1
|
Dziwulska-Hunek A, Niemczynowicz A, Kycia RA, Matwijczuk A, Kornarzyński K, Stadnik J, Szymanek M. Stimulation of soy seeds using environmentally friendly magnetic and electric fields. Sci Rep 2023; 13:18085. [PMID: 37872189 PMCID: PMC10593769 DOI: 10.1038/s41598-023-45134-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
The study analyses the impact of alternating (magnetic induction B = 30 mT for t = 60 s) and constant magnetic fields (B = 130 mT for t = 17 h) and alternating electric fields (electric current E = 5 kV/cm for t = 60 s) on various growth parameters of soy plants: the germination energy and capacity, plants emergence, the fresh mass of seedlings, protein content (Kjeldahl's method), and photosynthetic parameters (with MINI-PAM 2000 WALTZ Photosynthesis Yield Analyser and a SPAD-502 Chlorophyll Meter). Four cultivars were used: MAVKA, MERLIN, VIOLETTA, and ANUSZKA. Moreover, the advanced Machine Learning processing pipeline was proposed to distinguish the impact of physical factors on photosynthetic parameters. The use of electromagnetic fields had a positive impact on the germination rate in MERLIN seeds. The best results in terms of germination improvement were observed for alternating magnetic field stimulation in all cultivars (p > 0.05). For the VIOLETTA cultivar an increase (p > 0.05) in the emergence and overall number of plants as well as fresh mass was observed after electromagnetic field stimulation. For the MAVKA and MERLIN cultivars, the concentration of proteins in the leaves was noticeably higher in plants grown from seeds stimulated using a constant magnetic field.
Collapse
Affiliation(s)
- Agata Dziwulska-Hunek
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| | - Agnieszka Niemczynowicz
- Department of Analysis and Differential Equations, University of Warmia and Mazury in Olsztyn, Słoneczna 54, 10-710, Olsztyn, Poland
| | - Radosław A Kycia
- Faculty of Computer Science and Telecommunications, Cracow University of Technology, 31-155, Kraków, Poland
- Department of Mathematics and Statistics, Masaryk Univeristy, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Krzysztof Kornarzyński
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Joanna Stadnik
- Department of Animal Material Technologies, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland
| | - Mariusz Szymanek
- Department of Agricultural, Forest and Transport Machinery, University of Life Sciences in Lublin, Głeboka 28, 20-612, Lublin, Poland
| |
Collapse
|
2
|
Yin Y, Xue J, Hu J, Yang Z, Fang W. Exogenous methyl jasmonate combined with Ca 2+ promote resveratrol biosynthesis and stabilize sprout growth for the production of resveratrol-rich peanut sprouts. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107988. [PMID: 37672960 DOI: 10.1016/j.plaphy.2023.107988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
Promoting resveratrol accumulation in plants and utilizing resveratrol-rich plants as raw materials for the development of functional foods is a promising development direction. The effects of methyl jasmonate (MeJA), in combination with CaCl2 and Ca2+ inhibitors, on physiological metabolism and resveratrol enrichment of peanut sprouts were investigated. MeJA combined with CaCl2 increased Ca2+ content, calmodulin content, and Ca2+- adenosine triphosphatase activity, as well as upregulated calcium-binding proteinase expression levels. Treatment with MeJA plus CaCl2 significantly increased peroxidase and superoxide dismutase activities and antioxidant capacities, significantly decreased the content of malondialdehyde and hydrogen peroxide, which resulted in a significantly increased in sprout length and fresh weight, and alleviated the inhibition of sprout growth. MeJA plus CaCl2 significantly increased the activities of phenylalanine ammonia-lyase and 4-coumarate coenzyme A ligase and upregulated the expression levels of phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase, and resveratrol synthase, thus significantly increasing resveratrol content. However, MeJA combined with Ca2+ antagonists reversed these effects. These results indicate that MeJA interacts with Ca2+ to promote resveratrol synthesis in peanut sprouts and to improve sprout stress tolerances.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Jiyuan Xue
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Jingjing Hu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
3
|
