1
|
Han CT, Ma K, Zhang Z, Clarke RW, Gowda RR, Xu TQ, Chen EYX. Circular Polymer Designed by Regulating Entropy: Spiro-Valerolactone-Based Polyesters with High Gas Barriers and Adhesion Strength. J Am Chem Soc 2025; 147:4511-4519. [PMID: 39869767 DOI: 10.1021/jacs.4c16260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Enthalpy is often the focal point when designing monomers for polymer circularity, but much less is explored on how entropy can be exploited to create polymers with synergistic circularity and properties. Here, we design a series of spiro-lactones (SLs) with closed-chain cycloalk(en)yl substituents at the α,α-position of δ-valerolactone (δVL), which, when combined with the parent δVL and gem-α,α-dialkyl-substituted δVL with open-chain alkyl groups, provide a desired platform for exploring the circular polymer design by focusing on the entropy change of polymerization. These SLs exhibit finely balanced (de)polymerizability that is regulated chiefly by entropy differentiation, allowing both the facile synthesis of polyester PSLs (Mn up to 1000 kg mol-1) in a living fashion and selective depolymerization of the PSLs to completely recover monomers under mild conditions (using a recyclable catalyst at 100 °C). One such PSL is semicrystalline (Tm = 134 °C), strong (ultimate strength = 43 MPa), hard (modulus = 1.85 GPa), and modestly flexible. These notable mechanical properties are bolstered by its superior barriers to oxygen and moisture permeation compared to common packaging materials. In addition, this PSL can be postfunctionalized to a recyclable OH-containing PSL that shows higher adhesion strength than the comparative commercial adhesives.
Collapse
Affiliation(s)
- Cui-Ting Han
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Kai Ma
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Zhen Zhang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Ryan W Clarke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Ravikumar R Gowda
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Tie-Qi Xu
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
2
|
Harsevoort E, Cioc RC, Lutz M, Thevenon A, Bruijnincx PCA. Closed-Loop Chemical Recycling of a Biobased Poly(oxanorbornene-fused γ-butyrolactone). J Am Chem Soc 2024; 146:34628-34637. [PMID: 39623587 DOI: 10.1021/jacs.4c12678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
New polymers, properly designed for end-of-life and efficiently formed from renewable carbon, are key to the transition to a more sustainable circular plastics economy. Ring-opening polymerization (ROP) of bicyclic lactones is a promising method for the production of intrinsically recyclable polyesters, but most lactone monomers lack an efficient synthesis route from biobased starting materials, even though this is essential to sustainably account for material loss during the life cycle. Herein, we present the exceptionally rapid and controlled polymerization of a fully biobased tricyclic oxanorbornene-fused γ-butyrolactone monomer (M1). Polyester P(M1) was formed in low dispersity (D̵ = 1.2-1.3) and controllable molecular weight up to Mn = 76.8 kg mol-1 and exhibits a high glass transition temperature (Tg = 120 °C). The orthogonal olefin and lactone functionalities offer access to a wide range of promising materials, as showcased by postpolymerization modification by hydrogenation of the olefin, which increased polymer thermal stability by over 100 °C. Next to rapid hydrolytic degradation and solvolysis, the poly(oxanorbornene-fused γ-butyrolactone) could be cleanly chemically recycled back to the monomer (CRM), in line with its favorable ceiling temperature (Tc) of 73 °C. The density functional theory (DFT)-computed ΔH° of ring-opening with methanol of γ-butyrolactone-based monomers provided a model to predict Tc, and the DFT-computed and X-ray crystal structure-derived structural parameters of M1, hydrogenated analogue M1-H2, and regioisomer M2 offered insights into the structural descriptors that cause the high polymerizability of M1, which is key to establishing structure-property relations.
Collapse
Affiliation(s)
- Eva Harsevoort
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Răzvan C Cioc
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Arnaud Thevenon
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Pieter C A Bruijnincx
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
3
|
Zheng C, Slor G, Ma Y, Stellacci F. Direct Monomer Recovery from Ring-Closing Depolymerization of Thermosets. ACS Macro Lett 2024; 13:1704-1710. [PMID: 39644254 DOI: 10.1021/acsmacrolett.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Recovering monomers from the depolymerization of thermosets presents a significant challenge, which becomes even more daunting if one sets the goal of doing it directly, i.e., without complex chemical separation steps. To this end, we have synthesized a new type of polycarbonate thermoset by first copolymerizing alkyl cyclic carbonates (ACCs) with small amounts of allyloxy cyclic carbonates (AoCCs), followed by cross-linking the resulting allyloxy polycarbonate with excess tetrathiol compounds under UV irradiation. These cross-linked polycarbonates demonstrate enhanced thermal and mechanical properties compared to their linear analogues, while maintaining the linear polymers' capacity for ring-closing depolymerization. The depolymerization process enables the direct recovery of ACC and its dimer, bypassing complex chemical separation steps that are commonly employed in the recycling of conventional chemically recyclable thermosets. The yields range from 74.7% to 91.7% depending on the ratios of AoCC to ACC in the thermosets. Furthermore, the recovered compounds can be repolymerized with AoCCs leading to polycarbonate of the same quality to the initially synthesized one.
Collapse
Affiliation(s)
- Chihui Zheng
- Department Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Gadi Slor
- Department Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Youwei Ma
- Department Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Francesco Stellacci
- Department Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
4
|
Ma K, An HY, Nam J, Reilly LT, Zhang YL, Chen EYX, Xu TQ. Fully recyclable and tough thermoplastic elastomers from simple bio-sourced δ-valerolactones. Nat Commun 2024; 15:7904. [PMID: 39256412 PMCID: PMC11387789 DOI: 10.1038/s41467-024-52229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
While a large number of chemically recyclable thermoplastics have been developed in recent years, technologically important thermoplastic elastomers (TPEs) that are not only bio-based and fully recyclable but also exhibit mechanical properties that can rival or even exceed those petroleum-based, non-recyclable polyolefin TPEs are critically lacking. The key challenge in developing chemically circular, bio-based, high-performance TPEs rests on the complexity of TPE's block copolymer (BCP) structure involving block segments of different suitable monomers required to induce self-assembled morphologies responsible for performance as well as the control and monomer compatibility in their synthesis and the selectivity in their depolymerization. Here we demonstrate the utilization of bio-sourced δ-valerolactone (δVL) and its simple α-alkyl-substituted derivatives to produce all δVL-based polyester tri-BCP TPEs, which exhibit not only complete (closed-loop) chemical recyclability but also excellent toughness that is 2.5-3.8 times higher than commercial polyolefin-based TPEs. The visualized cylindrical morphology formed via crystallization-driven self-assembly in the new all δVL tri-BCP is postulated to contribute to the excellent TPE property.
Collapse
Affiliation(s)
- Kai Ma
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Hai-Yan An
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Jiyun Nam
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Liam T Reilly
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Yi-Lin Zhang
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Tie-Qi Xu
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
5
|
Cater HL, Allen MJ, Linnell MI, Rylski AK, Wu Y, Lien HM, Mangolini F, Freeman BD, Page ZA. Supersoft Norbornene-Based Thermoplastic Elastomers with High Strength and Upper Service Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402431. [PMID: 38718377 DOI: 10.1002/adma.202402431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/06/2024] [Indexed: 05/23/2024]
Abstract
With over 6 million tons produced annually, thermoplastic elastomers (TPEs) have become ubiquitous in modern society, due to their unique combination of elasticity, toughness, and reprocessability. Nevertheless, industrial TPEs display a tradeoff between softness and strength, along with low upper service temperatures, typically ≤100 °C. This limits their utility, such as in bio-interfacial applications where supersoft deformation is required in tandem with strength, in addition to applications that require thermal stability (e.g., encapsulation of electronics, seals/joints for aeronautics, protective clothing for firefighting, and biomedical devices that can be subjected to steam sterilization). Thus, combining softness, strength, and high thermal resistance into a single versatile TPE has remained an unmet opportunity. Through de novo design and synthesis of novel norbornene-based ABA triblock copolymers, this gap is filled. Ring-opening metathesis polymerization is employed to prepare TPEs with an unprecedented combination of properties, including skin-like moduli (<100 kPa), strength competitive with commercial TPEs (>5 MPa), and upper service temperatures akin to high-performance plastics (≈260 °C). Furthermore, the materials are elastic, tough, reprocessable, and shelf stable (≥2 months) without incorporation of plasticizer. Structure-property relationships identified herein inform development of next-generation TPEs that are both biologically soft yet thermomechanically durable.
