1
|
Guo X, Wang S, Liang J, Xu M. Mitochondrial damage and associated combined toxicity induced by deoxynivalenol and Alternaria toxins co-exposure. Food Chem 2025; 465:142064. [PMID: 39571435 DOI: 10.1016/j.foodchem.2024.142064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024]
Abstract
Deoxynivalenol and Alternaria toxins are common food contaminants posing significant threats to human and animal health. Although their individual toxicities have been extensively studied, the combined effects of co-exposure remain largely unexplored. Our findings revealed combined toxins displayed concentration-dependent synergistic and antagonistic interactions on human hepatocellular carcinoma cells. Co-exposure significantly reduced mitochondrial activity, increased intracellular ROS levels, and activated the mitochondrial-dependent caspase signaling pathway, ultimately leading to enhanced apoptosis. Metabolomics analysis revealed that combined exposure severely disrupted multiple key metabolic processes, including those related to energy (NAD+, adenosine, AMP, and ADP), amino acids (l-aspartate, l-glutamate), and carbohydrate (Glucose-6-phosphate) metabolisms. These findings highlight that co-occurrence exacerbates the disruption of overall metabolic balance, potentially impairing the normal function of cells by affecting energy production, protein synthesis, and cell proliferation. This study underscores the importance of considering combined mycotoxin exposure and provided possible ideas for inhibiting or mitigating toxicity to ensure food safety.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Shuyue Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Jiang Liang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China.
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China.
| |
Collapse
|
2
|
El Aalaoui M, Rammali S, Bencharki B, Sbaghi M. Efficacy of Biorational Insecticides and Entomopathogenic Fungi for Controlling Cassida vittata Vill. (Coleoptera: Chrysomelidae) in Sugar Beet Crops. NEOTROPICAL ENTOMOLOGY 2024; 54:2. [PMID: 39641880 DOI: 10.1007/s13744-024-01215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024]
Abstract
The sugar beet flea beetle, Cassida vittata Vill. (Coleoptera: Chrysomelidae), is a major pest in Morocco's sugar beet crops and is primarily controlled with chemical insecticides despite environmental concerns. Our aim was to assess the impact of three biorational insecticides (spinosad at 30-7.5 cc/hL, mineral oil at 2000-250 cc/hL, and potassium salts of fatty acids at 1500-375 cc/hL) and two entomopathogenic fungi (Alternaria murispora and Alternaria destruens applied at 1.0 × 108, 5.0 × 107, and 2.5 × 107 conidia mL-1) both individually and in combination on C. vittata adults. All treatments were conducted at 25 ± 1 °C, with mortality recorded over 10 days. Conidial germination was highest for A. murispora with mineral oil (98.4%). Alternaria destruens showed consistently high germination across treatments. At 100% concentration, A. murispora + mineral oil and A. destruens + mineral oil treatments achieved 96.67 and 92.00% mortality, respectively. Median survival times (MST) for A. murispora were 6.0 days at 100% concentration, increasing to 10.0 days at lower concentrations, while A. destruens had a consistent 10.0 days MST. LC50 for A. murispora was 1.3 × 107 conidia mL-1 alone, increasing to 2.2 × 107 with spinosad, but remained 1.7 × 107 with potassium salts of fatty acids. For A. destruens, LC50 was 4.2 × 107 conidia mL-1 alone, decreasing to 1.5 × 107 with mineral oil, and 3.1 × 107 with potassium salts of fatty acids. Combining A. murispora with mineral oil and potassium salts of fatty acids enhanced efficacy against C. vittata.
Collapse
Affiliation(s)
| | - Said Rammali
- Faculty of Sciences and Techniques, Lab of Agro-Alimentary and Health, Hassan First Univ of Settat, Settat, Morocco
| | - Bouchaib Bencharki
- Faculty of Sciences and Techniques, Lab of Agro-Alimentary and Health, Hassan First Univ of Settat, Settat, Morocco
| | - Mohamed Sbaghi
- National Institute of Agricultural Research, Rabat, Morocco
| |
Collapse
|
3
|
Wang W, Chen X, Ma J, Li W, Long Y. Activity of Streptomyces globosus OPF-9 against the important pathogen Alternaria longipes and biocontrol mechanisms revealed by multi-omic analyses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106094. [PMID: 39277405 DOI: 10.1016/j.pestbp.2024.106094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/17/2024]
Abstract
Plant diseases caused by fungal pathogens represent main threats to the yield and quality of agricultural products, and Alternaria longipes is one of the most important pathogens in agricultural systems. Biological control is becoming increasingly prevalent in the management of plant diseases due to its environmental compatibility and sustainability. In the present study, a bacterial strain, designated as OPF-9, was shown to effectively inhibit the pathogen A. longipes, which was identified as Streptomyces globosus. The culture conditions for OPF-9 were optimized through a stepwise approach and the fermentation broth acquired displayed an excellent inhibitory activity against A. longipes in vitro and in vivo. Further investigations suggested that the fermentation broth exhibited strong stability under a range of adverse environmental conditions. To reveal the molecular bases of OPF-9 in inhibiting pathogens, the whole-genome sequencing and assembly were conducted on this strain. It showed that the genome size of OPF-9 was 7.668 Mb, containing a chromosome and two plasmids. Multiple clusters of secondary metabolite synthesis genes were identified by genome annotation analysis. In addition, the fermentation broth of strain OPF-9 was analyzed by LC-MS/MS non-target metabolomic assay and the activity of potential antifungal substances was determined. Among the five compounds evaluated, pyrogallol displayed the most pronounced inhibitory activity against A. longipes, which was found to effectively inhibit the mycelial growth of this pathogen. Overall, this study reported, for the first time, a strain of S. globosus that effectively inhibits A. longipes and revealed the underlying biocontrol mechanisms by genomic and metabolomic analyses.
Collapse
Affiliation(s)
- Weizhen Wang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xuetang Chen
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Jiling Ma
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Wenzhi Li
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Youhua Long
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
4
|
Maldonado G, García A, Herrero S, Castaño I, Altmann M, Fischer R, Hernández G. The gene YEF3 function encoding translation elongation factor eEF3 is partially conserved across fungi. Front Microbiol 2024; 15:1438900. [PMID: 39247690 PMCID: PMC11378755 DOI: 10.3389/fmicb.2024.1438900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Translation is a fundamental process of life. In eukaryotes, the elongation step of translation is highly conserved and is driven by eukaryotic translation elongation factors (eEF)1A and eEF2. A significant variation of the elongation is the activity of eukaryotic elongation factor (eEF) 3 in Saccharomyces cerevisiae encoded by the gene yeast elongation factor (YEF3) with orthologs in all fungal species, a few algae, and some protists. In S. cerevisiae, YEF3 is an essential gene and eEF3 plays a critical role in translation elongation, as it promotes binding of the ternary complex acylated-Transfer RNA (tRNA)-eEF1A-Guanosine-5'-triphosphate (GTP) to the aminoacyl (A) site of the ribosome, the release of uncharged tRNAs after peptide translocation, and ribosome recycling. Even though YEF3 was discovered more than 40 years ago, eEF3 has been characterized almost exclusively in S. cerevisiae. Methods We undertook an in vivo genetic approach to assess the functional conservation of eEF3 across phylogenetically distant fungal species. Results We found that eEF3 from Zygosaccharomyces rouxii and Candida glabrata (both belonging to phylum Ascomycota), Ustilago maydis (phylum Basidiomycota), and Gonapodya prolifera (phylum Monoblepharomycota), but not Aspergillus nidulans (phylum Ascomycota), supported the growth of S. cerevisiae lacking the endogenous YEF3 gene. We also proved that eEF3 is an essential gene in the ascomycetes C. glabrata and A. nidulans. Discussion Given that most existing knowledge on fungal translation has only been obtained from S. cerevisiae, our findings beyond this organism showed variability in the elongation process in Fungi. We also proved that eEF3 is essential in pathogenic fungi, opening the possibility of using eEF3 as a target to fight candidiasis.
Collapse
Affiliation(s)
- Giovanna Maldonado
- Laboratory of mRNA and Cancer, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), Mexico City, Mexico
| | - Alejandra García
- Laboratory of mRNA and Cancer, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), Mexico City, Mexico
| | - Saturnino Herrero
- Abteilung Mikrobiologie, Institut für Angewandte Biowissenschaften, Karlsruhe, Germany
| | - Irene Castaño
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C (IPICYT), San Luis Potosí, Mexico
| | - Michael Altmann
- Institut für Biochemie und Molekulare Medizin (IBMM), Universität Bern, Bern, Switzerland
| | - Reinhard Fischer
- Abteilung Mikrobiologie, Institut für Angewandte Biowissenschaften, Karlsruhe, Germany
| | - Greco Hernández
- Laboratory of mRNA and Cancer, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), Mexico City, Mexico
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| |
Collapse
|
5
|
Adeyemo A, Schmidt-Heydt M. Expansion of the multi-locus gene alignment approach to improve identification of the fungal species Alternaria alternata. Int J Food Microbiol 2024; 421:110746. [PMID: 38917488 DOI: 10.1016/j.ijfoodmicro.2024.110746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 06/27/2024]
Abstract
Alternaria alternata is part of a genus comprised of over 600 different species that occur all over the world and cause damage to humans, plants and thereby to the economy. Yet, even though some species are causing tremendous issues, the past years have shown that assigning newly found isolates to known species was rather inconsistent. Most identifications are usually done on the basis of spore morphology, chemotype and molecular markers. In this work we used strains isolated from the wild as well as commercial strains of the DSMZ (German collection of microorganisms and cell cultures) as a reference, to show, that the variation within the Alternaria alternata species is comparable to the variation between different species of the genus Alternaria in regards to spore morphology and chemotype. We compared the different methods of identification and discerned the concatenation of multiple molecular markers as the deciding factor for better identification. Up until this point, usually a concatenation of two or three traditional molecular markers was used. Some of those markers being stronger some weaker. We show that the concatenation of five molecular markers improves the likeliness of a correct assignment, thus a better distinction between the different Alternaria species.
Collapse
Affiliation(s)
- Adetoye Adeyemo
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Karlsruhe, Germany.
| | - Markus Schmidt-Heydt
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Karlsruhe, Germany.
| |
Collapse
|
6
|
Qin Y, Zhou H, Yang Y, Guo T, Zhou Y, Zhang Y, Ma L. Metabolome and Its Mechanism Profiling in the Synergistic Toxic Effects Induced by Co-Exposure of Tenuazonic Acid and Patulin in Caco-2 Cells. Toxins (Basel) 2024; 16:319. [PMID: 39057959 PMCID: PMC11281550 DOI: 10.3390/toxins16070319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Tenuazonic acid (TeA), usually found in cereals, fruits, vegetables, oil crops, and their products, was classified as one of the highest public health problems by EFSA as early as 2011, but it has still not been regulated by legislation due to the limited toxicological profile. Moreover, it has been reported that the coexistence of TeA and patulin (PAT) has been found in certain agricultural products; however, there are no available data about the combined toxicity. Considering that the gastrointestinal tract is the physiological barrier of the body, it would be the first target site at which exogenous substances interact with the body. Thus, we assessed the combined toxicity (cell viability, ROS, CAT, and ATP) in Caco-2 cells using mathematical modeling (Chou-Talalay) and explored mechanisms using non-targeted metabolomics and molecular biology methods. It revealed that the co-exposure of TeA + PAT (12.5 μg/mL + 0.5 μg/mL) can induce enhanced toxic effects and more severe oxidative stress. Mechanistically, the lipid and amino acid metabolisms and PI3K/AKT/FOXO signaling pathways were mainly involved in the TeA + PAT-induced synergistic toxic effects. Our study not only enriches the scientific basis for the development of regulatory policies but also provides potential targets and treatment options for alleviating toxicities.
