1
|
Park JE, Kim J, Baek M, An HJ, Park CS, Jung JY, Kim SY, Kim YH. Assessment of safety: In vitro reverse mutation and in vivo acute oral toxicity tests of three biomass products from amino acid-producing Corynebacterium glutamicum. Toxicol Rep 2024; 13:101741. [PMID: 39380689 PMCID: PMC11458549 DOI: 10.1016/j.toxrep.2024.101741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Microbial fermentation has emerged as a pivotal process for sustainable production of essential goods and chemicals. Corynebacterium glutamicum is a proficient platform organism that contributes significantly to amino acid production through microbial fermentation. Despite its recognized safety, challenges persist in efficiently biosynthesizing natural products compared with other organisms. This study evaluated the safety of biomass products from bioengineered C. glutamicum through two different toxicological studies: a bacterial reverse mutation test (AMES test) and an acute oral toxicity test in rats. Three types of dried fermentation biomass products, each engineered for the enhanced production of specific amino acids (L-lysine, L-threonine, and L-tryptophan), were examined. The tests were conducted in compliance with Organization for Economic Co-operation and Development guidelines and revealed no mutagenicity or acute toxicity at the tested doses. These findings suggest the safety of biomass products from bioengineered C. glutamicum as potential feed materials, although further toxicity studies are recommended for comprehensive evaluation. This study underscores the importance of stringent safety assessments for advancing biotechnological applications and provides valuable insights into the potential utilization of microbial fermentation products in various industries. Moreover, this study highlights the significance of regulatory compliance and adherence to international standards to ensure the safety and efficacy of novel biotechnological products.
Collapse
Affiliation(s)
- Ji-Eun Park
- Institute of Biotechnology, CJ CheilJedang, Suwon-si, Gyeonggi-do 16495, Republic of Korea
| | - Jiyeon Kim
- Institute of Biotechnology, CJ CheilJedang, Suwon-si, Gyeonggi-do 16495, Republic of Korea
| | - MiNa Baek
- Institute of Biotechnology, CJ CheilJedang, Suwon-si, Gyeonggi-do 16495, Republic of Korea
| | - Hyo-Jin An
- Advanced Toxicity Evaluation Center, Biotoxtech, Chungju-si, Chungchungbuk-do 28115, Republic of Korea
| | - Chan-Sung Park
- Toxicity Evaluation Team, Biotoxtech, Chungju-si, Chungchungbuk-do 28115, Republic of Korea
| | - Joon Young Jung
- Institute of Biotechnology, CJ CheilJedang, Suwon-si, Gyeonggi-do 16495, Republic of Korea
| | - So-Young Kim
- Institute of Biotechnology, CJ CheilJedang, Suwon-si, Gyeonggi-do 16495, Republic of Korea
| | - Yang Hee Kim
- Institute of Biotechnology, CJ CheilJedang, Suwon-si, Gyeonggi-do 16495, Republic of Korea
| |
Collapse
|
2
|
Zhang X, Wang LX, Hao R, Huang JJ, Zargar M, Chen MX, Zhu FY, Dai HF. Sesquiterpenoids in Agarwood: Biosynthesis, Microbial Induction, and Pharmacological Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23039-23052. [PMID: 39378105 DOI: 10.1021/acs.jafc.4c06383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Agarwood, derived from the Aquilaria genus, is widely utilized in perfumery, traditional medicine, and cultural practices throughout Asia. Agarwood is rich in terpenes, especially sesquiterpenes, which are considered to be the source of its rare and exquisite fragrance. This Review consolidates recent research on sesquiterpene biosynthesis in agarwood and the influence of fungi on these processes, alongside a discussion of the potential medicinal value of agarwood sesquiterpenes. This Review commences by elucidating the general biosynthesis of sesquiterpenes and identifying the main enzymes and transcription factors involved in the production of agarwood sesquiterpenes. This Review also summarizes the fungi associated with agarwood and highlights how commensal fungi stimulate agarwood and sesquiterpene production. We then scrutinize the pharmacological properties of sesquiterpenes, underscoring their anti-inflammatory and antimicrobial effects, which are closely linked to cellular signaling pathways, such as the NF-κB and MAPK pathways. Additionally, we review the potential therapeutic benefits of agarwood essential oil for its antidepressant properties, which are linked to the regulation of stress-related neurochemical and hormonal pathways. This Review also addresses the challenges of sustainable agarwood production, highlighting issues such as overharvesting and habitat loss while discussing the potential strategy of harnessing microbes in agarwood production to support the ecological preservation of wild resources. By advancing our knowledge of agarwood and sesquiterpene characteristics, we propose potential directions for the future application and sustainable development of agarwood research.
Collapse
Affiliation(s)
- Xinghao Zhang
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Lan Xiang Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Instituteof Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ruirui Hao
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Jing Jing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent University, Ghent, 9052, Belgium
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, 117198, Russia
| | - Mo-Xian Chen
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, 117198, Russia
- Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, 518000, China
| | - Fu-Yuan Zhu
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Hao-Fu Dai
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Rd. Xueyuan No. 4, Haikou, 571101, China
| |
Collapse
|
3
|
Yu B, Ma T, Nawaz M, Chen H, Zheng H. Advances in Metabolic Engineering for the Accumulation of Astaxanthin Biosynthesis. Mol Biotechnol 2024:10.1007/s12033-024-01289-1. [PMID: 39373956 DOI: 10.1007/s12033-024-01289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Astaxanthin, a lipophilic carotenoid renowned for its strong antioxidant activity, holds significant commercial value across industries such as feed, food, and cosmetics. Although astaxanthin can be synthesized through chemical methods, it may contain toxic by-products in the synthesized astaxanthin, limiting its application in medicine or functional food. Natural astaxanthin can be extracted from algae, however, the cultivation cycle of algae is relatively longer compared to microorganisms. With the advancement of synthetic biology and metabolic engineering, the method of microbial fermentation has emerged as a promising strategy for the large-scale production of astaxanthin. This article provides a comprehensive overview of the research progress in astaxanthin biosynthesis, highlighting the use of the natural host Xanthophyllomyces dendrorhous, and the heterologous hosts Yarrowia lipolytica and Saccharomyces cerevisiae. Additionally, future research prospects are also discussed.