Collapse
Affiliation(s)
- Henry L Cater
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Marshall J Allen
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Mark I Linnell
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Adrian K Rylski
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yudian Wu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hsu-Ming Lien
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Filippo Mangolini
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Benny D Freeman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Zachariah A Page
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
6
|
Weng C, Ding Z, Qiu W, Wang B, Tang X. Achieving Exceptional Thermal and Hydrolytic Resistance in Chemically Circular Polyesters via In-Chain 1,3-Cyclobutane Rings. Angew Chem Int Ed Engl 2024; 63:e202401682. [PMID: 38587230 DOI: 10.1002/anie.202401682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Polyesters, a highly promising class of circular polymers for achieving a closed-loop sustainable plastic economy, inherently exhibit material stability defects, especially in thermal and hydrolytic instability. Here, we introduce a class of polyesters, P(4R-BL) (R=Ph, Bu), featuring conformationally rigid 1,3-cyclobutane rings in the backbone. These polyesters not only exhibit superior thermostability (Td,5%=376-380 °C) but also demonstrate exceptional hydrolytic resistance with good integrity even after 1 year in basic and acidic aqueous solutions, distinguishing themselves from typical counterparts. Tailoring the flexibility of the side group R enables the controlled thermal and mechanical performance of P(4Ph-BL) and P(4Bu-BL) to rival durable syndiotactic polystyrene (SPS) and low-density polyethylene (LDPE), respectively. Significantly, despite their high stability, both polyesters can be effectively depolymerized into pristine monomers, establishing a circular life cycle.
Collapse
Affiliation(s)
- Chaoqun Weng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhiqiang Ding
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Weijie Qiu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Bin Wang
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xiaoyan Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
7
|
Nam J, Yoo C, Seo M. Polymerization/Depolymerization-Induced Self-Assembly under Coupled Equilibria of Polymerization with Self-Assembly. J Am Chem Soc 2024; 146:13854-13861. [PMID: 38717989 DOI: 10.1021/jacs.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Depolymerization breaks down polymer chains into monomers like unthreading beads, attracting more attention from a sustainability standpoint. When polymerization reaches equilibrium, polymerization and depolymerization can reversibly proceed by decreasing and increasing the temperature. Here, we demonstrate that such dynamic control of a growing polymer chain in a selective solvent can spontaneously modulate the self-assembly of block copolymer micellar nano-objects. Compared to polymerization-induced self-assembly (PISA), where irreversible growth of a solvophobic polymer block from the end of a solvophilic polymer causes micellization, polymerization/depolymerization-induced self-assembly presented in this study allows us to reversibly regulate the packing parameter of the forming block copolymer and thus induce reversible morphological transitions of the nano-objects by temperature swing. Under the coupled equilibria of polymerization with self-assembly, we found that demixing of the growing polymer block in a more selective solvent entropically facilitates depolymerization at a substantially lower temperature. Taking ring-opening polymerization of δ-valerolactone initiated from the hydroxyl-terminated poly(ethylene oxide) as a model system, we show that polymerization/depolymerization/repolymerization leads to reversible morphological transitions, such as rod-sphere-rod and fiber-rod-fiber, during the heating and cooling cycle and accompanied by changes in macroscopic properties such as viscosity, suggesting their potential as dynamic soft materials.
Collapse
Affiliation(s)
- Jiyun Nam
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Changsu Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Myungeun Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Schwab S, Nelson TF, Mecking S. Chemically Recyclable and Biodegradable Vulcanized Rubber. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:6281-6288. [PMID: 38665800 PMCID: PMC11041115 DOI: 10.1021/acssuschemeng.3c08435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
The cross-linked nature of vulcanized rubbers as used in tire and many other applications prohibits an effective closed-loop mechanical or chemical recycling. Moreover, vulcanization significantly retards the material's biodegradation. Here, we report a recyclable and biodegradable rubber that is generated by the vulcanization of amorphous, unsaturated polyesters. The elastic material can be broken down via solvolysis into the underlying monomers. After removal of the vulcanized repeat units, the saturated monomers, constituting the major share of the material, can be recovered in overall recycling rates exceeding 90%. Respirometric biodegradation experiments by 13CO2 tracking under environmental conditions via the polyesters' diol monomer indicated depolymerization and partial mineralization of the vulcanized polyester rubbers.
Collapse
Affiliation(s)
- Simon
T. Schwab
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Taylor F. Nelson
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Stefan Mecking
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
9
|
Shi C, Quinn EC, Diment WT, Chen EYX. Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy. Chem Rev 2024; 124:4393-4478. [PMID: 38518259 DOI: 10.1021/acs.chemrev.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Polyesters carrying polar main-chain ester linkages exhibit distinct material properties for diverse applications and thus play an important role in today's plastics economy. It is anticipated that they will play an even greater role in tomorrow's circular plastics economy that focuses on sustainability, thanks to the abundant availability of their biosourced building blocks and the presence of the main-chain ester bonds that can be chemically or biologically cleaved on demand by multiple methods and thus bring about more desired end-of-life plastic waste management options. Because of this potential and promise, there have been intense research activities directed at addressing recycling, upcycling or biodegradation of existing legacy polyesters, designing their biorenewable alternatives, and redesigning future polyesters with intrinsic chemical recyclability and tailored performance that can rival today's commodity plastics that are either petroleum based and/or hard to recycle. This review captures these exciting recent developments and outlines future challenges and opportunities. Case studies on the legacy polyesters, poly(lactic acid), poly(3-hydroxyalkanoate)s, poly(ethylene terephthalate), poly(butylene succinate), and poly(butylene-adipate terephthalate), are presented, and emerging chemically recyclable polyesters are comprehensively reviewed.
Collapse
Affiliation(s)
- Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Wilfred T Diment
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
10
|
Özdemir M, Köksoy B, Yalçın B, Koyuncu S. The Role of Electron-Donating Subunits in Cross-Linked BODIPY Polymer Films. Macromol Rapid Commun 2024; 45:e2300552. [PMID: 37962095 DOI: 10.1002/marc.202300552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Indexed: 11/15/2023]
Abstract
A new method for synthesizing cross-linked 4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPYs) using a radical-based thiol-ene click reaction is developed. This method is simple, efficient, and cost-effective, and it produces polymers with unique optical, electrochemical, and surface morphology properties. Significant blue shifts in absorption and photoinduced electron transfer in emissions are observed in the cross-linked BODIPY thin films. Cross-linking also leads to the restriction of conjugation, which results in the breakage of the terminal vinyl group, an increase in the oxidation potential, and a slight upshift in the HOMO position. As a result, the electrochemical band gap is widened from 1.88 to 1.94 eV for polymer bearing N,N-dimethylamino-BODIPY and from 1.97 to 2.02 eV for polymer bearing N,N-diphenylamino-BODIPY moieties. Monomer thin films form planar surfaces due to crystallinity, while amorphous cross-linked BODIPY polymers form more rough surfaces. Additionally, photopatterning on the film surface is successfully performed using different patterned masks. This new method for synthesizing cross-linked BODIPYs has the potential to be used in a variety of applications, including organic electronics, bioimaging, and photocatalysis.
