1
|
Li Z, Zhong S, Kopec RE. Carotenoid Bioaccessibility and Caco-2 Cell Uptake Following Novel Encapsulation Using Medium Chain Triglycerides. J Diet Suppl 2024; 21:756-770. [PMID: 39135478 DOI: 10.1080/19390211.2024.2386255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Carotenoids are especially hydrophobic and dissolve poorly in water. Encapsulation is used to increase their solubility in water-based food products. However, it is not yet known whether encapsulation with a combination of lecithin and medium-chain triglycerides improves carotenoid bioaccessibility and intestinal cell uptake. The relative bioaccessibility and Caco-2 cell uptake of two water-soluble carotenoid (i.e. lutein and astaxanthin) dispersions in a liquid form (VitaSperse®) and a powdered form (VitaDry®) were compared to the carotenoid ingredient alone. An in vitro digestion model was used to assess bioaccessibility, measuring the micellarized fraction postdigestion. The micelle fraction was incubated with Caco-2 cells to assess intestinal uptake of carotenoids. Encapsulation (by either VitaDry® or Vitasperse®) increased total astaxanthin bioaccessibility 2-2.4× and cell uptake by ∼2× relative to control. Encapsulation also increased total lutein bioaccessibility by 3-5× and cell uptake 2.3× relative to control. There was no significant difference between VitaDry® and VitaSperse® products in regards to Caco-2 cell uptake. Increased bioaccessibility largely drove increased carotenoid cell uptake from the encapsulated formulations. These results suggest further study is warranted to determine if this encapsulation approach increases carotenoid bioavailability in human studies.
Collapse
Affiliation(s)
- Ziqi Li
- Department of Food Science and Technology, The OH State University, Columbus, OH, USA
| | - Siqiong Zhong
- OSU Interdisciplinary Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Rachel E Kopec
- OSU Interdisciplinary Nutrition Program, The Ohio State University, Columbus, OH, USA
- Foods for Health Discovery Theme, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Zhang J, Chen Z, Lao Y, Pan X, Zhang X, Xiao J, He L, Cao Y, Liu X. Cluster of Differentiation 36 (CD36) Preferentially Mediates Intestinal Absorption of Dietary Z-Astaxanthin and Especially 9- Z-Isomer via Higher Binding Affinity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16287-16297. [PMID: 38986018 DOI: 10.1021/acs.jafc.4c02283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Variances in the biological functions of astaxanthin geometric isomers (i.e., all-E, Z) are related to their intestinal absorption, but the mechanism of isomer absorption mediated by transporters remains unclear. Here, models of in vitro cell overexpression, in situ intestinal perfusion, and in vivo mouse inhibition were employed to investigate the impact of cluster of differentiation 36 (CD36) on the absorption of astaxanthin isomers. Cells overexpressing CD36 notably enhanced the uptake of Z-astaxanthin, particularly the 9-Z-isomer (47.76%). The absorption rate and permeability of Z-astaxanthin surpassed that of the all-E-isomer by the in situ model. Furthermore, the addition of the CD36-specific inhibitor sulfo-N-succinimidyl oleate significantly reduced the absorption of Z-astaxanthin in the mouse duodenum and jejunum, especially the 9-Z-isomer (57.66%). Molecular docking and surface plasmon resonance techniques further validated that 9-Z-astaxanthin binds to more amino acids of CD36 with higher affinity and in a fast-binding, fast-dissociating mode, thus favoring transport. Our findings elucidate, for the first time, the mechanism of the CD36-mediated transmembrane transport of astaxanthin geometric isomers.
Collapse
Affiliation(s)
- Junlin Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhiqing Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yulu Lao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xuan Pan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xuan Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Liping He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Instrumental Analysis & Research Center of South China Agricultural University, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
3
|
Arcuri S, Pennarossa G, Pasquariello R, Prasadani M, Gandolfi F, Brevini TAL. Generation of Porcine and Rainbow Trout 3D Intestinal Models and Their Use to Investigate Astaxanthin Effects In Vitro. Int J Mol Sci 2024; 25:5966. [PMID: 38892151 PMCID: PMC11172962 DOI: 10.3390/ijms25115966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Astaxanthin (AST) is a natural compound derived from shellfish, microorganisms, and algae, with several healthy properties. For this reason, it is widely used in the diet of humans and animals, such as pigs, broilers, and fish, where its addition is related to its pigmenting properties. Moreover, AST's ability to reduce free radicals and protect cells from oxidative damage finds application during the weaning period, when piglets are exposed to several stressors. To better elucidate the mechanisms involved, here we generate ad hoc pig and rainbow trout in vitro platforms able to mimic the intestinal mucosa. The morphology is validated through histological and molecular analysis, while functional properties of the newly generated intestinal barriers, both in porcine and rainbow trout models, are demonstrated by measuring trans-epithelial electrical resistance and analyzing permeability with fluorescein isothiocyanate-dextran. Exposure to AST induced a significant upregulation of antioxidative stress markers and a reduction in the transcription of inflammation-related interleukins. Altogether, the present findings demonstrate AST's ability to interact with the molecular pathways controlling oxidative stress and inflammation both in the porcine and rainbow trout species and suggest AST's positive role in prevention and health.
Collapse
Affiliation(s)
- Sharon Arcuri
- Laboratory of Biomedical Embryology, Department of Veterinary Medicine and Animal Science and Center for Stem Cell Research, Università degli Studi di Milano, 26900 Lodi, Italy; (S.A.); (G.P.)
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Veterinary Medicine and Animal Science and Center for Stem Cell Research, Università degli Studi di Milano, 26900 Lodi, Italy; (S.A.); (G.P.)
| | - Rolando Pasquariello
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy; (R.P.); (F.G.)
| | - Madhusha Prasadani
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia;
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy; (R.P.); (F.G.)
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology, Department of Veterinary Medicine and Animal Science and Center for Stem Cell Research, Università degli Studi di Milano, 26900 Lodi, Italy; (S.A.); (G.P.)
| |
Collapse
|
4
|
Liu X, Zhou L, Xie J, Zhang J, Chen Z, Xiao J, Cao Y, Xiao H. Astaxanthin Isomers: A Comprehensive Review of Isomerization Methods and Analytic Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19920-19934. [PMID: 37924299 DOI: 10.1021/acs.jafc.3c06863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
The presence of multiple conjugated double bonds and chiral carbon atoms endows astaxanthin with geometric and optical isomers, and these isomers widely exist in biological sources, food processing, and in vivo absorption. However, there remains no systematic summary of astaxanthin isomers regarding isomerization methods and analytic techniques. To address this need, this Review focuses on a comprehensive analysis of Z-isomerization methods of astaxanthin, including solvent system, catalyst, and heat treatment. Comparatively, high-efficiency and health-friendly methods are more conducive to put into practical use, such as food-grade solvents and food-component catalysts. In addition, we outline the recent advances in analysis techniques of astaxanthin isomers, as well as the structural characteristics reflected by various methods (e.g., HPLC, NMR, FTIR, and RS). Furthermore, we summarized the related research on the safety evaluation of astaxanthin isomers. Finally, future trends and barriers in Z-transformation and analysis of astaxanthin isomers are also discussed.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Lesong Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Junting Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Junlin Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Zhiqing Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
5
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Aguilera‐Gómez M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Maradona MP, Schlatter JR, Siskos A, van Loveren H, Gelbmann W, Knutsen HK. Safety of a change in specifications of the novel food oleoresin from Haematococcus pluvialis containing astaxanthin pursuant to Regulation (EU) 2015/2283. EFSA J 2023; 21:e08338. [PMID: 38027444 PMCID: PMC10630933 DOI: 10.2903/j.efsa.2023.8338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on the safety of a change of specifications of the novel food (NF) oleoresin from Haematococcus pluvialis containing astaxanthin (ATX) pursuant to Regulation (EU) 2015/2283. The NF is already authorised as ingredient for the use in food supplements as defined in Directive 2002/46EC in accordance to Regulation (EU) 2017/2470. The NF concerns an oleoresin which contains ~ 10% ATX, obtained by supercritical CO2 extraction of the homogenised and dried biomass of cultivated H. pluvialis. This NF has been assessed by the Panel in 2014. With the present dossier, the applicant proposed to lower the minimum specification limits for protein and ATX monoesters for the NF, and to increase the maximum specification limit for the relative amount of ATX diesters in total ATX. An increase of the maximum specification limit for the 9-cis isomer is also applied for. Although the data are limited regarding bioavailability and distribution in humans of these three naturally occurring ATX isomers, the available in vitro and in vivo data suggest that the 13-cis rather than the 9-cis ATX is selectively absorbed, i.e. has a higher bioavailability and/or possibly emerges from isomerisation of all-trans ATX. The Panel notes that the toxicity of the individual ATX isomers has not been studied individually. However, the ADI of 0.2 mg/kg, which was established for synthetic ATX and ATX from H. pluvialis, applies also for ATX in the oleoresin from H. pluvialis with the proposed changes of specifications. The Panel concludes that the NF, oleoresin from H. pluvialis containing ATX, is safe with the proposed specification limits.