Collapse
Affiliation(s)
- Bingxin Yu
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Tianyue Ma
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Maryam Nawaz
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Hailong Chen
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
4
|
Li Z, Gan Y, Gou C, Ye Q, Wu Y, Wu Y, Yang T, Fan B, Ji A, Shen Q, Duan L. Efficient biosynthesis of β-caryophyllene in Saccharomyces cerevisiae by β-caryophyllene synthase from Artemisia argyi. Synth Syst Biotechnol 2024; 10:158-164. [PMID: 39498451 PMCID: PMC11532932 DOI: 10.1016/j.synbio.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 11/07/2024] Open
Abstract
Artemisia argyi H. Lév. & Vaniot is an important traditional Chinese medicinal plant known for its volatile oils, which are the main active components of A. argyi, including monoterpenes, sesquiterpenes and their derivatives. Despite its medicinal significance, the biosynthesis of sesquiterpenoids in A. argyi remains underexplored. In this study, we identified four β-caryophyllene synthases from A. argyi. A high-yield β-caryophyllene engineered Saccharomyces cerevisiae cell factory has been built in this study. By fusing ERG20 and AarTPS88 with a flexible linker (GGGS)2 and enhancing metabolic flux in the MVA pathway (HIF-1, tHMGR, and UPC2-1), we achieved a titer of β-caryophyllene reached 15.6 g/L by fed-batch fermentation in a 5 L bioreactor. To our knowledge, this represents the highest reported titer of β-caryophyllene in yeast to date. This study provides a valuable tool for the industrial-scale production of β-caryophyllene.
Collapse
Affiliation(s)
- Zhengping Li
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yuhong Gan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Changyu Gou
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Qiongyu Ye
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yang Wu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yuhong Wu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Tingxing Yang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Baolian Fan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Aijia Ji
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Qi Shen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Lixin Duan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| |
Collapse
|
5
|
Zhu F, Xia L, Wen J, Zhang L. Recent Advances in the Biosynthesis of Mid- and Long-Chain Dicarboxylic Acids Using Terminally Oxidizing Unconventional Yeasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19566-19580. [PMID: 39207200 DOI: 10.1021/acs.jafc.4c05028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
As high-performance monomers for the manufacture of polyamide materials, mid- and long-chain dicarboxylic acids (DCAi, i ≥ 6) have received extensive attention from researchers. Biosynthesis is gradually replacing chemical synthesis due to its outstanding advantages in the industrial production of mid- and long-chain dicarboxylic acids, which is mostly achieved by using the strong terminal oxidation ability of nonmodel microorganisms such as Candida tropicalis to oxidize hydrophobic substrates such as alkanes. Here, we first summarize the metabolic pathways of oxidative alkane conversion into dicarboxylic acid by terminally oxidizing unconventional yeasts and the corresponding metabolic engineering strategies. Then, we summarize the research progress on new dicarboxylic acid production processes. Finally, the future development directions in the biosynthesis of mid- and long-chain dicarboxylic acids are prospected from synthetic biology and bioprocess engineering, which can also provide a reference for the synthesis of other biobased chemicals and biomaterials.
Collapse
Affiliation(s)
- Fuzhou Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Li Xia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lin Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| |
Collapse
|
6
|
Liang P, Peng X, Hu G, Wu R, Jin J, Ang S, Li D. Four new sesquiterpenoids from the aerial parts of Pogostemon cablin (Blanco.) Benth. and their hypoglycemic activity. Fitoterapia 2024; 177:106054. [PMID: 38852891 DOI: 10.1016/j.fitote.2024.106054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
Four previously undescribed sesquiterpenoids (1-4), including two natural guaiane-type sesquiterpenoids (1-2), a rearranged guaiane-type sesquiterpenoid (3), and a norsesquiterpenoid (4), were isolated from the ethanol extract of the aerial parts of Pogostemon cablin (Blanco.) Benth. Their chemical structures were determined based on extensive spectroscopic data analysis, including UV, IR, NMR, HRESIMS, and CD spectroscopy. Compound 1 exhibited a good hypoglycemic activity with glucose uptake of 124.3% and 131.2% in myotubes, respectively, at the concentrations of 20 and 40 μM and showed no cytotoxicity. These findings provide a material basis for further research on P. cablin.
Collapse
Affiliation(s)
- Peiting Liang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Xingjia Peng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Gui'e Hu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Rihui Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Jingwei Jin
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Song Ang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| | - Dongli Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| |
Collapse
|
7
|
Zhang J, Leng S, Huang C, Li K, Li J, Chen X, Feng Y, Kai G. Characterization of a group of germacrene A synthases involved in the biosynthesis of β-elemene from Atractylodis macrocephala. Int J Biol Macromol 2024; 271:132467. [PMID: 38763249 DOI: 10.1016/j.ijbiomac.2024.132467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
β-Elemene, an important component of the volatile oil of Atractylodis macrocephala, has been widely utilized as an antitumor drug for over 20 years. However, the germacrene A synthase (GAS) genes responsible for the biosynthesis of β-elemene in A. macrocephala were previously unidentified. In this study, two new AmGASs were identified from the A. macrocephala transcriptome, demonstrating their capability to convert farnesyl pyrophosphate into germacrene A, which subsequently synthesizes β-elemene through Cope rearrangement. Additionally, two highly catalytic AmGAS1 mutations, I307A and E392A, resulted in a 2.23-fold and 1.57-fold increase in β-elemene synthesis, respectively. Furthermore, precursor supply and fed-batch strategies were employed to enhance the precursor supply, resulting in β-elemene yields of 7.3 mg/L and 33.3 mg/L, respectively. These findings identify a promising candidate GAS for β-elemene biosynthesis and lay the foundation for further functional studies on terpene synthases in A. macrocephala.
Collapse
Affiliation(s)
- Jianbo Zhang
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siqi Leng
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chao Huang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kunlun Li
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junbo Li
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuefei Chen
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Feng
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
8
|
Nie S, Wang S, Chen R, Ge M, Yan X, Qiao J. Catalytic Mechanism and Heterologous Biosynthesis Application of Sesquiterpene Synthases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6871-6888. [PMID: 38526460 DOI: 10.1021/acs.jafc.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Sesquiterpenes comprise a diverse group of natural products with a wide range of applications in cosmetics, food, medicine, agriculture, and biofuels. Heterologous biosynthesis is increasingly employed for sesquiterpene production, aiming to overcome the limitations associated with chemical synthesis and natural extraction. Sesquiterpene synthases (STSs) play a crucial role in the heterologous biosynthesis of sesquiterpene. Under the catalysis of STSs, over 300 skeletons are produced through various cyclization processes (C1-C10 closure, C1-C11 closure, C1-C6 closure, and C1-C7 closure), which are responsible for the diversity of sesquiterpenes. According to the cyclization types, we gave an overview of advances in understanding the mechanism of STSs cyclization from the aspects of protein crystal structures and site-directed mutagenesis. We also summarized the applications of engineering STSs in the heterologous biosynthesis of sesquiterpene. Finally, the bottlenecks and potential research directions related to the STSs cyclization mechanism and application of modified STSs were presented.
