1
|
Tong Y, Wang X, Zhang Y, Xu J, Sun C. Reactive species in peracetic acid-based AOPs: A critical review of their formation mechanisms, identification methods and oxidation performances. WATER RESEARCH 2025; 272:122917. [PMID: 39671863 DOI: 10.1016/j.watres.2024.122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
The efficient removal of emerging micropollutants poses significant challenges in wastewater treatments. Advanced oxidation processes (AOPs) are extensively studied in the field, and peracetic acid (PAA) has attracted great attention as an alternative oxidant in recent years. Various reactive species yield in PAA-based AOPs, which are regarded as the promising approaches for pollutants elimination. This review systematically investigates the formation pathways, identification methods and oxidation performances of the reactive species in PAA-based AOPs, putting focus on the organic radicals such as CH3C(O)O•, CH3C(O)OO•, CH3OO• and •CH3. Firstly, the formation pathways of reactive species induced by PAA activation are outlined. Then the specific probes and quenchers used for the identification of reactive species are summarized, and the commonly used methods are described and discussed. The reaction kinetics and mechanisms of reactive species and compounds are compared, indicating that the oxidation performances of organic radicals are mainly depended on the properties of radicals and the structure of compounds. Finally, the prospects on further research of PAA-based AOPs are proposed. This article provides a comprehensive overview of organic radicals for the first time, which can serve useful reference for ongoing studies in PAA-based AOPs.
Collapse
Affiliation(s)
- Yunping Tong
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, Jiangsu Province, PR China
| | - Xiaolei Wang
- School of Environment Nanjing University, Nanjing 210023, Jiangsu Province, PR China
| | - Yuanzheng Zhang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, Jiangsu Province, PR China
| | - Jian Xu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, Jiangsu Province, PR China.
| | - Cheng Sun
- School of Environment Nanjing University, Nanjing 210023, Jiangsu Province, PR China.
| |
Collapse
|
2
|
Xu Q, Zhu Y, Ma S, Cao M, Geng H, Li J, Gao Z, Leng W, Sun K, Wang F. Substituent structure variances alter degradation pathways of sulfonamides in UV/PAA system: Insights from intermediates, ROS, and DFT calculations. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136806. [PMID: 39673945 DOI: 10.1016/j.jhazmat.2024.136806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Sulfonamides (SAs) are one of the major emerging contaminants of concern, but comparative studies on the degradation of different types of SAs are still limited. This work comprehensively compared the degradation of sulfadiazine (SDZ), sulfamethoxazole (SMX) and sulfathiazole (STZ) under UV light in peracetic acid (PAA) from both experimental and theoretical aspects, as they represent two structural classes based on substituent differences. The two SAs with five-membered heterocyclic substituents (SMX, STZ) generally decomposed at faster rates, with SMX degrading up to 10 times faster than SDZ (pH = 3; PAA dosage = 80 mg/L). For all three SAs, the degradation efficiency stayed high across pH levels, peaking at pH 9 for SDZ and STZ, and at pH 3 for SMX. Free radical scavenging experiments and EPR tests proved that the degradation of SAs involved various free radicals, among which 3SA*s and •OH played a major role. Fukui functions indicated N(7) in aniline groups of SDZ and SMX had the highest reactivity, while in STZ, S(23) in the thiazole moiety was the most active site. The degradation pathways were proposed and compared and the cleavage of S-C bond was observed in all three SAs and hydroxylation was the most common reaction. This study elucidated the impacts of different substituent structures on the degradation of three sulfonamide drugs in the UV/PAA system, contributing to a better understanding of the degradation behavior of various types of sulfonamide drugs in water treatment.
Collapse
Affiliation(s)
- Qing Xu
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Yangchen Zhu
- China ENFI Engineering Co., Ltd, No.12, Fuxing Road, Haidian District, Beijing 100038, China
| | - Shuai Ma
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Manman Cao
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Huanhuan Geng
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Junhong Li
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ziqi Gao
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Wenjun Leng
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Ke Sun
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Fei Wang
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| |
Collapse
|
3
|
Xu J, Li C, He Z, Chen Z, Zhang K, Ren W, Zhang Y, Guan X. A green method on dipole solvent as "Activators": γ-valerolactone/H 2O system promoted degradation of ciprofloxacin by ferrate(Ⅵ). WATER RESEARCH 2025; 271:122991. [PMID: 39729748 DOI: 10.1016/j.watres.2024.122991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/22/2024] [Accepted: 12/14/2024] [Indexed: 12/29/2024]
Abstract
This paper investigates the efficient degradation of ciprofloxacin (CIP) in a sustainable γ-valerolactone (GVL) and water (H₂O) mixed system by controlling proton transfer and reducing the self-decay rate of Fe(VI). The kinetic model reveals that the GVL/H₂O system exhibits a rate constant of (9.7 ± 0.7) × 10 M⁻¹ s⁻¹, significantly higher than the (6.8 ± 0.5) × 10 M⁻¹ s⁻¹ observed in pure H₂O. Furthermore, the self-decay rate decreases from (3.1 ± 0.4) × 10⁻² s⁻¹ in H₂O to (1.4 ± 0.2) × 10⁻² s⁻¹ in the GVL/H₂O system. The role of Fe(IV)/Fe(V) in the degradation process was confirmed using dimethyl sulfoxide (DMSO). Dynamic light scattering (DLS) results indicated that GVL could confine water clusters within the range of 1.69-3.68 nm. Density functional theory (DFT) and theoretical calculations demonstrated that the nucleophilic site of CIP in the GVL/H₂O system shifted to the carboxyl group. The toxicity analysis of the degradation products underscored the significance of CIP transfer treatment. This study highlights using the green water treatment agent Fe(VI) and the biodegradable solvent GVL to effectively reduce environmental impact, presenting significant potential for environmental pollution control.
Collapse
Affiliation(s)
- Jiani Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhengming He
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zihe Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Kai Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Weiwei Ren
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yunshu Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
4
|
Sun Y, Hu C, Lyu L. H 2O 2 Triggering Electron-Directed Transfer of Emerging Contaminants over Asymmetric Nano Zinc Oxide Surfaces for Water Self-Purification Expansion. JACS AU 2025; 5:271-280. [PMID: 39886598 PMCID: PMC11775690 DOI: 10.1021/jacsau.4c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/16/2024] [Accepted: 12/03/2024] [Indexed: 02/01/2025]
Abstract
Slow mass transfer processes between inert emerging contaminants (ECs) and dissolved oxygen (DO) limit natural water self-purification; thus, excessive energy consumption is necessary to achieve ECs removal, which has become a longstanding global challenge. Here, we propose an innovative water self-purification expansion strategy by constructing asymmetric surfaces that could modulate trace H2O2 as trigger rather than oxidant to bridge a channel between inert ECs and natural dissolved oxygen, achieved through a dual-reaction-center (DRC) catalyst consisting of Cu/Co lattice-substituted ZnO nanorods in situ (CCZO-NRs). During water purification, the bond lengths of emerging contaminants (ECs) adsorbed on the asymmetric surface were stretched, and this stretching was further enhanced by H2O2 mediation, resulting in a significant reduction of bond-breaking energy barriers. As a result, the consumption rate of H2O2 was reduced by two-thirds in the presence of ECs. In contrast, the removal of ECs was increased approximately 95-fold mediated by trace H2O2. It exhibits the highest catalytic performance with the lowest dosage of H2O2 among numerous similarly reported systems. This discovery is significant for the development of water self-purification expansion technologies.
Collapse
Affiliation(s)
- Yingtao Sun
- Key Laboratory for Water
Quality and Conservation of the Pearl River Delta, Ministry of Education,
Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Chun Hu
- Key Laboratory for Water
Quality and Conservation of the Pearl River Delta, Ministry of Education,
Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Lai Lyu
- Key Laboratory for Water
Quality and Conservation of the Pearl River Delta, Ministry of Education,
Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
5
|
Bux N, Tumrani SH, Soomro RA, Ma Q, Zhou J, Wang T. Catalytic degradation of organic pollutants in aqueous systems: A comprehensive review of peroxyacetic acid-based advanced oxidation processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123989. [PMID: 39756279 DOI: 10.1016/j.jenvman.2024.123989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/12/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Peroxyacetic acid (PAA)-based advanced oxidation processes (AOPs) have emerged as a promising treatment method to decontaminate organic pollutants. This review thoroughly evaluated the use of PAA-based AOPs, including their synthesis techniques, physicochemical features, and reaction pathways with pollutants. It also illustrated two primary channels: free radical pathways and non-radical pathways during the PAA activation processes and introduced various methods for activating PAA, including energy radiation, transition metal catalysis, and carbon catalysis. Additionally, this review comprehensively presented the advancements in research on PAA-based AOPs for wastewater treatment. Furthermore, the influences of key parameters on system performance, such as pH, catalyst loading, PAA dosage, and interfering species, were summarized. By critically evaluating mechanisms, performance, and prospects, this review served as a valuable resource for researchers and practitioners involved in the development and implementation of PAA-based AOPs for sustainable water remediation.
Collapse
Affiliation(s)
- Nabi Bux
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Sadam Hussain Tumrani
- Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; The Key Laboratory of Water and Sediment Science, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Razium Ali Soomro
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Qiuling Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
6
|
Humayun S, Hayyan M, Alias Y. A review on reactive oxygen species-induced mechanism pathways of pharmaceutical waste degradation: Acetaminophen as a drug waste model. J Environ Sci (China) 2025; 147:688-713. [PMID: 39003083 DOI: 10.1016/j.jes.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 07/15/2024]
Abstract
Innately designed to induce physiological changes, pharmaceuticals are foreknowingly hazardous to the ecosystem. Advanced oxidation processes (AOPs) are recognized as a set of contemporary and highly efficient methods being used as a contrivance for the removal of pharmaceutical residues. Since reactive oxygen species (ROS) are formed in these processes to interact and contribute directly toward the oxidation of target contaminant(s), a profound insight regarding the mechanisms of ROS leading to the degradation of pharmaceuticals is fundamentally significant. The conceptualization of some specific reaction mechanisms allows the design of an effective and safe degradation process that can empirically reduce the environmental impact of the micropollutants. This review mainly deliberates the mechanistic reaction pathways for ROS-mediated degradation of pharmaceuticals often leading to complete mineralization, with a focus on acetaminophen as a drug waste model.
Collapse
Affiliation(s)
- Saba Humayun
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; University of Malaya Centre for Ionic Liquids, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Maan Hayyan
- Chemical Engineering Program, Faculty of Engineering and Technology, Muscat University, Muscat P.C.130, Oman.
| | - Yatimah Alias
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; University of Malaya Centre for Ionic Liquids, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
7
|
Samatov MR, Mikhalev ES, Abramova IO, Bayazitov VM, Vasenko AS, Nikonov RV, Steblyanko AY, Kamler AV. Dielectric Barrier Corona Activation of Electrical Discharge in a Cavitating Liquid. J Phys Chem Lett 2024; 15:11939-11943. [PMID: 39575867 DOI: 10.1021/acs.jpclett.4c03127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Water treatment methods based on cold plasma discharge in cavitating liquid have been actively developing in recent years. However, some conditions, such as the conductivity of the medium, can limit the possibility of plasma ignition. The authors proposed a new method for activating an electric discharge in a cavitating liquid environment based on the use of an external corona discharge electrode in the plasma reactor. It has been experimentally shown that, in such a configuration, the breakdown voltage is significantly reduced. A theoretical analysis of the process was carried out, and a modified Paschen's curve was constructed on the basis of experimental data. The following graph shows the basic diagram of the setup and plasma reactor: 1, input water tank; 2, pump; 3, reactor; 4, generator; and 5, output tank. "Gap 0" expresses the gap between the two ring electrodes, and "gap" expresses the gap between the corona electrode and the lower ring electrode.