Collapse
Affiliation(s)
- Yuxian Qin
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
| | - Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Yulian Yang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Ying Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, Chongqing 400715, China
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, China
| |
Collapse
|
7
|
Wang P, Wang H, Wang X, Li Y, Sun J, Wang X, Zhang G. Mycotoxins in grains (products), Gansu province, China and risk assessment. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:101-109. [PMID: 38234288 DOI: 10.1080/19393210.2023.2300652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
This study aimed to estimate the dietary exposure towards mycotoxins of residents in Gansu province, China, from 2014-2020 through surveillance data on mycotoxins in grains and grain products. Fumonisin B1 (FB1), Deoxynivalenol (DON), 3- and 15-Acetyl-deoxynivalenol (3-ADON and 15-ADON), Tentoxin (TEN), Tenuazonic acid (TeA) and Zearalenone (ZEN) in 863 grains and grain products were detected by HPLC-MS and UPLC-MS. DON was the most detected mycotoxin of all samples. For women, the average dietary exposure to DON was 1.49 μg/kg bw/day, with 55.8% of the individuals eating dried noodles exceeding tolerable daily intake. The hazard quotient values were 1.24-12.60, so greater than 1 for DON at the average, 90th percentile, 95th percentile, and maximum levels: 44.6% of the HQ values for men and 45.7% for women were greater than 1.
Collapse
Affiliation(s)
- Ping Wang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Haixia Wang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Xin Wang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Yongjun Li
- Gansu Provincial Centre for Disease Control and Prevention, Lanzhou, People's Republic of China
| | - Jianyun Sun
- Gansu Provincial Centre for Disease Control and Prevention, Lanzhou, People's Republic of China
| | - Xiaoxia Wang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Gexiang Zhang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
8
|
Zhang D, Liu B, Xiao T, Wang Y, Zhao Z, Xie J, Li W, Li R, Cui J. Development and validation of a simultaneous quantitative analytical method for two Alternaria toxins and their metabolites in plasma and urine using ultra-high-performance liquid chromatography-tandem mass spectrometry. J Sep Sci 2024; 47:e2400223. [PMID: 39031838 DOI: 10.1002/jssc.202400223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 07/22/2024]
Abstract
Much more attention has been paid to the contamination of Alternaria toxins because of food contamination and the threat to human health. In this study, an ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed for the simultaneous detection of the prototypical alternariol, alternariol monomethylether, and the metabolites 4-oxhydryl alternariol, and alternariol monomethylether 3-sulfate ammonium salt of Alternaria toxins. The positive samples were used as matrix samples to optimize the different experimental conditions. 0.01% formic acid solution and acetonitrile were used as the mobile phase, and analytes were scanned in negative electron spray ionization under multiple reaction monitoring, and quantitative determination by isotope internal standard method. Application of this method to samples of human plasma and urine showed the detection of the above analytes. The results showed that the recoveries were from 80.40% to 116.4%, intra-day accuracy was between 0.6% and 8.0%, and inter-day accuracy was between 1.1% and 12.1%. The limit of detection of the four analytes ranged from 0.02 to 0.6 µg/L in urine, and 0.02 to 0.5 µg/L in plasma, respectively. Thus, the developed method was rapid and accurate for the simultaneous detection of analytes and provided a theoretical basis for the risk assessment of Alternaria toxins for human exposure.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
| | - Bolin Liu
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Department of Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
| | - Tingting Xiao
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yan Wang
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Ziwei Zhao
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Ji'an Xie
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Weidong Li
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Department of Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
| | - Rui Li
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Jie Cui
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| |
Collapse
|
9
|
Zhang Y, Zhang N, Gao C, Cheng Y, Guan Y, Wei C, Guan J. The Fungal Diversity and Potential Pathogens Associated with Postharvest Fruit Rot of 'Huangguan' Pear ( Pyrus bretschneideri) in Hebei Province, China. PLANT DISEASE 2024; 108:1382-1390. [PMID: 38115565 DOI: 10.1094/pdis-08-23-1528-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Postharvest fruit rot caused by pathogens is a serious problem in the pear industry. This study investigated the fungal diversity and main pathogens and identified a new pathogen in the stored 'Huangguan' pear (Pyrus bretschneideri Rehd.), the dominant pear variety in northern China. We sampled 20 refrigeration houses from five main producing regions in Hebei Province and used Illumina sequencing technology to detect the fungal composition. Alternaria (56.3%) was the most abundant fungus, followed by Penicillium (9.2%) and Monilinia (6.2%). We also isolated and identified nine strains of Alternaria and four strains of Penicillium. Moreover, we observed a new postharvest fruit disease in 'Huangguan' pear caused by Stemphylium eturmiunum, which was confirmed by phylogenetic analysis by combining the sequences of three conserved genes, including internal transcribed spacer, gapdh, and calmodulin. This study marks the first documentation of S. eturmiunum causing fruit rot in 'Huangguan' pears, offering valuable insights for identifying and controlling this newly identified postharvest disease.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, Hebei 050051, China
| | - Nan Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
| | - Congcong Gao
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
| | - Yudou Cheng
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
| | - Yeqing Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
| | - Chuangqi Wei
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
| | - Junfeng Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, Hebei 050051, China
| |
Collapse
|
10
|
Zhu X, Zhang S, Yu Y, Li S, Yang C, Chang Y. Inhibitory Effect of L-Methionine on Alternaria alternata Based on Metabolomics Analysis. J Fungi (Basel) 2024; 10:151. [PMID: 38392823 PMCID: PMC10890048 DOI: 10.3390/jof10020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
Alternaria alternata is the main pathogenic fungus of postharvest black spots in fruits and vegetables. This study aimed to explore the antifungal activity of methionine on A. alternata in vitro and to reveal related antifungal mechanisms through a metabolomics analysis. The results showed that the inhibitory effects of L-methionine (Met) treatment on mycelium growth, spore germination, and the germ tube elongation of A. alternata were enhanced with an increase in the Met concentration, but the inhibitory effects decreased when the Met concentration was higher than 50 mmolL-1. The results of propidium iodide staining and scanning electron microscopy showed that the Met treatment damaged the plasma membrane integrity of the A. alternata spores and caused an irreversible deformation of mycelium. In addition, after the Met treatment, the leakage of electrolytes, nucleic acid, and proteins in the A. alternata cells was significantly higher than that in the control group, indicating that the Met treatment increased the permeability of the cell membranes. Eighty-one different metabolites, divided into seven categories, were identified through the metabolomics analysis, including forty-three downregulated metabolites and thirty-eight upregulated metabolites. Among them, these differential metabolites were mainly involved in amino acid synthesis and metabolism, the pentose phosphate pathway, and the TCA cycle. Therefore, the antifungal effect of the Met treatment on A. alternata was mainly to damage the integrity of the cell membranes, make nucleic acid and protein contents leak, and affect the TCA cycle, carbohydrate metabolism, amino acid synthesis metabolism, and the metabolic pathways associated with cell membrane biosynthesis. Thus, the growth and development of A. alternata were inhibited. The research enriched the investigation of the effect of the antifungal mechanism of Met treatment on A. alternata and provided a theoretical basis for the application of Met to prevent and treat postharvest black spots in fruits and vegetables.
Collapse
Affiliation(s)
- Xianran Zhu
- College of Food Science, Shanxi Normal University, Taiyuan 030000, China
| | - Shaoying Zhang
- College of Food Science, Shanxi Normal University, Taiyuan 030000, China
| | - Youwei Yu
- College of Food Science, Shanxi Normal University, Taiyuan 030000, China
| | - Shengwang Li
- College of Food Science, Shanxi Normal University, Taiyuan 030000, China
| | - Chao Yang
- College of Food Science, Shanxi Normal University, Taiyuan 030000, China
| | - Yuan Chang
- College of Food Science, Shanxi Normal University, Taiyuan 030000, China
| |
Collapse
|
11
|
Ahmad T, Xing F, Cao C, Liu Y. Characterization and toxicological potential of Alternaria alternata associated with post-harvest fruit rot of Prunus avium in China. Front Microbiol 2024; 15:1273076. [PMID: 38380098 PMCID: PMC10877066 DOI: 10.3389/fmicb.2024.1273076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Post-harvest fruit rot caused by Alternaria species is one of the most important threats to the fruit industry. Post-harvest rot on sweet cherry (Prunus avium) fruit was observed in the fruit markets of the Haidian district of Beijing, China. The fungal isolates obtained from the infected sweet cherry fruits matched the descriptions of Alternaria alternata based on the morphology and multi-gene (ITS, endo-PG, and Alta1) sequence analysis. Pathogenicity tests indicated that ACT-3 was the most virulent isolate, exhibiting typical post-harvest fruit rot symptoms. Physiological studies revealed that the optimal conditions for the growth of ACT-3 were temperature of 28°C, water activity of 0.999, and pH of 8 with 87, 85, and 86 mm radial growth of ACT-3 on a potato dextrose agar (PDA) medium, respectively, at 12 days post-inoculation (dpi). Moreover, the fungus showed the highest growth on a Martin agar medium (MAM) modified (85 mm) and a PDA medium (84 mm) at 12 dpi. The proliferation of the fungus was visualized inside the fruit tissues by confocal and scanning electron microscope (SEM), revealing the invasion and destruction of fruit tissues. Alternaria mycotoxins, tenuazonic acid (TeA), and alternariol (AOH) were detected in five representative isolates by HPLC analysis. The highest concentrations of TeA (313 μg/mL) and AOH (8.9 μg/mL) were observed in ACT-6 and ACT-3 isolates, respectively. This study is the first to present a detailed report on the characteristics and proliferation of A. alternata associated with sweet cherry fruit rot and the detection of toxic metabolites.