Collapse
Affiliation(s)
- Shengxin Nie
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Shengli Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Ruiqi Chen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Mingyue Ge
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Xiaoguang Yan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| |
Collapse
|
9
|
Darvishi F, Rafatiyan S, Abbaspour Motlagh Moghaddam MH, Atkinson E, Ledesma-Amaro R. Applications of synthetic yeast consortia for the production of native and non-native chemicals. Crit Rev Biotechnol 2024; 44:15-30. [PMID: 36130800 DOI: 10.1080/07388551.2022.2118569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 11/03/2022]
Abstract
The application of microbial consortia is a new approach in synthetic biology. Synthetic yeast consortia, simple or complex synthetic mixed cultures, have been used for the production of various metabolites. Cooperation between the members of a consortium and cross-feeding can be applied to create stable microbial communication. These consortia can: consume a variety of substrates, perform more complex functions, produce metabolites in high titer, rate, and yield (TRY), and show higher stability during industrial fermentations. Due to the new research context of synthetic consortia, few yeasts were used to build these consortia, including Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. Here, application of the yeasts for design of synthetic microbial consortia and their advantages and bottlenecks for effective and robust production of valuable metabolites from bioresource, including: cellulose, xylose, glycerol and so on, have been reviewed. Key trends and challenges are also discussed for the future development of synthetic yeast consortia.
Collapse
Affiliation(s)
- Farshad Darvishi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Research Center for Applied Microbiology and Microbial Biotechnology (CAMB), Alzahra University, Tehran, Iran
| | - Sajad Rafatiyan
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Eliza Atkinson
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| |
Collapse
|
10
|
Li R, Yao B, Zeng H. Identification and Characterization of a Nerol Synthase in Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:416-423. [PMID: 38156892 DOI: 10.1021/acs.jafc.3c07573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Nerol, a linear monoterpenoid, is naturally found in essential oils of various plants and is widely used in the fragrance, food, and cosmetic industries. Nerol synthase, essential for nerol biosynthesis, has previously been identified only in plants that use NPP as the precursor. In this study, a novel fungal nerol synthase, named PgfB, was cloned and characterized from Penicillium griseofulvum. In vitro enzymatic assays showed that PgfB could directly convert the substrate GPP into nerol. Furthermore, the successful expression of PgfB and its homologous protein in Saccharomyces cerevisiae resulted in the heterologous production of nerol. Finally, crucial amino acid residues for PgfB's catalytic activity were identified through site-directed mutagenesis. This research broadens our understanding of fungal monoterpene synthases and presents precious gene resources for the industrial production of nerol.
Collapse
Affiliation(s)
- Rumeng Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Bo Yao
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Haichun Zeng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
11
|
Sun ML, Gao X, Lin L, Yang J, Ledesma-Amaro R, Ji XJ. Building Yarrowia lipolytica Cell Factories for Advanced Biomanufacturing: Challenges and Solutions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:94-107. [PMID: 38126236 DOI: 10.1021/acs.jafc.3c07889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Microbial cell factories have shown great potential for industrial production with the benefit of being environmentally friendly and sustainable. Yarrowia lipolytica is a promising and superior non-model host for biomanufacturing due to its cumulated advantages compared to model microorganisms, such as high fluxes of metabolic precursors (acetyl-CoA and malonyl-CoA) and its naturally hydrophobic microenvironment. However, although diverse compounds have been synthesized in Y. lipolytica cell factories, most of the relevant studies have not reached the level of industrialization and commercialization due to a number of remaining challenges, including unbalanced metabolic flux, conflict between cell growth and product synthesis, and cytotoxic effects. Here, various metabolic engineering strategies for solving the challenges are summarized, which is developing fast and extremely conducive to rational design and reconstruction of robust Y. lipolytica cell factories for advanced biomanufacturing. Finally, future engineering efforts for enhancing the production efficiency of this platform strain are highlighted.
Collapse
Affiliation(s)
- Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiaoxia Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jing Yang
- 2011 College, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
12
|
Zhou L, Wang Q, Shen J, Li Y, Zhang H, Zhang X, Yang S, Jiang Z, Wang M, Li J, Wang Y, Liu H, Zhou Z. Metabolic engineering of glycolysis in Escherichia coli for efficient production of patchoulol and τ-cadinol. BIORESOURCE TECHNOLOGY 2024; 391:130004. [PMID: 37952591 DOI: 10.1016/j.biortech.2023.130004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Glucose metabolism suppresses the microbial synthesis of sesquiterpenes with a syndrome of "too much of a good thing can be bad". Here, patchoulol production in Escherichia coli was increased 2.02 times by engineering patchoulol synthase to obtain an initial strain. Knocking out the synthetic pathway for cyclic adenosine monophosphate relieved glucose repression and improved patchoulol titer and yield by 27.7 % and 43.1 %, respectively. A glycolysis regulation device mediated by pyruvate sensing was constructed which effectively alleviated overflow metabolism in a high-glucose environment with 10.2 % greater patchoulol titer in strain 070QA. Without fine-tuning the glucose-feeding rate, patchoulol titer further increased to 1675.1 mg/L in a 5-L bioreactor experiment, which was the highest level reported in E. coli. Using strain 070QA as a chassis, the τ-cadinol titer reached 15.2 g/L, representing the first report for microbial production of τ-cadinol. These findings will aid in the industrial production of sesquiterpene.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Qin Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Jiawen Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Yunyan Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Hui Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Xinrui Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Shiyi Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Ziyi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Mengxuan Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Jun Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Yuxi Wang
- Food Micro-manufacturing Engineering and Safety Research Laboratory, Department of Food Science and Nutrition, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Haili Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China.