Collapse
|
6
|
Telegina TA, Vechtomova YL, Aybush AV, Buglak AA, Kritsky MS. Isomerization of carotenoids in photosynthesis and metabolic adaptation. Biophys Rev 2023; 15:887-906. [PMID: 37974987 PMCID: PMC10643480 DOI: 10.1007/s12551-023-01156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/22/2023] [Indexed: 11/19/2023] Open
Abstract
In nature, carotenoids are present as trans- and cis-isomers. Various physical and chemical factors like light, heat, acids, catalytic agents, and photosensitizers can contribute to the isomerization of carotenoids. Living organisms in the process of evolution have developed different mechanisms of adaptation to light stress, which can also involve isomeric forms of carotenoids. Particularly, light stress conditions can enhance isomerization processes. The purpose of this work is to review the recent studies on cis/trans isomerization of carotenoids as well as the role of carotenoid isomers for the light capture, energy transfer, photoprotection in light-harvesting complexes, and reaction centers of the photosynthetic apparatus of plants and other photosynthetic organisms. The review also presents recent studies of carotenoid isomers for the biomedical aspects, showing cis- and trans-isomers differ in bioavailability, antioxidant activity and biological activity, which can be used for therapeutic and prophylactic purposes.
Collapse
Affiliation(s)
- T. A. Telegina
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 2, 119071 Moscow, Russia
| | - Yuliya L. Vechtomova
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 2, 119071 Moscow, Russia
| | - A. V. Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, Building 1, 119991 Moscow, Russia
| | - A. A. Buglak
- Saint Petersburg State University, 7-9 Universitetskaya Emb., 199034 Saint Petersburg, Russia
| | - M. S. Kritsky
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 2, 119071 Moscow, Russia
| |
Collapse
|
7
|
Honda M, Nishida Y. In Vitro Evaluation of Skin-Related Physicochemical Properties and Biological Activities of Astaxanthin Isomers. ACS OMEGA 2023; 8:19311-19319. [PMID: 37305308 PMCID: PMC10249140 DOI: 10.1021/acsomega.2c08173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023]
Abstract
Dietary astaxanthin exists predominantly as the all-E-isomer; however, certain amounts of the Z-isomers are universally present in the skin, whose roles remain largely unknown. The aim of this study was to investigate the effects of the astaxanthin E/Z-isomer ratio on skin-related physicochemical properties and biological activities using human dermal fibroblasts and B16 mouse melanoma cells. We revealed that astaxanthin enriched in Z-isomers (total Z-isomer ratio = 86.6%) exhibited greater UV-light-shielding ability and skin antiaging and skin-whitening activities, such as anti-elastase and anti-melanin formation activities, than the all-E-isomer-rich astaxanthin (total Z-isomer ratio = 3.3%). On the other hand, the all-E-isomer was superior to the Z-isomers in singlet oxygen scavenging/quenching activity, and the Z-isomers inhibited type I collagen release into the culture medium in a dose-dependent manner. Our findings help clarify the roles of astaxanthin Z-isomers in the skin and would help in the development of novel skin health-promoting food ingredients.
Collapse
Affiliation(s)
- Masaki Honda
- Faculty
of Science & Technology, Meijo University, Shiogamaguchi,
Tempaku-ku, Nagoya, Aichi 468-8502, Japan
| | - Yasuhiro Nishida
- Fuji
Chemical Industries, Co., Ltd., Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
| |
Collapse
|
8
|
Liu Y, Xia H, Guo S, Li P, Qin S, Shi M, Zeng C. Effect and mechanism of edible oil co-digestion on the bioaccessibility and bioavailability of ursolic acid. Food Chem 2023; 423:136220. [PMID: 37156140 DOI: 10.1016/j.foodchem.2023.136220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
Ursolic acid (UA), a pentacyclic triterpenoid, has gained attentions due to its various health-promoting benefits, but exhibits poor bioavailability. This could be enhanced by changing the food matrix of UA in which it is present. In this study, several UA systems were constructed to investigate the bioaccessibility and bioavailability of UA in combination with in vitro simulated digestion and Caco-2 cell models. The results showed that the bioaccessibility of UA was significantly improved after adding rapeseed oil. Caco-2 cell models showed that the UA-oil blend was more advantageous than UA emulsion in total absorption. The results indicate that the location of UA distribution in oil determines the ease of UA release into the mixed micellar phase. This paper brings a new research idea and basis for the design of improving the bioavailability of hydrophobic compounds.
Collapse
Affiliation(s)
- Yugang Liu
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Huiping Xia
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Shiyin Guo
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China; Hunan Rapeseed Oil Nutrition Health and Deep Development Engineering Technology Research Center, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Peiwang Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha, Hunan 410128, China.
| | - Si Qin
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Meng Shi
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Chaoxi Zeng
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China; Hunan Rapeseed Oil Nutrition Health and Deep Development Engineering Technology Research Center, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| |
Collapse
|
9
|
Yuan WC, Wu TY, Chu PY, Chang FR, Wu YC. High-Purity Bioactive Ingredient—3S,3′S-Astaxanthin: A New Preparation from Genetically Modified Kluyveromyces marxianus without Column Chromatography and Gel Filtration. Antioxidants (Basel) 2023; 12:antiox12040875. [PMID: 37107250 PMCID: PMC10135142 DOI: 10.3390/antiox12040875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
A highly efficient methodology for bioactive ingredient 3S,3′S-astaxanthin (3S,3′S-AST) preparation from genetically modified yeast (Kluyveromyces marxianus) with a combination of enzyme-assisted extraction and salt-assisted liquid-liquid extraction (SALLE) was achieved. The highest yield of 3S,3′S-AST indicated that FoodPro® CBL for yeast cell walls hydrolysis could significantly enhance extraction and obtain, with the help of SALLE procedure, quantified 3S,3′S-AST over 99% in purity through cation chelation. In the oxygen radical antioxidant capacity (ORAC) assay, the antioxidant capacity of high-purity 3S,3′S-AST products were 18.3 times higher than that of the original raw material extract. This new combination preparation may replace previous methods and has the potential to be scaled up in the manufacture of high-purity 3S,3′S-AST from low-value bioresources of raw materials to high-value products in the food and/or drug industries with lower cost and simple equipment.
