energy input to microbes. Among the established disinfection devices (e.g., the stirred, the plug-flow, and the flow-through reactor), the flow-through reactor with mesh/membrane or 3-dimensional porous electrodes showed the highest disinfection performance and energy efficiency attributed to its highest mass transfer efficiency. Additionally, we also summarized recent knowledge about current and potential NMs separation and recovery methods as well as electrode strengthening and optimization strategies. Magnetic separation and robust immobilization (anchoring and coating) are feasible strategies to prompt the practical application of NM-enabled disinfection devices. Magnetic separation effectively solved the problem for the separation of evenly distributed particle-sized NMs from microbial solution and robust immobilization increased the stability of NM-modified electrodes and prevented these electrodes from degradation by hydraulic detachment and/or electrochemical dissolution. Furthermore, the study of computational fluid dynamics (CFD) was capable of simulating NM-enabled devices, which showed great potential for system optimization and reactor expansion. In this overview, we stressed the need to concern not only the treatment performance and energy efficiency of NM-enabled disinfection processes and devices but also the overall feasibility of system construction and operation for practical application.
Collapse
Affiliation(s)
- Zheng-Yang Huo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Du
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China
| |
Collapse
|
23
|
Ni XY, Liu H, Wang C, Wang WL, Xu ZB, Chen Z, Wu YH, Hu HY. Comparison of carbonized and graphitized carbon fiber electrodes under flow-through electrode system (FES) for high-efficiency bacterial inactivation. WATER RESEARCH 2020; 168:115150. [PMID: 31606556 DOI: 10.1016/j.watres.2019.115150] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
The disinfection performance of a flow-through electrode system (FES) was systematically evaluated using different carbonized (C1, C2, and C3) and corresponding graphitized (G1, G2, and G3) carbon fiber felt (CFF) electrodes. The physicochemical and electrochemical properties were characterized to identify the differences among CFFs. Graphitized CFFs (gCFFs) can achieve complete inactivation of Escherichia coli (>6 log) at the voltage of 3 V and flux of 120-3600 L/(m2 h) for high conductivity and chemical stability, while carbonized CFFs (cCFFs) only achieved around 1 log removal with obvious carbon corrosion. For the gCFFs, G1 (>6 log removal) with higher conductivity, better graphite structure, and larger surface area (related to fiber diameter and density) presented better disinfection performance at the flow rate of 30 mL/min than G2 (∼3 log) and G3(∼1 log). Furthermore, no regrowth and reactivation of bacteria occurred during the storage under visible light illumination after FES treatment. Three parallel FESs with G1 were operated continuously for one week (24 h per day, 7 days) treating the solution with an E. coli concentration ranging from 106 to 107 CFU/mL at the applied voltage of 3 V and the flow rate of 20 mL/min. No live bacteria were detected in the effluent of any of these three FESs. In-situ sampling experiments demonstrated that the inactivation of bacteria on anode was the dominant mechanism for FES treatment, which can be attributed to the sequential adsorption, direct-oxidation and desorption process on anode, instead of indirect oxidation by generating chemical oxidants. In addition, hydroxide ion generated from cathode reaction enhanced anode adsorption and inactivation of bacteria by providing alkaline environment. Combining the analysis results of material properties and disinfection performance, the gCFF-based FES was suggested to be a low-cost, high-efficiency, and safe alternative for future water disinfection.
Collapse
Affiliation(s)
- Xin-Ye Ni
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Hai Liu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Guangzhou Key Laboratory of Environmental Exposure and Health, And Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Chun Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Wen-Long Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Zi-Bin Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China.
| |
Collapse
|
24
|
Lei Q, Zheng J, Ma J, Wang X, Wu Z, Wang Z. Simultaneous solid-liquid separation and wastewater disinfection using an electrochemical dynamic membrane filtration system. ENVIRONMENTAL RESEARCH 2020; 180:108861. [PMID: 31703975 DOI: 10.1016/j.envres.2019.108861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 05/15/2023]
Abstract
An electrochemical dynamic membrane filtration (EDMF) system for simultaneous solid-liquid separation (also protecting electrodes against fouling) and sewage disinfection was developed. At a low voltage of 2.5 V, efficient disinfection performance was achieved in the EDMF, with ~100% log removal efficiency (no detectable bacteria in the effluent). Results also demonstrated that the EDMF system, operated at membrane flux of 100 L/(m2 h), could maintain long-lasting bacterial disinfection efficiency of real wastewater (~100% log removal) in continuous flow tests. Transmembrane pressure (TMP) increased from 0.8 kPa to 22 kPa within 80 d (one operation cycle), and cleaning of EDMF could effectively restore TMP and biocidal behaviors for subsequent filtration cycles. In contrast, without dynamic membrane, the disinfection efficiency was decreased from initial ~100% log removal (with no detectable live bacteria) to ~44.4% log removal within 7 d. Reactive oxygen species (ROS)-mediated oxidation was responsible for bacteria disinfection in the EDMF, and HO• and H2O2 generated in this system played a dominant role, causing damage to cell membranes and K+ leakage from cytosol. Moreover, catalase and superoxide dismutase for intracellular ROS attenuation were inhibited, resulting in the increase of intracellular oxidative stress and thus high-efficient disinfection. These results highlight the potential of EDMF system to be used for wastewater treatment and disinfection.
Collapse
Affiliation(s)
- Qian Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Junjian Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xueye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|