| |
Collapse
|
13
|
Li W, Mai J, Lin L, Zhang ZG, Ledesma-Amaro R, Dong W, Ji XJ. Combination of microbial and chemical synthesis for the sustainable production of β-elemene, a promising plant-extracted anticancer compound. Biotechnol Bioeng 2023; 120:3612-3621. [PMID: 37661795 DOI: 10.1002/bit.28544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Beta-elemene, a class of sesquiterpene derived from the Chinese medicinal herb Curcuma wenyujin, is widely used in clinical medicine due to its broad-spectrum antitumor activity. However, the unsustainable plant extraction prompted the search for environmentally friendly strategies for β-elemene production. In this study, we designed a Yarrowia lipolytica cell factory that can continuously produce germacrene A, which is further converted into β-elemene with 100% yield through a Cope rearrangement reaction by shifting the temperature to 250°C. First, the productivity of four plant-derived germacrene A synthases was evaluated. After that, the metabolic flux of the precursor to germacrene A was maximized by optimizing the endogenous mevalonate pathway, inhibiting the competing squalene pathway, and expressing germacrene A synthase gene in multiple copies. Finally, the most promising strain achieved the highest β-elemene titer reported to date with 5.08 g/L. This sustainable and green method has the potential for industrial β-elemene production.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jie Mai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Zhi-Gang Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
14
|
Sundaraj Y, Abdullah H, Nezhad NG, Rodrigues KF, Sabri S, Baharum SN. Cloning, Expression and Functional Characterization of a Novel α-Humulene Synthase, Responsible for the Formation of Sesquiterpene in Agarwood Originating from Aquilaria malaccensis. Curr Issues Mol Biol 2023; 45:8989-9002. [PMID: 37998741 PMCID: PMC10670791 DOI: 10.3390/cimb45110564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
This study describes the cloning, expression and functional characterization of α-humulene synthase, responsible for the formation of the key aromatic compound α-humulene in agarwood originating from Aquilaria malaccensis. The partial sesquiterpene synthase gene from the transcriptome data of A. malaccensis was utilized for full-length gene isolation via a 3' RACE PCR. The complete gene, denoted as AmDG2, has an open reading frame (ORF) of 1671 bp and encodes for a polypeptide of 556 amino acids. In silico analysis of the protein highlighted several conserved motifs typically found in terpene synthases such as Asp-rich substrate binding (DDxxD), metal-binding residues (NSE/DTE), and cytoplasmic ER retention (RxR) motifs at their respective sites. The AmDG2 was successfully expressed in the E. coli:pET-28a(+) expression vector whereby an expected band of about 64 kDa in size was detected in the SDS-PAGE gel. In vitro enzyme assay using substrate farnesyl pyrophosphate (FPP) revealed that AmDG2 gave rise to two sesquiterpenes: α-humulene (major) and β-caryophyllene (minor), affirming its identity as α-humulene synthase. On the other hand, protein modeling performed using AlphaFold2 suggested that AmDG2 consists entirely of α-helices with short connecting loops and turns. Meanwhile, molecular docking via AutoDock Vina (Version 1.5.7) predicted that Asp307 and Asp311 act as catalytic residues in the α-humulene synthase. To our knowledge, this is the first comprehensive report on the cloning, expression and functional characterization of α-humulene synthase from agarwood originating from A. malaccensis species. These findings reveal a deeper understanding of the structure and functional properties of the α-humulene synthase and could be utilized for metabolic engineering work in the future.
Collapse
Affiliation(s)
- Yasotha Sundaraj
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
- Faculty of Engineering and Life Sciences, Universiti Selangor (UNISEL), Bestari Jaya 45600, Selangor, Malaysia;
| | - Hasdianty Abdullah
- Faculty of Engineering and Life Sciences, Universiti Selangor (UNISEL), Bestari Jaya 45600, Selangor, Malaysia;
| | - Nima Ghahremani Nezhad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Kenneth Francis Rodrigues
- Biotechnology Research Institute, Universiti Malaysia Sabah (UMS), Kota Kinabalu 88400, Sabah, Malaysia;
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Syarul Nataqain Baharum
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| |
Collapse
|
15
|
Chen C, Yao G, Wang F, Bao S, Wan X, Han P, Wang K, Song T, Jiang H. Identification of a (+)-cubenene synthase from filamentous fungi Acremonium chrysogenum. Biochem Biophys Res Commun 2023; 677:119-125. [PMID: 37573766 DOI: 10.1016/j.bbrc.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Sesquiterpene synthases convert farnesyl diphosphate into various sesquiterpenes, which find wide applications in the food, cosmetics and pharmaceutical industries. Although numerous putative sesquiterpene synthases have been identified in fungal genomes, many lack biochemical characterization. In this study, we identified a putative terpene synthase AcTPS3 from Acremonium chrysogenum. Through sequence analysis and in vitro enzyme assay, AcTPS3 was identified as a sesquiterpene synthase. To obtain sufficient product for NMR testing, a metabolic engineered Saccharomyces cerevisiae was constructed to overproduce the product of AcTPS3. The major product of AcTPS3 was identified as (+)-cubenene (55.46%) by GC-MS and NMR. Thus, AcTPS3 was confirmed as (+)-cubenene synthase, which is the first report of (+)-cubenene synthase. The optimized S. cerevisiae strain achieved a biosynthesis titer of 597.3 mg/L, the highest reported for (+)-cubenene synthesis.
Collapse
Affiliation(s)
- Chang Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Fuli Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Shaoheng Bao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Xiukun Wan
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Penggang Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Kang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Tianyu Song
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China.
| |
Collapse
|
16
|
Wang S, Zhan C, Nie S, Tian D, Lu J, Wen M, Qiao J, Zhu H, Caiyin Q. Enzyme and Metabolic Engineering Strategies for Biosynthesis of α-Farnesene in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12452-12461. [PMID: 37574876 DOI: 10.1021/acs.jafc.3c03677] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
α-Farnesene, a type of acyclic sesquiterpene, is an important raw material in agriculture, aircraft fuel, and the chemical industry. In this study, we constructed an efficient α-farnesene-producing yeast cell factory by combining enzyme and metabolic engineering strategies. First, we screened different plants for α-farnesene synthase (AFS) with the best activity and found that AFS from Camellia sinensis (CsAFS) exhibited the most efficient α-farnesene production in Saccharomyces cerevisiae 4741. Second, the metabolic flux of the mevalonate pathway was increased to improve the supply of the precursor farnesyl pyrophosphate. Third, inducing site-directed mutagenesis in CsAFS, the CsAFSW281C variant was obtained, which considerably increased α-farnesene production. Fourth, the N-terminal serine-lysine-isoleucine-lysine (SKIK) tag was introduced to construct the SKIK∼CsAFSW281C variant, which further increased α-farnesene production to 2.8 g/L in shake-flask cultures. Finally, the α-farnesene titer of 28.3 g/L in S. cerevisiae was obtained by fed-batch fermentation in a 5 L bioreactor.
