1
|
Hu G, Xu HD, Fang J. Sulfur-based fluorescent probes for biological analysis: A review. Talanta 2024; 279:126515. [PMID: 39024854 DOI: 10.1016/j.talanta.2024.126515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
The widespread adoption of small-molecule fluorescence detection methodologies in scientific research and industrial contexts can be ascribed to their inherent merits, including elevated sensitivity, exceptional selectivity, real-time detection capabilities, and non-destructive characteristics. In recent years, there has been a growing focus on small-molecule fluorescent probes engineered with sulfur elements, aiming to detect a diverse array of biologically active species. This review presents a comprehensive survey of sulfur-based fluorescent probes published from 2017 to 2023. The diverse repertoire of recognition sites, including but not limited to N, N-dimethylthiocarbamyl, disulfides, thioether, sulfonyls and sulfoxides, thiourea, thioester, thioacetal and thioketal, sulfhydryl, phenothiazine, thioamide, and others, inherent in these sulfur-based probes markedly amplifies their capacity for detecting a broad spectrum of analytes, such as metal ions, reactive oxygen species, reactive sulfur species, reactive nitrogen species, proteins, and beyond. Owing to the individual disparities in the molecular structures of the probes, analogous recognition units may be employed to discern diverse substrates. Subsequent to this classification, the review provides a concise summary and introduction to the design and biological applications of these probe molecules. Lastly, drawing upon a synthesis of published works, the review engages in a discussion regarding the merits and drawbacks of these fluorescent probes, offering guidance for future endeavors.
Collapse
Affiliation(s)
- Guodong Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
2
|
Jiao SY, Li GP, Zhu KH, Jia X, Zhang HQ, Zhang LX, Liu YG. A novel reaction-based fluorescent probe with a nanomolar sensitivity for detection of Hg(II) and its multiple application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125203. [PMID: 39342722 DOI: 10.1016/j.saa.2024.125203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
An easily synthesized reaction-based probe for the fluorescence detection of Hg2+ ions using was reported. The designed probe exhibited "turn-on" fluorescence response towards Hg2+ ions via deprotection of the thiocarbonate-protecting group to alcohol in the HEPES/EtOH=8:2 (v/v, 5 mM, pH 7.4). The investigation results of probe Bzp-1 properties for Hg2+ detection indicated that probe Bzp-1 has satisfactory high selectivity and sensitivity. The detection limit of Bzp-1 for Hg2+ was found to be 4.2 nM. The recognition mechanism of Bzp-1 for Hg2+ was confirmed by ESI-MS. Moreover, the probe Bzp-1 has been successfully used to rapidly detect trace amounts of hazardous Hg2+ ions in real samples such as tap water, seafood and soil with good recoveries and less the relative standard deviations. Moreover, the Bzp-1 can also be used for fluorescence imagining of Hg2+ in living cells.
Collapse
Affiliation(s)
- Shu-Yan Jiao
- School of Materials & Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, PR China.
| | - Gong-Pei Li
- School of Materials & Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, PR China
| | - Ke-Hua Zhu
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450007, PR China
| | - Xu Jia
- School of Materials & Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, PR China
| | - Hui-Qin Zhang
- School of Materials & Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, PR China
| | - Liu-Xue Zhang
- School of Materials & Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, PR China
| | - Yong-Gang Liu
- School of Materials & Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, PR China
| |
Collapse
|
3
|
Zhang Y, Ge H, Sun L, Cheng Y, Xu Z, Gao W, Wang B, Rong X, Qiu X, Li J, Fang M, Shang J. Novel design of near-infrared fluorescent sensors for the detection of Hg 2+ in living cells and real water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123258. [PMID: 37619473 DOI: 10.1016/j.saa.2023.123258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Mercury sensing and imaging in the bio-system is essential for comprehending its toxicity and therapies. Based on the merocyanine scaffold, we designed and synthesized two novel near-infrared (NIR) fluorescent probes for detecting Hg2+. The release of chloro-substituted merocyanine structure on the probe CyHg-Cl enables fluorescence enhancement rapidly by introducing Hg2+. In addition, the probe CyHg-Cl exhibits NIR emission and a low detection limit of 0.59 µM. Finally, the probe CyHg-Cl was used to detect Hg2+ in live cells and real water samples.