Collapse
Affiliation(s)
- Mücahit Özdemir
- Department of Chemistry, Marmara University, Istanbul, 34722, Türkiye
| | - Baybars Köksoy
- Department of Chemistry, Bursa Technical University, Bursa, 16310, Türkiye
| | - Bahattin Yalçın
- Department of Chemistry, Marmara University, Istanbul, 34722, Türkiye
| | - Sermet Koyuncu
- Department of Chemical Engineering, Çanakkale Onsekiz Mart University, Çanakkale, 17400, Türkiye
| |
Collapse
|
11
|
Zhang X, Guo W, Zhang C, Zhang X. A recyclable polyester library from reversible alternating copolymerization of aldehyde and cyclic anhydride. Nat Commun 2023; 14:5423. [PMID: 37669954 PMCID: PMC10480228 DOI: 10.1038/s41467-023-41136-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023] Open
Abstract
Our society is pursuing chemically recyclable polymers to accelerate the green revolution in plastics. Here, we develop a recyclable polyester library from the alternating copolymerization of aldehyde and cyclic anhydride. Although these two monomer sets have little or no thermodynamic driving force for homopolymerization, their copolymerization demonstrates the unexpected alternating characteristics. In addition to readily available monomers, the method is performed under mild conditions, uses common Lewis/Brønsted acids as catalysts, achieves the facile tuning of polyester structure using two distinct monomer sets, and yields 60 polyesters. Interestingly, the copolymerization exhibits the chemical reversibility attributed to its relatively low enthalpy, which makes the resulting polyesters perform closed-loop recycling to monomers at high temperatures. This study provides a modular, efficient, and facile synthesis of recyclable polyesters using sustainable monomers.
Collapse
Affiliation(s)
- Xun Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenqi Guo
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chengjian Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xinghong Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
12
|
Shi C, Zhang Z, Scoti M, Yan XY, Chen EYX. Endowing Polythioester Vitrimer with Intrinsic Crystallinity and Chemical Recyclability. CHEMSUSCHEM 2023; 16:e202300008. [PMID: 36638158 DOI: 10.1002/cssc.202300008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Technologically important thermosets face a long-standing end-of-life (EoL) problem of non-reprocessability, a more sustainable solution of which has resolved to nascent vitrimers that can merge the robust material properties of thermosets and the reprocessability of thermoplastics. However, the lifecycle of vitrimers is still finite, as they often suffer from significant deterioration of mechanical performance following multiple reprocessing cycles, analogous to mechanical recycling, and they often show undesired creep under working conditions. To address these two key limitations, we have developed a cross-linked semi-crystalline polythioester with both dynamic covalent bonds and intrinsic crystallinity and chemical recyclability, affording a vitrimeric system that exhibits not only reprocessability and crystallinity-restricted creep but also complete chemical recyclability to initial monomer by catalyzed depolymerization in solution or bulk. Therefore, reported herein is an "infinite" vitrimer system that is empowered with a facile closed-loop EoL option once serial reprocessing deteriorates performance and the material can no longer meet the application requirements. Specifically, the polythioester vitrimer was constructed by copolymerization of a bicyclic thioester with a bis-dithiolane, producing dynamically cross-linked polythioesters with excellent property tunability, from amorphous to semi-crystalline states and melting transition temperatures from 91 to 178 °C.
Collapse
Affiliation(s)
- Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523-1872, United States
| | - Zhen Zhang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523-1872, United States
| | - Miriam Scoti
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523-1872, United States
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, 80126, Napoli, Italy
| | - Xiao-Yun Yan
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio, 44325-3909, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523-1872, United States
| |
Collapse
|
13
|
Şucu T, Wang M, Shaver MP. Degradable and Reprocessable Resins from a Dioxolanone Cross-Linker. Macromolecules 2023; 56:1625-1632. [PMID: 36874530 PMCID: PMC9979638 DOI: 10.1021/acs.macromol.2c02560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Indexed: 02/11/2023]
Abstract
Chemically cross-linked polymers offer excellent temperature and solvent resistance, but their high dimensional stability precludes reprocessing. The renewed demand for sustainable and circular polymers from public, industry, and government stakeholders has increased research into recycling thermoplastics, but thermosets have often been overlooked. To address this need for more sustainable thermosets, we have developed a novel bis(1,3-dioxolan-4-one) monomer, derived from the naturally occurring l-(+)-tartaric acid. This compound can be used as a cross-linker and copolymerized in situ with common cyclic esters such as l-lactide, ε-caprolactone, and δ-valerolactone to produce cross-linked, degradable polymers. The structure-property relationships and the final network properties were tuned by both co-monomer choice and composition, with properties ranging from resilient solids with tensile strengths of 46.7 MPa to elastomers with elongations up to 147%. In addition to exhibiting properties rivalling those of commercial thermosets, the synthesized resins could be recovered at end-of-life through triggered degradation or reprocessing. Accelerated hydrolysis experiments showed the materials fully degraded to tartaric acid and the corresponding oligomers from 1 to 14 days under mild basic conditions and in a matter of minutes in the presence of a transesterification catalyst. The vitrimeric reprocessing of networks was demonstrated at elevated temperatures, and rates could be tuned by modifying the concentration of the residual catalyst. This work develops new thermosets, and indeed their glass fiber composites, with an unprecedented ability to tune degradability and high performance by creating resins from sustainable monomers and a bio-derived cross-linker.
Collapse
Affiliation(s)
- Theona Şucu
- Department of Materials, Engineering Building A, University of Manchester, Oxford Road M13 9PL, U.K.,Sustainable Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, U.K
| | - Meng Wang
- Department of Materials, Engineering Building A, University of Manchester, Oxford Road M13 9PL, U.K.,Sustainable Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, U.K
| | - Michael P Shaver
- Department of Materials, Engineering Building A, University of Manchester, Oxford Road M13 9PL, U.K.,Sustainable Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
14
|
Cheng K, Shang L, Li H, Peng B, Li Z. A novel degradable sealing material for the preparation of dissolvable packer rubber barrel. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2180389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Kai Cheng
- Beijing Key Laboratory for Greenhouse Gas Storage and CO2-EOR, Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing, China
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Leiwang Shang
- Beijing Key Laboratory for Greenhouse Gas Storage and CO2-EOR, Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing, China
| | - Hui Li
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Bo Peng
- Beijing Key Laboratory for Greenhouse Gas Storage and CO2-EOR, Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing, China
| | - Zaifeng Li
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| |
Collapse
|
15
|
Li XL, Ma K, Xu F, Xu TQ. Advances in the Synthesis of Chemically Recyclable Polymers. Chem Asian J 2023; 18:e202201167. [PMID: 36623942 DOI: 10.1002/asia.202201167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Indexed: 01/11/2023]
Abstract
The development of modern society is closely related to polymer materials. However, the accumulation of polymer materials and their evolution in the environment causes not only serious environmental problems, but also waste of resources. Although physical processing can be used to reuse polymers, the properties of the resulting polymers are significantly degraded. Chemically recyclable polymers, a type of polymer that degrades into monomers, can be an effective solution to the degradation of polymer properties caused by physical recycling of polymers. The ideal chemical recycling of polymers, i. e., quantitative conversion of the polymer to monomers at low energy consumption and repolymerization of the formed monomers into polymers with comparable properties to the original, is an attractive research goal. In recent years, significant progress has been made in the design of recyclable polymers, enabling the regulation of the "polymerization-depolymerization" equilibrium and closed-loop recycling under mild conditions. This review will focus on the following aspects of closed-loop recycling of poly(sulfur) esters, polycarbonates, polyacetals, polyolefins, and poly(disulfide) polymer, illustrate the challenges in this area, and provide an outlook on future directions.
Collapse
Affiliation(s)
- Xin-Lei Li
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Kai Ma
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fei Xu
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Tie-Qi Xu
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
16
|
Wang B, Wang Y, Du S, Zhu J, Ma S. Upcycling of thermosetting polymers into high-value materials. MATERIALS HORIZONS 2023; 10:41-51. [PMID: 36342017 DOI: 10.1039/d2mh01128j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Thermosetting polymers, a large class of polymers featuring excellent properties, have been widely used and play an irreplaceable role in our life. Nevertheless, they are arduous to be recycled or reused on account of their permanently cross-linked networks, and the main recycling approaches used currently include energy recovery through incineration, utilization as fillers after mechanical grinding, and pyrolysis, which only reclaim a small fraction or partial value of thermosetting polymers and their downstream materials. In this minireview, we provide an overview of the efforts undertaken towards upcycling thermosetting polymers in recent years. The research progress on physical upcycling, carbonization, solvolysis and vitrimerization of thermoset waste to high-value materials, including oil-water separation materials, 3D printable materials, functional carbon materials (supercapacitors, photothermal conversion materials, and catalytic materials), additives, emulsifiers, biolubricants, and vitrimers, are summarized and discussed. Perspectives on the future development of the art of upcycling thermosets are also provided.