Collapse
Affiliation(s)
- Shengli Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Chuanling Zhan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Shengxin Nie
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Daoguang Tian
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Juane Lu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Mingzhang Wen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Hongji Zhu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
| | - Qinggele Caiyin
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
17
|
Cao C, Zhang H, Cao X, Kong S, Zhu B, Lin X, Zhou YJ. Construction and Optimization of Nonclassical Isoprenoid Biosynthetic Pathways in Yeast Peroxisomes for (+)-Valencene Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37437260 DOI: 10.1021/acs.jafc.3c02932] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Isoprenoids are a kind of natural product with various activities, but their plant extraction suffers low concentration. The rapid development of synthetic biology offers a sustainable route for supply of high-value-added natural products by engineering microorganisms. However, the complexity of cellular metabolism makes engineering endogenous isoprenoid biosynthetic pathways with metabolic interaction difficult. Here, for the first time, we constructed and optimized three types of isoprenoid pathways (the Haloarchaea-type, Thermoplasma-type, and isoprenoid alcohol pathway) in yeast peroxisomes for the synthesis of sesquiterpene (+)-valencene. In yeast, the Haloarchaea-type MVA pathway is more effective than the classical MVA pathway. MVK and IPK were determined to be the rate-limiting steps of the Haloarchaea-type MVA pathway, and the production of 869 mg/L (+)-valencene under fed-batch fermentation in shake flasks was realized. This work expands isoprenoid synthesis in eukaryotes and provides a more efficient pathway for isoprenoid synthesis.
Collapse
Affiliation(s)
- Chunyang Cao
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Haiyan Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Xuan Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Sijia Kong
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xinping Lin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| |
Collapse
|
18
|
Zhou L, Yang LS, Wang L, Liu HD, Gao M, Chen FJ, Yang J, Li QJ, Yang XS. Cinnamigones A-C, three highly oxidized guaiane-type sesquiterpenes with neuroprotective activity from Cinnamomum migao. PHYTOCHEMISTRY 2023; 212:113728. [PMID: 37211335 DOI: 10.1016/j.phytochem.2023.113728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Cinnamigones A-C, three undescribed highly oxidized guaiane-type sesquiterpenes were isolated from the fruits of Cinnamomum migao. Cinnamigone A (1), structurally artemisinin-like, is a natural 1,2,4-trioxane caged endoperoxide with an unprecedented tetracyclic 6/6/7/5 ring system. Compounds 2-3 are classic guaiane sesquiterpene featuring different epoxy units. Guaiol (4) is considered to be the precursor of 1-3 in the biosynthesis pathway hypothesis. The planar structures and configurations of cinnamigones A-C were elucidated by spectral analysis, HRESIMS, X-ray crystallography and ECD calculations. Evaluation of the neuroprotective activity of 1-3 on N-methyl-ᴅaspartate (NMDA) toxicity was demonstrated that compounds 1-2 exhibited moderate neuroprotective activity against NMDA-induced neurotoxicity.
Collapse
Affiliation(s)
- Lang Zhou
- School of Basic Medicine / State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Li-Shou Yang
- School of Basic Medicine / State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Li Wang
- Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Hua-Dan Liu
- Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Ming Gao
- Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Fa-Ju Chen
- School of Basic Medicine / State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Juan Yang
- Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Qi-Ji Li
- School of Basic Medicine / State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| | - Xiao-Sheng Yang
- School of Basic Medicine / State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Engineering Research Center of Natural Product Efficient Utilization in Guizhou, Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| |
Collapse
|
19
|
Li DS, Shi LL, Guo K, Luo SH, Liu YC, Chen YG, Liu Y, Li SH. A new sesquiterpene synthase catalyzing the formation of (R)-β-bisabolene from medicinal plant Colquhounia coccinea var. mollis and its anti-adipogenic and antibacterial activities. PHYTOCHEMISTRY 2023; 211:113681. [PMID: 37080413 DOI: 10.1016/j.phytochem.2023.113681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/24/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
The sesquiterpene β-bisabolene possessing R and S configurations is commonly found in plant essential oils with antimicrobial and antioxidant activities. Here, we report the cloning and functional characterization of a (R)-β-bisabolene synthase gene (CcTPS2) from a Lamiaceae medicinal plant Colquhounia coccinea var. mollis. The biochemical function of CcTPS2 catalyzing the cyclization of farnesyl diphosphate to form a single product (R)-β-bisabolene was characterized through an engineered Escherichia coli producing diverse polyprenyl diphosphate precursors and in vitro enzyme assay, indicating that CcTPS2 was a high-fidelity (R)-β-bisabolene synthase. The production of (R)-β-bisabolene in an engineered E. coli strain harboring the exogenous mevalonate pathway, farnesyl diphosphate synthase and CcTPS1 genes was 17 mg/L under shaking flask conditions. Ultimately, 120 mg of purified (R)-β-bisabolene was obtained from the engineered E. coli, and its structure was elucidated by detailed spectroscopic analyses (including 1D and 2D NMR, and specific rotation). Four chimeric enzymes were constructed through domain swapping, which altered the product outcome, indicating the region important for substrate and product specificity. In addition, (R)-β-bisabolene exhibited anti-adipogenic activity in the model organism Caenorhabditis elegans and antibacterial activity selectively against Gram-positive bacteria.
Collapse
Affiliation(s)
- De-Sen Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lin-Lin Shi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Shi-Hong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Yue-Gui Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
20
|
Jiang H, Wang X. Biosynthesis of monoterpenoid and sesquiterpenoid as natural flavors and fragrances. Biotechnol Adv 2023; 65:108151. [PMID: 37037288 DOI: 10.1016/j.biotechadv.2023.108151] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Terpenoids are a large class of plant-derived compounds, that constitute the main components of essential oils and are widely used as natural flavors and fragrances. The biosynthesis approach presents a promising alternative route in terpenoid production compared to plant extraction or chemical synthesis. In the past decade, the production of terpenoids using biotechnology has attracted broad attention from both academia and the industry. With the growing market of flavor and fragrance, the production of terpenoids directed by synthetic biology shows great potential in promoting future market prospects. Here, we reviewed the latest advances in terpenoid biosynthesis. The engineering strategies for biosynthetic terpenoids were systematically summarized from the enzyme, metabolic, and cellular dimensions. Additionally, we analyzed the key challenges from laboratory production to scalable production, such as key enzyme improvement, terpenoid toxicity, and volatility loss. To provide comprehensive technical guidance, we collected milestone examples of biosynthetic mono- and sesquiterpenoids, compared the current application status of chemical synthesis and biosynthesis in terpenoid production, and discussed the cost drivers based on the data of techno-economic assessment. It is expected to provide critical insights into developing translational research of terpenoid biomanufacturing.