Collapse
Affiliation(s)
- Yibin Zhang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China; College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Hongjing Ge
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Lin Sun
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Yueting Cheng
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Zihan Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Wei Gao
- Jiangxi Academy of Forestry, Nanchang, China.
| | - Boling Wang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Xiaoqian Rong
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Xianyu Qiu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China.
| | - Mingxi Fang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China.
| | - Jinting Shang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|
4
|
Shi Y, Li B, Wang Z, Zhang Y, Zhang Z, Zhang X, Li F. Highly selective fluorescent probe for detecting mercury ions in water. RSC Adv 2023; 13:19091-19095. [PMID: 37362334 PMCID: PMC10288340 DOI: 10.1039/d3ra02791k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Mercury ion (Hg2+) is a well-known toxic heavy metal. It has become one of the most significant environmental pollutants in the world because of its serious physiological toxicity, persistence, easy migration, and high bioconcentration. Thus, the development of methods for monitoring Hg2+ is indispensable. Herein, we have designed and synthesized a new fluorescent probe, TPH, for the detection of Hg2+ in the water environment. The TPH probe could quantitatively detect Hg2+ between 0 and 5 μM (LOD = 16 nM), with a linear range of 0-2.5 μM. In addition, the TPH probe was used to monitor Hg2+ in water samples successfully. Thus, this probe is suitable for monitoring Hg2+ in the actual water environment.
Collapse
Affiliation(s)
- Yanfeng Shi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan China
| | - Bingxu Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan China
| | - Zhifeng Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan China
| | - Yanhao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan China
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan China
| | - Xu Zhang
- School of Architecture and Urban Planning, Shandong Jianzhu University Jinan China +86 156 6830 3582
| | - Fulin Li
- Water Resources Research Institute of Shandong Province Jinan China
| |
Collapse
|
5
|
Li H, Li J, Pan Z, Zheng T, Song Y, Zhang J, Xiao Z. Highly selective and sensitive detection of Hg 2+ by a novel fluorescent probe with dual recognition sites. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122379. [PMID: 36682255 DOI: 10.1016/j.saa.2023.122379] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
A novel thionocarbonate-coumarin-thiourea triad-based probe with dual recognition sites for sensing mercury (Hg2+) ion was developed. The synthesized probe possessed both fluorogenic ("off-on") and chromogenic (from colorless to blackish brown) sensing performance towards Hg2+ ions. The fluorescence intensity was increased by 70 fold after the addition of Hg2+. As expected, the probe exhibited excellent selectivity and sensitivity for Hg2+ compared to other common competitive metal ions. The fluorescence intensity of the probe improved linearly with the increase of the concentration of Hg2+ (0-40 μM). Also, the minimum limit of detection (LOD) of the synthesized probe was 0.12 μM. Considering the importance of test feasibility in the harsh environment, the developed probe was applicable for detecting Hg2+ ions over a broad working pH range of 3-11. It is reliable and qualifies for the quantitative determination of Hg2+ concentrations in actual water samples. Finally, the probe achieved the bioimaging performance of Hg2+ in living cells and plants with good biocompatibility.
Collapse
Affiliation(s)
- Hongqi Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China.
| | - Jiayin Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Zhixiu Pan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Tao Zheng
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
| | - Yanxi Song
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Jian Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Zhongwen Xiao
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| |
Collapse
|
6
|
Zhang Y, Yan Q, Cheng Y, Wang B, Rong X, Kuang Y, Qiu X, Sun L, Zhou Y. A Novel “Off–On” NIR Fluorescent Probe for Detecting Hg2+ Based on Dicyanoisophorone and Its Application in Bio-imaging and Real Water Samples. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Jiang L, Zheng T, Xu Z, Li J, Li H, Tang J, Liu S, Wang Y. New NIR spectroscopic probe with a large Stokes shift for Hg 2+ and Ag + detection and living cells imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120916. [PMID: 35085998 DOI: 10.1016/j.saa.2022.120916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A new near-infrared (NIR) probe based on a coumarinyl ligand (CL) was designed and synthesized. The probe CL can be used for simultaneous fluorescent turn-on and colorimetric detection of Hg2+ and Ag+ in ethanol/water medium. Colorless solution of probe CL changed to light yellow or dark yellow after addition of Hg2+ or Ag+ ions. Meanwhile the maximum absorption band shifted from 379 nm to 404 nm and the intensity increased enormously (for Hg2+) or moderately (for Ag+). Probe CL displayed an extraordinarily large Stokes shift of 316 nm and addition of Hg2+ or Ag+ to probe CL induced enhancement in the intensity of fluorescence emission at 695 nm by 15 or 8 fold. The detection limit of CL for Hg2+ and Ag+ ions is 0.83 and 8.8 μM, respectively. The applicable pH for sensing Hg2+ by probe CL is in a broad range of 2-12. Application of probe CL for in vitro U87MG cell imaging to detect Hg2+ ions was confirmed.