Collapse
Affiliation(s)
- Mikhail R Samatov
- HSE University, Pokrovsky Bulvar 11, 109028 Moscow, Russian Federation
| | - Egor S Mikhalev
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academyof Sciences, Leninsky Prospekt 31, 119991 Moscow, Russian Federation
| | - Irina O Abramova
- Institute for African Studies (IAS), Spiridonovka Street 30/1, 123001 Moscow, Russian Federation
| | - Vadim M Bayazitov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academyof Sciences, Leninsky Prospekt 31, 119991 Moscow, Russian Federation
| | - Andrey S Vasenko
- HSE University, Pokrovsky Bulvar 11, 109028 Moscow, Russian Federation
| | - Roman V Nikonov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academyof Sciences, Leninsky Prospekt 31, 119991 Moscow, Russian Federation
| | - Alexander Yu Steblyanko
- I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8-2, 119991 Moscow, Russian Federation
| | - Anna V Kamler
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academyof Sciences, Leninsky Prospekt 31, 119991 Moscow, Russian Federation
| |
Collapse
|
8
|
Wang Z, Huang Y, Yu M, Zhuang W, Sui M. Pre-exposure to peracetic acid followed by UV treatment for deactivating vancomycin-resistant Enterococcus faecalis through intracellular attack. ENVIRONMENTAL RESEARCH 2024; 262:119780. [PMID: 39142460 DOI: 10.1016/j.envres.2024.119780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Antimicrobial resistance (AMR) poses a global health threat to aquatic environments and its propagation is a hot topic. Therefore, deactivating antibiotic-resistant bacteria (ARB) and removing antibiotic resistance genes (ARGs) from water is crucial for controlling AMR transmission. Peracetic acid (PAA), which is known for its potent oxidizing properties and limited by-product formation, is emerging as a favorable disinfectant for water treatment. In this study, we aimed to assess the efficacy of pre-exposure to PAA followed by UV treatment (PAA-UV/PAA) compared with the simultaneous application of UV and PAA (UV/PAA). The focus was on deactivating vancomycin-resistant Enterococcus faecalis (VREfs), a typical ARB in water. Pre-exposure to PAA significantly enhanced the efficacy of subsequent UV/PAA treatment. At a UV fluence of 7.2 mJ cm-2, the PAA-UV/PAA method achieved a 6.21 log reduction in VREfs, surpassing the 1.29 log reduction observed with UV/PAA. Moreover, compared to UV/PAA, PAA-UV/PAA showed increased efficacy with longer pre-exposure times and higher PAA concentrations, maintaining superior performance across a broad pH range and in the presence of humic acid. Flow cytometry analysis indicated minimal cellular membrane damage using both methods. However, the assessments of superoxide dismutase (SOD) activity and adenosine triphosphate content revealed that PAA-UV/PAA induced greater oxidative stress under similar UV irradiation conditions, leading to slower bacterial regrowth. Specifically, SOD activity in PAA-UV/PAA surged to 3.06 times its baseline, exceeding the 1.73-fold increase under UV/PAA conditions. Additionally, pre-exposure to PAA amplified ARGs degradation and reduced resistance gene leakage, effectively mitigating the spread of AMR. Pre-exposure to 200 μM PAA for 10 and 20 min enhanced vanB gene removal efficiency by 0.14 log and 1.29 log, respectively. Our study provides a feasible approach for optimizing UV/PAA disinfection for efficient removal of ARB and ARGs.
Collapse
Affiliation(s)
- Ziqi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yingyue Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Miao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Wei Zhuang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Minghao Sui
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
9
|
Song Z, Wang J, Ren N, Chen Y. Selective degradation of sulfonamide antibiotics by peracetic acid alone: Direct oxidation and radical mechanisms. ENVIRONMENTAL RESEARCH 2024; 262:119901. [PMID: 39241858 DOI: 10.1016/j.envres.2024.119901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
In this study, a peracetic acid (PAA) alone process was systematically demonstrated to give a high efficiency in the selective degradation of sulfonamide antibiotics (SAs). The employment of scavengers and probe compounds in this process demonstrates the predominant role of PAA in direct oxidation, and the limited role of carbon-centered radicals (R-O•) in the degradation of representative SA, sulfamethazine (SMT). The process also exhibits high tolerance towards solution pH and competing anions in wastewater, indicating its applicability in enhancing the biodegradation of SAs in wastewater. Furthermore, the relationships between the observed rate constants (kobs) and the molecule descriptors for ten SA compounds are demonstrated through the assessment of structure-activity relationships, calculated from density functional theory (DFT). This study gives new insights into the selectivity, performance and mechanism of PAA direct-oxidation in SA degradation.
Collapse
Affiliation(s)
- Zhao Song
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, PR China
| | - Jingwen Wang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Yidi Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| |
Collapse
|
10
|
Hu CY, Hu LL, Zhang TY, Yang XY, Liu H, Chen JN, Gao LM, Dong ZY. Far-UVC direct photolysis of iohexol and acetochlor: an experimental and mechanism study. ENVIRONMENTAL TECHNOLOGY 2024:1-11. [PMID: 39607804 DOI: 10.1080/09593330.2024.2432486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/09/2024] [Indexed: 11/30/2024]
Abstract
Recently, the emission of 222 nm Far-UVC krypton chloride (KrCl*) excimer lamps, has gained widespread attention in the field of water treatment. This study compared the degradation kinetics of IOX and ACE under UV222 and UV254 irradiation. The results demonstrated that UV222 irradiation exhibited higher efficiency, increasing the removal rates of IOX and ACE from 72.46% and 19.31% to 100%, respectively. Probe experiments and electron paramagnetic resonance (EPR) spectroscopy were used to identify the major active species generated during UV222 irradiation ([HO•]ss = 2.74 × 10-13 M). In addition, the effect of pH, pollutant concentration, anions, and natural organic matter (NOM) on the photolysis of IOX and ACE was investigated. The results indicated that IOX and ACE exhibited minimal dependence on pH, and IOX showed low sensitivity to water matrix components. Finally, the electrical energy consumption of the IOX and ACE photolysis by UV222 and UV254 irradiation was evaluated. The results revealed that UV222 irradiation demonstrated superior economic benefits (EE/OUV222/IOX = 0.59951 KWh/L, EE/OUV222/ACE = 0.25443 KWh/L), effectively reducing treatment costs. This study elucidated the photolysis characteristics of IOX and ACE under Far-UVC irradiation, providing a reference for the selection of process conditions in practical applications.
Collapse
Affiliation(s)
- Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| | - Li-Li Hu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, People's Republic of China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Xin-Yu Yang
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, People's Republic of China
| | - Hao Liu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, People's Republic of China
| | - Jia-Nan Chen
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, People's Republic of China
| | - Ling-Mei Gao
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, People's Republic of China
| | - Zheng-Yu Dong
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, People's Republic of China
| |
Collapse
|
11
|
He L, Zou J, Wu J, Li S, Wu Z, Huang Y, Kou X, Cheng Q, Wang P, Ma J. Highly Efficient Degradation of Emerging Contaminants with Sodium Bicarbonate-Enhanced Mn(II)/Peracetic Acid Process: Formation and Contribution of Mn(V). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20313-20326. [PMID: 39491523 DOI: 10.1021/acs.est.4c06878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Organic ligands have been extensively used to enhance the catalytic performance of manganese ion (Mn(II)) for peracetic acid (PAA). In this study, sodium bicarbonate (NaHCO3), an economical and eco-friendly inorganic ligand, was introduced to enhance the degradation of emerging contaminants (ECs) in the Mn(II)/PAA process. NaHCO3 could significantly improve the oxidizing ability of the Mn(II)/PAA process over the initial pH range of 3.0-11.0. Mn(V) was identified as the primary reactive species for degrading naproxen in the NaHCO3/Mn(II)/PAA process. HCO3- could complex with Mn(II) to generate Mn(II)-HCO3-, which has a lower redox potential to enhance the catalytic activity of Mn(II). Mn(II)-HCO3- reacted with PAA to produce Mn(III)-HCO3- and CH3C(O)O•. Mn(V)-HCO3- was generated via two-electron transfer between Mn(III)-HCO3- and PAA. Although organic radicals were detected in the NaHCO3/Mn(II)/PAA process, naproxen was mainly degraded by Mn(V)-HCO3- via one-electron transfer along with the formation of MnO2. Notably, the coexisting hydrogen peroxide was vital in the reduction of MnO2 to Mn(II/III), thereby enhancing the continuous generation of Mn(V)-HCO3-. NaHCO3/Mn(II)/PAA process exhibited exceptional oxidation performance in actual water samples. This study proposed a strategy utilizing an eco-friendly inorganic ligand to address the inherent drawbacks of organic ligand-enhanced Mn(II)/PAA processes and highlighted its potential applications in the removal of ECs.
Collapse
Affiliation(s)
- Linfeng He
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Jing Zou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Jianying Wu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Sheng Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Zhijie Wu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Yixin Huang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Xiaoya Kou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Qingfeng Cheng
- School of Urban Construction, Changzhou University, Changzhou 213164, P. R. China
| | - Panpan Wang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| |
Collapse
|
12
|
Yang S, Sun S, Xie Z, Dong Y, Zhou P, Zhang J, Xiong Z, He CS, Mu Y, Lai B. Comprehensive Insight into the Common Organic Radicals in Advanced Oxidation Processes for Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19571-19583. [PMID: 39442087 DOI: 10.1021/acs.est.4c06676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Radical-based advanced oxidation processes (AOPs) are among the most effective technologies employed to destroy organic pollutants. Compared to common inorganic radicals, such as •OH, O2•-, and SO4•-, organic radicals are widespread, and more selective, but are easily overlooked. Furthermore, a systematic understanding of the generation and contributions of organic radicals remains lacking. In this review, we systematically summarize the properties, possible generation pathways, detection methods, and contributions of organic radicals in AOPs. Notably, exploring organic radicals in AOPs is challenging due to (1) limited detection methods for generated organic radicals; (2) controversial organic radical-mediated reaction mechanisms; and (3) rapid transformation of organic radicals as reaction intermediates. In addition to their characteristics and reactivity, we examine potential scenarios of organic radical generation in AOPs, including during the peroxide activation process, in water matrices or with coexisting organic pollutants, and due to the addition of quenching agents. Subsequently, we summarize various methods for organic radical detection as reported previously, such as electron paramagnetic resonance spectroscopy (EPR), 31P nuclear magnetic resonance spectroscopy (31P NMR), liquid/gas chromatography-mass spectroscopy (GC/LC-MS), and fluorescence probes. Finally, we review the contributions of organic radicals to decontamination processes and provide recommendations for future research.
Collapse
Affiliation(s)
- Shurun Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Si Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhihui Xie
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yudan Dong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jing Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
13
|
Shi Y, Xiao S, Qian Y, Huang CH, Chen J, Li N, Liu T, Zhang Y, Zhou X. Revisiting the synergistic oxidation of peracetic acid and permanganate(Ⅶ) towards micropollutants: The enhanced electron transfer mechanism of reactive manganese species. WATER RESEARCH 2024; 262:122105. [PMID: 39032336 DOI: 10.1016/j.watres.2024.122105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Synergistic actions of peroxides and high-valent metals have garnered increasing attentions in wastewater treatment. However, how peroxides interact with the reactive metal species to enhance the reactivity remains unclear. Herein, we report the synergistic oxidation of peracetic acid (PAA) and permanganate(Ⅶ) towards micropollutants, and revisit the underlying mechanism. The PAA-Mn(VII) system showed remarkable efficiency with a 28-fold enhancement on sulfamethoxazole (SMX) degradation compared to Mn(Ⅶ) alone. Extensive quenching experiments and electron spin resonance (ESR) analysis revealed the generation of unexpected Mn(V) and Mn(VI) beyond Mn(III) in the PAA-Mn(VII) system. The utilization efficiency of Mn intermediates was quantified using 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonate (ABTS), and the results indicated that PAA could enhance the electron transfer efficiency of reactive manganese (Mn) species, thus accelerating the micropollutant degradation. Density functional theory (DFT) calculations showed that Mn intermediates could coordinate to the O1 of PAA with a low energy gap, enhancing the oxidation capacity and stability of Mn intermediates. A kinetic model based on first principles was established to simulate the time-dependent concentration profiles of the PAA-Mn complexes and quantify the contributions of the PAA-Mn(III) complex (50.8 to 59.3 %) and the PAA-Mn(Ⅴ/Ⅵ) complex (40.7 to 49.2 %). The PAA-Mn(VII) system was resistant to the interference from complex matrix components (e.g., chloride and humic acid), leading to the high efficiency in real wastewater. This work provides new insights into the interaction of PAA with reactive manganese species for accelerated oxidation of micropollutants, facilitating its application in wastewater treatment.