Collapse
Affiliation(s)
- Hui Jiang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, PR China
| | - Xi Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, PR China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China.
| |
Collapse
|
21
|
Zhang TL, Yu HW, Ye LD. Metabolic Engineering of Yarrowia lipolytica for Terpenoid Production: Tools and Strategies. ACS Synth Biol 2023; 12:639-656. [PMID: 36867718 DOI: 10.1021/acssynbio.2c00569] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Terpenoids are a diverse group of compounds with isoprene units as basic building blocks. They are widely used in the food, feed, pharmaceutical, and cosmetic industries due to their diverse biological functions such as antioxidant, anticancer, and immune enhancement. With an increase in understanding the biosynthetic pathways of terpenoids and advances in synthetic biology techniques, microbial cell factories have been built for the heterologous production of terpenoids, with the oleaginous yeast Yarrowia lipolytica emerging as an outstanding chassis. In this paper, recent progress in the development of Y. lipolytica cell factories for terpenoid production with a focus on the advances in novel synbio tools and metabolic engineering strategies toward enhanced terpenoid biosynthesis is reviewed.
Collapse
Affiliation(s)
- Tang-Lei Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China
| | - Hong-Wei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China.,Zhejiang Key Laboratory of Smart Biomaterials, 310058 Hangzhou, China
| | - Li-Dan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China.,Zhejiang Key Laboratory of Smart Biomaterials, 310058 Hangzhou, China
| |
Collapse
|
22
|
Using oils and fats to replace sugars as feedstocks for biomanufacturing: Challenges and opportunities for the yeast Yarrowia lipolytica. Biotechnol Adv 2023; 65:108128. [PMID: 36921878 DOI: 10.1016/j.biotechadv.2023.108128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
More than 200 million tons of plant oils and animal fats are produced annually worldwide from oil, crops, and the rendered animal fat industry. Triacylglycerol, an abundant energy-dense compound, is the major form of lipid in oils and fats. While oils or fats are very important raw materials and functional ingredients for food or related products, a significant portion is currently diverted to or recovered as waste. To significantly increase the value of waste oils or fats and expand their applications with a minimal environmental footprint, microbial biomanufacturing is presented as an effective strategy for adding value. Though both bacteria and yeast can be engineered to use oils or fats as the biomanufacturing feedstocks, the yeast Yarrowia lipolytica is presented as one of the most attractive platforms. Y. lipolytica is oleaginous, generally regarded as safe, demonstrated as a promising industrial producer, and has unique capabilities for efficient catabolism and bioconversion of lipid substrates. This review summarizes the major challenges and opportunities for Y. lipolytica as a new biomanufacturing platform for the production of value-added products from oils and fats. This review also discusses relevant cellular and metabolic engineering strategies such as fatty acid transport, fatty acid catabolism and bioconversion, redox balances and energy yield, cell morphology and stress response, and bioreaction engineering. Finally, this review highlights specific product classes including long-chain diacids, wax esters, terpenes, and carotenoids with unique synthesis opportunities from oils and fats in Y. lipolytica.
Collapse
|
23
|
Chen J, Tan J, Duan X, Wang Y, Wen J, Li W, Li Z, Wang G, Xu H. Plastidial engineering with coupled farnesyl diphosphate pool reconstitution and enhancement for sesquiterpene biosynthesis in tomato fruit. Metab Eng 2023; 77:41-52. [PMID: 36893914 DOI: 10.1016/j.ymben.2023.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023]
Abstract
Sesquiterpenes represent a large class of terpene compounds found in plants with broad applications such as pharmaceuticals and biofuels. The plastidial MEP pathway in ripening tomato fruit is naturally optimized to provide the 5-carbon isoprene building blocks of all terpenes for production of the tetraterpene pigment lycopene and other carotenoids, making it an excellent plant system to be engineered for production of high-value terpenoids. We reconstituted and enhanced the pool of sesquiterpene precursor farnesyl diphosphate (FPP) in plastids of tomato fruit by overexpressing the fusion gene DXS-FPPS encoding a fusion protein of 1-deoxy-D-xylulose 5-phosphate synthase (DXS) linked with farnesyl diphosphate synthase (originally called farnesyl pyrophosphate synthase, and abbreviated as FPPS) under the control of fruit-ripening specific polygalacturonase (PG) promoter concomitant with substantial reduction in lycopene content and large production of FPP-derived squalene. The supply of precursors achieved by the fusion gene expression can be harnessed by an engineered sesquiterpene synthase that is retargeted to plastid to engineer high-yield sesquiterpene production in tomato fruit, offering an effective production system for high-value sesquiterpene ingredients.
Collapse
Affiliation(s)
- Jing Chen
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| | - Jing Tan
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| | - Xinyu Duan
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| | - Ying Wang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| | - Jing Wen
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| | - Wei Li
- Shenzhen Key Laboratory of Agricultural Synthetic Biology, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China.
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Haiyang Xu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
24
|
Luo G, Lin Y, Chen S, Xiao R, Zhang J, Li C, Sinskey AJ, Ye L, Liang S. Overproduction of Patchoulol in Metabolically Engineered Komagataella phaffii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2049-2058. [PMID: 36681940 DOI: 10.1021/acs.jafc.2c08228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Patchoulol, a plant-derived sesquiterpene compound, is widely used in perfumes, cosmetics, and pharmaceuticals. Microbial production provides a promising alternative approach for the efficient and sustainable production of patchoulol. However, there are no systematic engineering studies on Komagataella phaffii aimed at achieving high-yield patchoulol production. Herein, by fusion overexpression of FPP synthase and patchoulol synthase (ERG20LPTS), increasing the precursor supply, adjusting the copy number of ERG20LPTS and PTS, and combined with adding auxiliary carbon source and methanol concentration optimization, we constructed a high-yield patchoulol-producing strain P6H53, which produced 149.64 mg/L patchoulol in shake-flask fermentation with methanol as the substrate. In fed-batch fermentation, strain P6H53 achieved the highest production (2.47 g/L, 21.48 mg/g DCW, and 283.25 mg/L/d) to date in a 5 L fermenter. This study will lay a good foundation for the development of K. phaffii as a promising chassis microbial cell for the synthesis of patchoulol and other sesquiterpenes with methanol as the carbon source.