Collapse
Affiliation(s)
- Tanvir Ahmad
- School of Food Science and Engineering, Foshan University, National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan, Guangdong, China
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuguo Xing
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changyu Cao
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong, China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University, National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan, Guangdong, China
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Ayeni K, Seki D, Pjevac P, Hausmann B, Krausová M, Braun D, Wisgrill L, Berry D, Warth B, Ezekiel CN. Biomonitoring of Dietary Mycotoxin Exposure and Associated Impact on the Gut Microbiome in Nigerian Infants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2236-2246. [PMID: 38252460 PMCID: PMC10851434 DOI: 10.1021/acs.est.3c07786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Mycotoxins are toxic chemicals that adversely affect human health. Here, we assessed the influence of mycotoxin exposure on the longitudinal development of early life intestinal microbiota of Nigerian neonates and infants (NIs). Human biomonitoring assays based on liquid chromatography tandem mass spectrometry were applied to quantify mycotoxins in breast milk (n = 68) consumed by the NIs, their stool (n = 82), and urine samples (n = 15), which were collected longitudinally from month 1-18 postdelivery. Microbial community composition was characterized by 16S rRNA gene amplicon sequencing of stool samples and was correlated to mycotoxin exposure patterns. Fumonisin B1 (FB1), FB2, and alternariol monomethyl ether (AME) were frequently quantified in stool samples between months 6 and 18. Aflatoxin M1 (AFM1), AME, and citrinin were quantified in breast milk samples at low concentrations. AFM1, FB1, and ochratoxin A were quantified in urine samples at relatively high concentrations. Klebsiella and Escherichia/Shigella were dominant in very early life stool samples (month 1), whereas Bifidobacterium was dominant between months 3 and 6. The total mycotoxin levels in stool were significantly associated with NIs' gut microbiome composition (PERMANOVA, p < 0.05). However, no significant correlation was observed between specific microbiota and the detection of certain mycotoxins. Albeit a small cohort, this study demonstrates that mycotoxins may influence early life gut microbiome composition.
Collapse
Affiliation(s)
- Kolawole
I. Ayeni
- Department
of Microbiology, Babcock University, Ilishan Remo PMB 4003, Ogun State, Nigeria
- University
of Vienna, Faculty of Chemistry, Department of Food Chemistry and
Toxicology, Währinger
Straße 38, Vienna 1090, Austria
| | - David Seki
- Joint
Microbiome Facility of the Medical University of Vienna and the University
of Vienna, Djerassiplatz 1, Vienna 1030, Austria
- Division
of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Petra Pjevac
- Joint
Microbiome Facility of the Medical University of Vienna and the University
of Vienna, Djerassiplatz 1, Vienna 1030, Austria
- Department
of Microbiology and Ecosystem Science, Centre for Microbiology and
Environmental Systems Science, University
of Vienna, Djerassiplatz
1, Vienna 1030, Austria
| | - Bela Hausmann
- Joint
Microbiome Facility of the Medical University of Vienna and the University
of Vienna, Djerassiplatz 1, Vienna 1030, Austria
- Division
of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Magdaléna Krausová
- University
of Vienna, Faculty of Chemistry, Department of Food Chemistry and
Toxicology, Währinger
Straße 38, Vienna 1090, Austria
| | - Dominik Braun
- University
of Vienna, Faculty of Chemistry, Department of Food Chemistry and
Toxicology, Währinger
Straße 38, Vienna 1090, Austria
| | - Lukas Wisgrill
- Division
of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive
Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna 1090, Austria
- Exposome
Austria, Research Infrastructure and National EIRENE Node, Vienna 1090, Austria
| | - David Berry
- Joint
Microbiome Facility of the Medical University of Vienna and the University
of Vienna, Djerassiplatz 1, Vienna 1030, Austria
- Department
of Microbiology and Ecosystem Science, Centre for Microbiology and
Environmental Systems Science, University
of Vienna, Djerassiplatz
1, Vienna 1030, Austria
| | - Benedikt Warth
- University
of Vienna, Faculty of Chemistry, Department of Food Chemistry and
Toxicology, Währinger
Straße 38, Vienna 1090, Austria
- Exposome
Austria, Research Infrastructure and National EIRENE Node, Vienna 1090, Austria
| | - Chibundu N. Ezekiel
- Department
of Microbiology, Babcock University, Ilishan Remo PMB 4003, Ogun State, Nigeria
- University
of Natural Resources and Life Sciences Vienna (BOKU), Department of
Agrobiotechnology (IFA-Tulln), Institute for Bioanalytics and Agro-Metabolomics, Konrad-LorenzStr. 20, Tulln 3430, Austria
| |
Collapse
|
13
|
Behrens AM, Sulyok M, Krska R, Hennies I, Ern A, Blechmann C, Meyer JC. Occurrence of Alternaria secondary metabolites in milling oats and its de-hulled fractions from harvest years 2017 to 2021. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:188-200. [PMID: 38190265 DOI: 10.1080/19440049.2023.2294003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024]
Abstract
In this study, secondary metabolites produced by Alternaria were investigated for their presence in milling oats. For this purpose, pre-cleaned milling oat samples (n = 193), intended for human consumption, out of harvest years 2017 to 2021 originating from different northern European countries were analysed by LC-MS/MS. Alternariol and alternariol methyl ether were positively identified in 38% of the samples with mean values of 2.1 µg/kg and 1.2 µg/kg, respectively. The highest concentrations of 50.5 µg/kg alternariol and 24.2 µg/kg of alternariol methyl ether were detected in a Latvian sample. Tenuazonic acid was found in 45% of all samples, with a mean concentration of 28.9 µg/kg and a maximum concentration of 1430 µg/kg, also in a Latvian sample. Tentoxin was detected in 49% of all samples with a mean value of 1.7 µg/kg. The Alternaria metabolite most frequently detected in 96% of all samples was infectopyrone with a mean concentration of 593 µg/kg and a maximum value reaching up to 3990 µg/kg in a German sample. In addition, eight oat samples were selected to investigate to what extent the Alternaria metabolites are distributed between the oat hulls and the oat kernels. After de-hulling, approximately 23% of Alternaria metabolites were found in the remaining oat kernels. According to the results, alternariol, infectopyrone and altersetin were present in the kernels with the lowest proportion of 10%-20% on average, respectively. The values for tentoxin showed that about 60% of tentoxin was contained in the hulls, while almost 40% remained in the oat kernel. This suggests that potential health risks posed by Alternaria secondary metabolites and metabolites of other fungal genera in milling oats can be reduced by de-hulling.
Collapse
Affiliation(s)
- Anna Marie Behrens
- H. & J. Brüggen KG, Lübeck, Germany
- Department of Agriculture and Food Sciences, University Neubrandenburg, Neubrandenburg, Germany
| | - Michael Sulyok
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rudolf Krska
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Austria
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | | | | | | | | |
Collapse
|
14
|
Deng J, Huang JC, Xu ZJ, Liu Y, Karrow NA, Liu M, Sun LH. Remediation Strategies for Mycotoxins in Animal Feed. Toxins (Basel) 2023; 15:513. [PMID: 37755939 PMCID: PMC10535302 DOI: 10.3390/toxins15090513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Mycotoxins occur widely in various animal feedstuffs, with more than 500 mycotoxins identified so far [...].
Collapse
Affiliation(s)
- Jiang Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.)
| | - Jun-Cheng Huang
- Hubei Jin Xu Agricultural Development Limited by Share Ltd., Wuhan 430015, China
| | - Ze-Jing Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.)
| | - Ying Liu
- Tianjin Animal Disease Prevention and Control Center, Tianjin 300402, China
| | | | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.)
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.)
| |
Collapse
|
15
|
Mao X, Chen W, Wu H, Shao Y, Zhu Y, Guo Q, Li Y, Xia L. Alternaria Mycotoxins Analysis and Exposure Investigation in Ruminant Feeds. Toxins (Basel) 2023; 15:495. [PMID: 37624252 PMCID: PMC10467096 DOI: 10.3390/toxins15080495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Alternaria mycotoxins are a class of important, agriculture-related hazardous materials, and their contamination in ruminant feeds and products might bring severe toxic effects to animals and even human beings. To control these hazardous compounds, a reliable and sensitive LC-MS/MS (liquid chromatography-tandem mass spectrometry) method was established for simultaneous determination of six target Alternaria mycotoxins in ruminant feeds, including ALT (Altenuene), AME (Alternariol Monomethyl Ether), AOH (Alternariol), ATX-Ι (Altertoxins I), TeA (Tenuazonic Acid), and TEN (Tentoxin). This developed analytical method was used for the determination of the presence of these substances in cattle and sheep feeds in Xinjiang Province, China. The results revealed that Alternaria mycotoxins are ubiquitously detected in feed samples. Especially, AME, AOH, TeA, and TEN are the most frequently found mycotoxins with a positive rate over 40% and a concentration range of 4~551 µg/kg. The proposed method could be applied for exposure investigation of Alternaria mycotoxins in ruminant feeds and for the reduction in the health risk to animals and even consumers.
Collapse
Affiliation(s)
- Xin Mao
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| | - Wanzhao Chen
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| | - Huimin Wu
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| | - Ying Shao
- College of Life Science, Yantai University, Yantai 264000, China; (Y.S.); (Y.Z.)
| | - Ya’ning Zhu
- College of Life Science, Yantai University, Yantai 264000, China; (Y.S.); (Y.Z.)
| | - Qingyong Guo
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai 264000, China; (Y.S.); (Y.Z.)
| | - Lining Xia
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| |
Collapse
|
16
|
Mukhtar K, Nabi BG, Ansar S, Bhat ZF, Aadil RM, Khaneghah AM. Mycotoxins and consumers' awareness: Recent progress and future challenges. Toxicon 2023:107227. [PMID: 37454753 DOI: 10.1016/j.toxicon.2023.107227] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
While food shortages have become an important challenge, providing safe food resources is a point of interest on a global scale. Mycotoxins are secondary metabolites that are formed through various fungi species. They are mainly spread through diets such as food or beverages. About one quarter of the world's food is spoiled with mycotoxins. As this problem is not resolved, it represents a significant threat to global food security. Besides the current concerns regarding the contamination of food items by these metabolites, the lack of knowledge by consumers and their possible growth and toxin production attracted considerable attention. While globalization provides a favorite condition for some countries, food security still is challenging for most countries. There are various approaches to reducing the mycotoxigenic fungi growth and formation of mycotoxins in food, include as physical, chemical, and biological processes. The current article will focus on collecting data regarding consumers' awareness of mycotoxins. Furthermore, a critical overview and comparison among different preventative approaches to reduce risk by consumers will be discussed. Finally, the current effect of mycotoxins on global trade, besides future challenges faced by mycotoxin contamination on food security, will be discussed briefly.