Collapse
Affiliation(s)
- Wei-Cheng Yuan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tung-Ying Wu
- Department of Biological Science & Technology, Meiho University, Pingtung 912, Taiwan
- Department of Food Science and Nutrition, Meiho University, Pingtung 912, Taiwan
| | - Pei-Yi Chu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
10
|
Liu X, Xie J, Zhou L, Zhang J, Chen Z, Xiao J, Cao Y, Xiao H. Recent advances in health benefits and bioavailability of dietary astaxanthin and its isomers. Food Chem 2023; 404:134605. [DOI: 10.1016/j.foodchem.2022.134605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022]
|
11
|
Aung WT, Khine HEE, Chaotham C, Boonkanokwong V. Production, physicochemical investigations, antioxidant effect, and cellular uptake in Caco-2 cells of the supersaturable astaxanthin self-microemulsifying tablets. Eur J Pharm Sci 2022; 176:106263. [PMID: 35853596 DOI: 10.1016/j.ejps.2022.106263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/24/2022] [Accepted: 07/15/2022] [Indexed: 11/03/2022]
Abstract
The purpose of this study was to develop astaxanthin (AST)-loaded self-microemulsifying drug delivery system (SMEDDS) tablets and evaluate their physicochemical and biological properties. The optimized liquid (L)-AST SMEDDS formulation was composed of rice bran oil (33.67%), Kolliphor® RH 40 (34.70%), and Span® 20 (31.63%). Two types of hydrophilic polymers (hydroxypropyl methylcellulose, HPMC, and polyvinyl alcohol, PVA) solutions were selected as a precipitation inhibitor for AST and incorporated into L-AST SMEDDS to obtain supersaturation and enhance dissolution of AST. The formulation was then mixed with microcrystalline cellulose and subsequently transformed to solid S-AST SMEDDS particles using a spray dryer prior to direct compression into tablets. The HPMC AST SMEDDS tablet and PVA AST SMEDDS tablet were characterized for their physicochemical properties, dissolution, AST release, and stabilities. Moreover, the cellular uptake and antioxidant effect of AST SMEDDS tablets were evaluated in Caco-2 cells. With good tablet characters, both HPMC AST SMEDDS tablet and PVA AST SMEDDS tablet dissolution profiles were improved compared to that of raw AST. While initially less than 50% of AST released from HPMC AST SMEDDS tablet and PVA AST SMEDDS tablet in pH 1.2 medium, after 6 h more than 98% of AST releases in pH 6.8 were achieved which was similar to L-AST SMEDDS profile. Cellular antioxidant activities of L-AST SMEDDS and HPMC AST SMEDDS tablet & PVA AST SMEDDS tablet were significantly greater than pure AST powder. HPMC AST SMEDDS tablet showed better uptake and deeper penetration through Caco-2 cells than that in PVA AST SMEDDS tablet and pure powder. Our successfully developed AST SMEDDS tablets were demonstrated to be a potential platform to deliver highly lipophilic AST and improve permeation and bioavailability.
Collapse
Affiliation(s)
- Wai Thet Aung
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Wang Mai, Pathum Wan, Bangkok 10330, Thailand
| | - Hnin Ei Ei Khine
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Veerakiet Boonkanokwong
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Wang Mai, Pathum Wan, Bangkok 10330, Thailand.
| |
Collapse
|
12
|
Yao G, Muhammad M, Zhao J, Liu J, Huang Q. DFT-based Raman spectral study of astaxanthin geometrical isomers. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100103. [PMID: 35769397 PMCID: PMC9235053 DOI: 10.1016/j.fochms.2022.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 06/15/2023]
Abstract
Astaxanthin is a carotenoid widely used in food additives, nutritional product and medicines, which shows many physiological functions such as antioxidant, anti-inflammatory, anti-hypertensive and anti-diabetic activities. It has been recognized that astaxanthin has all-trans and nine cis isomers, and these geometrical isomers have very different biological activities. The process of selective enrichment, metabolism and isomerization of astaxanthin in animals remains to be studied. Therefore, identifying isomers and obtaining their structural parameters are important for understanding the active mechanism of different molecular isomers. Although the traditional methods such as high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopy can be used to distinguish these isomers, these methods generally require considerable testing time, cost, sample volume, and hardly be applied in vivo. In this work, Raman spectroscopy combined with density functional theory (DFT) calculation was introduced to study different geometrical isomers of astaxanthin. The theoretical and experimental Raman spectra are in agreement, and we have demonstrated that all the known ten geometrical isomers of astaxanthin can be readily distinguished using this spectroscopic approach. The astaxanthin molecular vibrational modes, geometric structures, energies of ten geometric isomers are systematically scrutinized. Moreover, a lot of structural and Raman problems unsolved previously have been solved by the DFT-based spectral analysis. Therefore, this work provides an effective way for identification of different astaxanthin geometrical isomers, and may have important significance for promoting the research of astaxanthin isomers on biological property mechanisms and related applications in food molecular science.
Collapse
Affiliation(s)
- Guohua Yao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institute of Intelligent Agricuture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Muhammad Muhammad
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institute of Intelligent Agricuture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jiajiang Zhao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institute of Intelligent Agricuture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianguo Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institute of Intelligent Agricuture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
13
|
Li C, Gao Y, Huan Y, Ren P, Zhi J, Wu A, Xu J, Wei Z, Xue C, Tang Q. Colon and gut microbiota greatly affect the absorption and utilization of astaxanthin derived from Haematococcus pluvialis. Food Res Int 2022; 156:111324. [PMID: 35651077 DOI: 10.1016/j.foodres.2022.111324] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/15/2022]
Abstract
Astaxanthin has been widely favored as a health food supplement by individuals but its absorption in the body seems not to be satisfactory. In addition, the peak time of astaxanthin derived from Haematococcus pluvialis in the plasma was much longer than other carotenoids found in our previous research. Thus, it is necessary to explore the process that affects the absorption of astaxanthin in order to potentially find a novel approach to improve the absorption in the future. In this study, we confirmed that the colon has an ability to absorb astaxanthin and conducted acute feeding experiments with the treatment of antibiotics in C57BL/6J mice and chronic feeding experiments in germ-free (GF) mice to detect the relationship between the gut microbiota and the absorption of astaxanthin. Our study showed that the decrease of gut microbiota led to a less oral absorbability, which might be related to the decreased expression of SR-BI in the small intestine and the reduction of free form and Z-astaxanthin converted by the gut microbiota found in the vitro culture. The experiments of anaerobic culture also implied that Lactobacillus might play an important role in the absorption of astaxanthin.
Collapse
Affiliation(s)
- Chunjun Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuan Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuchen Huan
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Pengfei Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jinjin Zhi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Axue Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, PR China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| |
Collapse
|
14
|
Honda M, Murakami K, Osawa Y, Kawashima Y, Wasai M, Hirasawa K, Kuroda I. Supercritical CO
2
Extraction of Carotenoids (Astaxanthin, Adonirubin, and Adonixanthin) from
Paracoccus carotinifaciens
: Improved
Z
‐isomer ratio and Recovery of Carotenoids via High‐Temperature Extraction. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202200021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Masaki Honda
- Faculty of Science & Technology Meijo University Nagoya Aichi 468–8502 Japan
| | - Kazuya Murakami
- Faculty of Science & Technology Meijo University Nagoya Aichi 468–8502 Japan
| | - Yukiko Osawa
- Biotechnology R&D Group ENEOS Corporation Yokohama Kanagawa 231–0815 Japan
| | - Yuki Kawashima
- Biotechnology R&D Group ENEOS Corporation Yokohama Kanagawa 231–0815 Japan
| | - Masafumi Wasai
- Biotechnology R&D Group ENEOS Corporation Yokohama Kanagawa 231–0815 Japan
| | - Kazuaki Hirasawa
- Biotechnology R&D Group ENEOS Corporation Yokohama Kanagawa 231–0815 Japan
| | - Ikuo Kuroda
- Biotechnology R&D Group ENEOS Corporation Yokohama Kanagawa 231–0815 Japan
| |
Collapse
|
15
|
Yu J, Liu X, Zhang L, Shao P, Wu W, Chen Z, Li J, Renard CM. An overview of carotenoid extractions using green solvents assisted by Z-isomerization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Ahmad A, Riaz S, Shahzaib Nadeem M, Mubeen U, Maham K. Role of Carotenoids in Cardiovascular Disease. Physiology (Bethesda) 2022. [DOI: 10.5772/intechopen.102750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carotenes are fat-soluble pigments found in a variety of foods, the majority of which are fruits and vegetables. They may have antioxidant biological properties due to their chemical makeup and relationship to cellular membranes. And over 700 carotenoids have been found, with—carotene, lutein, lycopene, and zeaxanthin is the most significant antioxidant food pigments. Their capacity to absorb lipid peroxides, reactive oxygen species (ROS) and nitrous oxide is likely linked to their anti-oxidative properties (NO). The daily requirements for carotenoids are also discussed in this chapter. Heart disease is still a prominent source of sickness and mortality in modern societies. Natural antioxidants contained in fruits and vegetables, such as lycopene, a-carotene, and B-carotene, may help prevent CVD by reducing oxidative stress, which is a major factor in the disease’s progression. Numerous epidemiological studies have backed up the idea that antioxidants might be utilized to prevent and perhaps treat cardiovascular illnesses at a low cost. Supplements containing carotenoids are also available, and their effectiveness has been proven. This article provides an overview of carotenoids’ chemistry, including uptake, transport, availability, metabolism, and antioxidant activity, including its involvement with disease prevention, notably cardiovascular disease.