Collapse
Affiliation(s)
- Guangjuan Luo
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Shuting Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ruiming Xiao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jiaxin Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Cheng Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lei Ye
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
25
|
Zha J, Zhao Z, Xiao Z, Eng T, Mukhopadhyay A, Koffas MA, Tang YJ. Biosystem design of Corynebacterium glutamicum for bioproduction. Curr Opin Biotechnol 2023; 79:102870. [PMID: 36549106 DOI: 10.1016/j.copbio.2022.102870] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/13/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Corynebacterium glutamicum, a natural glutamate-producing bacterium adopted for industrial production of amino acids, has been extensively explored recently for high-level biosynthesis of amino acid derivatives, bulk chemicals such as organic acids and short-chain alcohols, aromatics, and natural products, including polyphenols and terpenoids. Here, we review the recent advances with a focus on biosystem design principles, metabolic characterization and modeling, omics analysis, utilization of nonmodel feedstock, emerging CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) tools for Corynebacterium strain engineering, biosensors, and novel strains of C. glutamicum. Future research directions for developing C. glutamicum cell factories are also discussed.
Collapse
Affiliation(s)
- Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Zhen Zhao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Zhengyang Xiao
- Department of Energy, Environmental and Chemical Engineering, Washington University in Saint Louis, MO 63130, USA
| | - Thomas Eng
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mattheos Ag Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in Saint Louis, MO 63130, USA.
| |
Collapse
|
26
|
Jiang Y, Xia L, Gao S, Li N, Yu S, Zhou J. Engineering Saccharomyces cerevisiae for enhanced (-)-α-bisabolol production. Synth Syst Biotechnol 2023; 8:187-195. [PMID: 36824492 PMCID: PMC9941373 DOI: 10.1016/j.synbio.2023.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
(-)-α-Bisabolol is naturally occurring in many plants and has great potential in health products and pharmaceuticals. However, the current extraction method from natural plants is unsustainable and cannot fulfil the increasing requirement. This study aimed to develop a sustainable strategy to enhance the biosynthesis of (-)-α-bisabolol by metabolic engineering. By introducing the heterologous gene MrBBS and weakening the competitive pathway gene ERG9, a de novo (-)-α-bisabolol biosynthesis strain was constructed that could produce 221.96 mg/L (-)-α-bisabolol. Two key genes for (-)-α-bisabolol biosynthesis, ERG20 and MrBBS, were fused by a flexible linker (GGGS)3 under the GAL7 promoter control, and the titer was increased by 2.9-fold. Optimization of the mevalonic acid pathway and multi-copy integration further increased (-)-α-bisabolol production. To promote product efflux, overexpression of PDR15 led to an increase in extracellular production. Combined with the optimal strategy, (-)-α-bisabolol production in a 5 L bioreactor reached 7.02 g/L, which is the highest titer reported in yeast to date. This work provides a reference for the efficient production of (-)-α-bisabolol in yeast.
Collapse
Affiliation(s)
- Yinkun Jiang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Lu Xia
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Ning Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Shiqin Yu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China,Corresponding author. Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
27
|
Zhang LL, Chen Y, Li ZJ, Fan G, Li X. Production, Function, and Applications of the Sesquiterpenes Valencene and Nootkatone: a Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:121-142. [PMID: 36541855 DOI: 10.1021/acs.jafc.2c07543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Valencene and nootkatone, two sesquiterpenes, extracted from natural sources, have great market potential with diverse applications. This paper aims to comprehensively review the recent advances in valencene and nootkatone, including source, production, physicochemical and biological properties, safety and pharmacokinetics evaluation, potential uses, and their industrial applications as well as future research directions. Microbial biosynthesis offers a promising alternative approach for sustainable production of valencene and nootkatone. Both compounds exert various beneficial activities, including antimicrobial, insecticidal, antioxidant, anti-inflammatory, anticancer, cardioprotective, neuroprotective, hepatoprotective, and nephroprotective and other activities. However, most of the studies are performed in animals and in vitro, making it difficult to give a conclusive description about their health benefits and extend their application. Hence, more attention should be paid to in vivo and long-term clinical studies in the future. Moreover, valencene and nootkatone are considered safe for consumption and show great promise in the applications of food, cosmetic, pharmaceutical, chemical, and agricultural industries.
Collapse
Affiliation(s)
- Lu-Lu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Yan Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Zhi-Jian Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
28
|
Chen L, Xiao W, Yao M, Wang Y, Yuan Y. Compartmentalization engineering of yeasts to overcome precursor limitations and cytotoxicity in terpenoid production. Front Bioeng Biotechnol 2023; 11:1132244. [PMID: 36911190 PMCID: PMC9997727 DOI: 10.3389/fbioe.2023.1132244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Metabolic engineering strategies for terpenoid production have mainly focused on bottlenecks in the supply of precursor molecules and cytotoxicity to terpenoids. In recent years, the strategies involving compartmentalization in eukaryotic cells has rapidly developed and have provided several advantages in the supply of precursors, cofactors and a suitable physiochemical environment for product storage. In this review, we provide a comprehensive analysis of organelle compartmentalization for terpenoid production, which can guide the rewiring of subcellular metabolism to make full use of precursors, reduce metabolite toxicity, as well as provide suitable storage capacity and environment. Additionally, the strategies that can enhance the efficiency of a relocated pathway by increasing the number and size of organelles, expanding the cell membrane and targeting metabolic pathways in several organelles are also discussed. Finally, the challenges and future perspectives of this approach for the terpenoid biosynthesis are also discussed.
Collapse
Affiliation(s)
- Lifei Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
29
|
Liu F, Liu SC, Qi YK, Liu Z, Chen J, Wei LJ, Hua Q. Enhancing Trans-Nerolidol Productivity in Yarrowia lipolytica by Improving Precursor Supply and Optimizing Nerolidol Synthase Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15157-15165. [PMID: 36444843 DOI: 10.1021/acs.jafc.2c05847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The low enzymatic capability of terpene synthases and the limited availability of precursors often hinder the productivity of terpenes in microbial hosts. Herein, a systematic approach combining protein engineering and pathway compartmentation was exploited in Yarrowia lipolytica for the high-efficient production of trans-nerolidol, a sesquiterpene with various commercial applications. Through the single-gene overexpression, the reaction catalyzed by nerolidol synthase (FaNES1) was identified as another rate-limiting step. An optimized FaNES1G498Q was then designed by rational protein engineering using homology modeling and docking studies. Additionally, further improvement of trans-nerolidol production was observed as enhancing the expression of an endogenous carnitine acetyltransferase (CAT2) putatively responsible for acetyl-CoA shuttling between peroxisome and cytosol. To harness the peroxisomal acetyl-CoA pool, a parallel peroxisomal pathway starting with acetyl-CoA to trans-nerolidol was engineered. Finally, the highest reported titer of 11.1 g/L trans-nerolidol in the Y. lipolytica platform was achieved in 5 L fed-batch fermentation with the carbon restriction approach.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shun-Cheng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yi-Ke Qi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
30
|
Zhang J, Zhao R, Jin L, Pan L, Lei D. Xanthanolides in Xanthium L.: Structures, Synthesis and Bioactivity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238136. [PMID: 36500229 PMCID: PMC9735877 DOI: 10.3390/molecules27238136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022]
Abstract
Xanthanolides were particularly characteristic of the genus Xanthium, which exhibited broad biological effects and have drawn much attention in pharmacological application. The review surveyed the structures and bioactivities of the xanthanolides in the genus Xanthium, and summarized the synthesis tactics of xanthanolides. The results indicated that over 30 naturally occurring xanthanolides have been isolated from the genus Xanthium in monomeric, dimeric and trimeric forms. The bioassay-guided fractionation studies suggested that the effective fractions on antitumor activities were mostly from weak polar solvents, and xanthatin (1) was the most effective and well-studied xanthanolide. The varieties of structures and structure-activity relationships of the xanthanolides had provided the promising skeleton for the further study. The review aimed at providing guidance for the efficient preparation and the potential prospects of the xanthanolides in the medicinal industry.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- Department of Applied Chemistry, Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China
| | - Rongmei Zhao
- Institute for Drug Control of Xinjiang Uygur Autonomous Region, Urumqi 830054, China
| | - Lu Jin
- Department of Applied Chemistry, Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China
| | - Le Pan
- Department of Applied Chemistry, Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China
- Correspondence: (L.P.); (D.L.)