Collapse
Affiliation(s)
- Kinza Mukhtar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Brera Ghulam Nabi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sadia Ansar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | | | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland; Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan.
| |
Collapse
|
17
|
Shukla S, Singh P, Shukla S, Ali S, Didwania N. Scope of Onsite, Portable Prevention Diagnostic Strategies for Alternaria Infections in Medicinal Plants. BIOSENSORS 2023; 13:701. [PMID: 37504100 PMCID: PMC10377195 DOI: 10.3390/bios13070701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Medicinal plants are constantly challenged by different biotic inconveniences, which not only cause yield and economic losses but also affect the quality of products derived from them. Among them, Alternaria pathogens are one of the harmful fungal pathogens in medicinal plants across the globe. Therefore, a fast and accurate detection method in the early stage is needed to avoid significant economic losses. Although traditional methods are available to detect Alternaria, they are more time-consuming and costly and need good expertise. Nevertheless, numerous biochemical- and molecular-based techniques are available for the detection of plant diseases, but their efficacy is constrained by differences in their accuracy, specificity, sensitivity, dependability, and speed in addition to being unsuitable for direct on-field studies. Considering the effect of Alternaria on medicinal plants, the development of novel and early detection measures is required to detect causal Alternaria species accurately, sensitively, and rapidly that can be further applied in fields to speed up the advancement process in detection strategies. In this regard, nanotechnology can be employed to develop portable biosensors suitable for early and correct pathogenic disease detection on the field. It also provides an efficient future scope to convert innovative nanoparticle-derived fabricated biomolecules and biosensor approaches in the diagnostics of disease-causing pathogens in important medicinal plants. In this review, we summarize the traditional methods, including immunological and molecular methods, utilized in plant-disease diagnostics. We also brief advanced automobile and efficient sensing technologies for diagnostics. Here we are proposing an idea with a focus on the development of electrochemical and/or colorimetric properties-based nano-biosensors that could be useful in the early detection of Alternaria and other plant pathogens in important medicinal plants. In addition, we discuss challenges faced during the fabrication of biosensors and new capabilities of the technology that provide information regarding disease management strategies.
Collapse
Affiliation(s)
- Sadhana Shukla
- Manav Rachna Centre for Medicinal Plant Pathology, Manav Rachna International Institute of Research and Studies, Faridabad 121004, India
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurgaon 122003, India
| | - Pushplata Singh
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurgaon 122003, India
| | - Shruti Shukla
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurgaon 122003, India
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Nidhi Didwania
- Manav Rachna Centre for Medicinal Plant Pathology, Manav Rachna International Institute of Research and Studies, Faridabad 121004, India
| |
Collapse
|
18
|
Moya-Cavas T, Navarro-Villoslada F, Lucas Urraca J, Antonio Serrano L, Orellana G, Cruz Moreno-Bondi M. Simultaneous determination of zearalenone and alternariol mycotoxins in oil samples using mixed molecularly imprinted polymer beads. Food Chem 2023; 412:135538. [PMID: 36738530 DOI: 10.1016/j.foodchem.2023.135538] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
This work reports the optimization of a method using Molecularly Imprinted Polymers (MIPs) for the simultaneous determination of zearalenone and alternariol mycotoxins. The method was optimized using a chemometric approach where in the optimized conditions, the cartridges with a mixture (50:50, w/w) of both MIPs, were loaded with 30 mL of sample, washed with 2 mL of ACN/water (20/80, v/v) and eluted with 2.5 mL of trifluoroacetic acid/MeOH (3/97, v/v). The extracts were analyzed by HPLC coupled to a fluorescence detector (FLD). The optimized method has been applied and validated to the analysis of the mycotoxins in maize, sunflower and olive oils samples with a limit of detection of 5 and 2 µg kg-1, respectively. Recoveries were in the range of 94 % to 108 % (RSD < 6 %) for zearalenone and 92 % to 113 % (RSD < 5 %) for alternariol. The results were confirmed by HPLC-MS/MS.
Collapse
Affiliation(s)
- Tamara Moya-Cavas
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias, 2, 28040 Madrid, Spain
| | - Fernando Navarro-Villoslada
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias, 2, 28040 Madrid, Spain.
| | - Javier Lucas Urraca
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias, 2, 28040 Madrid, Spain.
| | - Luis Antonio Serrano
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias, 2, 28040 Madrid, Spain
| | - Guillermo Orellana
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias, 2, 28040 Madrid, Spain
| | - María Cruz Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias, 2, 28040 Madrid, Spain
| |
Collapse
|
19
|
Soares Mateus AR, Barros S, Pena A, Sanches-Silva A. The potential of citrus by-products in the development of functional food and active packaging. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 107:41-90. [PMID: 37898542 DOI: 10.1016/bs.afnr.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Food by-product valorization has become an important research area for promoting the sustainability of the food chain. Citrus fruits are among the most widely cultivated fruit crops worldwide. Citrus by-products, including pomace, seeds, and peels (flavedo and albedo), are produced in large amounts each year. Those by-products have an important economic value due to the high content on bioactive compounds, namely phenolic compounds and carotenoids, and are considered a valuable bio-resource for potential applications in the food industry. However, green extraction techniques are required to ensure their sustainability. This chapter addresses the main components of citrus by-products and their recent applications in food products and active food packaging, towards a circular economy. In addition, the concern regarding citrus by-products contamination (e.g. with pesticides residues and mycotoxins) is also discussed.
Collapse
Affiliation(s)
- Ana Rita Soares Mateus
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal; University of Coimbra, Pharmacy Faculty, Polo III, Azinhaga de Stª Comba, Coimbra, Portugal; LAQV, REQUIMTE, Food Science and Pharmacology Laboratory, University of Coimbra, Pharmacy Faculty, Polo III, Azinhaga de Stª Comba, Coimbra, Portugal; Animal Science Studies Centre (CECA), ICETA, University of Porto, Apartado, Porto, Portugal
| | - Silvia Barros
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Angelina Pena
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal; LAQV, REQUIMTE, Food Science and Pharmacology Laboratory, University of Coimbra, Pharmacy Faculty, Polo III, Azinhaga de Stª Comba, Coimbra, Portugal
| | - Ana Sanches-Silva
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal; University of Coimbra, Pharmacy Faculty, Polo III, Azinhaga de Stª Comba, Coimbra, Portugal; Animal Science Studies Centre (CECA), ICETA, University of Porto, Apartado, Porto, Portugal.
| |
Collapse
|
20
|
Tolosa J, Serrano Candelas E, Vallés Pardo JL, Goya A, Moncho S, Gozalbes R, Palomino Schätzlein M. MicotoXilico: An Interactive Database to Predict Mutagenicity, Genotoxicity, and Carcinogenicity of Mycotoxins. Toxins (Basel) 2023; 15:355. [PMID: 37368656 PMCID: PMC10301946 DOI: 10.3390/toxins15060355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by certain filamentous fungi. They are common contaminants found in a wide variety of food matrices, thus representing a threat to public health, as they can be carcinogenic, mutagenic, or teratogenic, among other toxic effects. Several hundreds of mycotoxins have been reported, but only a few of them are regulated, due to the lack of data regarding their toxicity and mechanisms of action. Thus, a more comprehensive evaluation of the toxicity of mycotoxins found in foodstuffs is required. In silico toxicology approaches, such as Quantitative Structure-Activity Relationship (QSAR) models, can be used to rapidly assess chemical hazards by predicting different toxicological endpoints. In this work, for the first time, a comprehensive database containing 4360 mycotoxins classified in 170 categories was constructed. Then, specific robust QSAR models for the prediction of mutagenicity, genotoxicity, and carcinogenicity were generated, showing good accuracy, precision, sensitivity, and specificity. It must be highlighted that the developed QSAR models are compliant with the OECD regulatory criteria, and they can be used for regulatory purposes. Finally, all data were integrated into a web server that allows the exploration of the mycotoxin database and toxicity prediction. In conclusion, the developed tool is a valuable resource for scientists, industry, and regulatory agencies to screen the mutagenicity, genotoxicity, and carcinogenicity of non-regulated mycotoxins.
Collapse
Affiliation(s)
- Josefa Tolosa
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés, Burjasot, 46100 Valencia, Spain
| | - Eva Serrano Candelas
- ProtoQSAR S.L., CEEI-Technology Park of Valencia, Av. Benjamín Franklin, 12, 46980 Paterna, Spain; (E.S.C.); (J.L.V.P.); (A.G.); (S.M.); (R.G.)
| | - José Luis Vallés Pardo
- ProtoQSAR S.L., CEEI-Technology Park of Valencia, Av. Benjamín Franklin, 12, 46980 Paterna, Spain; (E.S.C.); (J.L.V.P.); (A.G.); (S.M.); (R.G.)
| | - Addel Goya
- ProtoQSAR S.L., CEEI-Technology Park of Valencia, Av. Benjamín Franklin, 12, 46980 Paterna, Spain; (E.S.C.); (J.L.V.P.); (A.G.); (S.M.); (R.G.)
| | - Salvador Moncho
- ProtoQSAR S.L., CEEI-Technology Park of Valencia, Av. Benjamín Franklin, 12, 46980 Paterna, Spain; (E.S.C.); (J.L.V.P.); (A.G.); (S.M.); (R.G.)
| | - Rafael Gozalbes
- ProtoQSAR S.L., CEEI-Technology Park of Valencia, Av. Benjamín Franklin, 12, 46980 Paterna, Spain; (E.S.C.); (J.L.V.P.); (A.G.); (S.M.); (R.G.)
- Moldrug AI Systems S.L., Olimpia Arozena Torres, 45, 46018 Valencia, Spain
| | - Martina Palomino Schätzlein
- ProtoQSAR S.L., CEEI-Technology Park of Valencia, Av. Benjamín Franklin, 12, 46980 Paterna, Spain; (E.S.C.); (J.L.V.P.); (A.G.); (S.M.); (R.G.)
| |
Collapse
|
21
|
Han X, Xu W, Wang L, Zhang R, Ye J, Zhang J, Xu J, Wu Y. Natural Occurrence of Alternaria Toxins in Citrus-Based Products Collected from China in 2021. Toxins (Basel) 2023; 15:toxins15050325. [PMID: 37235359 DOI: 10.3390/toxins15050325] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
A total of 181 citrus-based products, including dried fruits, canned fruits, and fruit juices, collected from China and from abroad in 2021 were analyzed for the four Alternaria toxins (ALTs): alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN), and tenuazonic acid (TeA) via ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS). Although the concentrations of the four ALTs varied by product and geographically, TeA was the predominant toxin followed by AOH, AME, and TEN. Products made in China showed higher levels of ALTs than those made abroad. Maximum levels of TeA, AOH, and AME in analyzed domestic samples were 4.9-fold, 1.3-fold, and 1.2-fold, respectively, higher than those in imported products. Furthermore, 83.4% (151/181) of the analyzed citrus-based products were contaminated with at least two or more ALTs. There were significant positive correlations between AOH and AME, AME and TeA, and TeA and TEN in all analyzed samples. More importantly, the solid and the condensed liquid products had higher concentrations of ALTs than the semi-solid product samples, as well as tangerines, pummelos, and grapefruits compared to the other kinds of citrus-based products. In conclusion, co-contamination with ALTs in commercially available Chinese citrus-based products was universal. Extensive and systematic surveillance of ALTs in citrus-based products, both domestic and imported, is required to obtain more scientific data for the determination of the maximum allowable concentrations of ALTs in China.