Collapse
|
17
|
Honda M. Application of E/Z-Isomerization Technology for Enhancing Processing Efficiency, Health-Promoting Effects, and Usability of Carotenoids: A Review and Future Perspectives. J Oleo Sci 2022; 71:151-165. [PMID: 35034944 DOI: 10.5650/jos.ess21338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Carotenoids are naturally occurring pigments whose presence in the diet is beneficial to human health. Moreover, they have a wide range of applications in the food, cosmetic, and animal feed industries. As carotenoids contain multiple conjugated double bonds in the molecule, a large number of geometric (E/Z, trans/cis) isomers are theoretically possible. In general, (all-E)-carotenoids are the most predominant geometric isomer in nature, and they have high crystallinity and low solubility in various mediums, resulting in their low processing efficiency and bioavailability. Technological developments for improving the processing efficiency and bioavailability of carotenoids utilizing the Z-isomerization have recently been gaining traction. Namely, Z-isomerization of carotenoids induces a significant change in their physicochemical properties (e.g., solubility and crystallinity), leading to improved processing efficiency and bioavailability as well as several biological activities. For the practical use of isomerization technology for carotenoids, the development of efficient isomerization methods and an acute understanding of the changes in biological activity are required. This review highlights the recent advancements in various conventional and unconventional methods for carotenoid isomerization, such as thermal treatment, light irradiation, microwave irradiation, and catalytic treatment, as well as environment-friendly isomerization methods. Current progress in the improvement of processing efficiency and biological activity utilizing isomerization technology and an application development of carotenoid Z-isomers for the feed industry are also described. In addition, future research challenges in the context of carotenoid isomerization have been elaborated upon.
Collapse
Affiliation(s)
- Masaki Honda
- Faculty of Science & Technology, Meijo University
| |
Collapse
|
18
|
Jafari Z, Bigham A, Sadeghi S, Dehdashti SM, Rabiee N, Abedivash A, Bagherzadeh M, Nasseri B, Karimi-Maleh H, Sharifi E, Varma RS, Makvandi P. Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications. J Med Chem 2022; 65:2-36. [PMID: 34919379 PMCID: PMC8762669 DOI: 10.1021/acs.jmedchem.1c01144] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Astaxanthin (AXT) is one of the most important fat-soluble carotenoids that have abundant and diverse therapeutic applications namely in liver disease, cardiovascular disease, cancer treatment, protection of the nervous system, protection of the skin and eyes against UV radiation, and boosting the immune system. However, due to its intrinsic reactivity, it is chemically unstable, and therefore, the design and production processes for this compound need to be precisely formulated. Nanoencapsulation is widely applied to protect AXT against degradation during digestion and storage, thus improving its physicochemical properties and therapeutic effects. Nanocarriers are delivery systems with many advantages─ease of surface modification, biocompatibility, and targeted drug delivery and release. This review discusses the technological advancement in nanocarriers for the delivery of AXT through the brain, eyes, and skin, with emphasis on the benefits, limitations, and efficiency in practice.
Collapse
Affiliation(s)
- Zohreh Jafari
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Ashkan Bigham
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
| | - Sahar Sadeghi
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Sayed Mehdi Dehdashti
- Cellular
and Molecular Biology Research Center, Shahid
Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Navid Rabiee
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
- Department
of Physics, Sharif University of Technology, 11155-9161 Tehran, Iran
- School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alireza Abedivash
- Department
of Basic Sciences, Sari Agricultural Sciences
and Natural Resources University, 48181-68984 Sari, Iran
| | - Mojtaba Bagherzadeh
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
| | - Behzad Nasseri
- Department
of Medical Biotechnology, Faculty of Advance Medical Sciences, Tabriz University of Medical Sciences, 51664 Tabriz, Iran
| | - Hassan Karimi-Maleh
- School
of Resources and Environment, University
of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Avenue, 610054 Chengdu, PR China
- Department
of Chemical Engineering, Laboratory of Nanotechnology,
Quchan University of Technology, 94771-67335 Quchan, Iran
- Department
of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus,
2028, 2006 Johannesburg, South Africa
| | - Esmaeel Sharifi
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
- Department
of Tissue Engineering and Biomaterials, School of Advanced Medical
Sciences and Technologies, Hamadan University
of Medical Sciences, 6517838736 Hamadan, Iran
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Pooyan Makvandi
- Centre for
Materials Interfaces, Istituto Italiano
di Tecnologia, viale
Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
19
|
Ryu D, Sung Y, Hong J, Koh E. Cellular uptake of anthocyanins extracted from black soybean, grape, and purple sweet potato using INT-407 cells. Food Sci Biotechnol 2021; 30:1383-1391. [PMID: 34691805 DOI: 10.1007/s10068-021-00976-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022] Open
Abstract
This study combined in vitro digestion and INT-407 cells to evaluate the bioaccessibility of anthocyanins in the small intestinal epithelial cells. Black soybean, grape, and purple sweet potato were chosen as they have a different anthocyanin composition. After the aqueous extract was digested under in vitro gastric and intestinal conditions, the digested mixture was incubated in the media of INT-407 for 2 h at 37 °C. Low proportion (< 0.3%) of anthocyanins in black soybean and grape passed through cell membranes. Cyanidin-3-O-glucoside and pelargonidin-3-O-glucoside in black soybean and cyanidin-3-O-(6-O-p-coumaroyl)-5-O-diglucoside and delphinidin-3-O-(6-O-p-coumaroyl)-5-O-diglucoside in grape were found inside the cell. However, acylated anthocyanins containing three sugar moieties in purple sweet potato were not detected inside the cell. p-Coumaric acid was detected in the cells incubated with grape, but not in the media. These indicate that chemical structure of anthocyanins affected their cellular uptake and antioxidant activity in INT-407 cells. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00976-y.
Collapse
Affiliation(s)
- Dayeon Ryu
- Division of Applied Food System, Seoul Women's University, 621 Hwarang-ro, Nowon-gu, Seoul, 01797 Korea
| | - Yunkyung Sung
- Division of Applied Food System, Seoul Women's University, 621 Hwarang-ro, Nowon-gu, Seoul, 01797 Korea
| | - Jungil Hong
- Division of Applied Food System, Seoul Women's University, 621 Hwarang-ro, Nowon-gu, Seoul, 01797 Korea
| | - Eunmi Koh
- Division of Applied Food System, Seoul Women's University, 621 Hwarang-ro, Nowon-gu, Seoul, 01797 Korea
| |
Collapse
|
20
|
Honda M, Murakami K, Zhang Y, Goto M. Rapid and Continuous Astaxanthin Isomerization in Subcritical Ethanol. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Masaki Honda
- Faculty of Science & Technology, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Kazuya Murakami
- Faculty of Science & Technology, Meijo University, Nagoya, Aichi 468-8502, Japan
- Department of Materials Process Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Yelin Zhang
- Faculty of Science & Technology, Meijo University, Nagoya, Aichi 468-8502, Japan
- Department of Materials Process Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Motonobu Goto
- Department of Materials Process Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
21
|
Cao Y, Yang L, Qiao X, Xue C, Xu J. Dietary astaxanthin: an excellent carotenoid with multiple health benefits. Crit Rev Food Sci Nutr 2021:1-27. [PMID: 34581210 DOI: 10.1080/10408398.2021.1983766] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Astaxanthin is a carotenoid widely found in marine organisms and microorganisms. With extensive use in nutraceuticals, cosmetics, and animal feed, astaxanthin will have the largest share in the global market for carotenoids in the near future. Owing to its unique molecular features, astaxanthin has excellent antioxidant activity and holds promise for use in biochemical studies. This review focuses on the observed health benefits of dietary astaxanthin, as well as its underlying bioactivity mechanisms. Recent studies have increased our understanding of the role of isomerization and esterification in the structure-function relationship of dietary astaxanthin. Gut microbiota may involve the fate of astaxanthin during digestion and absorption; thus, further knowledge is needed to establish accurate recommendations for dietary intake of both healthy and special populations. Associated with the regulation of redox balance and multiple biological mechanisms, astaxanthin is proposed to affect oxidative stress, inflammation, cell death, and lipid metabolism in humans, thus exerting benefits for skin condition, eye health, cardiovascular system, neurological function, exercise performance, and immune response. Additionally, preclinical trials predict its potential effects such as intestinal flora regulation and anti-diabetic activity. Therefore, astaxanthin is worthy of further investigation for boosting human health, and wide applications in the food industry.