Collapse
Affiliation(s)
- Yufei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yajie Qian
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.
| | - Nan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Tongcai Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
14
|
Wang J, Kim J, Li J, Krall C, Sharma VK, Ashley DC, Huang CH. Rapid and Highly Selective Fe(IV) Generation by Fe(II)-Peroxyacid Advanced Oxidation Processes: Mechanistic Investigation via Kinetics and Density Functional Theory. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39276080 PMCID: PMC11428173 DOI: 10.1021/acs.est.4c05234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
High-valent iron (Fe(IV/V/VI)) has been widely applied in water decontamination. However, common Fe(II)-activating oxidants including hydrogen peroxide (H2O2) and persulfate react slowly with Fe(II) and exhibit low selectivity for Fe(IV) production due to the cogeneration of radicals. Herein, we report peroxyacids (POAs; R-C(O)OOH) that can react with Fe(II) more than 3 orders of magnitude faster than H2O2, with high selectivity for Fe(IV) generation. Rapid degradation of bisphenol A (BPA, an endocrine disruptor) was achieved by the combination of Fe(II) with performic acid (PFA), peracetic acid (PAA), or perpropionic acid (PPA) within one second. Experiments with phenyl methyl sulfoxide (PMSO) and tert-butyl alcohol (TBA) revealed Fe(IV) as the major reactive species in all three Fe(II)-POA systems, with a minor contribution of radicals (i.e., •OH and R-C(O)O•). To understand the exceptionally high reactivity of POAs, a detailed computational comparison among the Fenton-like reactions with step-by-step thermodynamic evaluation was conducted. The high reactivity is attributed to the lower energy barriers for O-O bond cleavage, which is determined as the rate-limiting step for the Fenton-like reactions, and the thermodynamically favorable bidentate binding pathway of POA with iron. Overall, this study advances knowledge on POAs as novel Fenton-like reagents and sheds light on computational chemistry for these systems.
Collapse
Affiliation(s)
- Junyue Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Juhee Kim
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jiaqi Li
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Caroline Krall
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Virender K Sharma
- School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Daniel C Ashley
- Department of Chemistry and Biochemistry, Spelman College, Atlanta, Georgia 30314, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
Deng S, Yang Z, Yu X, Li M, Cao H. The reactivity of organic radicals in the performic, peracetic, perpropionic acids-based advanced oxidation process: A case study of sulfamethoxazole. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135033. [PMID: 38941837 DOI: 10.1016/j.jhazmat.2024.135033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Advanced oxidation processes (AOPs) based on peracetic acid (PAA) displayed great potential in removing emerging contaminants by generating HO• and organic radicals. Performic and perpropionic acids (PFA and PPA) also act as disinfectants, but their application potential has not been investigated yet. Here, we investigated the degradation mechanism and kinetics of sulfamethoxazole (SMX) by HO•, RC(O)O• species (including HC(O)O•, CH3C(O)O• and CH3CH2C(O)O•) and RC(O)OO• species (including HC(O)OO•, CH3C(O)OO• and CH3CH2C(O)OO•). The results show that the calculated reaction rate constants of SMX follow the order of HC(O)O• > CH3C(O)O• > CH3CH2C(O)O• > HO• > HC(O)OO• > CH3C(O)OO• > CH3CH2C(O)OO•. The reactivity towards SMX is strongly correlated with the redox potentials of reactive radicals. Hence, the RCOO• species play dominant roles in the purification of SMX in PFA/PAA/PPA-based AOPs. The degradation of SMX mainly proceeds via addition at the benzene ring, the hydrogen abstraction from the -NH2 group as well as the single electron transfer reaction. This study highlights the fundamental aspects of PFA, PAA, and PPA in the purification of sulfamethoxazole and enhances the role of organic radicals in the AOPs based on organic peracetic acids.
Collapse
Affiliation(s)
- Siqi Deng
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Zhengqiang Yang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Xinyi Yu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Mingxue Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Haijie Cao
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, China.
| |
Collapse
|
16
|
Zou R, Yang W, Rezaei B, Tang K, Guo K, Zhang P, Keller SS, Andersen HR, Zhang Y. Activation of peracetic acid by electrodes using biogenic electrons: A novel energy- and catalyst-free process to eliminate pharmaceuticals. WATER RESEARCH 2024; 261:122065. [PMID: 39002421 DOI: 10.1016/j.watres.2024.122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/22/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Peracetic acid (PAA) has received increasing attention as an alternative oxidant for wastewater treatment. However, existing processes for PAA activation to generate reactive species typically require external energy input (e.g., electrically and UV-mediated activation) or catalysts (e.g., Co2+), inevitably increasing treatment costs or introducing potential new contaminants that necessitate additional removal. In this work, we developed a catalyst-free, self-sustaining bioelectrochemical approach within a two-chamber bioelectrochemical system (BES), where a cathode electrode in-situ activates PAA using renewable biogenic electrons generated by anodic exoelectrogens (e.g., Geobacter) degrading biodegradable organic matter (e.g., acetic acid) in wastewater at the anode. This innovative BES-PAA technique achieved 98 % and 81 % removal of 2 µM sulfamethoxazole (SMX) in two hours at pH 2 (cation exchange membrane) and pH 6 (bipolar membrane) using 100 μM PAA without external voltage. Mechanistic studies, including radical quenching, molecular probe validation, electron spin resonance (ESR) experiments, and density functional theory (DFT) calculations, revealed that SMX degradation was driven by reactive species generated via biogenic electron-mediated OO cleavage of PAA, with CH3C(O)OO• contributing 68.1 %, •OH of 18.4 %, and CH3C(O)O• of 9.4 %, where initial formation of •OH and CH3C(O)O• rapidly reacts with PAA to produce CH3C(O)OO•. The presence of common water constituents such as anions (e.g., Cl-, NO3-, and H2PO4-) and humic acid (HA) significantly hinders SMX removal via the BES-PAA technique, whereas CO32- and HCO3- ions have a comparatively minor impact. Additionally, the study investigated the removal of various pharmaceuticals present in secondary treated municipal wastewater, attributing differences in removal efficiency to the selective action of CH3C(O)OO•. This research demonstrates a novel PAA activation method that is ecologically benign, inexpensive, and capable of overcoming catalyst deactivation and secondary pollution issues.
Collapse
Affiliation(s)
- Rusen Zou
- Department of Environmental & Ressource Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Wenqiang Yang
- Department of Physics, Technical University of Denmark, Lyngby, DK 2800, Denmark
| | - Babak Rezaei
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Kai Tang
- Department of Environmental & Ressource Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Kuangxin Guo
- Department of Environmental & Ressource Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Pingping Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Stephan Sylvest Keller
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental & Ressource Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental & Ressource Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| |
Collapse
|
17
|
Hu CY, Hu LL, Dong ZY, Yang XY, Liu H, Chen JN, Gao LM. Enhanced degradation of emerging contaminants by Far-UVC photolysis of peracetic acid: Synergistic effect and mechanisms. WATER RESEARCH 2024; 260:121943. [PMID: 38909423 DOI: 10.1016/j.watres.2024.121943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
Krypton chloride (KrCl*) excimer lamps (222 nm) are used as a promising irradiation source to drive ultraviolet-based advanced oxidation processes (UV-AOPs) in water treatment. In this study, the UV222/peracetic acid (PAA) process is implemented as a novel UV-AOPs for the degradation of emerging contaminants (ECs) in water. The results demonstrate that UV222/PAA process exhibits excellent degradation performance for carbamazepine (CBZ), with a removal rate of 90.8 % within 45 min. Notably, the degradation of CBZ in the UV222/PAA process (90.8 %) was significantly higher than that in the UV254/PAA process (15.1 %) at the same UV dose. The UV222/PAA process exhibits superior electrical energy per order (EE/O) performance while reducing resource consumption associated with the high-energy UV254/PAA process. Quenching experiments and electron paramagnetic resonance (EPR) detection confirm that HO• play a dominant role in the reaction. The contributions of direct photolysis, HO•, and other active species (RO• and 1O2) are estimated to be 5 %, 88 %, and 7 %, respectively. In addition, the effects of Cl-, HCO3-, and humic acid (HA) on the degradation of CBZ are evaluated. The presence of relatively low concentrations of Cl-, HCO3-, and HA can inhibit CBZ degradation. The UV222/PAA oxidation process could also effectively degrade several other ECs (i.e., iohexol, sulfamethoxazole, acetochlor, ibuprofen), indicating the potential application of this process in pollutant removal. These findings will propel the development of the UV222/PAA process and provide valuable insights for its application in water treatment.
Collapse
Affiliation(s)
- Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Li-Li Hu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Zheng-Yu Dong
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, PR China.
| | - Xin-Yu Yang
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Hao Liu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Jia-Nan Chen
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Ling-Mei Gao
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, PR China
| |
Collapse
|
18
|
Li Z, Wang X, Peng F, Chen N, Fang G. Organic radicals driving polycyclic aromatic hydrocarbon polymerization with peracetic acid activation in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134839. [PMID: 38878430 DOI: 10.1016/j.jhazmat.2024.134839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/22/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
The use of peracetic acid (PAA) in advanced oxidation processes has gained significant attention recently, but the knowledge of activating PAA to degrade polycyclic aromatic hydrocarbons (PAHs) is limited due to the variety and selectivity of reactive substances in PAA oxidation system. This paper presented the first systemically study on the degradation of PAHs by PAA activation in soil. It was found that heat-activated peracetic acid (heat/PAA) was capable of degrading phenanthrene (PHE) efficiently with degradation efficiency > 90 % within 30 min. Experimental results demonstrated that a series of reactive oxygen species (ROS) including organic radicals (RO•), hydroxyl radicals (HO•) and singlet oxygen (1O2) were generated, while acetylperoxyl (CH3C(O)OO•) and acetyloxyl (CH3C(O)O•) radicals were primarily responsible for PHE degradation in soil. Further analysis shows that polymerization products such as diphenic acid, 2'-formyl-2-biphenylcarboxylic acid and other macromolecules were dominant products of PHE degradation, suggesting polymerization driving PHE degradation instead of the conventional mineralization process. Toxicity analysis shows that most of the polymerization products had less toxicity than that of PHE. These results indicate that PAA activation was a highly effective remediation method for PAHs contaminated soil, which also provided a novel mechanism for pollutant degradation with the PAA activation process for environmental remediation.
Collapse
Affiliation(s)
- Ziyue Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaolei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Fei Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Ning Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Guodong Fang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
19
|
Chen J, Cao L, Cheng Y, Chen Z, Wang Z, Chen Y, Liu Z, Ma J, Xie P. Efficient disinfection of combined sewer overflows by ultraviolet/peracetic acid through intracellular oxidation with preserving cell integrity. WATER RESEARCH 2024; 260:121959. [PMID: 38909420 DOI: 10.1016/j.watres.2024.121959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Combined sewer overflows (CSOs) introduce microbial contaminants into the receiving water bodies, thereby posing risks to public health. This study systematically investigated the disinfection performance and mechanisms of the combined process of ultraviolet and peracetic acid (UV/PAA) in CSOs with selecting Escherichia coli (E. coli) as a target microbial contaminant. The UV/PAA process exhibited superior performance in inactivating E. coli in simulated CSOs compared with UV, PAA, and UV/H2O2 processes. Increasing the PAA dosage greatly enhanced the disinfection efficiency, while turbidity and organic matter hindered the inactivation performance. Singlet oxygen (1O2), hydroxyl (•OH) and organic radicals (RO•) contributed to the inactivation of E. coli, with •OH and RO• playing the prominent role. Variations of intracellular reactive oxygen species, malondialdehyde, enzymes activities, DNA contents and biochemical compositions of E. coli cells suggested that UV/PAA primarily caused oxidative damage to intracellular molecules rather than the damage to the lipids of the cell membrane, therefore effectively limited the regrowth of E. coli. Additionally, the UV/PAA process displayed an outstanding performance in disinfecting actual raw CSOs, achieving a 2.90-log inactivation of total bacteria after reaction for 4 min. These results highlighted the practical applicability and effectiveness of the UV/PAA process in the disinfection of CSOs.