Collapse
Affiliation(s)
- Lin Jiang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Tao Zheng
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.
| | - Zhenxiang Xu
- Penglai Xinguang Pigment Chemical Co, Ltd, Penglai 265601, China
| | - Jiayin Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Hongqi Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.
| | - Junjie Tang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Shicheng Liu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Yiyang Wang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
8
|
Cui WL, Zhang ZH, Wang L, Qu J, Wang JY. A novel and stable fluorescent probe for tracking Hg 2+ with large Stokes shift and its application in cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120516. [PMID: 34739895 DOI: 10.1016/j.saa.2021.120516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Giving the fact that mercury ions (Hg2+) is highly toxic, migratory and bioaccumulative and even very small amounts of mercury can cause serious damage to health, resulting in many diseases, such as abdominal pain, renal failure, nervous system damage. The content of mercury in drinking water quality standard of our country has been strictly limited. Therefore, it is of good research interest to develop a stable fluorescent probe capable of detecting the presence of mercury in biological cells. In this study, a novel fluorescent probe based on isophoronitriles scaffold, DNC-Hg, was designed and synthesized for monitoring mercury ion in living HeLa cells. The good properties of the probe may be attributed to the unique strong electron-absorbing group in the structural design, the good conjugation effect, and the mature Hg2+ recognition site. The probe exhibited good selectivity and stability, large Stokes shift(174 nm) and low cytotoxicity. Furthermore, this stable probe DNC-Hg could be used for cellular imaging.
Collapse
Affiliation(s)
- Wei-Long Cui
- School of Light Industry and Engineering, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zhi-Hao Zhang
- School of Light Industry and Engineering, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Lin Wang
- School of Light Industry and Engineering, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jianbo Qu
- School of Light Industry and Engineering, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jian-Yong Wang
- School of Light Industry and Engineering, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
9
|
Liu S, Zhang X, Yan C, Zhou P, Zhang L, Li Q, Zhang R, Chen L, Zhang L. A small molecule fluorescent probe for mercury ion analysis in broad low pH range: Spectral, optical mechanism and application studies. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127701. [PMID: 34775312 DOI: 10.1016/j.jhazmat.2021.127701] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Development of new fluorescent probes for mercury ion analysis in environmental or living organism is undergoing quick growth due to its detrimental toxicity to environmental safety, ecological security, and human being. However, in most cases, the industrial waste water is acidic whereas it remains a great challenge to real-time monitor mercury ion directly at low pH using small molecule fluorescence probe. In this study, we have successfully designed and synthesized the Naph (1, 8-Naphthalimide derivative) -based small molecule probe termed as Naph-NSS capable of monitoring mercury ion in a broad range at low pH (from 2.0 to 7.0). The solid spectral studies demonstrated the high sensitivity and selectivity of the probe towards mercury ion among various species. After binding with Hg2+, the fluorescence of Naph-NSS greatly enhanced, and the mechanism of which was investigated by DFT studies. The probe was able to be loaded on paper strip for instant and fast detection of mercury ions. In addition, the probe is also suitable for detection of mercury ion in environmental samples, living cells and in vivo.
Collapse
Affiliation(s)
- Shudi Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China.
| | - Xia Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Chaoxian Yan
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Panpan Zhou
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Li Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qingzhong Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Renjie Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| | - Liangwei Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
10
|
Jiang D, Zhang X, Chen Y, Zhang P, Gong P, Cai L, Wang Y. An α-naphtholphthalein-derived colorimetric fluorescent chemoprobe for the portable and visualized monitoring of Hg 2+ by the hydrolysis mechanism. NEW J CHEM 2022. [DOI: 10.1039/d2nj01051h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An ɑ-naphtholphthalein-derived colorimetric fluorescent chemoprobe was elaborately designed for the portable and visual monitoring of Hg2+ in environmental and biological samples.
Collapse
Affiliation(s)
- Daoyong Jiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuwen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yizhao Chen
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Wang
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
11
|
Zhu H, Liu C, Su M, Rong X, Zhang Y, Wang X, Wang K, Li X, Yu Y, Zhang X, Zhu B. Recent advances in 4-hydroxy-1,8-naphthalimide-based small-molecule fluorescent probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214153] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Yang X, Ding Y, Li Y, Yan M, Cui Y, Sun G. Dual-channel colorimetric fluorescent probe for determination of hydrazine and mercury ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119868. [PMID: 33940570 DOI: 10.1016/j.saa.2021.119868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/04/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Hydrazine and mercury (Hg) poisoning represented a serious hazard to human health. So, developing method to detect and recognize them is highly desirable. Here, we prepared a multifunctional colorimetric and fluorescent probe (PI-Rh) consisting of a phenanthroimidazole (PI) dye conjugated with a Rhodamine (Rh) group for the effective recognition of hydrazine and Hg2+, induvidually and collectively, with different colorimetric and fluorescence outputs. Probe PI-Rh displays low detection limits measured to be 0.0632 μM (~2 ppb) and 0.0101 μM (~2 ppb) respectively for hydrazine and Hg2+ with high selectivity and excellent sensitivity. Moreover, the experimental results indicated that the superiority of this probe lied in its wide applications, for example, successful response in real water, and soil analysis. Interestingly, an visual, rapid, and real-time detection of gaseous hydrazine can be realized with 0.2793 μM detection limit using the facile PI-Rh-impregnated test paper.