Collapse
Affiliation(s)
- Yunrui Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Lu Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Xing Qiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| |
Collapse
|
22
|
Fernandes AS, Nascimento TC, Pinheiro PN, Vendruscolo RG, Wagner R, de Rosso VV, Jacob-Lopes E, Zepka LQ. Bioaccessibility of microalgae-based carotenoids and their association with the lipid matrix. Food Res Int 2021; 148:110596. [PMID: 34507741 DOI: 10.1016/j.foodres.2021.110596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023]
Abstract
The composition of microalgae can contribute to nutritious and functional diets. Among the functional compounds, carotenoids are in focus since positive effects on human health have been established, which are in turn related to their bioaccessibility. In addition to essential nutrients, our hypothesis was that microalgae biomasses could be used as sources of bioaccessible carotenoids. Thus, this study determined for the first time the bioaccessibility of carotenoids from biomass of Scenedesmus bijuga and Chlorella sorokiniana and their possible relationship with the lipid composition of the matrix. The samples were submitted to in vitro digestion protocol, and carotenoids were determined by HPLC-PDA-MS/MS. Individual bioaccessibility of carotenoids was ≥ 3.25%. In general, compounds in their cis conformation were more bioaccessible than trans; and total carotenes more than total xanthophylls. Twelve compounds were bioaccessible from the biomass of S. bijuga, and eight in C. sorokiniana. In S. bijuga, the bioaccessibility of total carotenoids was 7.30%, and the major bioaccessible carotenoids were 9-cis-β-carotene (43.78%), 9-cis-zeaxanthin (42.30%) followed by 9-cis-lutein (26.73%); while in C. sorokiniana, the total bioaccessibility was 8.03%, and 9-cis-β-carotene (26.18%), all-trans-β-carotene (13.56%), followed by 13-cis-lutein (10.71%) were the major compounds. Overall, the total content of lipids does not influence the bioaccessibility of total carotenoids. Still, the lipid composition, including structural characteristics such as degree of saturation and chain length of the fatty acid, impacts the promotion of individual bioaccessibility of carotenes and xanthophylls of microalgae. Finally, the results of this study can assist the development of microalgae-based functional food ingredients and products.
Collapse
Affiliation(s)
- Andrêssa S Fernandes
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Tatiele C Nascimento
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Pricila N Pinheiro
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Raquel G Vendruscolo
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Roger Wagner
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Veridiana V de Rosso
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Rua Silva Jardim 136, Santos 11015-020, Brazil
| | - Eduardo Jacob-Lopes
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Leila Q Zepka
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil.
| |
Collapse
|
23
|
Cabanillas-Bojórquez LA, Gutiérrez-Grijalva EP, González-Aguilar GA, López-Martinez LX, Castillo-López RI, Bastidas-Bastidas PDJ, Heredia JB. Valorization of Fermented Shrimp Waste with Supercritical CO 2 Conditions: Extraction of Astaxanthin and Effect of Simulated Gastrointestinal Digestion on Its Antioxidant Capacity. Molecules 2021; 26:4465. [PMID: 34361618 PMCID: PMC8348114 DOI: 10.3390/molecules26154465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Lactic acid fermentation increases the bioactive properties of shrimp waste. Astaxanthin is the principal carotenoid present in shrimp waste, which can be found esterified in the liquid fraction (liquor) after its lactic acid fermentation. Supercritical CO2 technology has been proposed as a green alternative to obtain astaxanthin from fermented shrimp waste. This study aimed to optimize astaxanthin extraction by supercritical CO2 technology from fermented liquor of shrimp waste and study bioaccessibility using simulated gastrointestinal digestion (GD) of the optimized extract. A Box-Behnken design with three variables (pressure, temperature, and flow rate) was used to optimize the supercritical CO2 extraction. The optimized CO2 extract was obtained at 300 bar, 60 °C, and 6 mL/min, and the estimated characteristics showed a predictive extraction yield of 11.17%, antioxidant capacity of 1.965 mmol of Trolox equivalent (TE)/g, and astaxanthin concentration of 0.6353 µg/g. The experiment with optimal conditions performed to validate the predicted values showed an extraction yield of 12.62%, an antioxidant capacity of 1.784 mmol TE/g, and an astaxanthin concentration of 0.52 µg/g. The astaxanthin concentration decreased, and the antioxidant capacity of the optimized extract increased during gastrointestinal digestion. In conclusion, our optimized supercritical CO2 process is suitable for obtaining astaxanthin from shrimp by-products after lactic acid fermentation.
Collapse
Affiliation(s)
- Luis Angel Cabanillas-Bojórquez
- Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a Eldorado Km 5.5 Col. Campo El Diez, Culiacán CP 80110, Sinaloa, Mexico; (L.A.C.-B.); (P.d.J.B.-B.)
| | - Erick Paul Gutiérrez-Grijalva
- Cátedras CONACyT-Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a Eldorado Km 5.5 Col. Campo El Diez, Culiacán CP 80110, Sinaloa, Mexico;
| | - Gustavo Adolfo González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo, A. C. CTAOV, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo CP 83304, Sonora, Mexico;
| | - Leticia Xochitl López-Martinez
- Cátedras CONACyT-Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo CP 83304, Sonora, Mexico;
| | - Ramón Ignacio Castillo-López
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán CP 80013, Sinaloa, Mexico;
| | - Pedro de Jesús Bastidas-Bastidas
- Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a Eldorado Km 5.5 Col. Campo El Diez, Culiacán CP 80110, Sinaloa, Mexico; (L.A.C.-B.); (P.d.J.B.-B.)
| | - José Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a Eldorado Km 5.5 Col. Campo El Diez, Culiacán CP 80110, Sinaloa, Mexico; (L.A.C.-B.); (P.d.J.B.-B.)
| |
Collapse
|
24
|
Honda M, Kawashima Y, Hirasawa K, Uemura T, Sun J, Hayashi Y. Astaxanthin Z-isomer-rich diets enhance egg yolk pigmentation in laying hens compared to that in all-E-isomer-rich diets. Anim Sci J 2021; 92:e13512. [PMID: 33522058 DOI: 10.1111/asj.13512] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 11/28/2022]
Abstract
The effects of feeding diets containing astaxanthin with different Z-isomer ratios to laying hens on egg qualities, such as astaxanthin concentration in egg yolk and yolk color, were investigated. As the astaxanthin source, a natural microorganism Paracoccus carotinifaciens was used. Astaxanthin with different Z-isomer ratios was prepared by thermal treatment with different conditions and then added to the basal diet at a final astaxanthin concentration of 8 mg/kg. We found that, as the Z-isomer ratios of astaxanthin in the diet increased, the astaxanthin concentration in egg yolk and the yolk color fan score also increased significantly. Importantly, feeding a 50.6% Z-isomer ratio diet increased astaxanthin concentration in egg yolk by approximately fivefold and the color fan score by approximately 2 compared to that in hens fed an all-E-isomer-rich diet. Moreover, we showed that feeding Z-isomer-rich astaxanthin to laying hens increased plasma astaxanthin concentration by more than five times in comparison to that in hens fed an all-E-isomer-rich diet. These results indicate that Z-isomers of astaxanthin have higher bioavailability than that of the all-E-isomer and thus they exhibit greater egg yolk-accumulation efficiency.