Collapse
Affiliation(s)
- Xiaomin Han
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Wenjing Xu
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Luxinyi Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100101, China
| | - Ruina Zhang
- Department of Dermatology, Beijing Friendship Hospital Capital Medical University, Beijing 100050, China
| | - Jin Ye
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Jing Zhang
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jin Xu
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yu Wu
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| |
Collapse
|
22
|
Jamiołkowska A, Skwaryło-Bednarz B, Kowalski R, Yildirim I, Patkowska E. Antifungal Potency of Amaranth Leaf Extract: An In Vitro Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:1723. [PMID: 37111946 PMCID: PMC10143692 DOI: 10.3390/plants12081723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Plant diseases are a serious problem for agricultural crops, the food industry and human health. Significant efforts have been made in recent years to find natural products that could reduce the growth of plant pathogens and improve food quality. At present, there is an increased interest in plants as a source of biological active compounds that can protect crops from diseases. Important sources of these phytochemicals are lesser-known pseudocereals such as amaranth. The objective of this study was to determine the antifungal activity of leaf extracts of four amaranth species (A. cruentus, A. hypochondriacus × hybridus, A. retroflexus and A. hybridus). The antifungal potency of amaranth extracts was analyzed against selected strains of fungi. The results suggested that the antimicrobial properties of the tested extracts varied depending on the amaranth species and the fungal strain. The studied extracts inhibited the growth of Fusarium equiseti, Rhizoctonia solani, Trichoderma harzianum and Alternaria alternata. A lower inhibitory effect of the extracts was recorded against F. solani, while no inhibitory effect was observed against F. oxysporum and Colletotrichum coccodes.
Collapse
Affiliation(s)
- Agnieszka Jamiołkowska
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland;
| | - Barbara Skwaryło-Bednarz
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland;
| | - Radosław Kowalski
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Ismet Yildirim
- Department of Plant Protection, Faculty of Agriculture and Natural Sciences, Düzce University, 81000 Düzce, Turkey;
| | - Elżbieta Patkowska
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland;
| |
Collapse
|
23
|
You Y, Hu Q, Liu N, Xu C, Lu S, Xu T, Mao X. Metabolite Analysis of Alternaria Mycotoxins by LC-MS/MS and Multiple Tools. Molecules 2023; 28:molecules28073258. [PMID: 37050021 PMCID: PMC10096951 DOI: 10.3390/molecules28073258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Alternaria fungi are widely distributed plant pathogens that invade crop products, causing significant economic damage. In addition, toxic secondary metabolites produced by the fungi can also endanger consumers. Many of these secondary metabolites are chemically characterized as mycotoxins. In this study, Q Exactive Orbitrap mass spectrometry was used for the non-targeted analysis of the metabolome of seven Alternaria isolates cultured on Potato Carrot Agar (PCA), Potato Dextrose Agar (PDA) and Potato Sucrose Agar (PSA) medium. Due to the difficulty of detecting modified toxins, an analytical strategy with multiple visual analysis tools was also used to determine the presence of sulfate conjugated toxins, as well as to visualize the molecular network of Alternaria toxins. The results show that PSA medium exhibits more advantageous properties for the culture of Alternaria, with more toxigenic species and quantities and more obvious metabolic pathways. Based on high-resolution tandem mass spectrometry (MS/MS) data, the mycotoxins and their metabolites were mainly clustered into four groups: alternariol (AOH)/alternariol monomethyl ether (AME)/altenusin (ALU)/altenuene (ALT)/dehydroaltenusin (DHA)/Desmethyldehydroaltenusin (DMDA) families, Altertoxin-I (ATX-I) family, tentoxin (TEN) family and tenuazonic acid (TeA) family. Moreover, the PSA medium is more suitable for the accumulation of AOH, AME, ALU, ALT, DHA and DMDA, while the PDA medium is more suitable for the accumulation of ATX-I, TEN and TeA. This research may provide theoretical support for the metabolomics study of Alternaria.
Collapse
Affiliation(s)
- Yanli You
- College of Life Science, Yantai University, Yantai 264005, China
| | - Qinghua Hu
- College of Life Science, Yantai University, Yantai 264005, China
| | - Nan Liu
- College of Life Science, Yantai University, Yantai 264005, China
| | - Cuiju Xu
- College of Life Science, Yantai University, Yantai 264005, China
| | - Sunan Lu
- College of Life Science, Yantai University, Yantai 264005, China
| | - Tongcheng Xu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xin Mao
- College of Life Science, Yantai University, Yantai 264005, China
| |
Collapse
|
24
|
Miranda-Apodaca J, Artetxe U, Aguado I, Martin-Souto L, Ramirez-Garcia A, Lacuesta M, Becerril JM, Estonba A, Ortiz-Barredo A, Hernández A, Zarraonaindia I, Pérez-López U. Stress Response to Climate Change and Postharvest Handling in Two Differently Pigmented Lettuce Genotypes: Impact on Alternaria alternata Invasion and Mycotoxin Production. PLANTS (BASEL, SWITZERLAND) 2023; 12:1304. [PMID: 36986993 PMCID: PMC10059781 DOI: 10.3390/plants12061304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Many species of Alternaria are important pathogens that cause plant diseases and postharvest rots. They lead to significant economic losses in agriculture and affect human and animal health due to their capacity to produce mycotoxins. Therefore, it is necessary to study the factors that can result in an increase in A. alternata. In this study, we discuss the mechanism by which phenol content protects from A. alternata, since the red oak leaf cultivar (containing higher phenols) showed lower invasion than the green one, Batavia, and no mycotoxin production. A climate change scenario enhanced fungal growth in the most susceptible cultivar, green lettuce, likely because elevated temperature and CO2 levels decrease plant N content, modifying the C/N ratio. Finally, while the abundance of the fungi was maintained at similar levels after keeping the lettuces for four days at 4 °C, this postharvest handling triggered TeA and TEN mycotoxin synthesis, but only in the green cultivar. Therefore, the results demonstrated that invasion and mycotoxin production are cultivar- and temperature-dependent. Further research should be directed to search for resistant cultivars and effective postharvest strategies to reduce the toxicological risk and economic losses related to this fungus, which are expected to increase in a climate change scenario.
Collapse
Affiliation(s)
- Jon Miranda-Apodaca
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Unai Artetxe
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Iratxe Aguado
- Applied Genomics and Bioinformatics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Leire Martin-Souto
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Maite Lacuesta
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - José María Becerril
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Andone Estonba
- Applied Genomics and Bioinformatics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Amaia Ortiz-Barredo
- NEIKER-Basque Institute for Agricultural Research and Development, 01080 Vitoria-Gasteiz, Spain
| | - Antonio Hernández
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Iratxe Zarraonaindia
- Applied Genomics and Bioinformatics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Usue Pérez-López
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| |
Collapse
|
25
|
Tang H, Han W, Fei S, Li Y, Huang J, Dong M, Wang L, Wang W, Zhang Y. Development of Acid Hydrolysis-Based UPLC–MS/MS Method for Determination of Alternaria Toxins and Its Application in the Occurrence Assessment in Solanaceous Vegetables and Their Products. Toxins (Basel) 2023; 15:toxins15030201. [PMID: 36977092 PMCID: PMC10055482 DOI: 10.3390/toxins15030201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
In this work, we proposed an acid hydrolysis-based analytical method for the detection of Alternaria toxins (ATs) in solanaceous vegetables and their products with solid-phase extraction (SPE) and ultrahigh-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS). This study was the first to reveal that some compounds in the eggplant matrix bind to altenusin (ALS). Validation under optimal sample preparation conditions showed that the method met the EU criteria, exhibiting good linearity (R2 > 0.99), matrix effects (−66.6–−20.5%), satisfying recovery (72.0–107.4%), acceptable precision (1.5–15.5%), and satisfactory sensitivity (0.05–2 µg/kg for limit of detection, 2–5 µg/kg for limit of quantification). Out of 393 marketed samples, only 47 samples were detected, ranging from 0.54–806 μg/kg. Though the occurrence ratio (2.72%) in solanaceous vegetables could be negligible, the pollution status in solanaceous vegetable products was much more serious, and the incidences were 41.1%. In the 47 contaminated samples, the incidences were 4.26% for alternariol monomethyl ether (AME), 6.38% for alternariol (AOH) and altenuene (ALT), 42.6% for tentoxin (TEN), and 55.3% for tenuazonic acid (TeA).
Collapse
Affiliation(s)
- Hongxia Tang
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Wei Han
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Shaoxiang Fei
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yubo Li
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jiaqing Huang
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Maofeng Dong
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence: ; Tel.: +86-21-62203612; Fax: +86-21-62203612
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Weimin Wang
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
26
|
Li Y, Shao Y, Zhu Y, Chen A, Qu J, Gao Y, Lu S, Luo P, Mao X. Temperature-dependent mycotoxins production investigation in Alternaria infected cherry by ultra-high performance liquid chromatography and Orbitrap high resolution mass spectrometry. Int J Food Microbiol 2023; 388:110070. [PMID: 36610234 DOI: 10.1016/j.ijfoodmicro.2022.110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
For temperature-dependent Alternaria mycotoxins production analysis, cherry samples were inoculated with Alternaria sp. and incubated at two different temperatures (4 °C and 25 °C). Six Alternaria mycotoxins, including altenuene (ALT), alternariol monomethyl ether (AME), alternariol (AOH), altertoxin-I (ATX-I), tenuazonic acid (TeA), and tentoxin (TEN), in cherries were detected with integrated visible data-processing tools. Maximum concentration of these mycotoxins reached 71,862.2 μg/kg at 25 °C. Notably, considerable amount of TeA (290.4 μg/kg) was detected at 4 °C, which indicated that low temperature is not a safe storage condition for fruits. A total of 102 compounds were detected with a neutral loss of 162.0528 Da, and TeA-glucose was identified in this work. Based on MS/MS cosine similarity, products were verified and annotated with feature based molecular networking (FBMN) in global natural products social networking (GNPS). The results showed Alternaria mycotoxins in cherry samples were mainly demethylation, hydrogenation, and dehydration. This work revealed the production of Alternaria mycotoxins in cherries under different storage temperature, which will provide theoretical basis for the control of mycotoxin contamination in food commodities.