Collapse
Affiliation(s)
- Binbo Wang
- Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yi Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Shuai Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Jin Zhu
- Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Songqi Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
- Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
17
|
Bhanderi KK, Joshi JR, Patel JV. Optimization process for glycolysis of poly (ethylene terephthalate) using bio-degradable & recyclable heterogeneous catalyst. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Kang F, Yang Y, Wang W, Li Z. Preparation of degradable aliphatic polyester elastomers with tunable strength and elasticity via photo‐crosslinking. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feifei Kang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Yan Yang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Wenpin Wang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| |
Collapse
|
19
|
Boon ZH, Teo YY, Ang DTC. Recent development of biodegradable synthetic rubbers and bio-based rubbers using sustainable materials from biological sources. RSC Adv 2022; 12:34028-34052. [PMID: 36545000 PMCID: PMC9710532 DOI: 10.1039/d2ra06602e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Rubber is an amorphous hyperelastic polymer which is widely used in this modern era. Natural rubber is considered the ultimate rubber in terms of mechanical performance, but over the years, some limitations and challenges in natural rubber cultivation that could result in serious shortages in the supply chain had been identified. Since then, the search for alternatives including new natural and synthetic rubbers has been rather intense. The initiative to explore new sources of natural rubber which started during the 1940s has been reignited recently due to the increasing demand for natural rubber. The commercialization of natural rubber from the Parthenium argentatum and Taraxacum kok-saghyz species, with the cooperation from rubber product manufacturing companies, has somewhat improved the sustainability of the natural rubber supply chain. Meanwhile, the high demand for synthetic rubber drastically increases the rate of depletion of fossil fuels and amplifies the adverse environmental effect of overexploitation of fossil fuels. Moreover, rubber and plastic products disposal have been a major issue for many decades, causing environmental pollution and the expansion of landfills. Sustainable synthetic rubber products could be realized through the incorporation of materials from biological sources. They are renewable, low cost, and most importantly, biodegradable in nature. In this review, brief introduction to natural and synthetic rubbers, challenges in the rubber industry, alternatives to conventional natural rubber, and recent advances in biodegradable and/or bio-based synthetic rubbers are discussed. The effect of incorporating various types of biologically sourced materials in the synthetic rubbers are also elaborated in detail.
Collapse
Affiliation(s)
- Zhen Hern Boon
- Department of Chemistry, Universiti Malaya50603 Kuala LumpurMalaysia
| | - Yin Yin Teo
- Department of Chemistry, Universiti Malaya50603 Kuala LumpurMalaysia
| | | |
Collapse
|
20
|
Singathi R, Raghunathan R, Krishnan R, Kumar Rajendran S, Baburaj S, Sibi MP, Webster DC, Sivaguru J. Towards Upcycling Biomass-Derived Crosslinked Polymers with Light. Angew Chem Int Ed Engl 2022; 61:e202203353. [PMID: 35545813 PMCID: PMC9400847 DOI: 10.1002/anie.202203353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 01/14/2023]
Abstract
Photodegradable, recyclable, and renewable, crosslinked polymers from bioresources show promise towards developing a sustainable strategy to address the issue of plastics degradability and recyclability. Photo processes are not widely exploited for upcycling polymers in spite of the potential to have spatial and temporal control of the degradation in addition to being a green process. In this report we highlight a methodology in which biomass-derived crosslinked polymers can be programmed to degrade at ≈300 nm with ≈60 % recovery of the monomer. The recovered monomer was recycled back to the crosslinked polymer.
Collapse
Affiliation(s)
- Ravichandranath Singathi
- Center for Photochemical Science and Department of ChemistryBowling Green State UniversityBowling GreenOH 43403USA
| | - Ramya Raghunathan
- Center for Photochemical Science and Department of ChemistryBowling Green State UniversityBowling GreenOH 43403USA
| | - Retheesh Krishnan
- Department of Chemistry. Government College for WomenTrivandrumKerala, 695014India
| | - Saravana Kumar Rajendran
- School of Advanced SciencesChemistry DivisionVIT University Chennai CampusVandalur-Kelambakkam RoadChennai600127India
| | - Sruthy Baburaj
- Center for Photochemical Science and Department of ChemistryBowling Green State UniversityBowling GreenOH 43403USA
| | - Mukund P. Sibi
- Department of Chemistry and BiochemistryNorth Dakota State UniversityFargoND 58108USA
| | - Dean C. Webster
- Department of Coatings and Polymeric MaterialsNorth Dakota State UniversityFargoND 58108USA
| | - Jayaraman Sivaguru
- Center for Photochemical Science and Department of ChemistryBowling Green State UniversityBowling GreenOH 43403USA
| |
Collapse
|
21
|
Tunable and recyclable polyesters from CO 2 and butadiene. Nat Chem 2022; 14:877-883. [PMID: 35760958 DOI: 10.1038/s41557-022-00969-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/09/2022] [Indexed: 11/08/2022]
Abstract
Carbon dioxide is inexpensive and abundant, and its prevalence as waste makes it attractive as a sustainable chemical feedstock. Although there are examples of copolymerizations of CO2 with high-energy monomers, the direct copolymerization of CO2 with olefins has not been reported. Here an alternative route to functionalizable, recyclable polyesters derived from CO2, butadiene and hydrogen via an intermediary lactone, 3-ethyl-6-vinyltetrahydro-2H-pyran-2-one, is described. Catalytic ring-opening polymerization of the lactone by 1,5,7-triazabicyclo[4.4.0]dec-5-ene yields polyesters with molar masses up to 13.6 kg mol-1 and pendent vinyl side chains that can undergo post-polymerization functionalization. The polymer has a low ceiling temperature of 138 °C, allowing for facile chemical recycling, and is inherently biodegradable under aerobic aqueous conditions (OECD-301B protocol). These results show that a well-defined polyester can be derived from CO2, olefins and hydrogen, expanding access to new polymer feedstocks that were once considered unfeasible.
Collapse
|
22
|
Towards Upcycling Biomass‐Derived Crosslinked Polymers with Light. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Lou Y, Xu J, Xu L, Chen Z, Lin B. Chemically Recyclable CO 2 -Based Solid Polyesters with Facile Property Tunability. Macromol Rapid Commun 2022; 43:e2200341. [PMID: 35611450 DOI: 10.1002/marc.202200341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/12/2022] [Indexed: 11/10/2022]
Abstract
Synthesizing chemically recyclable solid polymeric materials is a significant strategy to potentially achieve carbon neutral production of new polymers and alleviate plastic pollution, especially when the synthesis is based on CO2 and inexpensive co-feedstocks available in large scales. Additionally, polymeric materials should have high enough molecular weight to exhibit distinguished properties from low molar mass polymers to serve for a broader range of application scenarios. However, up to now, strategies for developing solid-state CO2 -based chemically recyclable polyesters with both high molecular weight and facile property tunability are still unprecedented. Herein, a brand-new synthetic route is developed to synthesize chemically recyclable CO2 -based solid polyesters with high molecular weight (Mn up to 587.7 kg mol-1 ) and narrow dispersity (Đ < 1.2), which should further broaden the potential application scenarios of new CO2 -based polyesters. Additionally, complete monomer recovery from poly(δLH2 ) material is also achieved. The preserved terminal alkene groups allow facile property tuning of the polyesters via photo-initiated thiol-ene click reactions, enabling more potential utilities and further functionalizations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yongjia Lou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jialin Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Luyan Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhuo Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Bo- Lin
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
24
|
Li C, Wang L, Yan Q, Liu F, Shen Y, Li Z. Rapid and Controlled Polymerization of Bio-sourced δ-Caprolactone toward Fully Recyclable Polyesters and Thermoplastic Elastomers. Angew Chem Int Ed Engl 2022; 61:e202201407. [PMID: 35150037 DOI: 10.1002/anie.202201407] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 12/29/2022]
Abstract
The development of chemically recyclable polymers presents the most appealing solution to address the plastics' end-of-use problem. Despite the recent advancements, it is highly desirable to develop chemically recyclable polymers from commercially available monomers to avoid the costly and time-consuming commercialization. In this contribution, we achieve the controlled ring-opening polymerization (ROP) of bio-sourced δ-caprolactone (δCL) using strong base/urea binary catalysts. The obtained PδCL is capable of chemical recycling to δCL in an almost quantitative yield by thermolysis. Sequential ROP of δCL and l-lactide (l-LA) affords well-defined PLLA-b-PδCL-b-PLLA triblock copolymers, which behave as thermoplastic elastomers with excellent elastic recovery, tensile strength and ultimate elongation. The upcycling of PLLA-b-PδCL-b-PLLA to recover ethyl lactate and δCL with high yields is achieved by refluxing with ethanol and then distillation under reduced pressure.