Collapse
Affiliation(s)
- Masaki Honda
- Faculty of Science & Technology, Meijo University, Nagoya, Japan
| | - Yuki Kawashima
- Biotechnology R&D Group, ENEOS Corporation, Yokohama, Japan
| | | | - Takeshi Uemura
- Biotechnology R&D Group, ENEOS Corporation, Yokohama, Japan
| | - Jinkun Sun
- Experimental Farm, Faculty of Agriculture, Meijo University, Kasugai, Japan
| | - Yoshiaki Hayashi
- Experimental Farm, Faculty of Agriculture, Meijo University, Kasugai, Japan
| |
Collapse
|
25
|
Viazau YV, Goncharik RG, Kulikova IS, Kulikov EA, Vasilov RG, Selishcheva AA. E/Z isomerization of astaxanthin and its monoesters in vitro under the exposure to light or heat and in overilluminated Haematococcus pluvialis cells. BIORESOUR BIOPROCESS 2021; 8:55. [PMID: 38650253 PMCID: PMC10992054 DOI: 10.1186/s40643-021-00410-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Thermo- and photoisomerization of astaxanthin was investigated in a model system (solutions in methanol and chloroform), and the dynamics of astaxanthin isomers and esters content was analyzed in Haematococcus pluvialis green algal cells exposed to factors inducing astaxanthin accumulation. In both systems, the astaxanthin isomerization process seems to be defined by a) the action of light (or heat), and b) the dielectric constant of the surrounding medium. Upon heating, the accumulation of Z-isomers occurred in a model system during the entire incubation period. For the first 5 h of illumination, both Z-isomers accumulated in the solutions up to 5%, and then their content decreased. The accumulated amount of the Z-isomers in the cells of H. pluvialis was found to reach 42% of the total content of astaxanthin initially, and then it decreased during the experiment. The results lead to a conclusion that both cultivation of H. pluvialis culture in specific conditions and heat treatment of the resulting extracts from it might be efficient for obtaining large amounts of economically useful astaxanthin Z-isomer.
Collapse
Affiliation(s)
- Yauhen V Viazau
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Akademicheskaya St. 27, 220072, Minsk, Belarus.
| | - Ruslan G Goncharik
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Akademicheskaya St. 27, 220072, Minsk, Belarus
| | - Irina S Kulikova
- National Research Center Kurchatov Institute, Akademika Kurchatova Sq. 1, Moscow, 123182, Russia
| | - Evgeny A Kulikov
- National Research Center Kurchatov Institute, Akademika Kurchatova Sq. 1, Moscow, 123182, Russia
| | - Raif G Vasilov
- National Research Center Kurchatov Institute, Akademika Kurchatova Sq. 1, Moscow, 123182, Russia
| | - Alla A Selishcheva
- National Research Center Kurchatov Institute, Akademika Kurchatova Sq. 1, Moscow, 123182, Russia
- Lomonosov Moscow State University, Leninskie gory 1, Moscow, 119991, Russia
| |
Collapse
|
26
|
Dansou DM, Wang H, Nugroho RD, He W, Zhao Q, Tang C, Zhang H, Zhang J. Effects of duration and supplementation dose with astaxanthin on egg fortification. Poult Sci 2021; 100:101304. [PMID: 34343906 PMCID: PMC8348582 DOI: 10.1016/j.psj.2021.101304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 01/13/2023] Open
Abstract
Long-term and graded dose of astaxanthin supplementation in laying hen's diet was assessed for egg fortification. Five groups of laying hens with 8 replications each were fed for 24 wk with diet supplemented astaxanthin at 0 mg/kg (control), 7.1 mg/kg, 14.2 mg/kg, 21.3 mg/kg, and 42.6 mg/kg (Basal, A7, A14, A21, and A42, respectively). The performance of laying hens, egg quality, astaxanthin concentration as well as conversion efficiency and geometric isomers proportion in yolks were assessed on wk 8 and 24. One-way analysis of variance (ANOVA) and linear and quadratic regression analyses were used to evaluate the dose effect. In parallel, the Student's t test compared the values between wk 8 and wk 24 of test within a group. Overall, the results revealed that neither production performance nor egg physical quality was affected by astaxanthin dose level and feeding duration. Following the supplementation dose, the redness of yolks (a*) increased (P < 0.001). But, the a* score in A42 (23.48) was just 3-folds the a* score in A7 (8.89). Concentration of astaxanthin in eggs was dose-level dependent showing a linear relationship (P < 0.001) with a slight declination observed in all groups on wk 24 compared to wk 8. The deposition rate of astaxanthin into egg yolk was higher in A21 and A42. The proportion of geometric isomers in egg yolk were not affected by the feeding duration. As the supplementation dose increased, all-trans isomer proportion gradually decreased in the egg yolk, while 13-cis isomer proportion rose. It was concluded that astaxanthin is an efficient carotenoid for egg fortification, which can be supplemented in diet up to 42.6 mg/kg for 24 wk without compromising the performance of laying hens or physical quality of eggs. This appreciably affects the egg yolk color and confers a better accumulation of total astaxanthin and cis isomers into eggs as the supplementation dose increases.
Collapse
Affiliation(s)
- Dieudonné M Dansou
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hao Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ramdhan D Nugroho
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weizhao He
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiyan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
27
|
Martínez Sánchez S, Domínguez-Perles R, Montoro-García S, Gabaldón JA, Guy A, Durand T, Oger C, Ferreres F, Gil-Izquierdo A. Bioavailable phytoprostanes and phytofurans from Gracilaria longissima have anti-inflammatory effects in endothelial cells. Food Funct 2021; 11:5166-5178. [PMID: 32432610 DOI: 10.1039/d0fo00976h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND An array of bioactive compounds with health-promoting effects has been described in several species of macroalgae. Among them, phytoprostanes (PhytoPs) and phytofurans (PhytoFs), both autoxidation products of α-linolenic acid, have been seen to exert immunomodulatory and antiinflammatory activities in vitro. The purpose of this study was to explore the bioaccesibility, bioavailability, and bioactivity of PhytoPs and PhytoFs obtained from the edible red algae Gracilaria longissima, and to gain insight into the anti-inflammatory activity of their bioavailable fraction in human endothelial cells. METHODS The PhytoPs and PhytoFs profile and concentration of G. longissima were determined by UHPLC-QqQ-MS/MS. Algal samples were processed following a standardised digestion method including gastric, intestinal, and gastrointestinal digestion. The bioavailability of the PhytoPs and PhytoFs in the characterized fractions was assessed in a Caco-2 cell monolayer model of the intestinal barrier. The inflammation response of these prostaglandin-like compounds in human endothelial cells, after intestinal absorption, was investigated in vitro. RESULTS Simulated digestions significantly reduced the concentration of PhytoPs and PhytoFs up to 1.17 and 0.42 μg per 100 g, respectively, on average, although permeability through the Caco-2 cell monolayer was high (up to 88.2 and 97.7%, on average, respectively). PhytoP and PhytoF-enriched extracts of raw algae impaired the expression of ICAM-1 and IL-6 inflammation markers. The inflammation markers progressed in contrast to the relative concentrations of bioactive oxylipins, suggesting pro- or anti-inflammatory activity on their part. In this aspect, the cross-reactivity of these compounds with diverse receptors, and their relative concentration could explain the diversity of the effects found in the current study. CONCLUSIONS The results indicate that PhytoPs and PhytoFs display complex pharmacological profiles probably mediated through their different actions and affinities in the endothelium.
Collapse
Affiliation(s)
- S Martínez Sánchez
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - R Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100 Espinardo, Spain.
| | - S Montoro-García
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - J A Gabaldón
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - A Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - T Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - C Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - F Ferreres
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - A Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100 Espinardo, Spain.
| |
Collapse
|
28
|
Differences in bioavailability and tissue accumulation efficiency of (all-E)- and (Z)-carotenoids: A comparative study. Food Chem 2021; 361:130119. [PMID: 34044214 DOI: 10.1016/j.foodchem.2021.130119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 02/01/2023]
Abstract
This study investigated the differences in bioavailability and tissue accumulation efficiency between all-E- and Z-isomer-rich carotenoids after oral administration to rats. Three commercially important carotenoids (lycopene, β-carotene, and lutein) were chosen for the study. For all carotenoids, feeding with Z-isomer-rich diets increased their concentrations in plasma and tissues at least similar to or more than the all-E-isomer-rich diets, e.g., in rats fed a Z-isomer-rich lycopene, the lycopene concentrations in the plasma and liver after the 2-week administration were respectively 6.2 and 11.6 times higher than those fed an all-E-isomer-rich diet. These results strongly indicate that carotenoid Z-isomers have higher bioavailability and tissue accumulation efficiency than the all-E-isomers. Moreover, diets rich in carotenoid Z-isomers significantly improved the total Z-isomer ratio in plasma and several tissues compared to the all-E-isomers. Since carotenoid Z-isomers potentially have higher antioxidant activity than the all-E-isomers, their accumulation in the body might bring remarkable health benefits.