| | - Dongyu Lei
- Department of Physiology, Preclinical School, Xinjiang Medical University, Urumqi 830011, China
- Correspondence: (L.P.); (D.L.)
| |
Collapse
|
31
|
Wang K, Shi TQ, Lin L, Wei P, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica to Produce Tailored Chain-Length Fatty Acids and Their Derivatives. ACS Synth Biol 2022; 11:2564-2577. [DOI: 10.1021/acssynbio.2c00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People’s Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Ping Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kindom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| |
Collapse
|
32
|
Metabolic Engineering of Escherichia coli for the Biosynthesis of α-Copaene from Glucose. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Cao C, Cao X, Yu W, Chen Y, Lin X, Zhu B, Zhou YJ. Global Metabolic Rewiring of Yeast Enables Overproduction of Sesquiterpene (+)-Valencene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7180-7187. [PMID: 35657170 DOI: 10.1021/acs.jafc.2c01394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
(+)-Valencene is a bioactive sesquiterpene that can be used for flavoring and fragrances, and microbial production provides an alternative sustainable access. However, the complexity of cellular metabolism makes it challenging for its high-level production. Here, we report the global rewiring cellular metabolism for de novo production of (+)-valencene in yeast Saccharomyces cerevisiae by engineering central metabolism, mevalonate pathway, and sesquiterpenoid synthase. In particular, we show that metabolic transformation can help accelerate the strain construction process and multiple copy expression of sesquiterpenoid synthase is essential for boosting the metabolic flux for product synthesis with enhanced supply of precursors. The engineered strain produced 1.2 g/L (+)-valencene under fed-batch fermentation in shake flasks, which was increased by 549-fold and demonstrated great potential of the yeast cell factory for (+)-valencene production.
Collapse
Affiliation(s)
- Chunyang Cao
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Xuan Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Yingxi Chen
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xinping Lin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| |
Collapse
|
34
|
Wang K, Shi TQ, Lin L, Wei P, Ledesma-Amaro R, Ji XJ, Huang H. Advances in synthetic biology tools paving the way for the biomanufacturing of unusual fatty acids using the Yarrowia lipolytica chassis. Biotechnol Adv 2022; 59:107984. [DOI: 10.1016/j.biotechadv.2022.107984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022]
|
35
|
Dai A, Zheng Z, Yu L, Huang Y, Wu J. 1,3,4-Oxadiazole Contained Sesquiterpene Derivatives: Synthesis and Microbiocidal Activity for Plant Disease. Front Chem 2022; 10:854274. [PMID: 35273952 PMCID: PMC8902154 DOI: 10.3389/fchem.2022.854274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
A series of 1,3,4-oxadiazole contained sesquiterpene derivatives were synthesized, and the activity of the target compounds against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac), and tobacco mosaic virus (TMV) were evaluated. The biological activity results showed that the EC50 values of compounds H4, H8, H11, H12, H14, H16, and H19 for Xac inhibitory activity were 33.3, 42.7, 56.1, 74.5, 37.8, 43.8, and 38.4 μg/ml, respectively. Compounds H4, H8, H15, H19, H22, and H23 had inhibitory effects on Xoo, with EC50 values of 51.0, 43.3, 43.4, 50.5, 74.6, and 51.4 μg/ml, respectively. In particular, the curative and protective activities of compound H8 against Xoo in vivo were 51.9 and 49.3%, respectively. In addition, the EC50 values of the inactivation activity of compounds H4, H5, H9, H10, and H16 against TMV were 69.6, 58.9, 69.4, 43.9, and 60.5 μg/ml, respectively. The results of molecular docking indicated that compound H10 exhibited a strong affinity for TMV-coat protein, with a binding energy of −8.88 kcal/mol. It may inhibit the self-assembly and replication of TMV particles and have an anti-TMV effect, which supports its potential usefulness as an antiviral agent.
Collapse
|
36
|
Mani V, Park S, Kim JA, Lee SI, Lee K. Metabolic Perturbation and Synthetic Biology Strategies for Plant Terpenoid Production-An Updated Overview. PLANTS (BASEL, SWITZERLAND) 2021; 10:2179. [PMID: 34685985 PMCID: PMC8539415 DOI: 10.3390/plants10102179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
Terpenoids represent one of the high-value groups of specialized metabolites with vast structural diversity. They exhibit versatile human benefits and have been successfully exploited in several sectors of day-to-day life applications, including cosmetics, foods, and pharmaceuticals. Historically, the potential use of terpenoids is challenging, and highly hampered by their bioavailability in their natural sources. Significant progress has been made in recent years to overcome such challenges by advancing the heterologous production platforms of hosts and metabolic engineering technologies. Herein, we summarize the latest developments associated with analytical platforms, metabolic engineering, and synthetic biology, with a focus on two terpenoid classes: monoterpenoids and sesquiterpenoids. Accumulated data showed that subcellular localization of both the precursor pool and the introduced enzymes were the crucial factors for increasing the production of targeted terpenoids in plants. We believe this timely review provides a glimpse of current state-of-the-art techniques/methodologies related to terpenoid engineering that would facilitate further improvements in terpenoids research.
Collapse
Affiliation(s)
| | | | | | | | - Kijong Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (V.M.); (S.P.); (J.A.K.); (S.I.L.)
| |
Collapse
|