Collapse
Affiliation(s)
- Yanshen Li
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Ying Shao
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Ya'ning Zhu
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Anqi Chen
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Jingyao Qu
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Yonglin Gao
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Sunan Lu
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Pengjie Luo
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100017, PR China
| | - Xin Mao
- Yantai University, Yantai, Shandong Province 264005, PR China.
| |
Collapse
|
27
|
Tian Y, Abdallah MF, De Boevre M, Audenaert K, Wang C, De Saeger S, Wu A. Deciphering Alternaria metabolic responses in microbial confrontation via an integrated mass spectrometric targeted and non-targeted strategy. Food Chem 2023; 404:134694. [DOI: 10.1016/j.foodchem.2022.134694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
|
28
|
Pang S, Chen Y, Huang XQ, Li LY, Guo QF. Altenusins and Perylenequinones from the Soil-Derived Fungus Alternaria sp. Chem Nat Compd 2023. [DOI: 10.1007/s10600-023-03941-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
29
|
Simultaneous Rapid Determination of Seven Alternaria Toxins in Tuberous Crops during Storage Using QuEChERS Coupled with Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. Foods 2023; 12:foods12040862. [PMID: 36832937 PMCID: PMC9957302 DOI: 10.3390/foods12040862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Robust and sensitive ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) combined with the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was applied for the detection of seven Alternaria toxins (ATs) in tuberous crops. The influence of tuber conditions (fresh, germinated, and moldy) during storage on the concentration of the seven ATs is also investigated. ATs were extracted with acetonitrile under acidic conditions and purified with a C18 adsorbent. ATs were scanned with electrospray ionization (positive/negative ion) dynamic switching and detected in MRM mode. Calibration curve analysis results reveal good linear relationships in all toxin concentration ranges (R2 > 0.99). The limit of detection and limit of quantification were 0.25-0.70 and 0.83-2.31 μg/kg, respectively. The average recoveries of the seven ATs were 83.2-104% with intra-/inter-day precision at 3.52-6.55% and 4.02-7.26%, respectively. The developed method provided adequate selectivity, sensitivity, and precision in detecting the seven ATs at trace levels, and dispensed with standard addition or matrix-matched calibration to compensate for matrix effects. ATs in the fresh, germinated, and moldy samples of tuberous crops in storage (taro, potato, sweet potato, yam, cassava) were analyzed with this method, and the concentrations were 2.01-14.51 μg/kg and significantly increased with storage duration. ALS was detected in most samples, whereas no quantities of ALT and ATX-I were detected. AME was often detected in combination with AOH in sweet potatoes. TeA and Ten were mostly detected in taro, potato, and yam. The established method could be used for the simultaneous detection and quantification of multicomponent toxins in elaborate matrices.
Collapse
|
30
|
Wang J, Huang Q, Guo W, Guo D, Han Z, Nie D. Fe 3O 4@COF(TAPT-DHTA) Nanocomposites as Magnetic Solid-Phase Extraction Adsorbents for Simultaneous Determination of 9 Mycotoxins in Fruits by UHPLC-MS/MS. Toxins (Basel) 2023; 15:toxins15020117. [PMID: 36828431 PMCID: PMC9966527 DOI: 10.3390/toxins15020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
In this study, a simple and efficient magnetic solid-phase extraction (MSPE) strategy was developed to simultaneously purify and enrich nine mycotoxins in fruits, with the magnetic covalent organic framework nanomaterial Fe3O4@COF(TAPT-DHTA) as an adsorbent. The Fe3O4@COF(TAPT-DHTA) was prepared by a simple template precipitation polymerization method, using Fe3O4 as magnetic core, and 1,3,5-tris-(4-aminophenyl) triazine (TAPT) and 2,5-dihydroxy terephthalaldehyde (DHTA) as two building units. Fe3O4@COF(TAPT-DHTA) could effectively capture the targeted mycotoxins by virtue of its abundant hydroxyl groups and aromatic rings. Several key parameters affecting the performance of the MSPE method were studied, including the adsorption solution, adsorption time, elution solvent, volume and time, and the amount of Fe3O4@COF(TAPT-DHTA) nanomaterial. Under optimized MSPE conditions, followed by analysis with UHPLC-MS/MS, a wide linear range (0.05-200 μg kg-1), low limits of detection (0.01-0.5 μg kg-1) and satisfactory recovery (74.25-111.75%) were achieved for the nine targeted mycotoxins. The established method was further successfully validated in different kinds of fruit samples.
Collapse
Affiliation(s)
- Jie Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Qingwen Huang
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Wenbo Guo
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Dakai Guo
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zheng Han
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Dongxia Nie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence: ; Tel.: +86-21-37196975
| |
Collapse
|
31
|
Zhao S, Li J, Liu J, Xiao S, Yang S, Mei J, Ren M, Wu S, Zhang H, Yang X. Secondary metabolites of Alternaria: A comprehensive review of chemical diversity and pharmacological properties. Front Microbiol 2023; 13:1085666. [PMID: 36687635 PMCID: PMC9852848 DOI: 10.3389/fmicb.2022.1085666] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
Fungi are considered to be one of the wealthiest sources of bio-metabolites that can be employed for yielding novel biomedical agents. Alternaria, including parasitic, saprophytic, and endophytic species, is a kind of dark fungi that can produce a broad array of secondary metabolites (SMs) widely distributed in many ecosystems. These are categorized into polyketides, nitrogen-containing compounds, quinones, terpenes, and others based on the unique structural features of the metabolites. New natural products derived from Alternaria exhibit excellent bioactivities characterized by antibacterial, antitumor, antioxidative, phytotoxic, and enzyme inhibitory properties. Thus, the bio-metabolites of Alternaria species are significantly meaningful for pharmaceutical, industrial, biotechnological, and medicinal applications. To update the catalog of secondary metabolites synthesized by Alternaria fungi, 216 newly described metabolites isolated from Alternaria fungi were summarized with their diverse chemical structures, pharmacological activity, and possible biosynthetic pathway. In addition, possible insights, avenues, and challenges for future research and development of Alternaria are discussed.
Collapse
Affiliation(s)
- Shiqin Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Li
- Department of Pharmacy, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinping Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Shaoyujia Xiao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Sumei Yang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jiahui Mei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Mengyao Ren
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Shuzhe Wu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Hongyuan Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xiliang Yang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China,*Correspondence: Xiliang Yang
| |
Collapse
|
32
|
Perfume Guns: Potential of Yeast Volatile Organic Compounds in the Biological Control of Mycotoxin-Producing Fungi. Toxins (Basel) 2023; 15:toxins15010045. [PMID: 36668865 PMCID: PMC9866025 DOI: 10.3390/toxins15010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Pathogenic fungi in the genera Alternaria, Aspergillus, Botrytis, Fusarium, Geotrichum, Gloeosporium, Monilinia, Mucor, Penicillium, and Rhizopus are the most common cause of pre- and postharvest diseases of fruit, vegetable, root and grain commodities. Some species are also able to produce mycotoxins, secondary metabolites having toxic effects on human and non-human animals upon ingestion of contaminated food and feed. Synthetic fungicides still represent the most common tool to control these pathogens. However, long-term application of fungicides has led to unacceptable pollution and may favour the selection of fungicide-resistant mutants. Microbial biocontrol agents may reduce the incidence of toxigenic fungi through a wide array of mechanisms, including competition for the ecological niche, antibiosis, mycoparasitism, and the induction of resistance in the host plant tissues. In recent years, the emission of volatile organic compounds (VOCs) has been proposed as a key mechanism of biocontrol. Their bioactivity and the absence of residues make the use of microbial VOCs a sustainable and effective alternative to synthetic fungicides in the management of postharvest pathogens, particularly in airtight environments. In this review, we will focus on the possibility of applying yeast VOCs in the biocontrol of mycotoxigenic fungi affecting stored food and feed.
Collapse
|
33
|
Alternaria toxins in tomato products from the Argentinean market. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
34
|
Miguel MDG. Chemical and Biological Properties of Three Poorly Studied Species of Lycium Genus-Short Review. Metabolites 2022; 12:1265. [PMID: 36557303 PMCID: PMC9788301 DOI: 10.3390/metabo12121265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The genus Lycium belongs to the Solanaceae family and comprises more than 90 species distributed by diverse continents. Lycium barbarum is by far the most studied and has been advertised as a “superfood” with healthy properties. In contrast, there are some Lycium species which have been poorly studied, although used by native populations. L. europaeum, L. intricatum and L. schweinfurthii, found particularly in the Mediterranean region, are examples of scarcely investigated species. The chemical composition and the biological properties of these species were reviewed. The biological properties of L. barbarum fruits are mainly attributed to polysaccharides, particularly complex glycoproteins with different compositions. Studies regarding these metabolites are practically absent in L. europaeum, L. intricatum and L. schweinfurthii. The metabolites isolated and identified belong mainly to polyphenols, fatty acids, polysaccharides, carotenoids, sterols, terpenoids, tocopherols, and alkaloids (L. europaeum); phenolic acids, lignans, flavonoids, polyketides, glycosides, terpenoids, tyramine derivatives among other few compounds (L. schweinfurthii), and esters of phenolic acids, glycosides, fatty acids, terpenoids/phytosterols, among other few compounds (L. intricatum). The biological properties (antioxidant, anti-inflammatory and cytotoxic against some cancer cell lines) found for these species were attributed to some metabolites belonging to those compound groups. Results of the study concluded that investigations concerning L. europaeum, L. intricatum and L. schweinfurthii are scarce, in contrast to L. barbarum.
Collapse
Affiliation(s)
- Maria da Graça Miguel
- Departamento de Química e Farmácia, Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
35
|
Lin H, Jia B, Wu A. Cytotoxicities of Co-occurring alternariol, alternariol monomethyl ether and tenuazonic acid on human gastric epithelial cells. Food Chem Toxicol 2022; 171:113524. [PMID: 36442738 DOI: 10.1016/j.fct.2022.113524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/11/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TeA) are the three major Alternaria toxin contaminants in food. In the present study, we conducted their single and combined toxicity analyses using human gastric epithelial cell line (GES-1) that was first exposed to the toxins when they entered the human body. By comparing the cytotoxicity IC50, we found that compared to several other mycotoxins with limit standards there was cytotoxicity DON > OTA > AME > AOH > ZEN > TeA. Further, we obtained combination index (CI)-isobologram equation by the Chou-Talalay method according to a toxin ratio of 1:1:2 and carried out the combined toxicity analysis of the three binary and ternary compounds, and the results showed that AOH + AME + TeA showed synergistic toxic effects. Based on the co-occurring status, we also carried out the combined toxicity analysis of AME and AOH at different ratios and found antagonistic effects at low cytotoxic concentrations as well as synergistic and additive effects at high concentrations. Also, we found that all three and their combinations caused apoptosis, activation of caspase-3 cleavage, activation of DNA damage pathways ATR-Chk1-P53 and ATM-Chk2-P53. In conclusion, we used GES-1 cells to inform the risk of coaction of AOH, AME, and TeA in dietary exposure.