Collapse
Affiliation(s)
- Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, China.
| | - Yiming Ding
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Yexin Li
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Yu Cui
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Guoxin Sun
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| |
Collapse
|
13
|
Sheng W, Wang K, Gao N, Wang L, Wang R, Zhang X, Chen X, Zhang Y, Zhu B, Liu K. A novel p-dimethylaminophenylether-based fluorescent probe for the detection of native ONOO - in cells and zebrafish. Analyst 2021; 146:5264-5270. [PMID: 34337624 DOI: 10.1039/d1an00608h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peroxynitrite (ONOO-) is a highly reactive substance, and plays an essential part in maintaining cellular homeostasis. It is crucial to monitor the ONOO- level in cells in normal and abnormal states. We introduced a p-dimethylaminophenylether-based fluorescent probe PDPE-PN, which could be synthesized readily. The new probe had prominent sensitivity and specificity, and a fast response towards ONOO-. The spectral performance of probe PDPE-PN was outstanding and the limit of detection was 69 nM. Probe PDPE-PN with low toxicity was applied to detect endogenous/exogenous ONOO- in RAW 264.7 macrophages and zebrafish. Importantly, successful application of the new receptor opens up new ideas for the design of ONOO- probes.
Collapse
Affiliation(s)
- Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang S, Huang Y, Guan X. Fluorescent Probes for Live Cell Thiol Detection. Molecules 2021; 26:3575. [PMID: 34208153 PMCID: PMC8230801 DOI: 10.3390/molecules26123575] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
Thiols play vital and irreplaceable roles in the biological system. Abnormality of thiol levels has been linked with various diseases and biological disorders. Thiols are known to distribute unevenly and change dynamically in the biological system. Methods that can determine thiols' concentration and distribution in live cells are in high demand. In the last two decades, fluorescent probes have emerged as a powerful tool for achieving that goal for the simplicity, high sensitivity, and capability of visualizing the analytes in live cells in a non-invasive way. They also enable the determination of intracellular distribution and dynamitic movement of thiols in the intact native environments. This review focuses on some of the major strategies/mechanisms being used for detecting GSH, Cys/Hcy, and other thiols in live cells via fluorescent probes, and how they are applied at the cellular and subcellular levels. The sensing mechanisms (for GSH and Cys/Hcy) and bio-applications of the probes are illustrated followed by a summary of probes for selectively detecting cellular and subcellular thiols.
Collapse
Affiliation(s)
| | | | - Xiangming Guan
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Box 2202C, Brookings, SD 57007, USA; (S.W.); (Y.H.)
| |
Collapse
|
15
|
Jiang Y, Li H, Chen R, Liu W, Chen C, Li Z, Liu W. Novel fluorescent probe based on dicoumarin for rapid on-site detection of Hg 2+ in loess. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119438. [PMID: 33461142 DOI: 10.1016/j.saa.2021.119438] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
It is momentous to exploit rapid, specific and on-site detection methods for mercury ion (Hg2+) in loess, as the severe toxicity of Hg2+ and the fragile ecological environment of Loess Plateau. In this paper, a novel fluorescent probe DC-Hg (Dicoumarin-Hg) was synthesized by 3-hydroxybiscoumarin and phenyl thiochloroformate at room temperature. DC-Hg could exclusively combine with Hg2+ to 'turn-on' yellow fluorescence at 530 nm among various other metal ions. The relationship between the remarkable increase in intensity and concentration of Hg2+ was associated with photoinduced electron transfer (PET), which was founded by Job's plot and 1H NMR. The limit detection of DC-Hg showed to 85.25 nM in aqueous medium, which could be applied to varying situations. For the loess samples, they were only extracted by hand-shake and filtration for quickly complete the treatment operation on site, and the results proved that DC-Hg could satisfactorily detect the Hg2+ in mercury pollution areas.