Zhang J, Cheng K, Ma B, Zhang W, Zheng L, Wang Y. CaCl 2 promotes the cross adaptation of Reaumuria trigyna to salt and drought by regulating Na +, ROS accumulation and programmed cell death. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:214-227. [PMID: 36641945 DOI: 10.1016/j.plaphy.2023.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/18/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Reaumuria trigyna, a salt-secreting xerophytic shrub endemic to arid desert regions of northwest China, is extremely adaptable to salt and aridity. In this study, we used PEG to simulates drought stress and investigated the effect of NaCl and CaCl2 on R. trigyna seedlings exposed to drought stress. Exogenous application moderate NaCl and CaCl2 were found to stimulate the growth and alleviate drought stress in R. trigyna seedlings. Moderate NaCl and CaCl2 combined treatment increased fresh weight and decreased electrolyte leakage, and malondialdehyde (MDA) content in R. trigyna seedlings under drought stress. Simultaneously, leaf senescence and root damage induced by drought stress were alleviated, with programmed cell death (PCD) related genes expression down-regulated. Among them, the application of CaCl2 under drought and salt treatment is the most effective way to increase osmotic regulators content, antioxidant enzymes activities, and related genes expressions of plants under drought stress, which scavenged excess reactive oxygen species (ROS) and alleviated oxidative damage caused by drought stress. Meanwhile, CaCl2 can reduce the content of Na+and the ratio of Na+/K+ by promoting the outflow of Na+ and inflow of Ca2+, as well as the expression of ion transporter gene, and reduce the ionic toxicity caused by drought and salt cross adaptation. The principal component analysis (PCA) showed that the relevant beneficial indicators were positively correlated with the combined treatment. These results indicated that moderate NaCl can positively regulates defense response to drought stress in R. trigyna, while CaCl2 can significantly promote this process.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Kai Cheng
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Bingjie Ma
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wenxiu Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lingling Zheng
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yingchun Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
4
|
Zhou D, Zhao Y, Li J, Ravichandran V, Wang L, Huang Q, Chen C, Ni H, Yin J. Effects of Phytic Acid-Degrading Bacteria on Mineral Element Content in Mice. Front Microbiol 2021; 12:753195. [PMID: 34880838 PMCID: PMC8645864 DOI: 10.3389/fmicb.2021.753195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Trace minerals are extremely important for balanced nutrition, growth, and development in animals and humans. Phytic acid chelation promotes the use of probiotics in nutrition. The phytic acid-degrading strain Lactococcus lactis psm16 was obtained from swine milk by enrichment culture and direct plate methods. In this study, we evaluated the effect of the strain psm16 on mineral element content in a mouse model. Mice were divided into four groups: basal diet, 1% phytic acid, 1% phytic acid + psm16, 1% phytic acid + 500 U/kg commercial phytase. Concentrations of acetic acid, propionic acid, butyric acid, and total short-chain fatty acids were significantly increased in the strain psm16 group compared to the phytic acid group. The concentrations of copper (p = 0.021) and zinc (p = 0.017) in liver, calcium (p = 0.000), manganese (p = 0.000), and zinc (p = 0.000) in plasma and manganese (p = 0.010) and zinc (p = 0.022) in kidney were significantly increased in psm16 group, while copper (p = 0.007) and magnesium (p = 0.001) were significantly reduced. In conclusion, the addition of phytic acid-degrading bacteria psm16 into a diet including phytic acid can affect the content of trace elements in the liver, kidney, and plasma of mice, counteracting the harmful effects of phytic acid.
Collapse
Affiliation(s)
- Diao Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Ying Zhao
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Jing Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Vinothkannan Ravichandran
- State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China
| | - Leli Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Qiuyun Huang
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Cang Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Hengjia Ni
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jia Yin
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| |
Collapse
|
5
|
Liu H, Wang Y, Liang C, Yang Q, Wang S, Wang B, Zhang F, Zhang L, Cheng H, Song S, Zhang L. Utilization of marigold ( Tagetes erecta) flower fermentation wastewater as a fertilizer and its effect on microbial community structure in maize rhizosphere and non-rhizosphere soil. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1781548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Hongwei Liu
- Department of Microbiology, College of Life Science, Hebei University, Baoding, Hebei, PR China
- Microbiology Laboratory, Institute of Biology, Hebei Academy of Science, Shijiazhuang, Hebei, PR China
- Microbiology Laboratory, Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, Hebei, PR China
| | - Yana Wang
- Microbiology Laboratory, Institute of Biology, Hebei Academy of Science, Shijiazhuang, Hebei, PR China
- Microbiology Laboratory, Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, Hebei, PR China
| | - Cong Liang