Collapse
Affiliation(s)
- Huikang Lin
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bingxuan Jia
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
36
|
Woo SY, Lee SY, Jeong TK, Park SM, Auh JH, Shin HS, Chun HS. Natural Occurrence of Alternaria Toxins in Agricultural Products and Processed Foods Marketed in South Korea by LC-MS/MS. Toxins (Basel) 2022; 14:toxins14120824. [PMID: 36548721 PMCID: PMC9786207 DOI: 10.3390/toxins14120824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022] Open
Abstract
Alternaria mycotoxins including alternariol (AOH), alternariol monomethyl ether (AME), altenuene (ALT), altertoxin-I (ATX-I), tentoxin (TEN), and tenuazonic acid (TeA), are ubiquitous contaminants in agricultural products. A method for the simultaneous determination of these six toxins by ultrahigh performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) with solid phase extraction (SPE) was validated in rice, sesame, tomato, and apple juice matrices. The performance of the method was evaluated in terms of linearity (R2 > 0.999), the limit of detection (0.04-1.67 μg/kg), the limit of quantification (0.12-5.06 μg/kg), recovery (80.0-114.7%), and precision (<17.7%). The validated method was applied to monitor 152 marketed food samples in South Korea, as well as to investigate the co-occurrence and correlation between Alternaria toxins. The mean occurrence levels were 2.77 μg/kg for AOH, 4.36 μg/kg for AME, 0.14 μg/kg for ALT, 0.11 μg/kg for ATX-I, 0.43 μg/kg for TEN, and 104.56 μg/kg for TeA. Mean and extreme (95th percentile) daily dietary exposures of South Koreans to Alternaria toxins were estimated to be 22.93 ng/kg b.w./day and 86.07 ng/kg b.w./day, respectively.
Collapse
Affiliation(s)
- So Young Woo
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sang Yoo Lee
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Tae Kyun Jeong
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Su Mi Park
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Joong Hyuck Auh
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Hyang Sook Chun
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
- Correspondence:
| |
Collapse
|
37
|
Phylogenetic Analysis and Toxigenic Profile of Alternaria Species Isolated from Chickpeas (Cicer arietinum) in Argentina. DIVERSITY 2022. [DOI: 10.3390/d14110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chickpeas are a very important legume due to their nutritional richness and high protein content and they are used as food for humans and as fodder for livestock. However, they are susceptible to fungal infections and mycotoxin contamination. The Alternaria genus was among the main fungi isolated from chickpea samples in Argentina. The species within this genus are able to produce several mycotoxins such as alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TA). So, the objectives of this study were to identify the Alternaria spp. found in the chickpea samples and to determine their toxigenic potential in vitro. A phylogenetic analysis of 32 Alternaria strains was carried out based on the combined sequences of the tef1, gpd, and Alt a1 genes. All Alternaria strains clustered into the section Alternaria and were identified as A. alternata and A. arborescens. Further, the toxigenic profile of each strain was determined in a ground rice–corn steep liquor medium and analysed by HPLC. Most strains were able to co-produce AOH, AME, and TA. These results indicate a potential risk for human health when consuming chickpeas since this legume could be contaminated with Alternaria and its mycotoxins, which are not yet regulated in food.
Collapse
|
38
|
Lin H, Ni L, Chen H, Xu W. A simple and versatile strategy for sensitive SIDA-UHPLC-MS/MS analysis of Alternaria toxins in olive oil. Anal Chim Acta 2022; 1232:340451. [DOI: 10.1016/j.aca.2022.340451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/12/2022] [Accepted: 09/25/2022] [Indexed: 11/15/2022]
|
39
|
Ji X, Xiao Y, Lyu W, Li M, Wang W, Tang B, Wang X, Yang H. Probabilistic Risk Assessment of Combined Exposure to Deoxynivalenol and Emerging Alternaria Toxins in Cereal-Based Food Products for Infants and Young Children in China. Toxins (Basel) 2022; 14:toxins14080509. [PMID: 35893751 PMCID: PMC9330788 DOI: 10.3390/toxins14080509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Deoxynivalenol (DON) and emerging Alternaria toxins often co-occur in cereal-based products, but the current risk assessment is commonly conducted for only one type of mycotoxin at a time. Compared to adults, infants and young children are more susceptible to mycotoxins through food consumption, especially with cereal-based food products which are the main source of exposure. This study aimed to perform a probabilistic risk assessment of combined exposure to DON and three major Alternaria toxins, namely including alternariol monomethyl ether (AME), alternariol (AOH), and tenuazonic acid (TeA) through consumption of cereal-based foods for Chinese infants and young children. A total of 872 cereal-based food products were randomly collected and tested for the occurrence of DON and three major Alternaria toxins. The results on mycotoxin occurrence showed the DON, TeA, AOH, and AME was detected in 56.4%, 47.5%, 7.5%, and 5.7% of the samples, respectively. Co-contamination of various mycotoxins was observed in 39.9% of the analyzed samples. A preliminary cumulative risk assessment using the models of hazard index (HI) and combined margin of exposure (MoET) was performed on DON and Alternaria toxins that were present in cereal-based food products for infants and young children in China for the first time. The results showed that only 0.2% and 1.5%, respectively, of individuals exceeded the corresponding reference value for DON and TeA, indicating a low health risk. However, in the case of AME and AOH, the proportion of individuals exceeding the reference value was 24.1% and 33.5%, respectively, indicating the potential health risks. In the cumulative risk assessment of AME and AOH, both HI and MoET values indicated a more serious risk than that related to individual exposure. Further research is necessary to reduce the uncertainties that are associated with the toxicities of the Alternaria toxins and cumulative risk assessment methods.
Collapse
Affiliation(s)
- Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
| | - Minglu Li
- China National Center for Food Safety Risk Assessment, Beijing 100022, China;
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
| | - Xiaodan Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China;
- Correspondence: (X.W.); (H.Y.)
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
- Correspondence: (X.W.); (H.Y.)
| |
Collapse
|
40
|
Salvatore MM, DellaGreca M, Andolfi A, Nicoletti R. New Insights into Chemical and Biological Properties of Funicone-like Compounds. Toxins (Basel) 2022; 14:466. [PMID: 35878204 PMCID: PMC9320429 DOI: 10.3390/toxins14070466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Funicone-like compounds are a homogeneous group of polyketides that, so far, have only been reported as fungal secondary metabolites. In particular, species in the genus Talaromyces seem to be the most typical producers of this group of secondary metabolites. The molecular structure of funicone, the archetype of these products, is characterized by a γ-pyrone ring linked through a ketone group to a α-resorcylic acid nucleus. This review provides an update on the current knowledge on the chemistry of funicone-like compounds, with special emphasis on their classification, occurrence, and diverse biological activities. In addition, their potential relevance as mycotoxins is discussed.
Collapse
Affiliation(s)
- Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.DG.)
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.DG.)
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.DG.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit, and Citrus Crops, 81100 Caserta, Italy
| |
Collapse
|
41
|
Gao R, Liu R, Sun C. A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128617. [PMID: 35359103 DOI: 10.1016/j.jhazmat.2022.128617] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Huge quantities of plastic wastes have been accumulating in the environment causing serious ecological problems and significantly impacting the global carbon cycling. Plastic pollutions have been recognized as the most common and durable marine contaminants. Consequently, the marine environment is becoming a hot spot to screen microorganisms possessing potential plastic degradation capabilities. Here, by screening hundreds of plastic waste-associated samples, we isolated a fungus (named Alternaria alternata FB1) that possessing a prominent capability of colonizing on the polyethylene (PE) film. Through Scanning Electron Microscope (SEM) observation, we found this fungus could efficiently degrade the PE film and formed numerous obvious holes in the plastic surface. Moreover, the Fourier Transform Infrared (FTIR) imaging detected absorption peak in the vicinity of 1715 cm-1, indicating the formation of carbonyl bonds (-CO-). Through X-Ray Diffraction (XRD) analysis, we found that the PE film treated by strain FB1 for 28 days showed an evident reduced relative crystallinity degree, resulting in a decrease from 62.79% to 52.02%. Strikingly, the molecular weight of PE film decreased 95% after 120 days treatment by strain FB1. Using GC-MS, we further clarified that a four-carbon product (named Diglycolamine) accounted for 93.28% of all degradation products. We defined 153 enzymes that potentially involved in the degradation of PE through a transcriptomic method. The degradation capabilities of two representative enzymes including a laccase (with a molecular weight about 59.49 kDa) and a peroxidase (with a molecular weight about 36.7 kDa) were verified. Lastly, a complete biodegradation process of PE was proposed. Given the extreme paucity of microorganisms and enzymes for effective degradation of PE in the present time, our study provides a compelling candidate for further investigation of degradation mechanisms and development of biodegradation products of PE.
Collapse
Affiliation(s)
- Rongrong Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, China; Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Rui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, China; Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
42
|
Salem MF, Tayel AA, Alzuaibr FM, Bakr RA. Innovative Approach for Controlling Black Rot of Persimmon Fruits by Means of Nanobiotechnology from Nanochitosan and Rosmarinic Acid-Mediated Selenium Nanoparticles. Polymers (Basel) 2022; 14:2116. [PMID: 35631998 PMCID: PMC9143107 DOI: 10.3390/polym14102116] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/22/2022] Open
Abstract
The protection of persimmon fruits (Diospyros kaki L.) from postharvest fungal infestation with Alternaria alternata (A. alternate; black rot) is a major agricultural and economic demand worldwide. Edible coatings (ECs) based on biopolymers and phytocompounds were proposed to maintain fruit quality, especially with nanomaterials' applications. Chitosan nanoparticles (NCt), rosmarinic acid bio-mediated selenium nanoparticles (RA/SeNPs) and their composites were produced, characterized and evaluated as ECs for managing persimmon black rot. The constructed NCt, RA/SeNPs and NCt/RA/SeNPs composite had diminished particles' size diameters. The ECs solution of 1% NCt and NCt/RA/SeNPs composite led to a significant reduction of A. alternata radial growth in vitro, with 77.4 and 97.2%, respectively. The most powerful ECs formula contained 10 mg/mL from NCt/RA/SeNPs composite, which significantly reduced fungal growth than imazalil fungicide. The coating of persimmon with nanoparticles-based ECs resulted in a significant reduction of black rot disease severity and incidence in artificially infected fruits; the treatment with 1% of NCt/RA/SeNPs could completely (100%) hinder disease incidence and severity in coated fruits, whereas imazalil reduced them by 88.6 and 73.4%, respectively. The firmness of fruits is greatly augmented after ECs treatments, particularly with formulated coatings with 1% NCt/RA/SeNPs composite, which maintain fruits firmness by 85.7%. The produced ECs in the current study, based on NCt/RA/SeNPs composite, are greatly recommended as innovatively constructed human-friendly matrix to suppress the postharvest destructive fungi (A. alternata) and maintain the shelf-life and quality of persimmon fruits.