Collapse
Affiliation(s)
- Jizhao Chen
- Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lisan Cao
- Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yujie Cheng
- Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenbin Chen
- Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zongping Wang
- Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Pengchao Xie
- Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
20
|
Wang J, Schaefer T, Lisouskaya A, Firak DS, Xin X, Meng L, Herrmann H, Sharma VK, Huang CH. Unveiling the environmental significance of acetylperoxyl radical: Reactivity quantification and kinetic modeling. PNAS NEXUS 2024; 3:pgae330. [PMID: 39189022 PMCID: PMC11346367 DOI: 10.1093/pnasnexus/pgae330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
Acetylperoxyl radical (CH3C(O)OO•) is among highly reactive organic radicals which are known to play crucial roles in atmospheric chemistry, aqueous chemistry and, most recently, peracetic acid (PAA)-based advanced oxidation processes. However, fundamental knowledge for its reactivity is scarce and severely hampers the understanding of relevant environmental processes. Herein, three independent experimental approaches were exploited for revelation and quantification of the reaction rates of acetylperoxyl radical. First, we developed and verified laser flash photolysis of biacetyl, ultraviolet (UV) photolysis of biacetyl, and pulse radiolysis of acetaldehyde, each as a clean source of CH3C(O)OO•. Then, using competition kinetics and selection of suitable probe and competitor compounds, the rate constants between CH3C(O)OO• and compounds of diverse structures were determined. The three experimental approaches complemented in reaction time scale and ease of operation, and provided cross-validation of the rate constants. Moreover, the formation of CH3C(O)OO• was verified by spin-trapped electron paramagnetic resonance, and potential influence of other reactive species in the systems was assessed. Overall, CH3C(O)OO• displays distinctively high reactivity and selectivity, reacting especially favorably with naphthyl and diene compounds (k ∼ 107-108 M-1 s-1) but sluggishly with N- and S-containing groups. Significantly, we demonstrated that incorporating acetylperoxyl radical-oxidation reactions significantly improved the accuracy in modeling the degradation of environmental micropollutants by UV/PAA treatment. This study is among the most comprehensive investigation for peroxyl radical reactivity to date, and establishes a robust methodology for investigating organic radical chemistry. The determined rate constants strengthen kinetic databases and improve modeling accuracy for natural and engineered systems.
Collapse
Affiliation(s)
- Junyue Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 200 Bobby Dodd Way NW, Atlanta, GA 30332, USA
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Aliaksandra Lisouskaya
- Radiation Laboratory, University of Notre Dame, 102 Radiaiton Research Building, Notre Dame, IN 46556, USA
| | - Daniele S Firak
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Xiaoyue Xin
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 200 Bobby Dodd Way NW, Atlanta, GA 30332, USA
| | - Lingjun Meng
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 200 Bobby Dodd Way NW, Atlanta, GA 30332, USA
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Virender K Sharma
- Department of Environment and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Road, College Station, TX 77843, USA
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 200 Bobby Dodd Way NW, Atlanta, GA 30332, USA
| |
Collapse
|
21
|
Ren Y, Liu C, Ji C, Lai B, Zhang W, Li J. Selective oxidation decontamination in cobalt molybdate activated Fenton-like oxidation via synergic effect of cobalt and molybdenum. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134639. [PMID: 38772113 DOI: 10.1016/j.jhazmat.2024.134639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
In this study, cobalt molybdate (CoMoO4) activated peracetic acid (PAA) was developed for water purification. CoMoO4/PAA system could remove 95% SMX with pseudo-first-order reaction rate constant of 0.15410 min-1, which was much higher than CoFe2O4/PAA, FeMoO4/PAA, and CoMoO4/persulfate systems. CoMoO4/PAA system follows a non-radical species pathway dominated by the high-valent cobalt (Co(IV)), and CH3C(O)OO• shows a minor contribution to decontamination. Density functional theory (DFT) calculation indicates that the generation of Co(IV) is thermodynamically more favorable than CH3C(O)OO• generation. The abundant Co(IV) generation was attributed to the special structure of CoMoO4 and effect of molybdenum on redox cycle of Co(II)/Co(III). DFT calculation showed that the atoms of SMX with higher ƒ0 and ƒ- values are the main attack sites, which are in accordance with the results of degradation byproducts. CoMoO4/PAA system can effectively reduce biological toxicity after the reaction. Benefiting from the selective of Co(IV) and CH3C(O)OO•, the established CoMoO4/PAA system exhibits excellent anti-interference capacity and satisfactory decontamination performance under actual water conditions. Furthermore, the system was capable of good potential practical application for efficient removal of various organics and favorable reuse. Overall, this study provides a new strategy by CoMoO4 activated PAA for decontamination with high efficiency, high selectivity and favorable anti-interference.
Collapse
Affiliation(s)
- Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Chao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Chenghan Ji
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Lai
- Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jun Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
22
|
Dong J, Dong H, Xiao J, Li L, Huang D, Zhao M. Enhanced Degradation of Micropollutants in a Peracetic Acid/Mn(II) System with EDDS: An Investigation of the Role of Mn Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12179-12188. [PMID: 38913078 DOI: 10.1021/acs.est.4c00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Extensive research has been conducted on the utilization of a metal-based catalyst to activate peracetic acid (PAA) for the degradation of micropollutants (MPs) in water. Mn(II) is a commonly employed catalyst for homogeneous advanced oxidation processes (AOPs), but its catalytic performance with PAA is poor. This study showed that the environmentally friendly chelator ethylenediamine-N,N'-disuccinic acid (EDDS) could greatly facilitate the activation of Mn(II) in PAA for complete atrazine (ATZ) degradation. In this process, the EDDS enhanced the catalytic activity of manganese (Mn) and prevented disproportionation of transient Mn species, thus facilitating the decay of PAA and mineralization of ATZ. By employing electron spin resonance detection, quenching and probe tests, and 18O isotope-tracing experiments, the significance of high-valent Mn-oxo species (Mn(V)) in the Mn(II)-EDDS/PAA system was revealed. In particular, the involvement of the Mn(III) species was essential for the formation of Mn(V). Mn(III) species, along with singlet oxygen (1O2) and acetyl(per)oxyl radicals (CH3C(O)O•/CH3C(O)OO•), also contributed partially to ATZ degradation. Mass spectrometry and density functional theory methods were used to study the transformation pathway and mechanism of ATZ. The toxicity assessment of the oxidative products indicated that the toxicity of ATZ decreased after the degradation reaction. Moreover, the system exhibited excellent interference resistance toward various anions and humid acid (HA), and it could selectively degrade multiple MPs.
Collapse
Affiliation(s)
- Jie Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, China
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, China
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, China
| | - Daofen Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, China
| | - Mengxi Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
23
|
Sathiyan K, Wang J, Williams LM, Huang CH, Sharma VK. Revisiting the Electron Transfer Mechanisms in Ru(III)-Mediated Advanced Oxidation Processes with Peroxyacids and Ferrate(VI). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11822-11832. [PMID: 38899941 PMCID: PMC11223481 DOI: 10.1021/acs.est.4c02640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
The potential of Ru(III)-mediated advanced oxidation processes has attracted attention due to the recyclable catalysis, high efficiency at circumneutral pHs, and robust resistance against background anions (e.g., phosphate). However, the reactive species in Ru(III)-peracetic acid (PAA) and Ru(III)-ferrate(VI) (FeO42-) systems have not been rigorously examined and were tentatively attributed to organic radicals (CH3C(O)O•/CH3C(O)OO•) and Fe(IV)/Ru(V), representing single electron transfer (SET) and double electron transfer (DET) mechanisms, respectively. Herein, the reaction mechanisms of both systems were investigated by chemical probes, stoichiometry, and electrochemical analysis, revealing different reaction pathways. The negligible contribution of hydroxyl (HO•) and organic (CH3C(O)O•/CH3C(O)OO•) radicals in the Ru(III)-PAA system clearly indicated a DET reaction via oxygen atom transfer (OAT) that produces Ru(V) as the only reactive species. Further, the Ru(III)-performic acid (PFA) system exhibited a similar OAT oxidation mechanism and efficiency. In contrast, the 1:2 stoichiometry and negligible Fe(IV) formation suggested the SET reaction between Ru(III) and ferrate(VI), generating Ru(IV), Ru(V), and Fe(V) as reactive species for micropollutant abatement. Despite the slower oxidation rate constant (kinetically modeled), Ru(V) could contribute comparably as Fe(V) to oxidation due to its higher steady-state concentration. These reaction mechanisms are distinctly different from the previous studies and provide new mechanistic insights into Ru chemistry and Ru(III)-based AOPs.
Collapse
Affiliation(s)
- Krishnamoorthy Sathiyan
- Program
for Environment and Sustainability, Department of Environmental and
Occupational Health, School of Public Health, Texas A&M University, College
Station, Texas 77843-8371, United States
| | - Junyue Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lois M. Williams
- Program
for Environment and Sustainability, Department of Environmental and
Occupational Health, School of Public Health, Texas A&M University, College
Station, Texas 77843-8371, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Virender K. Sharma
- Program
for Environment and Sustainability, Department of Environmental and
Occupational Health, School of Public Health, Texas A&M University, College
Station, Texas 77843-8371, United States
| |
Collapse
|
24
|
Wang J, Huo L, Bian K, He H, Dodd MC, Pinto AJ, Huang CH. Efficacy and Mechanism of Antibiotic Resistance Gene Degradation and Cell Membrane Damage during Ultraviolet Advanced Oxidation Processes. ACS ES&T WATER 2024; 4:2746-2755. [PMID: 38903200 PMCID: PMC11186015 DOI: 10.1021/acsestwater.4c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Combinations of UV with oxidants can initiate advanced oxidation processes (AOPs) and enhance bacterial inactivation. However, the effectiveness and mechanisms of UV-AOPs in damaging nucleic acids (e.g., antibiotic resistance genes (ARGs)) and cell integrity represent a knowledge gap. This study comprehensively compared ARG degradation and cell membrane damage under three different UV-AOPs. The extracellular ARG (eARG) removal efficiency followed the order of UV/chlorine > UV/H2O2 > UV/peracetic acid (PAA). Hydroxyl radical (•OH) and reactive chlorine species (RCS) largely contributed to eARG removal, while organic radicals made a minor contribution. For intracellular ARGs (iARGs), UV/H2O2 did not remove better than UV alone due to the scavenging of •OH by cell components, whereas UV/PAA provided a modest synergism, likely due to diffusion of PAA into cells and intracellular •OH generation. Comparatively, UV/chlorine achieved significant synergistic iARG removal, suggesting the critical role of the RCS in resisting cellular scavenging and inactivating ARGs. Additionally, flow cytometry analysis demonstrated that membrane damage was mainly attributed to chlorine oxidation, while the impacts of radicals, H2O2, and PAA were negligible. These results provide mechanistic insights into bacterial inactivation and fate of ARGs during UV-AOPs, and shed light on the suitability of quantitative polymerase chain reaction (qPCR) and flow cytometry in assessing disinfection performance.
Collapse
Affiliation(s)
- Junyue Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Linxuan Huo
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kaiqin Bian
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Huan He
- State
Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory
of Yangtze Water Environment, Ministry of Education, College of Environmental
Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Michael C. Dodd
- Department
of Civil and Environmental Engineering, University of Washington (UW), Seattle, Washington 98195-2700, United States
| | - Ameet J. Pinto
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
25
|
Wu JH, Yang TH, Sun YJ, Min Y, Hu Y, Chen F, Chen JJ, Yu HQ. Tailoring the selective generation of oxidative organic radicals for toxic-by-product-free water decontamination. Proc Natl Acad Sci U S A 2024; 121:e2403544121. [PMID: 38805289 PMCID: PMC11161747 DOI: 10.1073/pnas.2403544121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024] Open
Abstract
Peracetic acid (PAA) is emerging as a versatile agent for generating long-lived and selectively oxidative organic radicals (R-O•). Currently, the conventional transition metal-based activation strategies still suffer from metal ion leaching, undesirable by-products formation, and uncontrolled reactive species production. To address these challenges, we present a method employing BiOI with a unique electron structure as a PAA activator, thereby predominantly generating CH3C(O)O• radicals. The specificity of CH3C(O)O• generation ensured the superior performance of the BiOI/PAA system across a wide pH range (2.0 to 11.0), even in the presence of complex interfering substances such as humic acids, chloride ions, bicarbonate ions, and real-world water matrices. Unlike conventional catalytic oxidative methods, the BiOI/PAA system degrades sulfonamides without producing any toxic by-products. Our findings demonstrate the advantages of CH3C(O)O• in water decontamination and pave the way for the development of eco-friendly water decontaminations based on organic peroxides.