- Microbiology Laboratory, Institute of Biology, Hebei Academy of Science, Shijiazhuang, Hebei, PR China
- Microbiology Laboratory, Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, Hebei, PR China
| | - Qingxia Yang
- Microbiology Laboratory, Institute of Biology, Hebei Academy of Science, Shijiazhuang, Hebei, PR China
- Microbiology Laboratory, Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, Hebei, PR China
| | - Shuai Wang
- Department of Biopharmaceuticals, College of Pharmacy, Liaocheng University, Liaocheng, Shandong, PR China
| | - Buqing Wang
- Microbiology Laboratory, Institute of Biology, Hebei Academy of Science, Shijiazhuang, Hebei, PR China
- Microbiology Laboratory, Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, Hebei, PR China
| | - Feiyan Zhang
- Microbiology Laboratory, Institute of Biology, Hebei Academy of Science, Shijiazhuang, Hebei, PR China
- Microbiology Laboratory, Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, Hebei, PR China
| | - Liping Zhang
- Microbiology Laboratory, Institute of Biology, Hebei Academy of Science, Shijiazhuang, Hebei, PR China
- Microbiology Laboratory, Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, Hebei, PR China
| | - Huicai Cheng
- Microbiology Laboratory, Institute of Biology, Hebei Academy of Science, Shijiazhuang, Hebei, PR China
- Microbiology Laboratory, Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, Hebei, PR China
| | - Shuishan Song
- Microbiology Laboratory, Institute of Biology, Hebei Academy of Science, Shijiazhuang, Hebei, PR China
- Microbiology Laboratory, Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, Hebei, PR China
| | - Liping Zhang
- Department of Microbiology, College of Life Science, Hebei University, Baoding, Hebei, PR China
| |
Collapse
|
6
|
Zhou T, Wang P, Gu Z, Ma M, Yang R. Spermidine improves antioxidant activity and energy metabolism in mung bean sprouts. Food Chem 2019; 309:125759. [PMID: 31706672 DOI: 10.1016/j.foodchem.2019.125759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 10/25/2022]
Abstract
The effects of exogenous spermidine and dicyclohexylamine (DCHA, spermidine synthesis inhibitor) on the antioxidative system and energy status of germinating mung bean were investigated. Results showed that exogenous spermidine increased the content of total phenolic and ascorbic acid and the antioxidative activity, but reduced activities and gene expressions of peroxidase (POD) and catalase (CAT). These changes might be explained by increased H2O2 content and activities of succinic dehydrogenase (SDH), adenosine triphosphatases (ATPases), and cytochrome c oxidase (CCO), resulting in higher adenosine triphosphate (ATP) and energy charge (EC). Interestingly, spermidine down-regulated expressions of SDH, H+-ATPase, Ca2+-ATPase and CCO whilst DCHA reduced energy metabolism and induced the opposite effects to spermidine, except for ascorbic acid content. Inhibition was reversed by exogenous spermidine. In conclusion, spermidine induced the accumulation of H2O2, enhanced the antioxidative system and improved the energy metabolism to enhance the functional quality of mung bean sprouts.
Collapse
Affiliation(s)
- Ting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; College of Jia Sixie Agronomy, Weifang University of Science and Technology, Weifang 262700, China.
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Meng Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Chen Z, Ma Y, Weng Y, Yang R, Gu Z, Wang P. Effects of UV-B radiation on phenolic accumulation, antioxidant activity and physiological changes in wheat (Triticum aestivum L.) seedlings. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Zhu A, Tan H, Cao L. Isolation of phytase-producing yeasts from rice seedlings for prospective probiotic applications. 3 Biotech 2019; 9:216. [PMID: 31114740 DOI: 10.1007/s13205-019-1746-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/08/2019] [Indexed: 12/31/2022] Open
Abstract
The yeasts transmitted from seeds to sprouts might be used as probiotics for host plants. To investigate the inheritable yeasts of rice plants for probiotics, the fungal internal transcribed spacer (ITS) regions (ITS1 and ITS2) in rice sprouts were analyzed by Illumina-based sequencing. The fungal genera Candida, Mortierella, Alternaria, Penicillium, and Tomentella were revealed by both ITS1 and ITS2 sequence analysis. The endophytic yeasts were isolated from rice sprouts by yeast selective medium. Compared with the negative controls, inoculation of isolate Y3 released 2.2 folds higher concentration of free phosphate in soybean meal broth. Most of the phytase activities were located in the yeast cell interiors. The shoot lengths, shoot fresh weights, and root fresh weights of inoculated seedlings increased by 35%, 80%, and 60% compared with the control seedlings, respectively. The results suggested that the rice sprouts contained diverse phytase-producing yeasts transmitted from seeds. These yeasts might be adopted as prospective probiotics to improve rice growth by increasing phosphate utilization efficacy.