Collapse
Affiliation(s)
- Youhong Jiang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Huiwen Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Ruofei Chen
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Wei Liu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Chunyang Chen
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Zhongguo Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Weisheng Liu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
16
|
Chen SY, Li Z, Li K, Yu XQ. Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213691] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Nan X, Huyan Y, Li H, Sun S, Xu Y. Reaction-based fluorescent probes for Hg2+, Cu2+ and Fe3+/Fe2+. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213580] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Wu X, Li Y, Yang S, Tian H, Sun B. A dual-site fluorescent probe for sensitive detection of mercury(II). Microchem J 2020. [DOI: 10.1016/j.microc.2020.105024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
A review on nanostructure-based mercury (II) detection and monitoring focusing on aptamer and oligonucleotide biosensors. Talanta 2020; 220:121437. [PMID: 32928439 DOI: 10.1016/j.talanta.2020.121437] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/11/2020] [Accepted: 07/19/2020] [Indexed: 02/08/2023]
Abstract
Heavy metal ion pollution is a severe problem in environmental protection and especially in human health due to their bioaccumulation in organisms. Mercury (II) (Hg2+), even at low concentrations, can lead to DNA damage and give permanent harm to the central nervous system by easily passing through biological membranes. Therefore, sensitive detection and monitoring of Hg2+ is of particular interest with significant specificity. In this review, aptamer-based strategies in combination with nanostructures as well as several other strategies to solve addressed problems in sensor development for Hg2+ are discussed in detail. In particular, the analytical performance of different aptamer and oligonucleotide-based strategies using different signal improvement approaches based on nanoparticles were compared within each strategy and in between. Although quite a number of the suggested methodologies analyzed in this review fulfills the standard requirements, further development is still needed on real sample analysis and analytical performance parameters.
Collapse
|
20
|
Chen S, Zhang S, A R, Han Y. A new rhodamine probe with large stokes shift for Hg2+ detection and its application in real sample analysis. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Wu X, Duan N, Yang S, Tian H, Sun B. Synthesis and Application of a Naphthol‐Based Fluorescent Probe for Mercury(II) Detection. ChemistrySelect 2020. [DOI: 10.1002/slct.202000076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaoming Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 PR China
| | - Ning Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 PR China
| | - Shaoxiang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 PR China
| | - Hongyu Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 PR China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 PR China
| |
Collapse
|
22
|
A dual-mode fluorescent probe for the separate detection of mercury(II) and hydrogen sulfide. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112209] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Yang B, Huang J, Bao C, Zhang S, Han Y. A highly sensitive colorimetric and ratiometric fluorescent probe based on 3-hydroxyphthalimide for detection of Hg2+ in aqueous solution and its application in real sample analysis. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Wu X, Li Y, Yang S, Tian H, Sun B. Discriminative detection of mercury (II) and hydrazine using a dual‐function fluorescent probe. LUMINESCENCE 2020; 35:754-762. [DOI: 10.1002/bio.3781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/02/2020] [Accepted: 01/12/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaoming Wu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Key Laboratory of Flavour ChemistryBeijing Technology and Business University Beijing China
| | - Yanan Li
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Key Laboratory of Flavour ChemistryBeijing Technology and Business University Beijing China
| | - Shaoxiang Yang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Key Laboratory of Flavour ChemistryBeijing Technology and Business University Beijing China
| | - Hongyu Tian
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Key Laboratory of Flavour ChemistryBeijing Technology and Business University Beijing China
| | - Baoguo Sun
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Key Laboratory of Flavour ChemistryBeijing Technology and Business University Beijing China
| |
Collapse
|
25
|
Picard-Lafond A, Larivière D, Boudreau D. Revealing the Hydrolysis Mechanism of a Hg 2+-Reactive Fluorescein Probe: Novel Insights on Thionocarbonated Dyes. ACS OMEGA 2020; 5:701-711. [PMID: 31956820 PMCID: PMC6964290 DOI: 10.1021/acsomega.9b03333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
As one of the most toxic metal pollutants, mercury is the subject of extensive research to improve current detection strategies, notably to develop sensitive, selective, fast, and affordable Hg2+-responsive fluorescent probes. Comprehending the sensing mechanism of these molecules is a crucial step in their design and optimization of their performance. Herein, a new fluorescein-based thionocarbonate-appended Hg2+-sensitive probe was synthesized to study the hydrolysis reactions involved in the sensing process. Autohydrolysis was revealed as a significant component of the signal generation mechanism, occurring concurrently with Hg2+-catalyzed hydrolysis. This knowledge was used to investigate the effects of key experimental conditions (pH, temperature, chloride ions) on sensing efficiency. Overall, the chemical and physical properties of this new thionocarbonated dye and the insights into its sensing mechanism will be instrumental in designing reliable and effective portable sensing strategies for mercury and other heavy metals.