Collapse
Affiliation(s)
- Jing-Hang Wu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Tian-Hao Yang
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Yi-Jiao Sun
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing400045, China
| | - Yuan Min
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Yi Hu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Fei Chen
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing400045, China
| | - Jie-Jie Chen
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Han-Qing Yu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
26
|
Xu S, Wei H, Li X, Chen L, Song T. Treatment of tetracycline in an aqueous solution with an iron-biochar/periodate system: Influencing factors and mechanisms. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3344-3356. [PMID: 39150428 DOI: 10.2166/wst.2024.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 08/17/2024]
Abstract
In this study, a potassium ferrate (K2FeO4)-modified biochar (Fe-BC) was prepared and characterized. Afterwards, Fe-BC was applied to activated periodate (PI) to degrade tetracycline (TC), an antibiotic widely used in animal farming. The degradation effects of different systems on TC were compared and the influencing factors were investigated. In addition, several reactive oxygen species (ROS) generated by the Fe-BC/PI system were identified, and TC degradation pathways were analyzed. Moreover, the reuse performance of Fe-BC was evaluated. The results exhibited that the Fe-BC/PI system could remove almost 100% of TC under optimal conditions of [BC] = 1.09 g/L, initial [PI] = 3.29 g/L, and initial [TC] = 20.3 mg/L. Cl-, HCO3-, NO3-, and humic acid inhibited TC degradation to varying degrees in the Fe-BC/PI system due to their quenching effects on ROS. TC was degraded into intermediates and even water and carbon dioxide by the synergistic effect of ROS generated and Fe on the BC surface. Fe-BC was reused four times, and the removal rate of TC was still maintained above 80%, indicating the stable nature of Fe-BC.
Collapse
Affiliation(s)
- Shuo Xu
- Urban Construction College, Changchun University of Architecture and Civil Engineering, Changchun 130607, China
| | - Hongyan Wei
- Urban Construction College, Changchun University of Architecture and Civil Engineering, Changchun 130607, China
| | - Xuejiao Li
- Urban Construction College, Changchun University of Architecture and Civil Engineering, Changchun 130607, China
| | - Lizhu Chen
- Urban Construction College, Changchun University of Architecture and Civil Engineering, Changchun 130607, China
| | - Tiehong Song
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China E-mail:
| |
Collapse
|
27
|
Yan Y, Meng Y, Miu K, Wenk J, Anastasio C, Spinney R, Tang CJ, Xiao R. Direct Determination of Absolute Radical Quantum Yields in Hydroxyl and Sulfate Radical-Based Treatment Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8966-8975. [PMID: 38722667 DOI: 10.1021/acs.est.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The absolute radical quantum yield (Φ ) is a critical parameter to evaluate the efficiency of radical-based processes in engineered water treatment. However, measuring Φ is fraught with challenges, as current quantification methods lack selectivity, specificity, and anti-interference capabilities, resulting in significant error propagation. Herein, we report a direct and reliable time-resolved technique to determine Φ at pH 7.0 for commonly used radical precursors in advanced oxidation processes. For H2O2 and peroxydisulfate (PDS), the values of Φ •OH and Φ SO 4 • - at 266 nm were measured to be 1.10 ± 0.01 and 1.46 ± 0.05, respectively. For peroxymonosulfate (PMS), we developed a new approach to determine Φ • OH PMS with terephthalic acid as a trap-and-trigger probe in the nonsteady state system. For the first time, the Φ • OH PMS value was measured to be 0.56 by the direct method, which is stoichiometrically equal to Φ SO 4 • - PMS (0.57 ± 0.02). Additionally, radical formation mechanisms were elucidated by density functional theory (DFT) calculations. The theoretical results showed that the highest occupied molecular orbitals of the radical precursors are O-O antibonding orbitals, facilitating the destabilization of the peroxy bond for radical formation. Electronic structures of these precursors were compared, aiming to rationalize the tendency of the Φ values we observed. Overall, this time-resolved technique with specific probes can be used as a reliable tool to determine Φ , serving as a scientific basis for the accurate performance evaluation of diverse radical-based treatment processes.
Collapse
Affiliation(s)
- Yiqi Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Yunxiang Meng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Kanying Miu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Jannis Wenk
- Department of Chemical Engineering, Water Innovation & Research Centre (WIRC@Bath), University of Bath, Bath BA2 7AY, U.K
| | - Cort Anastasio
- Department of Land, Air, and Water Resource, University of California, Davis, California 95616, United States
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chong-Jian Tang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
28
|
Campbell S, La C, Zhou Q, Le J, Galvez-Reyes J, Banach C, Houk KN, Chen JR, Paulson SE. Characterizing Hydroxyl Radical Formation from the Light-Driven Fe(II)-Peracetic Acid Reaction, a Key Process for Aerosol-Cloud Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7505-7515. [PMID: 38619820 PMCID: PMC11064221 DOI: 10.1021/acs.est.3c10684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
The reaction of peracetic acid (PAA) and Fe(II) has recently gained attention due to its utility in wastewater treatment and its role in cloud chemistry. Aerosol-cloud interactions, partly mediated by aqueous hydroxyl radical (OH) chemistry, represent one of the largest uncertainties in the climate system. Ambiguities remain regarding the sources of OH in the cloud droplets. Our research group recently proposed that the dark and light-driven reaction of Fe(II) with peracids may be a key contributor to OH formation, producing a large burst of OH when aerosol particles take up water as they grow to become cloud droplets, in which reactants are consumed within 2 min. In this work, we quantify the OH production from the reaction of Fe(II) and PAA across a range of physical and chemical conditions. We show a strong dependence of OH formation on ultraviolet (UV) wavelength, with maximum OH formation at λ = 304 ± 5 nm, and demonstrate that the OH burst phenomenon is unique to Fe(II) and peracids. Using kinetics modeling and density functional theory calculations, we suggest the reaction proceeds through the formation of an [Fe(II)-(PAA)2(H2O)2] complex, followed by the formation of a Fe(IV) complex, which can also be photoactivated to produce additional OH. Determining the characteristics of OH production from this reaction advances our knowledge of the sources of OH in cloudwater and provides a framework to optimize this reaction for OH output for wastewater treatment purposes.
Collapse
Affiliation(s)
- Steven
J. Campbell
- Department
of Atmospheric and Oceanic Sciences, University
of California at Los Angeles, 520 Portola Plaza, Los Angeles, California 90095, United States
| | - Chris La
- Department
of Atmospheric and Oceanic Sciences, University
of California at Los Angeles, 520 Portola Plaza, Los Angeles, California 90095, United States
| | - Qingyang Zhou
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Jason Le
- Department
of Atmospheric and Oceanic Sciences, University
of California at Los Angeles, 520 Portola Plaza, Los Angeles, California 90095, United States
| | - Jennyfer Galvez-Reyes
- Department
of Atmospheric and Oceanic Sciences, University
of California at Los Angeles, 520 Portola Plaza, Los Angeles, California 90095, United States
| | - Catherine Banach
- Department
of Atmospheric and Oceanic Sciences, University
of California at Los Angeles, 520 Portola Plaza, Los Angeles, California 90095, United States
| | - K. N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Jie Rou Chen
- Department
of Atmospheric and Oceanic Sciences, University
of California at Los Angeles, 520 Portola Plaza, Los Angeles, California 90095, United States
| | - Suzanne E. Paulson
- Department
of Atmospheric and Oceanic Sciences, University
of California at Los Angeles, 520 Portola Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
29
|
Liu F, Zou Y, Liang H, Hu J, Li Y, Lin L, Li X, Li B. Trace Co(II) triggers peracetic acid activation in phosphate buffer: New insights into the oxidative species responsible for ciprofloxacin removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133638. [PMID: 38354441 DOI: 10.1016/j.jhazmat.2024.133638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Peracetic acid (PAA) emerges as a promising disinfectant and oxidant applied worldwide, and its application has been broadened for advanced oxidation processes (AOPs) in wastewater treatment. Current studies on transition metal-activated AOPs utilized relatively high concentrations of catalysts, leading to potential secondary pollution concerns. This study boosts the understanding of reaction mechanism in PAA activation system under a low-level concentration. Herein, trace levels of Co(II) (1 μM) and practical dosages of PAA (50-250 μM) were employed, achieving noticeable ciprofloxacin (CIP) degradation efficiencies (75.8-99.0%) within 20 min. Two orders of magnitude of the CIP's antibacterial activity significantly decreased after Co(II)/PAA AOP treatment, which suggested the effective ecological risk control capability of the reaction system. The degradation performed well in various water matrices and the primary reactive species is proposed to be CoHPO4-OO(O)CCH3 complexes with scavenging tests and electron paramagnetic resonance tests. The degradation pathway of fluoroquinolones including piperazine ring-opening (dealkylation and oxidation), defluorination, and decarboxylation, were systematically elucidated. This study boosts a comprehensive and novel understanding of PAA-based AOP for CIP degradation.
Collapse
Affiliation(s)
- Feifei Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Yubin Zou
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Hebin Liang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiahui Hu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Yin Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Lin Lin
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
30
|
Du P, Tang K, Yang B, Mo X, Wang J. Reassessing the Quantum Yield and Reactivity of Triplet-State Dissolved Organic Matter via Global Kinetic Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5856-5865. [PMID: 38516968 DOI: 10.1021/acs.est.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Measuring the quantum yield and reactivity of triplet-state dissolved organic matter (3DOM*) is essential for assessing the impact of DOM on aquatic photochemical processes. However, current 3DOM* quantification methods require multiple fitting steps and rely on steady-state approximations under stringent application criteria, which may introduce certain inaccuracies in the estimation of DOM photoreactivity parameters. Here, we developed a global kinetic model to simulate the reaction kinetics of the hv/DOM system using four DOM types and 2,4,6-trimethylphenol as the probe for 3DOM*. Analyses of residuals and the root-mean-square error validated the exceptional precision of the new model compared to conventional methods. 3DOM* in the global kinetic model consistently displayed a lower quantum yield and higher reactivity than those in local regression models, indicating that the generation and reactivity of 3DOM* have often been overestimated and underestimated, respectively. The global kinetic model derives parameters by simultaneously fitting probe degradation kinetics under different conditions and considers the temporally increasing concentrations of the involved reactive species. It minimizes error propagation and offers insights into the interactions of different species, thereby providing advantages in accuracy, robustness, and interpretability. This study significantly advances the understanding of 3DOM* behavior and provides a valuable kinetic model for aquatic photochemistry research.
Collapse
Affiliation(s)
- Penghui Du
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kexin Tang
- Center of Water Resources and Environment, School of Civil Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Biwei Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaohan Mo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Peking University, Shenzhen, Guangdong 518055, China
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
31
|
Sciscenko I, Vione D, Minella M. Infancy of peracetic acid activation by iron, a new Fenton-based process: A review. Heliyon 2024; 10:e27036. [PMID: 38495153 PMCID: PMC10943352 DOI: 10.1016/j.heliyon.2024.e27036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
The exacerbated global water scarcity and stricter water directives are leading to an increment in the recycled water use, requiring the development of new cost-effective advanced water treatments to provide safe water to the population. In this sense, peracetic acid (PAA, CH3C(O)OOH) is an environmentally friendly disinfectant with the potential to challenge the dominance of chlorine in large wastewater treatment plants in the near future. PAA can be used as an alternative oxidant to H2O2 to carry out the Fenton reaction, and it has recently been proven as more effective than H2O2 towards emerging pollutants degradation at circumneutral pH values and in the presence of anions. PAA activation by homogeneous and heterogeneous iron-based materials generates - besides HO• and FeO2+ - more selective CH3C(O)O• and CH3C(O)OO• radicals, slightly scavenged by typical HO• quenchers (e.g., bicarbonates), which extends PAA use to complex water matrices. This is reflected in an exponential progress of iron-PAA publications during the last few years. Although some reviews of PAA general properties and uses in water treatment were recently published, there is no account on the research and environmental applications of PAA activation by Fe-based materials, in spite of its gratifying progress. In view of these statements, here we provide a holistic review of the types of iron-based PAA activation systems and analyse the diverse iron compounds employed to date (e.g., ferrous and ferric salts, ferrate(VI), spinel ferrites), the use of external ferric reducing/chelating agents (e.g., picolinic acid, l-cysteine, boron) and of UV-visible irradiation systems, analysing the mechanisms involved in each case. Comparison of PAA activation by iron vs. other transition metals (particularly cobalt) is also discussed. This work aims at providing a thorough understanding of the Fe/PAA-based processes, facilitating useful insights into its advantages and limitations, overlooked issues, and prospects, leading to its popularisation and know-how increment.