Collapse
|
29
|
Wibowo S, Widyarti S, Sabarudin A, Soeatmadji DW, Sumitro SB. DFT and molecular dynamics studies of astaxanthin-metal ions (Cu 2+ and Zn 2+) complex to prevent glycated human serum albumin from possible unfolding. Heliyon 2021; 7:e06548. [PMID: 33851048 PMCID: PMC8024611 DOI: 10.1016/j.heliyon.2021.e06548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/02/2021] [Accepted: 03/11/2021] [Indexed: 11/09/2022] Open
Abstract
Glycated human serum albumin (gHSA) undergoes conformational changes of proteins caused by free radicals. The glycation process results in a reduced ability of albumin as an endogenous scavenger in diabetes mellitus type 2 (T2DM) patients. Astaxanthin (ASX) has been shown to prevent gHSA from experiencing unfolding events and improve protein stability of gHSA and HSA through molecular dynamics. In this study, astaxanthin is complexed with transition metal ions such as copper (Cu2+) and zinc (Zn2+) in two modes (M) and (2M). Complexing astaxanthin with Cu2+ and Zn2+ is expected to increase astaxanthin's ability as an endogenous scavenger than in native form. This research aims to characterize the antiradical property of ASX, ASX-Cu2+ and ASX-2Cu2+, ASX-Zn2+, and ASX-2Zn2+ with density functional theory (DFT) and to compare the capability to prevent conformational changes on glycated albumin through molecular dynamics simulation. DFT as implemented in Gaussian 09W, was used for all calculations. Analysis of data using GaussView 6.0. LANL2D2Z basis set and B3LYP density functional used for frequency analysis and optimization. The AutoDock Vina implemented in PyRx 0.8 is used to and receptor-ligand interactions analysis with the DS 2016 Client. YASARA for molecular dynamic simulation with 15,000 ps as running time. DFT analyzes such as energy gaps, HOMO, and LUMO patterns and electronic properties have shown that ASX-metal ions complex is better than ASX in native state as antioxidants. These results are also supported by the molecular dynamics simulation (RMSD backbone, RMSDr, RMSFr, and movie visualization), where the addition of ASX-metal ions complex on gHSA are better than ASX as a single compound in preventing gHSA from possible unfolding and maintaining protein molecule stability.
Collapse
Affiliation(s)
- Syahputra Wibowo
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University Jl. Veteran, Malang 65145, East Java, Indonesia
| | - Sri Widyarti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University Jl. Veteran, Malang 65145, East Java, Indonesia
| | - Akhmad Sabarudin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
| | - Djoko Wahono Soeatmadji
- Department of Internal Medicine, School of Medicine, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
| | - Sutiman Bambang Sumitro
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University Jl. Veteran, Malang 65145, East Java, Indonesia
| |
Collapse
|
30
|
Pereira AG, Otero P, Echave J, Carreira-Casais A, Chamorro F, Collazo N, Jaboui A, Lourenço-Lopes C, Simal-Gandara J, Prieto MA. Xanthophylls from the Sea: Algae as Source of Bioactive Carotenoids. Mar Drugs 2021; 19:md19040188. [PMID: 33801636 PMCID: PMC8067268 DOI: 10.3390/md19040188] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Algae are considered pigment-producing organisms. The function of these compounds in algae is to carry out photosynthesis. They have a great variety of pigments, which can be classified into three large groups: chlorophylls, carotenoids, and phycobilins. Within the carotenoids are xanthophylls. Xanthophylls (fucoxanthin, astaxanthin, lutein, zeaxanthin, and β-cryptoxanthin) are a type of carotenoids with anti-tumor and anti-inflammatory activities, due to their chemical structure rich in double bonds that provides them with antioxidant properties. In this context, xanthophylls can protect other molecules from oxidative stress by turning off singlet oxygen damage through various mechanisms. Based on clinical studies, this review shows the available information concerning the bioactivity and biological effects of the main xanthophylls present in algae. In addition, the algae with the highest production rate of the different compounds of interest were studied. It was observed that fucoxanthin is obtained mainly from the brown seaweeds Laminaria japonica, Undaria pinnatifida, Hizikia fusiformis, Sargassum spp., and Fucus spp. The main sources of astaxanthin are the microalgae Haematococcus pluvialis, Chlorella zofingiensis, and Chlorococcum sp. Lutein and zeaxanthin are mainly found in algal species such as Scenedesmus spp., Chlorella spp., Rhodophyta spp., or Spirulina spp. However, the extraction and purification processes of xanthophylls from algae need to be standardized to facilitate their commercialization. Finally, we assessed factors that determine the bioavailability and bioaccesibility of these molecules. We also suggested techniques that increase xanthophyll’s bioavailability.
Collapse
Affiliation(s)
- Antia G. Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Anxo Carreira-Casais
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Nicolas Collazo
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Amira Jaboui
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
- Correspondence: (J.S.-G.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (J.S.-G.); (M.A.P.)
| |
Collapse
|
31
|
Honda M, Murakami K, Osawa Y, Kawashima Y, Hirasawa K, Kuroda I. Z-Isomers of Astaxanthin Exhibit Greater Bioavailability and Tissue Accumulation Efficiency than the All- E-Isomer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3489-3495. [PMID: 33689342 DOI: 10.1021/acs.jafc.1c00087] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The purpose of the present study was to clarify the differences in the bioavailability and tissue accumulation efficiency between (all-E)- and (Z)-astaxanthin. Astaxanthin with a high proportion of the Z-isomer (especially rich in the 9Z- and 13Z-isomers) was prepared from (all-E)-astaxanthin by thermal treatment and solid-liquid separation. The all-E-isomer- or Z-isomer-rich diet was fed to male rats for 2 weeks. After the feeding period, blood and tissue samples were collected, and their astaxanthin levels were evaluated. The Z-isomer-rich astaxanthin diet resulted in higher levels of astaxanthin in blood and many tissues (in particular, skin, lung, prostate, and eye) compared to the all-E-isomer-rich diet. Moreover, the Z-isomer-rich diet enhanced the level of the 13Z-isomer in blood and tissues rather than that of the 9Z-isomer. These results strongly supported that astaxanthin Z-isomers have greater bioavailability and tissue accumulation efficiency than the all-E-isomer. Moreover, (13Z)-astaxanthin would have higher bioavailability and tissue accumulation than the other isomers.
Collapse
Affiliation(s)
- Masaki Honda
- Department of Chemistry, Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
| | - Kazuya Murakami
- Department of Chemistry, Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
- Department of Materials Process Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Yukiko Osawa
- Biotechnology R&D Group, ENEOS Corporation, Chidoricho, Naka-ku, Yokohama 231-0815, Japan
| | - Yuki Kawashima
- Biotechnology R&D Group, ENEOS Corporation, Chidoricho, Naka-ku, Yokohama 231-0815, Japan
| | - Kazuaki Hirasawa
- Biotechnology R&D Group, ENEOS Corporation, Chidoricho, Naka-ku, Yokohama 231-0815, Japan
| | - Ikuo Kuroda
- Biotechnology R&D Group, ENEOS Corporation, Chidoricho, Naka-ku, Yokohama 231-0815, Japan
| |
Collapse
|
32
|
Honda M, Kageyama H, Hibino T, Osawa Y, Kawashima Y, Hirasawa K, Kuroda I. Evaluation and improvement of storage stability of astaxanthin isomers in oils and fats. Food Chem 2021; 352:129371. [PMID: 33706139 DOI: 10.1016/j.foodchem.2021.129371] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/11/2020] [Accepted: 02/12/2021] [Indexed: 11/26/2022]
Abstract
Astaxanthin Z-isomers potentially have greater bioavailability and biological activity than (all-E)-astaxanthin. However, the stability of the Z-isomers is lower than the all-E-isomer, which is a serious problem affecting its practical use. In this study, we investigated the impacts of different suspension media (oils and fats) and additives on astaxanthin isomer stability and identified suitable ones for astaxanthin stabilization. The evaluations showed that several vegetable oils and antioxidants significantly improved astaxanthin isomer stability, e.g., when soybean and sunflower oils were used as the suspension medium, astaxanthin isomers were hardly degraded; however the total Z-isomer ratio decreased from ~80% to ~50% during 6-week storage at 30 °C. Moreover, it was revealed that (9Z)-astaxanthin showed higher stability than the 13Z- and 15Z-isomers. Hence, to maintain astaxanthin concentration and the Z-isomer ratio over long periods, it is important to use suitable suspension mediums and antioxidants, and select a Z-isomerization method that increases (9Z)-astaxanthin ratio.