Collapse
Affiliation(s)
- Mohamed F. Salem
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, El-Sadat City 32897, Egypt;
| | - Ahmed A. Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh City 33516, Egypt
| | | | - Ramadan A. Bakr
- Plant Pathology Branch, Department of Agricultural Botany, Faculty of Agriculture, University of Menoufia, Shibin El-Kom 32514, Egypt;
| |
Collapse
|
43
|
Awuchi CG, Ondari EN, Nwozo S, Odongo GA, Eseoghene IJ, Twinomuhwezi H, Ogbonna CU, Upadhyay AK, Adeleye AO, Okpala COR. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins (Basel) 2022; 14:toxins14030167. [PMID: 35324664 PMCID: PMC8949390 DOI: 10.3390/toxins14030167] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
Mycotoxins are well established toxic metabolic entities produced when fungi invade agricultural/farm produce, and this happens especially when the conditions are favourable. Exposure to mycotoxins can directly take place via the consumption of infected foods and feeds; humans can also be indirectly exposed from consuming animals fed with infected feeds. Among the hundreds of mycotoxins known to humans, around a handful have drawn the most concern because of their occurrence in food and severe effects on human health. The increasing public health importance of mycotoxins across human and livestock environments mandates the continued review of the relevant literature, especially with regard to understanding their toxicological mechanisms. In particular, our analysis of recently conducted reviews showed that the toxicological mechanisms of mycotoxins deserve additional attention to help provide enhanced understanding regarding this subject matter. For this reason, this current work reviewed the mycotoxins’ toxicological mechanisms involving humans, livestock, and their associated health concerns. In particular, we have deepened our understanding about how the mycotoxins’ toxicological mechanisms impact on the human cellular genome. Along with the significance of mycotoxin toxicities and their toxicological mechanisms, there are associated health concerns arising from exposures to these toxins, including DNA damage, kidney damage, DNA/RNA mutations, growth impairment in children, gene modifications, and immune impairment. More needs to be done to enhance the understanding regards the mechanisms underscoring the environmental implications of mycotoxins, which can be actualized via risk assessment studies into the conditions/factors facilitating mycotoxins’ toxicities.
Collapse
Affiliation(s)
- Chinaza Godseill Awuchi
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
- Correspondence: (C.G.A.); (C.O.R.O.)
| | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Sarah Nwozo
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Grace Akinyi Odongo
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Ifie Josiah Eseoghene
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | | | - Chukwuka U. Ogbonna
- Department of Biochemistry, Federal University of Agriculture, P.M.B. 2240, Abeokuta 110124, Ogun State, Nigeria;
| | - Anjani K. Upadhyay
- Heredity Healthcare & Lifesciences, 206-KIIT TBI, Patia, Bhubaneswar 751024, Odisha, India;
| | - Ademiku O. Adeleye
- Faith Heroic Generation, No. 36 Temidire Street, Azure 340251, Ondo State, Nigeria;
| | - Charles Odilichukwu R. Okpala
- Department of Functional Foods Product Development, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
- Correspondence: (C.G.A.); (C.O.R.O.)
| |
Collapse
|
44
|
Zhu X, Chen Y, Tang X, Wang D, Miao Y, Zhang J, Li R, Zhang L, Chen J. General toxicity and genotoxicity of
Altertoxin
I: a novel 28‐Day multi‐endpoint assessment in male Sprague Dawley rats. J Appl Toxicol 2022; 42:1310-1322. [PMID: 35128692 DOI: 10.1002/jat.4297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Xia Zhu
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province Chengdu Sichuan China
| | - Yiyi Chen
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province Chengdu Sichuan China
| | - Xinyao Tang
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province Chengdu Sichuan China
| | - Dongxia Wang
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province Chengdu Sichuan China
| | - Yeqiu Miao
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province Chengdu Sichuan China
| | - Jing Zhang
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province Chengdu Sichuan China
| | - Ruirui Li
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province Chengdu Sichuan China
| | - Lishi Zhang
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province Chengdu Sichuan China
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province Chengdu Sichuan China
| |
Collapse
|
45
|
Stranska M, Dzuman Z, Prusova N, Behner A, Kolouchova I, Lovecka P, Rezanka T, Kolarik M, Hajslova J. Fungal Endophytes of Vitis vinifera-Plant Growth Promoters or Potentially Toxinogenic Agents? Toxins (Basel) 2022; 14:66. [PMID: 35202094 PMCID: PMC8877596 DOI: 10.3390/toxins14020066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/01/2022] [Accepted: 01/15/2022] [Indexed: 01/13/2023] Open
Abstract
Fungal endophytes occurring in grapevine (Vitis vinifera L.) are usually important sources of various compounds with biological activities with great potential for use in agriculture. Nevertheless, many species isolated from this plant belong to the genera Fusarium, Alternaria, or Aspergillus, all of which are well-known to produce mycotoxins. Our study is focused on the assessment of the toxinogenic potential of fungal endophytes isolated from vineyards in the Czech Republic. In total, 20 endophytic fungal species were cultivated in wine must, and 57 mycotoxins of different classes were analysed by liquid chromatography coupled with mass spectrometry. As a result, alternariol, tentoxin, meleagrin, roquefortine C, gliotoxin, and verruculogen were detected in the culture medium, of which verruculogen followed by gliotoxin were the most frequent (present in 90 and 40% of samples, respectively) and most concentrated (up to thousands ng/mL). The alternaria mycotoxins alternariol and tentoxin were detected not only in Alternaria sp. cultures, but traces of these mycotoxins were also quantified in the Diatripe and Epicoccum cultures. Meleagrin and roquefortine C were detected in Didymella sancta and Penicillium crustosum, gliotoxin was detected in Alternaria sp., Didymella sp., Aureobasidium pullulans, Cladosporium herbarum, Penicillium crustosum and Pleurophoma ossicola, and verruculogen was quantified in 99% of endophytic isolates investigated. The potential of endophytes to produce mycotoxins should be carefully checked, specifically in cases where they are intended for the purpose of V. vinifera growing.
Collapse
Affiliation(s)
- Milena Stranska
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic; (Z.D.); (N.P.); (A.B.); (J.H.)
| | - Zbynek Dzuman
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic; (Z.D.); (N.P.); (A.B.); (J.H.)
| | - Nela Prusova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic; (Z.D.); (N.P.); (A.B.); (J.H.)
| | - Adam Behner
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic; (Z.D.); (N.P.); (A.B.); (J.H.)
| | - Irena Kolouchova
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic;
| | - Petra Lovecka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic;
| | - Tomas Rezanka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.R.); (M.K.)
| | - Miroslav Kolarik
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.R.); (M.K.)
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic; (Z.D.); (N.P.); (A.B.); (J.H.)
| |
Collapse
|
46
|
Addante-Moya LG, Abad-Somovilla A, Abad-Fuentes A, Agulló C, Mercader JV. Assessment of the Optimum Linker Tethering Site of Alternariol Haptens for Antibody Generation and Immunoassay Development. Toxins (Basel) 2021; 13:toxins13120883. [PMID: 34941720 PMCID: PMC8705777 DOI: 10.3390/toxins13120883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 01/19/2023] Open
Abstract
Immunochemical methods for mycotoxin analysis require antigens with well-defined structures and antibodies with outstanding binding properties. Immunoreagents for the mycotoxins alternariol and/or alternariol monomethyl ether have typically been obtained with chemically uncharacterized haptens, and antigen conjugates have most likely been prepared with mixtures of functionalized molecules. For the first time, total synthesis was performed, in the present study, to obtain two haptens with opposite linker attachment locations. The functionalized synthetic haptens were purified and deeply characterized by different spectrometric methods, allowing the preparation of bioconjugates with unequivocal structures. Direct and indirect competitive enzyme-linked immunosorbent assays, using homologous and heterologous conjugates, were employed to extensively evaluate the generated immunoreagents. Antibodies with high affinity were raised from conjugates of both haptens, and a structure-activity relationship between the synthetic haptens and the specificity of the generated antibodies could be established. These results pave the way for the development of novel highly sensitive immunoassays selective of one or two of these Alternaria mycotoxins.
Collapse
Affiliation(s)
- Luis G. Addante-Moya
- Department of Organic Chemistry, University of Valencia, Doctor Moliner 50, 46100 Burjassot, Valencia, Spain; (L.G.A.-M.); (A.A.-S.); (C.A.)
| | - Antonio Abad-Somovilla
- Department of Organic Chemistry, University of Valencia, Doctor Moliner 50, 46100 Burjassot, Valencia, Spain; (L.G.A.-M.); (A.A.-S.); (C.A.)
| | - Antonio Abad-Fuentes
- Spanish Council for Scientific Research, Institute of Agrochemistry and Food Technology, Agustí Escardino 7, 46980 Paterna, Valencia, Spain;
| | - Consuelo Agulló
- Department of Organic Chemistry, University of Valencia, Doctor Moliner 50, 46100 Burjassot, Valencia, Spain; (L.G.A.-M.); (A.A.-S.); (C.A.)
| | - Josep V. Mercader
- Spanish Council for Scientific Research, Institute of Agrochemistry and Food Technology, Agustí Escardino 7, 46980 Paterna, Valencia, Spain;
- Correspondence:
| |
Collapse
|
47
|
Meng J, Guo W, Zhao Z, Zhang Z, Nie D, Tangni EK, Han Z. Production of Alternaria Toxins in Yellow Peach ( Amygdalus persica) upon Artificial Inoculation with Alternaria alternate. Toxins (Basel) 2021; 13:656. [PMID: 34564660 PMCID: PMC8473313 DOI: 10.3390/toxins13090656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022] Open
Abstract
The yellow peach (Amygdalus persica), an important fruit in China, is highly susceptible to infection by Alternaria sp., leading to potential health risks and economic losses. In the current study, firstly, yellow peaches were artificially inoculated with Alternariaalternate. Then, the fruits were stored at 4 °C and 28 °C to simulate the current storage conditions that consumers use, and the Alternaria toxins (ATs) contents from different parts of the fruits were analyzed via ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The results showed that the growth of A. alternate and the ATs production were dramatically affected by the storage temperature. At 28 °C, the fungi grew rapidly and the lesion diameter reached about 4.0 cm within 15 days of inoculation, while, at 4 °C, the fungal growth was noticeably inhibited, with no significant change in the lesion diameter. To our surprise, high contents of ATs were produced under both storage conditions even though the fungal growth was suppressed. With an increase in the incubation time, the amounts of ATs showed a steady tendency to increase in most cases. Remarkably, alternariol monomethyl ether (AME), alternariol (AOH), and tenuazonic acid (TeA) were detected in the rotten tissue and also in the surrounding tissue, while a large amount of TeA could also be found in the healthy tissue. To the best of our knowledge, this is the first report regarding the production of ATs by the infection of Alternaria sp. in yellow peach fruits via artificial inoculation under regulated conditions, and, based on the evidence herein, it is recommended that ATs be included in monitoring and control programs of yellow peach management and food safety administration.
Collapse
Affiliation(s)
- Jiajia Meng
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (J.M.); (W.G.); (Z.Z.); (Z.Z.); (D.N.)
| | - Wenbo Guo
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (J.M.); (W.G.); (Z.Z.); (Z.Z.); (D.N.)
| | - Zhihui Zhao
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (J.M.); (W.G.); (Z.Z.); (Z.Z.); (D.N.)
| | - Zhiqi Zhang
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (J.M.); (W.G.); (Z.Z.); (Z.Z.); (D.N.)
| | - Dongxia Nie
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (J.M.); (W.G.); (Z.Z.); (Z.Z.); (D.N.)
| | | | - Zheng Han
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (J.M.); (W.G.); (Z.Z.); (Z.Z.); (D.N.)
| |
Collapse
|