Collapse
Affiliation(s)
- Iván Sciscenko
- Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València, plaza Ferrándiz y Carbonell S/N, 03801, Alcoy, Spain
| | - Davide Vione
- Department of Chemistry, University of Turin, via Pietro Giuria 5, 10125, Turin, Italy
| | - Marco Minella
- Department of Chemistry, University of Turin, via Pietro Giuria 5, 10125, Turin, Italy
| |
Collapse
|
32
|
Shao Y, Li S, Wei X, Zhao Y, Liang J, Li X. The diverse roles of halide ions in the degradation of bisphenol A via UV/peracetic acid process at different pH values: Radical chemistry, and transformation pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133053. [PMID: 38113739 DOI: 10.1016/j.jhazmat.2023.133053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/19/2023] [Accepted: 11/19/2023] [Indexed: 12/21/2023]
Abstract
UV/Peracetic Acid (UV/PAA), as an innovative advanced oxidation process (AOP), is employed to treat bisphenol A (BPA) in water through the generation of hydroxyl radicals (•OH) and carbon-centered radicals (R-C•). The impact of halide ions (Cl-; Br-; I-) on the efficiency of UV/PAA was investigated for the first time under varying pH levels. The presence of halide ions exerted an influence on the reactivity of •OH and R-C•, exhibiting varying degrees of impact across different pH conditions. It was discovered that pH exerts a significant influence on its efficiency, with optimal removal performance observed at a pH 9. The degradation of BPA was inhibited by Cl- through the generation of reactive chlorine species (RCS), which triggers the interconversion between •OH and R-C•. Reactive bromine species (RBS) were produced in the presence of Br-, facilitating BPA degradation and generating HOBr as a supplementary source of •OH radicals. I- primarily generate reactive iodine species (RIS) through photolysis, which facilitates the degradation of BPA. The transformation of BPA involves hydroxylation, demethylation, halogenation, and cleavage reactions to form various products and pathways. The toxicity test demonstrates that the UV/PAA treatment of BPA exhibits lower toxicity, thereby indicating its environmentally friendly.
Collapse
Affiliation(s)
- Yanan Shao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Shuai Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Xue Wei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Yanlan Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
33
|
Su R, Zhu Y, Gao B, Li Q. Progress on mechanism and efficacy of heterogeneous photocatalysis coupled oxidant activation as an advanced oxidation process for water decontamination. WATER RESEARCH 2024; 251:121119. [PMID: 38219690 DOI: 10.1016/j.watres.2024.121119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/08/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
The rising debate on the dilemma of photocatalytic water treatment technologies has driven researchers to revisit its prospects in water decontamination. Nowadays, heterogeneous photocatalysis coupled oxidant activation techniques are intensively studied due to their dual advantages of high mineralization and high oxidation efficiency in pollutant degradation. This paved a new way for the development of solar-driven oxidation technologies. Previous reviews focused on the advances in one specific coupling technique, such as photocatalytic persulfate activation and photocatalytic ozonation, but lack a consolidated understanding of the synergy between photocatalytic oxidation and oxidant activation. The synergy involves the migration of photogenerated carriers, radical reaction, and the increase in oxidation rate and mineralization. This review systematically summarizes the fundamentals of activation mechanism, advanced characterization techniques and synergistic effects of coupling techniques for water decontamination. Besides, specific cases that lead researchers astray in revealing mechanisms and assessing synergy are critically discussed. Finally, the prospects and challenges are put forward to further deepen the research on heterogeneous photocatalytic activation of oxidants. This work provides a consolidated view of the existing heterogeneous photocatalysis coupled oxidant activation techniques and inspires researchers to develop more promising solar-driven technologies for water decontamination.
Collapse
Affiliation(s)
- Ruidian Su
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Qian Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
34
|
Chen GY, Lin YH, Fu CH, Lin CH, Muthiah B, Espulgar WV, Santos GN, Yu DE, Kasai T. Quantification of peracetic acid (PAA) in the H 2O 2 + acetic acid reaction by the wavelength shift analysis in near-UV/visible absorption region. ANAL SCI 2024; 40:489-499. [PMID: 38165524 DOI: 10.1007/s44211-023-00481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024]
Abstract
In our study, we present an innovative method for the analysis and real-time monitoring of peracetic acid (PAA) formation within the near-UV/Vis (visible) wavelength region. PAA's absorption spectrum, influenced by its presence in a complex quaternary equilibrium mixture with hydrogen peroxide (H2O2), acetic acid, and water, lacks discernible peaks. This inherent complexity challenges conventional analytical techniques like Beer's law, which rely on absorption intensity as a foundation. To address this challenge, we introduce a novel approach that centers on the analysis of blue shifts in absorption wavelengths, particularly at an absorbance of 0.8 a.u. This method significantly enhances the precision of calibration curves for both diluted PAA and H2O2, unveiling an exponential correlation between wavelength and the logarithm of concentration for both components. Significantly, our approach allows for real-time and accurate measurements, especially during the dynamic PAA formation reaction. Our results exhibit excellent agreement with data obtained from Fourier-transform infrared (FT-IR) spectroscopy, validating the reliability of our method. It's noteworthy that under stable PAA concentration conditions (after 12 h of solution interaction), both traditional absorption method and our approach closely align with the FT-IR method. However, in dynamic scenarios (0-12 h), the absorption method exhibits higher error rates compared to our approach. Additionally, the increased concentration of a catalyst, sulfuric acid (H2SO4), significantly reduces the errors in both methods, a finding that warrants further exploration. In summary, our study not only advances our understanding of PAA and its spectral behavior but also introduces innovative and precise methods for determining PAA concentration in complex solutions. These advancements hold the potential to revolutionize the field of chemical analysis and spectroscopy.
Collapse
Affiliation(s)
- Guan-Yu Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, 10617, Taiwan
| | - Yueh-Hsin Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, 10617, Taiwan
| | - Cheng-Hsin Fu
- Department of Chemistry, National Taiwan Normal University, Taipei, 10617, Taiwan
| | - Cheng-Huang Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, 10617, Taiwan.
| | - Balaganesh Muthiah
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Wilfred V Espulgar
- Department of Physics, De La Salle University, 2401 Taft Avenue, Manila, Philippines.
| | - Gil Nonato Santos
- Department of Physics, De La Salle University, 2401 Taft Avenue, Manila, Philippines
| | - Derrick Ethelbhert Yu
- Department of Chemistry, De La Salle University, 2401 Taft Avenue, Manila, Philippines
| | - Toshio Kasai
- Department of Chemistry, Aerosol Science Research Center, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung, 80424, Taiwan.
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
35
|
Lin HHH, Lin AYC. Peracetic acid as an alternative disinfectant for micropollutants degradation and disinfection byproducts control in outdoor swimming pools. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132988. [PMID: 37979421 DOI: 10.1016/j.jhazmat.2023.132988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Peracetic acid (PAA) has garnered significant interest as a novel alternative to chlorine-based disinfectants for water treatment due to its broad-spectrum antimicrobial activity and its ability of reactive species generation when exposed to UV light. However, limited studies have investigated micropollutant degradation in the presence of PAA under solar irradiation. This is the first study to comprehensively investigate the photodegradation of caffeine (CAF) and 4-methylbenzylidene camphor (4-MBC) and the removal of disinfection byproducts (DBPs) in the presence of PAA under simulated solar light. The study revealed that the photodegradation of CAF and 4-MBC was significantly enhanced in the presence of PAA, following pseudo-first-order kinetics (R2 > 0.98) with reaction rates (kobs) of 0.220 and 0.111 h-1, respectively. In addition, substantial reduction of 21 DBPs, including trihalomethanes, haloacetic acids and haloacetonitriles, and no DBPs formation were observed in the presence of PAA and simulated solar irradiation. The proportion of coexisting H2O2 in the PAA solution considerably influenced target compounds degradation. CAF and 4-MBC were degraded faster under acidic conditions than under alkaline conditions. Hydroxyl radicals (·OH) dominated the degradation of CAF at different pH values, while direct photolysis and other reactive species played a major role in the degradation of 4-MBC.
Collapse
Affiliation(s)
- Hank Hui-Hsiang Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan
| | - Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan.
| |
Collapse
|
36
|
Zhang H, Chen L, Du P, Li F, Liu W. Unraveling Different Reaction Characteristics of Alkoxy Radicals in a Co(II)-Activated Peracetic Acid System Based on Dynamic Analysis of Electron Distribution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38315813 DOI: 10.1021/acs.est.3c07977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Peracetic acid (PAA)-based advanced oxidation processes (AOPs) have shown broad application prospects in organic wastewater treatment. Alkoxy radicals including CH3COO• and CH3COOO• are primary reactive species in PAA-AOP systems; however, their reaction mechanism on attacking organic pollutants still remains controversial. In this study, a Co(II)/PAA homogeneous AOP system at neutral pH was constructed to generate these two alkoxy radicals, and their different reaction mechanisms with a typical emerging contaminant (sulfacetamide) were explored. Dynamic electron distribution analysis was applied to deeply reveal the radical-meditated reaction mechanism based on molecular orbital analysis. Results indicate that hydrogen atom abstraction is the most favorable route for both CH3COO• and CH3COOO• attacking sulfacetamide. However, both radicals cannot react with sulfacetamide via the radical adduct formation route. Interestingly, the single-electron transfer reaction is only favorable for CH3COO• due to its lower ESUMO. In comparison, CH3COOO• can react with sulfacetamide via a similar radical self-sacrificing bimolecular nucleophilic substitution (SN2) route owing to its high ESOMO and easy escape of unpaired electrons from n orbitals of O atoms in the peroxy bond. These findings can significantly improve the knowledge of reactivity of CH3COO• and CH3COOO• on attacking organic pollutants at the molecular orbital level.
Collapse
Affiliation(s)
- Huixuan Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P.R. China
| | - Long Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P.R. China
| | - Penghui Du
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P.R. China
| | - Fan Li
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P.R. China
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, P.R. China
| | - Wen Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P.R. China
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, P.R. China
- International Joint Laboratory for Regional Pollution Control (Ministry of Education), Peking University, Beijing 100871, P.R. China
| |
Collapse
|
37
|
Shin M, Na G, Kang JW, Kang DH. Application of combined treatment of peracetic acid and ultraviolet-C for inactivating pathogens in water and on surface of apples. Int J Food Microbiol 2024; 411:110519. [PMID: 38101190 DOI: 10.1016/j.ijfoodmicro.2023.110519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
In this study, a combined treatment of peracetic acid (PAA) and 280 nm Ultraviolet-C (UVC) - Light emitting diode (LED) was applied for inactivating foodborne pathogens in water and apples. The combined treatment of PAA (50 ppm) and UVC-LED showed synergistic inactivation effects against Escherichia coli O157:H7 and Listeria monocytogenes in water. In mechanism analysis, PAA/UVC-LED treatment induced more lipid peroxidation, intracellular ROS, membrane, and DNA damage than a single treatment. Among them, membrane damage was the main synergistic inactivation mechanism of combination treatment. Cell rupture and shrink of both pathogens after PAA/UVC-LED treatment were also identified through scanning electron microscope (SEM) analysis. To examine inactivation of pathogens on the surface of apples by PAA, UVC-LED, and their combined treatment, a washing system (WS) was developed and used. Through applying the WS, PAA/UVC-LED treatment effectively inactivated two pathogens in washing solution and on the surface of apples below the detection limit (3.30 log CFU/2000 mL and 2.0 log CFU/apple) within 5 min. In addition, there was no significant difference in color or firmness of apples after PAA/UVC-LED treatment (p > 0.05).