Collapse
Affiliation(s)
- Changjian Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Liying Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qin Yan
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fusheng Liu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yong Shen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.,Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
25
|
Li C, Wang L, Yan Q, Liu F, Shen Y, Li Z. Rapid and Controlled Polymerization of Bio‐sourced δ‐Caprolactone toward Fully Recyclable Polyesters and Thermoplastic Elastomers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Changjian Li
- Qingdao University of Science and Technology College of Chemical Engineering CHINA
| | - Liying Wang
- Qingdao University of Science and Technology College of Chemical Engineering CHINA
| | - Qin Yan
- Qingdao University of Science and Technology College of Polymer Science and Engineering CHINA
| | - Fusheng Liu
- Qingdao University of Science and Technology College of Chemical Engineering CHINA
| | - Yong Shen
- Qingdao University of Science and Technology College of Chemical Engineering CHINA
| | - Zhibo Li
- Qingdao University of Science and Technology College of Polymer Science and Engineering #53 Zhengzhou RoadCCE Building 1101 266042 Qingdao CHINA
| |
Collapse
|
26
|
Haque FM, Ishibashi JSA, Lidston CAL, Shao H, Bates FS, Chang AB, Coates GW, Cramer CJ, Dauenhauer PJ, Dichtel WR, Ellison CJ, Gormong EA, Hamachi LS, Hoye TR, Jin M, Kalow JA, Kim HJ, Kumar G, LaSalle CJ, Liffland S, Lipinski BM, Pang Y, Parveen R, Peng X, Popowski Y, Prebihalo EA, Reddi Y, Reineke TM, Sheppard DT, Swartz JL, Tolman WB, Vlaisavljevich B, Wissinger J, Xu S, Hillmyer MA. Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chem Rev 2022; 122:6322-6373. [PMID: 35133803 DOI: 10.1021/acs.chemrev.1c00173] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transforming how plastics are made, unmade, and remade through innovative research and diverse partnerships that together foster environmental stewardship is critically important to a sustainable future. Designing, preparing, and implementing polymers derived from renewable resources for a wide range of advanced applications that promote future economic development, energy efficiency, and environmental sustainability are all central to these efforts. In this Chemical Reviews contribution, we take a comprehensive, integrated approach to summarize important and impactful contributions to this broad research arena. The Review highlights signature accomplishments across a broad research portfolio and is organized into four wide-ranging research themes that address the topic in a comprehensive manner: Feedstocks, Polymerization Processes and Techniques, Intended Use, and End of Use. We emphasize those successes that benefitted from collaborative engagements across disciplinary lines.
Collapse
Affiliation(s)
- Farihah M Haque
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jacob S A Ishibashi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Claire A L Lidston
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Huiling Shao
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alice B Chang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Christopher J Cramer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Paul J Dauenhauer
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ethan A Gormong
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mengyuan Jin
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hee Joong Kim
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gaurav Kumar
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J LaSalle
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephanie Liffland
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bryce M Lipinski
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Yutong Pang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Riffat Parveen
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Xiayu Peng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yanay Popowski
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Emily A Prebihalo
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yernaidu Reddi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daylan T Sheppard
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeremy L Swartz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - William B Tolman
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Jane Wissinger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shu Xu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
27
|
Cai Z, Liu Y, Tao Y, Zhu JB. Recent Advances in Monomer Design for Recyclable Polymers. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22050235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Panja S, Siehr A, Sahoo A, Siegel RA, Shen W. Biodegradable Elastomers Enabling Thermoprocessing Below 100 °C. Biomacromolecules 2021; 23:163-173. [PMID: 34898190 DOI: 10.1021/acs.biomac.1c01197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biodegradable and biocompatible elastomers are highly desirable for many biomedical applications. Here, we report synthesis and characterization of poly(ε-caprolactone)-co-poly(β-methyl-δ-valerolactone)-co-poly(ε-caprolactone) (PCL-PβMδVL-PCL) elastomers. These materials have strain to failure values greater than 1000%. Tensile set measurements according to an ASTM standard revealed a 98.24% strain recovery 10 min after the force was removed and complete strain recovery 40 min after the force was removed. The PβMδVL midblock is amorphous with a glass-transition temperature of -51 °C, and PCL end blocks are semicrystalline and have a melting temperature in the range of 52-55 °C. Due to their thermoplastic nature and the low melting temperature, these elastomers can be readily processed by printing, extrusion, or hot-pressing at 60 °C. Lysozyme, a model bioactive agent, was incorporated into a PCL-PβMδVL-PCL elastomer through melt blending in an extruder, and the blend was further hot-pressed into films; both processing steps were performed at 60 °C. No loss of lysozyme bioactivity was observed. PCL-PβMδVL-PCL elastomers are as cytocompatible as tissue culture polystyrene in supporting cell viability and cell growth, and they are degradable in aqueous environments through hydrolysis. The degradable, cytocompatible, elastomeric, and thermoplastic properties of PCL-PβMδVL-PCL polymers collectively render them potentially valuable for many applications in the biomedical field, such as medical devices and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Sudipta Panja
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Allison Siehr
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Anasuya Sahoo
- Department of Pharmaceutics, University of Minnesota, 308 SE Harvard St, Room 9-177 Weaver Densford Hall, Minneapolis, Minnesota 55455, United States
| | - Ronald A Siegel
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States.,Department of Pharmaceutics, University of Minnesota, 308 SE Harvard St, Room 9-177 Weaver Densford Hall, Minneapolis, Minnesota 55455, United States
| | - Wei Shen
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
29
|
Siehr A, Flory C, Callaway T, Schumacher RJ, Siegel RA, Shen W. Implantable and Degradable Thermoplastic Elastomer. ACS Biomater Sci Eng 2021; 7:5598-5610. [PMID: 34788004 DOI: 10.1021/acsbiomaterials.1c01123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biodegradable and implantable materials having elastomeric properties are highly desirable for many biomedical applications. Here, we report that poly(lactide)-co-poly(β-methyl-δ-valerolactone)-co-poly(lactide) (PLA-PβMδVL-PLA), a thermoplastic triblock poly(α-ester), has combined favorable properties of elasticity, biodegradability, and biocompatibility. This material exhibits excellent elastomeric properties in both dry and aqueous environments. The elongation at break is approximately 1000%, and stretched specimens completely recover to their original shape after force is removed. The material is degradable both in vitro and in vivo; it degrades more slowly than poly(glycerol sebacate) and more rapidly than poly(caprolactone) in vivo. Both the polymer and its degradation product show high cytocompatibility in vitro. The histopathological analysis of PLA-PβMδVL-PLA specimens implanted in the gluteal muscle of rats for 1, 4, and 8 weeks revealed similar tissue responses as compared with poly(glycerol sebacate) and poly(caprolactone) controls, two widely accepted implantable polymers, suggesting that PLA-PβMδVL-PLA can potentially be used as an implantable material with favorable in vivo biocompatibility. The thermoplastic nature allows this elastomer to be readily processed, as demonstrated by the facile fabrication of the substrates with topographical cues to enhance muscle cell alignment. These properties collectively make this polymer potentially highly valuable for applications such as medical devices and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Allison Siehr
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Craig Flory
- Center for Translational Medicine, University of Minnesota, Phillips-Wangensteen Building 516 Delaware St. SE, MMC 367, Minneapolis, Minnesota 55455, United States
| | - Trenton Callaway
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Robert J Schumacher