Collapse
Affiliation(s)
- Aiping Zhu
- 1School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
- 2Guangdong Province Key Laboratory for Climate Change and Natural Disaster (CCND) Studies, Sun Yat-sen University, Guangzhou, 510275 China
| | - Hongming Tan
- 1School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Lixiang Cao
- 1School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|
9
|
Jiao C, Chai Y, Duan Y. Inositol 1,4,5-Trisphosphate Mediates Nitric-Oxide-Induced Chilling Tolerance and Defense Response in Postharvest Peach Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4764-4773. [PMID: 30966738 DOI: 10.1021/acs.jafc.9b00153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The function of inositol 1,4,5-trisphosphate (IP3) on nitric oxide (NO)-induced chilling tolerance and defense response in postharvest peach fruit was explored. The postharvest fruit were treated with sodium nitroprusside (SNP, exogenous NO donor), cPTIO (NO scavenger), and neomycin (IP3 inhibitor). It turned out that SNP treatment mitigated chilling injury (CI) and stimulated NO accumulation in postharvest peach fruit. Further, SNP enhanced phosphoinositide-specific phospholipase C (PI-PLC) activity and, thereby, stimulated IP3 prodution. SNP also upregulated the activity and expression of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione S-transferase (GST), and glutathione reductase (GR). In addition, SNP enhanced the expression of small ubiquitin-like modifier (SUMO) and methionine sulfoxide reductase (MSR) and weakened the activity and expression of lipoxygenase (LOX) and phospholipase D (PLD). These above impacts stimulated by SNP treatment were blocked by the addition of cPTIO and neomycin. Overall, IP3 was involved in NO-enhanced chilling tolerance and defense response in postharvest peach fruit.
Collapse
Affiliation(s)
- Caifeng Jiao
- Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, Institute of Agro-Food Science and Technology , Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
| | - Yifeng Chai
- Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, Institute of Agro-Food Science and Technology , Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
| | - Yuquan Duan
- Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, Institute of Agro-Food Science and Technology , Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
| |
Collapse
|
10
|
Chen Z, Ma Y, Yang R, Gu Z, Wang P. Effects of exogenous Ca 2+ on phenolic accumulation and physiological changes in germinated wheat (Triticum aestivum L.) under UV-B radiation. Food Chem 2019; 288:368-376. [PMID: 30902306 DOI: 10.1016/j.foodchem.2019.02.131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 12/15/2022]
Abstract
Exogenous Ca2+ affects the phenolic metabolism and physiological indices of germinated wheat under ultraviolet-B (UV-B) radiation, but the mechanism is unclear. The current study applied exogenous Ca2+ and Ca2+ channel blocker LaCl3 to the germinated wheat under UV-B radiation to unravel the role of Ca2+. The results indicated that total phenolic content (TPC) of the 4-day germinated wheat under UV-B radiation with CaCl2 (UV-B+Ca) treatment significantly increased by 10.3% as compared to the UV-B treatment. Gene expression levels of p-coumarate 3-hydroxylase, cinnamic acid 4-hydroxylase and caffeic acid O-methyltransferase were positively correlated with the content of ferulic and p-coumaric acids, respectively. Exogenous Ca2+ could significantly alleviate the membrane lipid peroxidation, activate the antioxidant enzymes and regulate the phytohormone level under UV-B radiation. This study suggested that exogenous Ca2+ participated in the phenolic metabolism and physiological regulation in germinated wheat under UV-B radiation.
Collapse
Affiliation(s)
- Zhijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; College of Food Science and Technology, Jiangsu Food and Pharmaceutical Science College, Huaian 223005, Jiangsu, China
| | - Yan Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
11
|
Jiao C, Gu Z. iTRAQ-based proteomic analysis reveals changes in response to UV-B treatment in soybean sprouts. Food Chem 2019; 275:467-473. [PMID: 30724221 DOI: 10.1016/j.foodchem.2018.09.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 08/03/2018] [Accepted: 09/10/2018] [Indexed: 02/03/2023]
Abstract
It has been shown that 15 μW·cm-2 UV-B radiation has the most pronounced effects on γ-aminobutiric acid (GABA), inositol 1,4,5-trisphosphate (IP3) and abscisic acid (ABA) accumulation in 4-day-old soybean sprouts. Nevertheless, its mechanism of action, from the perspective of protein expression, remains largely unknown. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) were employed to investigate UV-B treatment-induced proteomic changes in soybean sprouts. Results showed that UV-B treatment effectively regulated proteins involved in GABA biosynthesis, such as glutamate synthase, glutamate decarboxylase (GAD), methionine synthetase, 5-methyltetrahydropteroyltriglutamate--homocysteine methyltransferase, aminoaldehyde dehydrogenase (AMADH) and inositol phosphate metabolism pathways, including phosphoinositide phospholipase C (PI-PLC), purple acid phosphatase (PAP) and inositol polyphosphate 5-phosphatase. In addition, proteins involved in ABA biosynthesis and signal transduction, such as 9-cis-epoxycarotenoid dioxygenase (NCED), abscisic-aldehyde oxidase (AO), SNF1-related protein kinase (SnRK), protein phosphatase 2C (PP2C), guanine nucleotide-binding protein and calreticulin-3, were also modulated under UV-B treatment.