Collapse
Affiliation(s)
- Minjung Shin
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Gyumi Na
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Jun-Won Kang
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| |
Collapse
|
38
|
Wu JH, Yang TH, Chen F, Yu HQ. Unexpected side reactions dominate the oxidative transformation of aromatic amines in the Co(II)/peracetic acid system. PNAS NEXUS 2024; 3:pgae040. [PMID: 38328784 PMCID: PMC10849606 DOI: 10.1093/pnasnexus/pgae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
Aromatic amines (AAs), ubiquitous in industrial applications, pose significant environmental hazards due to their resistance to conventional wastewater treatments. Peracetic acid (PAA)-based advanced oxidation processes (AOPs) have been proposed as effective strategies for addressing persistent AA contaminants. While the organic radicals generated in these systems are believed to be selective and highly oxidative, acetate residue complicates the evaluation of AA removal efficiency. In this work, we explored transformation pathways of AAs in a representative Co(II)-catalyzed PAA system, revealing five side reactions (i.e. nitrosation, nitration, coupling, dimerization, and acetylation) that yield 17 predominantly stable and toxic by-products. The dominant reactive species was demonstrated as Co-OOC(O)CH3, which hardly facilitated ring-opening reactions. Our findings highlight the potential risks associated with PAA-based AOPs for AA degradation and provide insights into selecting suitable catalytic systems aimed at efficient and by-product-free degradation of pollutants containing aromatic -NH2.
Collapse
Affiliation(s)
- Jing-Hang Wu
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Tian-Hao Yang
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Fei Chen
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
39
|
Yu SY, Shi Y, He CS, Dong YD, Sun S, Ning RY, Xiong ZK, Zhou P, Zhang H, Lai B. Accelerated removal of naproxen in the iron-based peracetic acid activation system by chloride ions: Enhancement of reactive oxidative species via the formation of iron-chloride complexes. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132760. [PMID: 37839375 DOI: 10.1016/j.jhazmat.2023.132760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Iron-based PAA activation process is a promising advanced oxidation process for water decontamination which depends on Fe(II) as the main reactive site for PAA activation, resulting in various reactive oxidative species (ROSs) generation. For practical application, the impact of water matrix chloride ion (Cl-) on ROSs production and contaminants removal should be carefully considered. In this study, it's found that the introduction of Cl- (0.1-10 mM) could significantly enhance the reaction rate of the rapid stage (kobs1) up to 2.15 times at the initial pH of 4.25 in the Fe(II)/PAA system. Further studies demonstrated that the improved removal capacity of NAP resulted from Cl- induced R-O• generation as indicated by the exposure dose of R-O• increasing from 7.74 × 10-11 M•s to 1.44 × 10-10 M•s, rather than chlorine-containing radicals' generation. DFT calculation results suggested that the formed Fe(II)-Cl- complexes could easily activate PAA to generate more ROSs for NAP removal. Moreover, Fe(II)/PAA treatment can alleviate the biological toxicity of pollutants via both the Escherichia coli test and toxicity assessment. The obtained new knowledge manifested that Cl- can boost ROSs generation and conversion in iron-based PAA systems, providing guidance for the efficient decontamination of chlorine-containing sewage with PAA-based AOPs.
Collapse
Affiliation(s)
- Si-Ying Yu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Shi
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Yu-Dan Dong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Si Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ru-Yan Ning
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhao-Kun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
40
|
Guo Y, Sui M, Liu S, Li T, Lv X, Yu M, Mo Y. Insight into cobalt substitution in LaFeO 3-based catalyst for enhanced activation of peracetic acid: Reactive species and catalytic mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132662. [PMID: 37801973 DOI: 10.1016/j.jhazmat.2023.132662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
In this study, a hollow sphere-like Co-modified LaFeO3 perovskite catalyst (LFC73O) was developed for peracetic acid (PAA) activation to degrade sulfamethoxazole (SMX). Results indicated that the constructed heterogeneous system achieved a 99.7% abatement of SMX within 30 min, exhibiting preferable degradation performance. Chemical quenching experiments, probe experiments, and EPR techniques were adopted to elucidate the involved mechanism. It was revealed that the superior synergistic effect of electron transfer and oxygen defects in the LFC73O/PAA system enhanced the oxidation ability of PAA. The Co atoms doped into LaFeO3 as the main active site with the original Fe atoms as an auxiliary site exhibited high activity to mediate PAA activation via the Co(III)/Co(II) cycle, generating carbon-centered radicals (RO·) including CH3C(O)O· and CH3C(O)OO·. The oxygen vacancies induced by cobalt substitution also served as reaction sites, facilitating the dissociation of PAA and production of ROS. Furthermore, the degradation pathways were postulated by DFT calculation and intermediates identification, demonstrating that the electron-rich sites of SMX molecules such as amino group, aromatic ring, and S-N bond, were more susceptible to oxidation by reactive species. This study offers a novel perspective on developing catalysts with the coexistence of multiple active units for PAA activation in environmental remediation.
Collapse
Affiliation(s)
- Yali Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Minghao Sui
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Shuan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Tian Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xinyuan Lv
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Miao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yaojun Mo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
41
|
Chen XJ, Bai CW, Sun YJ, Huang XT, Zhang BB, Zhang YS, Yang Q, Wu JH, Chen F. pH-Driven Efficacy of the Ferrate(VI)-Peracetic Acid System in Swift Sulfonamide Antibiotic Degradation: A Deep Dive into Active Species Evolution and Mechanistic Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20206-20218. [PMID: 37965750 DOI: 10.1021/acs.est.3c06370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
In the realm of wastewater treatment, the power of ferrate (Fe(VI)) and peracetic acid (PAA) as oxidants stands out. But their combined might is where the enhancement truly lies. Their collaborative effect intensifies, but the underlying mechanics, especially across varying pH levels and pollutant types, still lurks in obscurity. Our study delved into the sophisticated oxidation interplay among Fe(VI)-PAA, Fe(VI)-H2O2, and standalone Fe(VI) systems. Notably, at a pH of 9.0, boasting a kinetic constant of ∼0.127 M-1·s-1, the Fe(VI)-PAA system annihilated the pollutant sulfamethoxazole, outpacing its counterparts by a staggering 48.73-fold when compared to the Fe(VI)-H2O2 system and 105.58-fold when using Fe(VI) individually. The behavior of active species─such as the dynamic •OH radicals and high-valent iron species (Fe(IV)/Fe(V))─shifted with pH variations, leading to distinct degradation pathways. Our detailed exploration pinpoints the behaviors of certain species across pH levels from 3.0 to 9.0. In more acidic environments, the •OH species proved indispensable for the system's reactivity. Conversely, as the pH inclined, degradation was increasingly steered by high-valent iron species. This intensive probe demystifies Fe(VI) interactions, deepening our understanding of the capabilities of the Fe(VI)-centered system and guiding us toward cleaner water solutions. Importantly, pH value, often underappreciated, holds the reins in organic wastewater decontamination. Embracing this key player is vital as we strategize for more expansive systems in upcoming ventures.
Collapse
Affiliation(s)
- Xin-Jia Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Chang-Wei Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yi-Jiao Sun
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xin-Tong Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Bin-Bin Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yi-Shuo Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jing-Hang Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
42
|
Kong D, He L, Shen S, Li Y, He Y, Chen Z, Zhang D, Chen Z, Chen X, Wu L, Yang L. Unveiling the mechanisms of peracetic acid activation by iron-rich sludge biochar for sulfamethoxazole degradation with wide adaptability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119119. [PMID: 37804630 DOI: 10.1016/j.jenvman.2023.119119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 10/09/2023]
Abstract
Advanced oxidation processes (AOPs) based on peracetic acid (PAA) has been extensively concerned for the degradation of organic pollutants. In this study, metallic iron-modified sludge biochar (Fe-SBC) was employed to activate PAA for the removal of sulfamethoxazole (SMX). The characterization results indicated that FeO and Fe2O3 were successfully loaded on the surface of the sludge biochar (SBC). Fe-SBC/PAA system achieved 92% SMX removal after 30 min. The pseudo-first-order kinetic reaction constant of the Fe-SBC/PAA system was 7.34 × 10-2 min-1, which was 2.4 times higher than the SBC/PAA system. The degradation of SMX was enhanced with increasing the Fe-SBC dosage and PAA concentration. Apart from Cl-, NO3- and SO42- had a negligible influence on the degradation of SMX. Quenching experiments and electron paramagnetic resonance (EPR) techniques identified the existence of reactive species, of which CH3C(O)OO•, 1O2, and O2•- were dominant reactive species in Fe-SBC/PAA system. The effect of different water matrices on the removal of SMX was investigated. The removal of SMX in tap water and lake water were 79% and 69%, respectively. Four possible pathways for the decay of SMX were presented according to the identification of oxidation products. In addition, following the ecological structure-activity relationship model (ECOSAR) procedure and the germination experiments with lettuce seeds to predict the toxicity of the intermediates. The acute and chronic ecotoxicity of SMX solution was dramatically diminished by processing with Fe-SBC/PAA system. In general, this study offered a prospective strategy for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Dejin Kong
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Liuyang He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Shitai Shen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yulong Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yezi He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Desong Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhendong Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaoguo Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Li Wu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
43
|
Kim J, Wang J, Ashley DC, Sharma VK, Huang CH. Picolinic Acid-Mediated Catalysis of Mn(II) for Peracetic Acid Oxidation Processes: Formation of High-Valent Mn Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18929-18939. [PMID: 37224105 PMCID: PMC10690714 DOI: 10.1021/acs.est.3c00765] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
Metal-based advanced oxidation processes (AOPs) with peracetic acid (PAA) have been extensively studied to degrade micropollutants (MPs) in wastewater. Mn(II) is a commonly used homogeneous metal catalyst for oxidant activation, but it performs poorly with PAA. This study identifies that the biodegradable chelating ligand picolinic acid (PICA) can significantly mediate Mn(II) activation of PAA for accelerated MP degradation. Results show that, while Mn(II) alone has minimal reactivity toward PAA, the presence of PICA accelerates PAA loss by Mn(II). The PAA-Mn(II)-PICA system removes various MPs (methylene blue, bisphenol A, naproxen, sulfamethoxazole, carbamazepine, and trimethoprim) rapidly at neutral pH, achieving >60% removal within 10 min in clean and wastewater matrices. Coexistent H2O2 and acetic acid in PAA play a negligible role in rapid MP degradation. In-depth evaluation with scavengers and probe compounds (tert-butyl alcohol, methanol, methyl phenyl sulfoxide, and methyl phenyl sulfone) suggested that high-valent Mn species (Mn(V)) is a likely main reactive species leading to rapid MP degradation, whereas soluble Mn(III)-PICA and radicals (CH3C(O)O• and CH3C(O)OO•) are minor reactive species. This study broadens the mechanistic understanding of metal-based AOPs using PAA in combination with chelating agents and indicates the PAA-Mn(II)-PICA system as a novel AOP for wastewater treatment.