- Center for Translational Medicine, University of Minnesota, Phillips-Wangensteen Building 516 Delaware St. SE, MMC 367, Minneapolis, Minnesota 55455, United States.,Experimental and Clinical Pharmacology, University of Minnesota, 7-115 Weaver-Densford Hall, 308 Harvard St. SE, Minneapolis, Minnesota 55455, United States
| | - Ronald A Siegel
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States.,Department of Pharmaceutics, University of Minnesota, 308 Harvard St. SE, Room 9-177 Weaver Densford Hall, Minneapolis, Minnesota 55455, United States.,Institute for Engineering in Medicine, University of Minnesota, 420 Delaware St. SE, 725 Mayo Memorial Building, MMC 609, Minneapolis, Minnesota 55455, United States
| | - Wei Shen
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States.,Institute for Engineering in Medicine, University of Minnesota, 420 Delaware St. SE, 725 Mayo Memorial Building, MMC 609, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
30
|
Wang J, Zhang D, Chu F. Wood-Derived Functional Polymeric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001135. [PMID: 32578276 DOI: 10.1002/adma.202001135] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 05/12/2023]
Abstract
In recent years, tremendous efforts have been dedicated to developing wood-derived functional polymeric materials due to their distinctive properties, including environmental friendliness, renewability, and biodegradability. Thus, the uniqueness of the main components in wood (cellulose and lignin) has attracted enormous interest for both fundamental research and practical applications. Herein, the emerging field of wood-derived functional polymeric materials fabricated by means of macromolecular engineering is reviewed, covering the basic structures and properties of the main components, the design principle to utilize these main components, and the resulting wood-derived functional polymeric materials in terms of elastomers, hydrogels, aerogels, and nanoparticles. In detail, the natural features of wood components and their significant roles in the fabrication of materials are emphasized. Furthermore, the utilization of controlled/living polymerization, click chemistry, dynamic bonds chemistry, etc., for the modification is specifically discussed from the perspective of molecular design, together with their sequential assembly into different morphologies. The functionalities of wood-derived polymeric materials are mainly focused on self-healing and shape-memory abilities, adsorption, conduction, etc. Finally, the main challenges of wood-derived functional polymeric materials fabricated by macromolecular engineering are presented, as well as the potential solutions or directions to develop green and scalable wood-derived functional polymeric materials.
Collapse
Affiliation(s)
- Jifu Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering, SFA, Key Lab of Biomass Energy and Material, Jiangsu Province, No 16, Suojin Wucun, Nanjing, 210042, China
- Institute of Forest New Technology, CAF, No 1, Dongxiaofu Haidian, Beijing, 100091, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering, SFA, Key Lab of Biomass Energy and Material, Jiangsu Province, No 16, Suojin Wucun, Nanjing, 210042, China
- Institute of Forest New Technology, CAF, No 1, Dongxiaofu Haidian, Beijing, 100091, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering, SFA, Key Lab of Biomass Energy and Material, Jiangsu Province, No 16, Suojin Wucun, Nanjing, 210042, China
- Institute of Forest New Technology, CAF, No 1, Dongxiaofu Haidian, Beijing, 100091, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
31
|
Guo M, Huang Y, Chen Z, Zhang Y, Zhang Y, Zhu M, Zhang J, Feng S. Preparation and Properties of Benzylsulfonyl-Containing Silicone Copolymers via Ring-opening Copolymerization of Macroheterocyclosiloxane and Cyclosiloxane. Chemistry 2021; 27:7897-7907. [PMID: 33783909 DOI: 10.1002/chem.202100309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 11/07/2022]
Abstract
Ring-opening copolymerization (ROCP) of benzylsulfonyl macroheterocyclosiloxane (BSM) and five different cyclosiloxanes was systematically investigated. A general approach for the synthesis of benzylsulfonyl-containing silicone copolymers with various substituents, including methyl, vinyl, ethyl, and phenyl, was developed herein. A series of copolymers with variable incorporation (from 6 % to 82 %) of BSM were obtained by modifying the comonomer feed ratio and using KOH as the catalyst in a mixed solvent of dimethylformamide and toluene. The obtained copolymers exhibited various composition-dependent properties and unique viscoelasticity. Notably, the surface and fluorescent characteristics as well as the glass transition temperatures of the copolymers could be tailored by varying the amount of BSM. Unlike typical sulfone-containing polymers, such as poly(olefin sulfone)s, the prepared copolymers displayed excellent thermal and hydrolytic stability. The universal strategy developed in the present study provides a platform for the design of innovative silicone copolymers with adjustable structures and performance.
Collapse
Affiliation(s)
- Mengdong Guo
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education Department, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250199, P. R. China
| | - Yue Huang
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education Department, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250199, P. R. China
| | - Zhongkai Chen
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education Department, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250199, P. R. China
| | - Yangping Zhang
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education Department, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250199, P. R. China
| | - Ya Zhang
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education Department, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250199, P. R. China
| | - Mingquan Zhu
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education Department, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250199, P. R. China
| | - Jie Zhang
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education Department, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250199, P. R. China
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education Department, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250199, P. R. China
| |
Collapse
|
32
|
Warlin N, Nilsson E, Guo Z, Mankar SV, Valsange NG, Rehnberg N, Lundmark S, Jannasch P, Zhang B. Synthesis and melt-spinning of partly bio-based thermoplastic poly(cycloacetal-urethane)s toward sustainable textiles. Polym Chem 2021. [DOI: 10.1039/d1py00450f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Partly bio-based thermoplastic poly(cycloacetal-urethane)s synthesized and melt-spun into textile fibres that can be potentially chemically recycled.
Collapse
Affiliation(s)
- Niklas Warlin
- Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Erik Nilsson
- Plasman, Molndalsvagen 36, 412 63 Gothenburg, Sweden
- Department of Chemistry, Biomaterials and Textile, RISE - Research Institutes of Sweden, Mölndal, SE-43153, Sweden
| | - Zengwei Guo
- Department of Chemistry, Biomaterials and Textile, RISE - Research Institutes of Sweden, Mölndal, SE-43153, Sweden
| | - Smita V. Mankar
- Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Nitin G. Valsange
- Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Nicola Rehnberg
- Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
- Strategic R&D, Bona AB, Box 210 74, 200 21 Malmö, Sweden
| | - Stefan Lundmark
- Perstorp AB, Innovation, Perstorp Industrial Park, 284 80 Perstorp, Sweden
| | - Patric Jannasch
- Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Baozhong Zhang
- Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
33
|
Synthesis, properties, and degradation behaviors of novel polysulfone-polysiloxane multi-block copolymers. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
34
|
Wang J, Chen S, Lin T, Ke J, Chen T, Wu X, Lin C. A catalyst-free and recycle-reinforcing elastomer vitrimer with exchangeable links. RSC Adv 2020; 10:39271-39276. [PMID: 35518413 PMCID: PMC9057420 DOI: 10.1039/d0ra07728c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/13/2020] [Indexed: 11/21/2022] Open
Abstract
Vitrimers, as intriguing polymers, possess exchangeable links in the crosslinking networks, endowing them with the abilities of recycling and reprocessing. However, most of vitrimers are generally fabricated via complex synthesis and polymerization processes. Toxic and unstable exogenous catalysts are inevitably applied to activate the exchange reaction to rearrange the crosslinking networks. These drawbacks limit the widespread applications of vitrimers. Moreover, most reported vitrimers could only partially maintain or severely deteriorate their mechanical properties after recycling. Herein, to solve the above-mentioned problems, for the first time, a catalyst-free and recycle-reinforcing elastomer vitrimer is revealed. By the reactive blending of commercially available epoxidized natural rubber and carboxylated nitrile rubber, the elastomer vitrimer associated with exchangeable β-hydroxyl ester bonds was obtained. Strikingly, the vitrimer exhibits an exceptional recycle-reinforcing property. This work provides a feasible method to fabricate elastomer vitrimers, which promotes the recycling of crosslinking commercial available elastomers.