Collapse
Affiliation(s)
- Audrey Picard-Lafond
- Département
de chimie and Centre d’optique, photonique et laser
(COPL), Université Laval, Québec, Quebec G1V 0A6, Canada
| | - Dominic Larivière
- Département
de chimie and Centre d’optique, photonique et laser
(COPL), Université Laval, Québec, Quebec G1V 0A6, Canada
| | - Denis Boudreau
- Département
de chimie and Centre d’optique, photonique et laser
(COPL), Université Laval, Québec, Quebec G1V 0A6, Canada
| |
Collapse
|
26
|
Xu J, Liu Y, Li MJ. The functionalized ruthenium(II) polypyridine complexes for the highly selective sensing of mercury ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:141-146. [PMID: 31030042 DOI: 10.1016/j.saa.2019.04.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/01/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
A series of new ruthenium(II) polypyridine complexes appending with thioether groups were designed, synthesized and characterized. The sensing ability of the complexes toward mercury ions were studied by electronic absorption and emission spectra, and the reaction of the complexes with mercury ions were also confirmed by ESI mass spectroscopy and 1HNMR spectroscopy. The thioether groups would react with mercury ion fast to form aldehyde group leading to the significant change in the spectra. The color of the complex changed from yellow to orange after addition of mercury ions, and the color of the emission changed from red orange to dark red with a large red shift (~80 nm). Importantly, these kinds of ruthenium(II) complexes show a unique recognition of mercury ions over other metal ions. The complexes with more thioether groups also showed a better sensitivity toward mercury ions, this is good strategy for the further design of the new phosphorescent probes for sensing of mercury ions.
Collapse
Affiliation(s)
- Jiru Xu
- Ministry of Education Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yonghua Liu
- Ministry of Education Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Mei-Jin Li
- Ministry of Education Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
27
|
Zhang C, Zhang H, Li M, Zhou Y, Zhang G, Shi L, Yao Q, Shuang S, Dong C. A turn-on reactive fluorescent probe for Hg2+ in 100% aqueous solution. Talanta 2019; 197:218-224. [DOI: 10.1016/j.talanta.2019.01.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/06/2018] [Accepted: 01/03/2019] [Indexed: 01/29/2023]
|
28
|
Ding Y, Pan Y, Han Y. A Coumarin-Based Fluorescent Probe for Ratiometric Monitoring of Hg2+ in Live Cells. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00987] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yu Ding
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yimin Pan
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yifeng Han
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
29
|
Wang X, Zhou Y, Xu C, Song H, Pang X, Liu X. A dual-responsive fluorescent probe for detection of fluoride ion and hydrazine based on test strips. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:125-131. [PMID: 30530065 DOI: 10.1016/j.saa.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
Hydrazine (N2H4) and fluoride ion (F-) are regarded as environmental pollutants and potential carcinogens. A dual-functional fluorescent probe (probe 1) was developed for both F- and N2H4 with high selectivity and sensitivity. 1 was based on nucleophilic aromatic substitution reaction for N2H4 detection and selective cleavage of 4-nitrobenzenesulphonyl group for the determination of F-. The limits of detection of probe for F- and N2H4 were 77.82 nM and 29.34 nM, respectively, which are far below the threshold limit value (TLV) of United States Environmental Protection Agency (EPA). The home-made test strips of 1 provided the positive tool for F- and gaseous N2H4 in different system. And the confocal fluorescence images indicated that 1 can quantitatively detect N2H4 in living PC12 cells. Promisingly, 1 has great prospects for N2H4 imaging and determining in living system.
Collapse
Affiliation(s)
- Xiao Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Chenggong Xu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Haohan Song
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xiaobin Pang
- Pharmaceutical Institute, Henan University, Kaifeng 475004, China
| | - Xiaoqiang Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
30
|
Choi MG, Park SY, Park KY, Chang SK. Novel Hg 2+-Selective Signaling Probe Based on Resorufin Thionocarbonate and its μPAD Application. Sci Rep 2019; 9:3348. [PMID: 30833630 PMCID: PMC6399246 DOI: 10.1038/s41598-019-40169-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/07/2019] [Indexed: 12/25/2022] Open
Abstract
In this study, a novel resorufin thionocarbonate-based Hg2+-selective signaling probe (RT) for microfluidic paper-based analytical device (μPAD) applications is reported. The designed probe, RT, was readily synthesized by the one-step reaction of resorufin with phenyl thionochloroformate. The RT probe displayed a prominent color change from yellow to pink and a marked turn-on fluorescence signaling behavior exclusively toward the Hg2+ ion. The signaling of RT was due to Hg2+-induced hydrolysis of the phenyl thionocarbonate moiety to form the parent resorufin dye, which restored its spectroscopic properties. In addition, RT exhibited the Hg2+-selective signaling behavior without interference by coexisting environmentally relevant metal ions. The detection limit for Hg2+ in simulated wastewater samples was estimated to be 5.8 × 10-8 M. In particular, an RT-equipped μPAD prepared using a wax printing technique enabled simple and convenient determination of Hg2+ ions in simulated wastewater samples, with a detection limit of 5.9 × 10-6 M.