Collapse
Affiliation(s)
- Caifeng Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
12
|
Liu H, Kang Y, Zhao X, Liu Y, Zhang X, Zhang S. Effects of elicitation on bioactive compounds and biological activities of sprouts. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
13
|
Jiao C, Gu Z. iTRAQ-based analysis of proteins involved in secondary metabolism in response to ABA in soybean sprouts. Food Res Int 2019; 116:878-882. [PMID: 30717018 DOI: 10.1016/j.foodres.2018.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/01/2018] [Accepted: 09/08/2018] [Indexed: 01/05/2023]
Abstract
Abscisic acid (ABA), as a sesquiterpenoid hormone, could regulate lots of physiological processes, especially secondary metabolism in plants. Nevertheless, its mechanism of action, from the perspective of protein expression, remains largely unknown. In the study, isobaric tags for relative and absolute quantitation (iTRAQ) was employed to investigate ABA treatment-induced proteomic changes related to secondary metabolism in soybean sprouts. Among the 3033 proteins identified, compared with the control, ABA treatment up- and down-regulated 350 proteins. These proteins were involved in GABA biosynthesis, such as glutamate synthase, glutamate decarboxylase (GAD), methionine synthetase, 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase 1, aminoaldehyde dehydrogenase (AMADH) and inositol phosphate metabolism pathways, including phosphoinositide phospholipase C (PI-PLC), purple acid phosphatase (PAP) and inositol polyphosphate 5-phosphatase. In addition, flavonoid biosynthetic proteins, such as cinnamate 4-hydroxylase, chalcone isomerase, chalcone synthase, isoflavone synthase and isoflavone reductase, were also modulated in response to ABA treatment. What's more, ABA treatment regulated proteins involved in ABA signal transduction, such as SNF1-related protein kinase (SnRK), protein phosphatase 2C (PP2C), guanine nucleotide-binding protein and calreticulin-3.
Collapse
Affiliation(s)
- Caifeng Jiao
- Institute of Agro-Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, Beijing 100193, People's Republic of China.
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
14
|
Zhou T, Wang P, Yang R, Gu Z. Polyamines regulating phytic acid degradation in mung bean sprouts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3299-3308. [PMID: 29239473 DOI: 10.1002/jsfa.8833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Polyamines are essentially involved in cell division and differentiation. Transport of polyamines is adenosine triphosphate (ATP)-dependent, while phytic acid is the major reserve of phosphate essential to the energy-producing machinery of cells. Thus polyamines might enhance phytic acid degradation during mung bean germination. In this study, different polyamines (putrescine (Put), spermidine (Spd) and spermine (Spm)) and dicyclohexylamine (DCHA, an inhibitor of Spd synthesis) were applied to investigate the function of polyamines on phytic acid degradation. RESULTS Spd exhibited the best effect at the same concentration. Simultaneously, exogenous Spd improved sprout growth and enhanced the accumulation of gibberellin acid 3 (GA3 ), indole-3-acetic acid (IAA), abscisic acid (ABA) and cytokinin (CTK). This must be due to the increased endogenous polyamine contents. Apart from dramatically reducing phytic acid content, Spd resulted in the up-regulation of PA, PAP, MIPP and ALP transcript levels and the enhancement of phytase and acid phosphatase activities. However, DCHA application caused the opposite results, because it decreased endogenous polyamine contents. Furthermore, Spd alleviated the DCHA-induced inhibitory effect to some extent. CONCLUSION Overall, polyamines, especially Spd, could accelerate phytic acid degradation in mung bean sprouts by inducing the synthesis of endogenous polyamines and phytohormones and enhancing the growth of sprouts. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Zhou T, Wang P, Yang R, Wang X, Gu Z. Ca 2+ influxes and transmembrane transport are essential for phytic acid degradation in mung bean sprouts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1968-1976. [PMID: 28926677 DOI: 10.1002/jsfa.8680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/10/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Phytic acid is considered as an antinutrient. Ca2+ addition during germination has been proved to be an effective method for reducing phytic acid content in seeds. In this study, mung bean sprouts were treated with LaCl3 (La), verapamil (VP), ruthenium red (RR), and CaCl2 to explore the effect