Collapse
Affiliation(s)
- Jinyun Wang
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 PR China
| | - Shubin Chen
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 PR China
| | - Tengfei Lin
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 PR China
| | - Jinhuang Ke
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 PR China
| | - Tianxiang Chen
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 PR China
| | - Xiao Wu
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 PR China
| | - Cong Lin
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 PR China
| |
Collapse
|
35
|
Park J, Murayama S, Osaki M, Yamaguchi H, Harada A, Matsuba G, Takashima Y. Extremely Rapid Self-Healable and Recyclable Supramolecular Materials through Planetary Ball Milling and Host-Guest Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002008. [PMID: 32844527 DOI: 10.1002/adma.202002008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The host-guest interaction as noncovalent bonds can make polymeric materials tough and flexible based on the reversibility property, which is a promising approach to extend the lifetime of polymeric materials. Supramolecular materials with cyclodextrin and adamantane are prepared by mixing host polymers and guest polymers by planetary ball milling. The toughness of the supramolecular materials prepared by ball milling is approximately 2 to 5 times higher than that of supramolecular materials prepared by casting, which is the conventional method. The materials maintain their mechanical properties during repeated ball milling treatments. They are also applicable as self-healable bulk materials and coatings, and they retain the transparency of the substrate. Moreover, fractured pieces of the materials can be re-adhered within 10 min. Dynamic mechanical analysis, thermal property measurements, small-angle X-ray scattering, and microscopy observations reveal these behaviors in detail. Scars formed on the coating disappear within a few seconds at 60 °C. At the same time, the coating shows scratch resistance due to its good mechanical properties. The ball milling method mixes the host polymer and guest polymer at the nano level to achieve the self-healing and recycling properties.
Collapse
Affiliation(s)
- Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Shunsuke Murayama
- Graduate School of Organic Material Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Motofumi Osaki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Akira Harada
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Go Matsuba
- Graduate School of Organic Material Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
36
|
Schijndel J, Molendijk D, Beurden K, Vermeulen R, Noël T, Meuldijk J. Repeatable molecularly recyclable semi‐aromatic polyesters derived from lignin. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jack Schijndel
- Research Group Biopolymers/Green ChemistryAvans University of Applied Science Breda The Netherlands
- Laboratory of Chemical Reaction Engineering/Polymer Reaction EngineeringEindhoven University of Technology Eindhoven The Netherlands
| | - Dennis Molendijk
- Research Group Biopolymers/Green ChemistryAvans University of Applied Science Breda The Netherlands
| | - Koen Beurden
- Research Group Biopolymers/Green ChemistryAvans University of Applied Science Breda The Netherlands
| | - Romy Vermeulen
- Research Group Biopolymers/Green ChemistryAvans University of Applied Science Breda The Netherlands
| | - Timothy Noël
- Micro Flow Chemistry and Process TechnologyEindhoven University of Technology Eindhoven The Netherlands
| | - Jan Meuldijk
- Laboratory of Chemical Reaction Engineering/Polymer Reaction EngineeringEindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
37
|
Preparation of Degradable Polymenthide and Its Elastomers from Biobased Menthide via Organocatalyzed Ring-opening Polymerization and UV Curing. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2415-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Gregory GL, Sulley GS, Carrodeguas LP, Chen TTD, Santmarti A, Terrill NJ, Lee KY, Williams CK. Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization. Chem Sci 2020; 11:6567-6581. [PMID: 34094122 PMCID: PMC8159401 DOI: 10.1039/d0sc00463d] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene-alt-phthalate)-b-poly(ε-decalactone)-b-poly(cyclohexene-alt-phthalate) {PE-PDL-PE}. The synthesis is accomplished using a zinc(ii)/magnesium(ii) catalyst, in a one-pot procedure where ε-decalactone ring-opening polymerization yielding dihydroxyl telechelic poly(ε-decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85-98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction (f hard = 0.4) and variable molar masses 40-100 kg mol-1; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol-1) and variable hard-block volume fractions (0.12 < f hard < 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼-51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers (f hard < 0.4 and N > 1300) with linear stress-strain relationships, high ultimate tensile strengths (σ b = 1-5 MPa), very high elongations at break (ε b = 1000-1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (-51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability (T d,5% ∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid (para-toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future.
Collapse
Affiliation(s)
- Georgina L Gregory
- Oxford Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Gregory S Sulley
- Oxford Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | | | - Thomas T D Chen
- Oxford Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Alba Santmarti
- Department of Aeronautical Engineering, Imperial College London London SW7 2AZ UK
| | - Nicholas J Terrill
- Diamond Light Source, Harwell Science and Innovation Campus Didcot Harwell OX11 0DE UK
| | - Koon-Yang Lee
- Department of Aeronautical Engineering, Imperial College London London SW7 2AZ UK
| | - Charlotte K Williams
- Oxford Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
39
|
Șucu T, Shaver MP. Inherently degradable cross-linked polyesters and polycarbonates: resins to be cheerful. Polym Chem 2020. [DOI: 10.1039/d0py01226b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We summarise the most recent advances in the synthesis and characterisation of degradable thermosetting polyester and polycarbonates, including partially degradable systems derived from itaconic acid and isosorbide.
Collapse
Affiliation(s)
- Theona Șucu
- School of Natural Sciences
- Department of Materials
- The University of Manchester
- Manchester
- UK
| | - Michael P. Shaver
- School of Natural Sciences
- Department of Materials
- The University of Manchester
- Manchester
- UK
| |
Collapse
|
40
|
Delgove MAF, Wróblewska AA, Stouten J, van Slagmaat CAMR, Noordijk J, De Wildeman SMA, Bernaerts KV. Organocatalyzed ring opening polymerization of regio-isomeric lactones: reactivity and thermodynamics considerations. Polym Chem 2020. [DOI: 10.1039/c9py01777a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Study of the kinetics and thermodynamics of the organocatalyzed ring opening polymerization of a regio-isomeric mixture of β,δ-trimethyl-ε-caprolactones (TMCL).
Collapse
Affiliation(s)
- Marie A. F. Delgove
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Maastricht University
- 6167 RD Geleen
- The Netherlands
| | - Aleksandra A. Wróblewska
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Maastricht University
- 6167 RD Geleen
- The Netherlands
| | - Jules Stouten
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Maastricht University
- 6167 RD Geleen
- The Netherlands
| | | | - Jurrie Noordijk
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Maastricht University
- 6167 RD Geleen
- The Netherlands
| | - Stefaan M. A. De Wildeman
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Maastricht University
- 6167 RD Geleen
- The Netherlands
| | - Katrien V. Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Maastricht University
- 6167 RD Geleen
- The Netherlands
| |
Collapse
|
41
|
Cederholm L, Olsén P, Hakkarainen M, Odelius K. Turning natural δ-lactones to thermodynamically stable polymers with triggered recyclability. Polym Chem 2020. [DOI: 10.1039/d0py00270d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extending the use of natural δ-lactones in circular materials via a synthetic strategy yielding thermodynamically stable polyesters with triggered recyclability.