Collapse
Affiliation(s)
- Myung Gil Choi
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - So Young Park
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ka Young Park
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Suk-Kyu Chang
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
31
|
An ESIPT-based fluorescent probe for Hg2+ in aqueous solution and its application in live-cell imaging. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Choi MG, Lee YJ, Lee KM, Park KY, Park TJ, Chang SK. A simple hypochlorous acid signaling probe based on resorufin carbonodithioate and its biological application. Analyst 2019; 144:7263-7269. [DOI: 10.1039/c9an01884k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel HOCl signaling probe based on the oxidative hydrolysis of resorufin carbonodithioate to generate resorufin dye was investigated and applied to cell imaging.
Collapse
Affiliation(s)
- Myung Gil Choi
- Department of Chemistry
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Yu Jeong Lee
- Department of Chemistry
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Kang Min Lee
- Department of Chemistry
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Kyoung Yeol Park
- Department of Chemistry
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Tae Jung Park
- Department of Chemistry
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Suk-Kyu Chang
- Department of Chemistry
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| |
Collapse
|
33
|
A new sensitive symmetric fluorescein-linked diarylethene chemosensor for Hg2+ detection. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
A new BODIPY-based fluorescent “turn-on” probe for highly selective and rapid detection of mercury ions. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Sun J, Feng F. An S-alkyl thiocarbamate-based biosensor for highly sensitive and selective detection of hypochlorous acid. Analyst 2018; 143:4251-4255. [PMID: 30106397 DOI: 10.1039/c8an01027g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We reported a near-infrared biosensor that features a dihydromethylene blue and an S-alkyl thiocarbamate linker to detect hypochlorous acid in a drastic fluorescence turn-on response. We achieved high sensitivity at the nanomolar level and high selectivity that resolves the interference issue with mercury ions and other transition metal ions. We demonstrated the response mechanism by analysing the released segments, and investigated the imaging capability to detect both exogenous and endogenous hypochlorous acid in living cells.
Collapse
Affiliation(s)
- Jian Sun
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | | |
Collapse
|
36
|
Xu J, Wang Z, Liu C, Xu Z, Wang N, Cong X, Zhu B. A highly selective colorimetric and long-wavelength fluorescent probe for the detection of Hg2+. LUMINESCENCE 2018; 33:1122-1127. [DOI: 10.1002/bio.3518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/04/2018] [Accepted: 05/17/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Jing Xu
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization; University of Jinan; Jinan P. R. China
| | - Zuokai Wang
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization; University of Jinan; Jinan P. R. China
| | - Caiyun Liu
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization; University of Jinan; Jinan P. R. China
| | - Zhenghe Xu
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization; University of Jinan; Jinan P. R. China
| | - Ning Wang
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization; University of Jinan; Jinan P. R. China
| | - Xin Cong
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization; University of Jinan; Jinan P. R. China
| | - Baocun Zhu
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization; University of Jinan; Jinan P. R. China
| |
Collapse
|
37
|
A hydroxyquinoline-base nanoprobe for fluorescent sensing of Hg 2+ ion in aqueous solution. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.01.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Li Q, Hu Y, Hou HN, Yang WN, Hu SL. A new coumarin-carbonothioate-based turn-on fluorescent chemodosimeter for selective detection of Hg2+. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Qin S, Chen B, Huang J, Han Y. A thiocoumarin-based colorimetric and ratiometric fluorescent probe for Hg2+ in aqueous solution and its application in live-cell imaging. NEW J CHEM 2018. [DOI: 10.1039/c8nj01491d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A new intramolecular charge transfer (ICT) based colorimetric and ratiometric fluorescent chemodosimeter for the detection of Hg2+ has been rationally designed and developed.
Collapse
Affiliation(s)
- Siyao Qin
- Department of Chemistry
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou
- China
| | - Bo Chen
- Department of Chemistry
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou
- China
| | - Jing Huang
- Department of Chemistry
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou
- China
| | - Yifeng Han
- Department of Chemistry
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou
- China
| |
Collapse
|
40
|
Huang J, Chen B, Zhou B, Han Y. A novel ESIPT-based fluorescent chemodosimeter for Hg2+ detection and its application in live-cell imaging. NEW J CHEM 2018. [DOI: 10.1039/c7nj03789a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel ESIPT-based fluorescent chemodosimeter for the detection of Hg2+ has been rationally designed and developed.