of Ca2+ influxes on phytic acid degradation. RESULTS CaCl2 (6 mmol L-1 ) significantly improved extracellular and intracellular calcium precipitates and calcium content, elevated phytase and acid phosphatase activity, and further enhanced phytic acid degradation. Conversely, La, VP, or RR induced the opposite results. Among them, RR exhibited the most significant inhibitory effect. Decreased PA, PAP, MIPP, and ALP gene expression after VP or RR treatment was also observed. Enhanced or weakened extracellular Ca2+ influx or intracellular Ca2+ efflux was detected with increased or decreased calcium precipitates distributed in different compartments. However, CaCl2 addition differentially reversed the inhibitory effects of all channel blockers. CONCLUSION CaCl2 enhanced Ca2+ influxes and accumulation in cells, which contributed to the regulation of phytic acid degradation. This study demonstrates that calcium channels play an essential role in mediating phytic acid degradation in mung bean sprouts, and both extracellular and intracellular Ca2+ -regulation were involved in phytic acid degradation. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xinyue Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Hui Q, Wang M, Wang P, Ma Y, Gu Z, Yang R. Gibberellic acid promoting phytic acid degradation in germinating soybean under calcium lactate treatment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:644-651. [PMID: 28664974 DOI: 10.1002/jsfa.8509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/09/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Phytic acid as a phosphorus storage vault provides phosphorus for plant development. It is an anti-nutritional factor for humans and some animals. However, its degradation products lower inositol phosphates have positive effects on human health. In this study, the effect of gibberellic acid (GA) on phytic acid degradation under calcium lactate (Ca) existence was investigated. RESULTS The results showed that Ca + GA treatment promoted the growth status, hormone metabolism and phytic acid degradation in germinating soybean. At the same time, the availability of phosphorus, the activity of phytic acid degradation-associated enzyme and phosphoinositide-specific phospholipase C (PI-PLC) increased. However, the relative genes expression of phytic acid degradation-associated enzymes did not vary in accordance with their enzymes activity. CONCLUSION The results revealed that GA could mediate the transport and function of calcium and a series of physiological and biochemical changes to regulate phytic acid degradation of soybean sprouts. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qianru Hui
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Mian Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Ya Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
17
|
Comparison of phenolic profiles, antioxidant capacity and relevant enzyme activity of different Chinese wheat varieties during germination. FOOD BIOSCI 2017. [DOI: 10.1016/j.fbio.2017.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Jiao C, Wang P, Yang R, Tian L, Gu Z. IP3 Mediates Nitric Oxide-Guanosine 3',5'-Cyclic Monophosphate (NO-cGMP)-Induced Isoflavone Accumulation in Soybean Sprouts under UV-B Radiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8282-8288. [PMID: 27768311 DOI: 10.1021/acs.jafc.6b02633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, to investigate the role of inositol 1,4,5-trisphosphate (IP3) in nitric oxide-guanosine 3',5'-cyclic monophosphate (NO-cGMP)-induced isoflavone accumulation in soybean sprouts under UV-B radiation, the sprouts were treated with donors and inhibitors of NO and cGMP as well as IP3 inhibitor. Results showed that NO, with cGMP as a second messenger, stimulates IP3 accumulation under UV-B radiation. Consistent with the increase in IP3 content, the up-regulation of gene and protein expression of phosphoinositide-specific phospholipase C (PI-PLC) in response to sodium nitroprusside (SNP) (exogenous NO donor) and 8-Br-cGMP (cGMP analogue) was also observed. In addition, protein kinase G (PKG) participated in NO-cGMP-induced IP3 production. IP3 induced by the NO-cGMP pathway was involved in isoflavone synthesis by elevating the activity and gene and protein expressions of chalcone synthase (CHS) and isoflavone synthase (IFS). Overall, IP3 mediates NO-cGMP-induced isoflavone accumulation in soybean sprouts under UV-B stress.
Collapse
Affiliation(s)
- Caifeng Jiao
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Lu Tian
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|