Collapse
Affiliation(s)
- Juhee Kim
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Junyue Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Daniel C. Ashley
- Department
of Chemistry and Biochemistry, Spelman College, Atlanta, Georgia 30314, United States
| | - Virender K. Sharma
- Department
of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
44
|
Cao L, Wang Z, Cheng Y, Chen Y, Liu Z, Yue S, Ma J, Xie P. Reinvestigation on the Mechanism for Algae Inactivation by the Ultraviolet/Peracetic Acid Process: Role of Reactive Species and Performance in Natural Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17629-17639. [PMID: 37906720 DOI: 10.1021/acs.est.3c05694] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
This study provided an in-depth understanding of enhanced algae inactivation by combining ultraviolet and peracetic acid (UV/PAA) and selecting Microcystis aeruginosa as the target algae species. The electron paramagnetic resonance (EPR) tests and scavenging experiments provided direct evidence on the formed reactive species (RSs) and indicated the dominant role of RSs including singlet oxygen (1O2) and hydroxyl (HO•) and organic (RO•) radicals in algae inactivation. Based on the algae inactivation kinetic model and the determined steady-state concentration of RSs, the contribution of RSs was quantitatively assessed with the second-order rate constants for the inactivation of algae by HO•, RO•, and 1O2 of 2.67 × 109, 3.44 × 1010, and 1.72 × 109 M-1 s-1, respectively. Afterward, the coexisting bi/carbonate, acting as a shuttle, that promotes the transformation from HO• to RO• was evidenced to account for the better performance of the UV/PAA system in algae inactivation under the natural water background. Subsequently, along with the evaluation of the UV/PAA preoxidation to modify coagulation-sedimentation, the possible application of the UV/PAA process for algae removal was advanced.
Collapse
Affiliation(s)
- Lisan Cao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujie Cheng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Siyang Yue
- School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Pengchao Xie
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
45
|
Jiang N, Zhang A, Miruka AC, Wang L, Li X, Xue G, Liu Y. Synergistic effects and mechanisms of plasma coupled with peracetic acid in enhancing short-chain fatty acid production from sludge: Motivation of reactive species and metabolic tuning of microbial communities. BIORESOURCE TECHNOLOGY 2023; 387:129618. [PMID: 37544535 DOI: 10.1016/j.biortech.2023.129618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Suitable waste activated sludge (WAS) pretreatments that boost short-chain fatty acid (SCFA) production from anaerobic fermentation are essential for carbon emission reduction and sludge resource utilization. This study established an efficient WAS pretreatment process combining atmospheric pressure plasma jet (APPJ) with peracetic acid (PAA). The maximum SCFA production (6.5-fold that of the control) largely increased under the optimal conditions (PAA dosage = 25 mg/g VSS (volatile suspended solids), energy consumption = 20.9 kWh/m3). APPJ/PAA pretreatment enhanced the production of multiple reactive species (including OH, CH3C(O)O, 1O2, ONOO-, O2-, and eaq-) and strengthened the effects of H2O2, heat, and light. This synergistically solubilized WAS and released organic substrates for SCFA-producing microbes. In addition, the enrichment of SCFA-producing bacteria and the decrease in SCFA-consuming bacteria favored SCFA accumulation. The key genes encoding for the main substrate metabolism and SCFA production in the metabolic pathway of fermentation were also enhanced.
Collapse
Affiliation(s)
- Nan Jiang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; National Circular Economy Engineering Laboratory, Shanghai 201620, China.
| | - Andere Clement Miruka
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; School of Chemistry and Material Science, Technical University of Kenya, Nairobi 52428-00200, Kenya
| | - Lin Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; National Circular Economy Engineering Laboratory, Shanghai 201620, China
| |
Collapse
|
46
|
Li S, Liu Y, Zheng H, Niu J, Leong YK, Lee DJ, Chang JS. Biochar loaded with CoFe 2O 4 enhances the formation of high-valent Fe(IV) and Co(IV) and oxygen vacancy in the peracetic acid activation system for enhanced antibiotic degradation. BIORESOURCE TECHNOLOGY 2023; 387:129536. [PMID: 37544549 DOI: 10.1016/j.biortech.2023.129536] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
Corn straw and sludge-derived biochar composite (BC) loaded with CoFe2O4 was successfully prepared to activate peracetic acid (PAA) for efficient degradation of tetracycline hydrochloride (TCH). Within 60 s, 96 % TCH removal efficiency was achieved through a non-free radical degradation pathway, primarily driven by singlet oxygen (1O2). The mechanism involves the electron-rich groups on the biochar surface, which facilitate the cleavage of the PAA OO bond to generate •O2-/1O2 and provide electrons to induce the formation of high-valent Fe(IV) and Co(IV). The oxygen vacancies on the surface of the CoFe2O4-loaded biochar composite (CFB-2) contribute partially to 1O2 production through their transformation into a metastable intermediate with dissolved oxygen. Moreover, elevated temperatures further enhance PAA activation by CFB-2, leading to increased reactive oxygen species (ROS) production through PAA decomposition, thereby promoting TCH removal. This study offers new insights into the catalysis of metal-loaded biochar for efficient TCH degradation via non-free radical generation.
Collapse
Affiliation(s)
- Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yingnan Liu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
47
|
Wu J, Zou J, Lin J, Li S, Chen S, Liao X, Yang J, Yuan B, Ma J. Hydroxylamine enhanced the degradation of diclofenac in Cu(II)/peracetic acid system: Formation and contributions of CH 3C(O)O •, CH 3C(O)OO •, Cu(III) and •OH. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132461. [PMID: 37677972 DOI: 10.1016/j.jhazmat.2023.132461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/13/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
The slow reduction of Cu(II) into Cu(I) through peracetic acid (PAA) heavily limited the widespread application of Cu(II)/PAA system. Herein, hydroxylamine (HA) was proposed to boost the oxidative capacity of Cu(II)/PAA system by facilitating the redox cycle of Cu(I)/Cu(II). HA/Cu(II)/PAA system was quite rapid in the removal of diclofenac within a broad pH range of 4.5-9.5, with a 10-fold increase in the removal rate of diclofenac compared with the Cu(II)/PAA system at an optimal initial pH of 8.5. Results of UV-Vis spectra, electron paramagnetic resonance, and alcohol quenching experiments demonstrated that CH3C(O)O•, CH3C(O)OO•, Cu(III), and •OH were involved in HA/Cu(II)/PAA system, while CH3C(O)OO• was verified as the predominant reactive species of diclofenac elimination. Different from previously reported Cu-catalyzed PAA processes, CH3C(O)OO• mainly generated from the reaction of PAA with Cu(III) rather than CH3C(O)O• and •OH. Four possible elimination pathways for diclofenac were proposed, and the acute toxicity of treated diclofenac solution with HA/Cu(II)/PAA system significantly decreased. Moreover, HA/Cu(II)/PAA system possessed a strong anti-interference ability towards the commonly existent water matrix. This research proposed an effective strategy to boost the oxidative capacity of Cu(II)/PAA system and might promote its potential application, especially in copper-contained wastewater.
Collapse
Affiliation(s)
- Jianying Wu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Jing Zou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China.
| | - Jinbin Lin
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, School of Environment, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Sheng Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Siying Chen
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Xiaobin Liao
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Jingxin Yang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, PR China
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| |
Collapse
|
48
|
Liu Y, Li D, Chen M, Sun Q, Zhang Y, Zhou J, Wang T. Radical adducts formation mechanism of CH 3CO 2∙ and CH 3CO 3∙ realized decomposition of chitosan by plasma catalyzed peracetic acid. Carbohydr Polym 2023; 318:121121. [PMID: 37479454 DOI: 10.1016/j.carbpol.2023.121121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 07/23/2023]
Abstract
High-molecular-weight chitosan has limited applications due to unsatisfactory solubility and hydrophilicity. Discharge plasma coupled with peracetic acid (PAA) oxidation ("plasma+PAA") realized fast depolymerization of high-molecular-weight chitosan in this study. The molecular weight of chitosan rapidly declined to 81.1 kDa from initial 682.5 kDa within 60 s of "plasma+PAA" treatment, and its reaction rate constant was 12-fold higher than single plasma oxidation. Compared with 1O2, ∙CH3, CH3O2·, and O2∙-, CH3CO2∙ and CH3CO3∙ played decisive roles in the chitosan depolymerization in the plasma+PAA system through mechanisms of radical adduct formation. The attacks of CH3CO2∙ and CH3CO3∙ destroyed the β-(1,4) glycosidic bonds and hydrogen bonds of chitosan, leading to generation of low-molecular-weight chitosan; the main chain structure of chitosan was not changed during the depolymerization process. Furthermore, the generated low-molecular-weight chitosan exhibited greater antioxidant activities than original chitosan. Overall, this study revealed the radical adduct formation mechanisms of CH3CO2∙ and CH3CO3∙ for chitosan decomposition, providing an alternative for fast depolymerization of high-molecular-weight chitosan.
Collapse
Affiliation(s)
- Yue Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Dongrui Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Mengna Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qingyuan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Ying Zhang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
49
|
Zhao H, Ren Y, Liu C, Li L, Li N, Lai B, Li J. In-depth insights into Fe(III)-doped g-C 3N 4 activated peracetic acid: Intrinsic reactive species, catalytic mechanism and environmental application. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132117. [PMID: 37531769 DOI: 10.1016/j.jhazmat.2023.132117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
In this study, we demonstrate that Fe(III)-doped g-C3N4 can efficiently activate peracetic acid (PAA) to degrade electron-rich pollutants (e.g., sulfamethoxazole, SMX) over a wide pH range (3-7). Almost ∼100% high-valent iron-oxo species (Fe(V)) was generated and acted as the dominant reactive species responsible for the micropollutants oxidation based on the analysis result of quenching experiments, 18O isotope-labeling examination and methyl phenyl sulfoxide (PMSO) probe method. Electrochemical testing (e.g., amperometric i-t and linear sweep voltammetry (LSV)) and density functional theory (DFT) calculations illustrated that the main active site Fe atom and PAA underwent electron transfer to form Fe(V) for attacking SMX. Linear free energy relationship (LFER) between the pseudo-first-order rates of different substituted phenols (SPs) and the Hammett constant σ+ depicted the electrophilic oxidation properties. The selective oxidation of Fe(V) endows the established system remarkable anti-interference capacity against water matrices, while the Fe(V) lead to the formation of iodinated disinfection by-products (I-DBPs) in the presence of I-. Fe(III)-doped g-C3N4/PAA system showed excellent degradation efficiency of aquaculture antibiotics. This study enriches the knowledge and research of high-valent iron-oxo species and provides a novel perspective for the activation of PAA via heterogeneous iron-based catalysts and practical environmental applications.
Collapse
Affiliation(s)
- Hailing Zhao
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Chao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Longguo Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Naiwen Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jun Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
50
|
Liu B, Jun Y, Zhao C, Zhou C, Zhu T, Shao S. Using Fe(II)/Fe(VI) activated peracetic acid as pretreatment of ultrafiltration for secondary effluent treatment: Water quality improvement and membrane fouling mitigation. WATER RESEARCH 2023; 244:120533. [PMID: 37659184 DOI: 10.1016/j.watres.2023.120533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Ultrafiltration (UF) is a technology commonly used to treat secondary effluents in wastewater reuse; however, it faces two main challenges: 1) membrane fouling and 2) inadequate nitrogen (N), phosphorus (P), and organic micropollutants (OMPs) removal. To address these two issues, in this study, we applied peracetic acid (PAA), Fe(VI)/PAA, and Fe(II)/PAA as UF pretreatments. The results showed that the most effective pretreatment was Fe(II)/200 μM PAA, which reduced the total fouling resistance by 90.2%. In comparison, the reduction was only 29.7% with 200 μM PAA alone and 64.3% with Fe(VI)/200 μM PAA. Fe(II)/200 μM PAA could effectively remove fluorescent components and hydrophobic organics in effluent organic matter (EfOM), and enhance the repulsive force between foulants and membrane (according to XDLVO analysis), and consequently, mitigate pore blocking and delay cake layer formation. Regarding pollutant removal, Fe(II)/200 μM PAA effectively degraded OMPs (>85%) and improved P removal by 58.2% via in-situ Fe(Ⅲ) co-precipitation. The quencher and probe experiments indicated that FeIVO2+, •OH, and CH3C(O)OO•/CH3C(O)O• all played important roles in micropollutant degradation with Fe(II)/PAA. Interestingly, PAA oxidation produced highly biodegradable products such as acetic acid, which significantly elevated the BOD5 level and increased the BOD5/total nitrogen (BOD5/TN) ratio from 0.8 to 8.6, benefiting N removal with subsequent denitrification. Overall, the Fe(II)/PAA process exhibits great potential as a UF pretreatment to control membrane fouling and improve water quality during secondary effluent treatment.
Collapse
Affiliation(s)
- Bin Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Yin Jun
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Changrong Zhao
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Chu Zhou
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Tingting Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China.
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|