Collapse
Affiliation(s)
- Linnea Cederholm
- Wallenberg Wood Science Center
- WWSC
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- 100 44 Stockholm
| | - Peter Olsén
- Wallenberg Wood Science Center
- WWSC
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- 100 44 Stockholm
| | - Minna Hakkarainen
- Wallenberg Wood Science Center
- WWSC
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- 100 44 Stockholm
| | - Karin Odelius
- Wallenberg Wood Science Center
- WWSC
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- 100 44 Stockholm
| |
Collapse
|
42
|
Law AC, Stankowski DS, Bomann BH, Suhail S, Salmon KH, Paulson SW, Carney MJ, Robertson NJ. Synthesis and material properties of elastomeric high molecular weight polycycloacetals derived from diglycerol and
meso
‐erythritol. J Appl Polym Sci 2019. [DOI: 10.1002/app.48780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ariah C. Law
- Northland College 1411 Ellis Avenue Ashland Wisconsin 54806
| | | | - Blake H. Bomann
- Department of ChemistryUniversity of Wisconsin‐Eau Claire 105 Garfield Avenue Eau Claire Wisconsin 54701
| | - Shanzay Suhail
- Department of ChemistryUniversity of Wisconsin‐Eau Claire 105 Garfield Avenue Eau Claire Wisconsin 54701
| | - Kyle H. Salmon
- Northland College 1411 Ellis Avenue Ashland Wisconsin 54806
| | | | - Michael J. Carney
- Department of ChemistryUniversity of Wisconsin‐Eau Claire 105 Garfield Avenue Eau Claire Wisconsin 54701
| | | |
Collapse
|
43
|
TL P, S A, VL S, Bindal R. Low temperature AOP studies for spent reverse osmosis module components. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1584223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Prasad TL
- Desalination Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute Anushakthinagar, Mumbai, India
| | - Avilasha S
- Desalination Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sandhya VL
- Desalination Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Rc Bindal
- Desalination Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute Anushakthinagar, Mumbai, India
| |
Collapse
|
44
|
Hatti-Kaul R, Nilsson LJ, Zhang B, Rehnberg N, Lundmark S. Designing Biobased Recyclable Polymers for Plastics. Trends Biotechnol 2019; 38:50-67. [PMID: 31151764 DOI: 10.1016/j.tibtech.2019.04.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 11/30/2022]
Abstract
Several concurrent developments are shaping the future of plastics. A transition to a sustainable plastics system requires not only a shift to fossil-free feedstock and energy to produce the carbon-neutral building blocks for polymers used in plastics, but also a rational design of the polymers with both desired material properties for functionality and features facilitating their recyclability. Biotechnology has an important role in producing polymer building blocks from renewable feedstocks, and also shows potential for recycling of polymers. Here, we present strategies for improving the performance and recyclability of the polymers, for enhancing degradability to monomers, and for improving chemical recyclability by designing polymers with different chemical functionalities.
Collapse
Affiliation(s)
- Rajni Hatti-Kaul
- Biotechnology, Faculty of Engineering, Lund University, SE-221 00 Lund, Sweden.
| | - Lars J Nilsson
- Environmental and Energy Systems Studies, Faculty of Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Baozhong Zhang
- Center for Analysis and Synthesis, Faculty of Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Nicola Rehnberg
- Bona Sweden AB, Murmansgatan 130, Box 210 74, SE-200 21, Malmö, Sweden
| | | |
Collapse
|
45
|
|
46
|
Brutman JP, Fortman DJ, De Hoe GX, Dichtel WR, Hillmyer MA. Mechanistic Study of Stress Relaxation in Urethane-Containing Polymer Networks. J Phys Chem B 2019; 123:1432-1441. [PMID: 30701978 DOI: 10.1021/acs.jpcb.8b11489] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cross-linked polymers are used in many commercial products and are traditionally incapable of recycling via melt reprocessing. Recently, tough and reprocessable cross-linked polymers have been realized by incorporating cross-links that undergo associative exchange reactions, such as transesterification, at elevated temperatures. Here we investigate how cross-linked polymers containing urethane linkages relax stress under similar conditions, which enables their reprocessing. Materials based on hydroxyl-terminated star-shaped poly(ethylene oxide) and poly((±)-lactide) were cross-linked with methylene diphenyldiisocyanate in the presence of stannous octoate catalyst. Polymers with lower plateau moduli exhibit faster rates of relaxation. Reactions of model urethanes suggest that exchange occurs through the tin-mediated exchange of the urethanes that does not require free hydroxyl groups. Furthermore, samples were incapable of elevated-temperature dissolution in a low-polarity solvent (1,2,4-trichlorobenzene) but readily dissolved in a high-polarity aprotic solvent (DMSO, 24 to 48 h). These findings indicate that urethane linkages, which are straightforward to incorporate, impart dynamic character to polymer networks of diverse chemical composition, likely through a urethane reversion mechanism.
Collapse
Affiliation(s)
- Jacob P Brutman
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - David J Fortman
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853 , United States
| | - Guilhem X De Hoe
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - William R Dichtel
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Marc A Hillmyer
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| |
Collapse
|
47
|
Cywar RM, Zhu JB, Chen EYX. Selective or living organopolymerization of a six-five bicyclic lactone to produce fully recyclable polyesters. Polym Chem 2019. [DOI: 10.1039/c9py00190e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A ring-fused γ-butyrolactone can be selectively ring-open polymerized at room temperature by N-heterocyclic carbenes to cyclic polyester or by bifunctional (thio)urea and base pairs in a living fashion to high molecular weight linear polyester that can be organocatalytically and quantitatively recycled at 120 °C.
Collapse
Affiliation(s)
- Robin M. Cywar
- Department of Chemistry
- Colorado State University
- Fort Collins
- USA
| | - Jian-Bo Zhu
- Department of Chemistry
- Colorado State University
- Fort Collins
- USA
| | | |
Collapse
|
48
|
Vaidyula RR, Dugas PY, Rawstron E, Bourgeat-Lami E, Montarnal D. Improved malleability of miniemulsion-based vitrimers through in situ generation of carboxylate surfactants. Polym Chem 2019. [DOI: 10.1039/c9py00644c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vitrimer particles with excellent osmotic and hydrolytic stability were synthesized by miniemulsion polymerization thanks to in situ generation of surfactants.
Collapse
Affiliation(s)
| | - Pierre-Yves Dugas
- Univ Lyon. Université Claude Bernard Lyon 1
- CPE Lyon
- CNRS
- UMR 5265
- Chemistry
| | - Eleanor Rawstron
- Univ Lyon. Université Claude Bernard Lyon 1
- CPE Lyon
- CNRS
- UMR 5265
- Chemistry
| | | | - Damien Montarnal
- Univ Lyon. Université Claude Bernard Lyon 1
- CPE Lyon
- CNRS
- UMR 5265
- Chemistry
| |
Collapse
|
49
|
Affiliation(s)
- Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia–San Sebastian, Spain
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
50
|
Fahnhorst GW, Hoye TR. A Carbomethoxylated Polyvalerolactone from Malic Acid: Synthesis and Divergent Chemical Recycling. ACS Macro Lett 2018; 7:143-147. [PMID: 35610909 DOI: 10.1021/acsmacrolett.7b00889] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report here the synthesis of a novel substituted polyvalerolactone from the renewable monomer, 4-carbomethoxyvalerolactone (CMVL, two steps from malic acid). The polymerization proceeds to high equilibrium monomer conversion to give the semicrystalline carbomethoxylated polyester with low dispersity. The material displays a glass transition temperature of -18 °C and two melting temperatures at 68 and 86 °C. This polymer can be chemically recycled by either of two independent pathways. The first (red) cleanly returns CMVL by a backbiting depolymerization from the hydroxy terminus; the second (blue) uses a base to cleave the polyester in a retro-oxa-Michael fashion. This affords a methacrylate-like monomer that we have polymerized radically to a new polymethacrylate analogue. This is a rare example of a polymer that has been shown to have two independent chemical recycling pathways leading to two different classes of monomers.
Collapse
Affiliation(s)
- Grant W. Fahnhorst
- Department of Chemistry, 207 Pleasant Street, SE, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Thomas R. Hoye
- Department of Chemistry, 207 Pleasant Street, SE, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|