Collapse
Affiliation(s)
- Jing Huang
- Department of Chemistry
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou
- China
| | - Bo Chen
- Department of Chemistry
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou
- China
| | - Baocheng Zhou
- Department of Chemistry
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou
- China
| | - Yifeng Han
- Department of Chemistry
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou
- China
| |
Collapse
|
41
|
Xu J, Xu Z, Wang Z, Liu C, Zhu B, Wang X, Wang K, Wang J, Sang G. A carbonothioate-based highly selective fluorescent probe with a large Stokes shift for detection of Hg2+. LUMINESCENCE 2017; 33:219-224. [DOI: 10.1002/bio.3404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/21/2017] [Accepted: 08/01/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Jing Xu
- School of Water and Soil Conservation; Beijing Forestry University; Beijing China
| | - Zhenghe Xu
- School of Resources and Environment; University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization; Jinan China
| | - Zuokai Wang
- School of Resources and Environment; University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization; Jinan China
| | - Caiyun Liu
- School of Resources and Environment; University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization; Jinan China
| | - Baocun Zhu
- School of Resources and Environment; University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization; Jinan China
| | - Xiuru Wang
- School of Water and Soil Conservation; Beijing Forestry University; Beijing China
| | - Kun Wang
- School of Resources and Environment; University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization; Jinan China
| | - Jiangting Wang
- School of Resources and Environment; University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization; Jinan China
| | - Guoqing Sang
- School of Resources and Environment; University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization; Jinan China
| |
Collapse
|
42
|
Pang L, Zhou Y, Gao W, Zhang J, Song H, Wang X, Wang Y, Peng X. Curcumin-Based Fluorescent and Colorimetric Probe for Detecting Cysteine in Living Cells and Zebrafish. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lanfang Pang
- Institute of Environmental
and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Yanmei Zhou
- Institute of Environmental
and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Wenli Gao
- Institute of Environmental
and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Junli Zhang
- Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, Henan 475004, PR China
| | - Haohan Song
- Institute of Environmental
and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Xiao Wang
- Institute of Environmental
and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Yong Wang
- Institute of Environmental
and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
43
|
Feng Y, Kuai Z, Song Y, Guo J, Yang Q, Shan Y, Li Y. A novel "turn-on" thiooxofluorescein-based colorimetric and fluorescent sensor for Hg 2+ and its application in living cells. Talanta 2017; 170:103-110. [PMID: 28501145 DOI: 10.1016/j.talanta.2017.03.099] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/25/2017] [Accepted: 03/29/2017] [Indexed: 12/25/2022]
Abstract
A novel water-soluble fluorescent probe FLS2 based on the thiooxofluorescein derivative has been firstly designed and synthesized. UV-vis absorption and fluorescence spectra studies showed that the FLS2 as a colorimetric and ratiometric fluorescent probe exhibited high selectivity and sensitivity towards Hg2+, which was mainly attributed to the special binding with the receptor unit accompanied with the spirolactam ring-opening progress. In addition, the probe FLS2 could be used as a naked-eye indicator for Hg2+ with reversible response. It displayed approximate 37-fold fluorescent enhancement at 529nm in the presence of only 2.0 equiv. Hg2+ and the detection limit was calculated at about 39nM. What's more, cellular imaging experiment revealed that the sensor had excellent biocompatibility and low cytotoxicity that could be utilized for monitoring Hg2+ in living cells.
Collapse
Affiliation(s)
- Yusha Feng
- College of Chemistry, Jilin University, Changchun 130021, PR China; College of Materials Science and Engineering, Jilin University of Chemical Technology, Jilin 132022, PR China
| | - Ziyu Kuai
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun 130021, PR China
| | - Yan Song
- College of Chemistry, Jilin University, Changchun 130021, PR China; College of Materials Science and Engineering, Jilin University of Chemical Technology, Jilin 132022, PR China
| | - Jing Guo
- College of Chemistry, Jilin University, Changchun 130021, PR China
| | - Qingbiao Yang
- College of Chemistry, Jilin University, Changchun 130021, PR China.
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun 130021, PR China
| | - Yaoxian Li
- College of Chemistry, Jilin University, Changchun 130021, PR China
| |
Collapse
|
44
|
DUAN Q, ZHANG M, SHENG C, LIU C, WU L, MA Z, ZHAO Q, WANG Z, ZHU B. Rhodol-derived Colorimetric and Fluorescent Probe with the Receptor of Carbonothioate for the Specific Detection of Mercury Ions. ANAL SCI 2017; 33:1169-1173. [DOI: 10.2116/analsci.33.1169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Qingxia DUAN
- School of Resources and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
| | - Meng ZHANG
- School of Resources and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
| | | | - Caiyun LIU
- School of Resources and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
| | - Liu WU
- School of Resources and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
| | - Zhenmin MA
- School of Resources and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
| | - Qiang ZHAO
- School of Resources and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
| | - Zhongpeng WANG
- School of Resources and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
| | - Baocun ZHU
- School of Resources and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
| |
Collapse
|