Collapse
Affiliation(s)
- Masaki Honda
- Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan.
| | - Hakuto Kageyama
- Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan; Graduate School of Environmental and Human Sciences, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
| | - Takashi Hibino
- Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan; Graduate School of Environmental and Human Sciences, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
| | - Yukiko Osawa
- Biotechnology R&D Group, ENEOS Corporation, Chidoricho, Naka-ku, Yokohama 231-0815, Japan.
| | - Yuki Kawashima
- Biotechnology R&D Group, ENEOS Corporation, Chidoricho, Naka-ku, Yokohama 231-0815, Japan
| | - Kazuaki Hirasawa
- Biotechnology R&D Group, ENEOS Corporation, Chidoricho, Naka-ku, Yokohama 231-0815, Japan
| | - Ikuo Kuroda
- Biotechnology R&D Group, ENEOS Corporation, Chidoricho, Naka-ku, Yokohama 231-0815, Japan
| |
Collapse
|
33
|
|
34
|
Sakemi Y, Sato K, Hara K, Honda M, Shindo K. Biological Activities of Z-Lycopenes Contained in Food. J Oleo Sci 2020; 69:1509-1516. [PMID: 33055449 DOI: 10.5650/jos.ess20163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mono-(5Z)-, -(9Z)-, and -(13Z)-lycopenes are found in food containing processed tomato products, while tetra-Z-(7Z, 9Z, 7'Z, 9'Z)-lycopene (prolycopene) is found in tangerine-strain tomatoes. We prepared pure mono-Z-lycopenes from all-E-lycopene via chemical reaction (heating in CH2Cl2 at 80℃ for 1 h) followed by purification using preparative silica gel HPLC, while prolycopene was isolated from tangerine tomatoes by partitioning with n-hexane and 90% MeOH followed by silica gel column chromatography. A simple method of distinguishing the mono-Z-lycopenes using the 13C NMR chemical shifts of their Z-methyl carbons is proposed. Additionally, the 1O2 quenching and 3T3-L1 cell differentiation activities of the compounds were then compared with all-E-lycopene for the first time. All the evaluated Z-isomers showed 1O2 quenching activities that were equal to or slightly lower than that of all-E-lycopene, with the IC50 values for the 1O2 quenching activities of (all-E)-, (5Z)-, (9Z)-, (13Z)-, and (7Z, 9Z, 7'Z, 9'Z)-lycopene being 4.4±0.36, 4.0±1.44, 5.3±1.08, 6.9±1.67, and 8.7±0.34 µM, respectively. The mouse 3T3-L1 cell differentiation activities followed the order: (all-E) > (9Z) > (5Z) ≈ (9Z) ≈ (13Z) ≈ (7Z, 9Z, 7'Z, 9'Z).
Collapse
Affiliation(s)
- Yuka Sakemi
- Department of Food and Nutrition, Japan Women's University
| | - Kana Sato
- Department of Food and Nutrition, Japan Women's University
| | - Kurumi Hara
- Department of Food and Nutrition, Japan Women's University
| | - Masaki Honda
- Department of Chemistry, Faculty of Science & Technology, Meijo University
| | | |
Collapse
|
35
|
Song R, Jia Z, Xu Y, Zhang X, Wei R, Sun J. Saponification to improve the antioxidant activity of astaxanthin extracts from Penaeus sinensis (Solenocera crassicornis) by-products and intervention effect on Paracetamol-induced acute hepatic injury in rat. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
36
|
Tsuji S, Nakamura S, Maoka T, Yamada T, Imai T, Ohba T, Yako T, Hayashi M, Endo K, Saio M, Hara H, Shimazawa M. Antitumour Effects of Astaxanthin and Adonixanthin on Glioblastoma. Mar Drugs 2020; 18:E474. [PMID: 32962073 PMCID: PMC7551886 DOI: 10.3390/md18090474] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
Several antitumour drugs have been isolated from natural products and many clinical trials are underway to evaluate their potential. There have been numerous reports about the antitumour effects of astaxanthin against several tumours but no studies into its effects against glioblastoma. Astaxanthin is a red pigment found in crustaceans and fish and is also synthesized in Haematococcus pluvialis; adonixanthin is an intermediate product of astaxanthin. It is known that both astaxanthin and adonixanthin possess radical scavenging activity and can confer a protective effect on several damages. In this study, we clarified the antitumour effects of astaxanthin and adonixanthin using glioblastoma models. Specifically, astaxanthin and adonixanthin showed an ability to suppress cell proliferation and migration in three types of glioblastoma cells. Furthermore, these compounds were confirmed to transfer to the brain in a murine model. In the murine orthotopic glioblastoma model, glioblastoma progression was suppressed by the oral administration of astaxanthin and adonixanthin at 10 and 30 mg/kg, respectively, for 10 days. These results suggest that both astaxanthin and adonixanthin have potential as treatments for glioblastoma.
Collapse
Affiliation(s)
- Shohei Tsuji
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.T.); (T.Y.); (T.I.); (T.O.); (T.Y.); (H.H.); (M.S.)
| | - Shinsuke Nakamura
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.T.); (T.Y.); (T.I.); (T.O.); (T.Y.); (H.H.); (M.S.)
| | - Takashi Maoka
- Research Institute for Production Developent Division of Food Function and Chemistry, Kyoto 606-0805, Japan;
| | - Tetsuya Yamada
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.T.); (T.Y.); (T.I.); (T.O.); (T.Y.); (H.H.); (M.S.)
- Department of Neurosurgery, Gifu University School of Medicine, Gifu 501-1194, Japan
| | - Takahiko Imai
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.T.); (T.Y.); (T.I.); (T.O.); (T.Y.); (H.H.); (M.S.)
| | - Takuya Ohba
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.T.); (T.Y.); (T.I.); (T.O.); (T.Y.); (H.H.); (M.S.)
| | - Tomohiro Yako
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.T.); (T.Y.); (T.I.); (T.O.); (T.Y.); (H.H.); (M.S.)
| | - Masahiro Hayashi
- Department of HPM Research & Development, Biotechnology R&D Group, High Performance Materials Company, ENEOS Corporation, Yokohama 231-0815, Japan;
| | - Ken Endo
- Department of HPM Business Promotion Group V, Business promotion Group, High Performance Materials Company, ENEOS Corporation, Tokyo 108-8005, Japan;
| | - Masanao Saio
- Graduate School of Health Sciences, Gunma University, Gunma 371-8514, Japan;
| | - Hideaki Hara
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.T.); (T.Y.); (T.I.); (T.O.); (T.Y.); (H.H.); (M.S.)
| | - Masamitsu Shimazawa
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.T.); (T.Y.); (T.I.); (T.O.); (T.Y.); (H.H.); (M.S.)
| |
Collapse
|
37
|
Structures of Astaxanthin and Their Consequences for Therapeutic Application. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:2156582. [PMID: 32775406 PMCID: PMC7391096 DOI: 10.1155/2020/2156582] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) are continuously generated as a by-product of normal aerobic metabolism. Elevated ROS formation leads to potential damage of biological structures and is implicated in various diseases. Astaxanthin, a xanthophyll carotenoid, is a secondary metabolite responsible for the red-orange color of a number of marine animals and microorganisms. There is mounting evidence that astaxanthin has powerful antioxidant, anti-inflammatory, and antiapoptotic activities. Hence, its consumption can result in various health benefits, with potential for therapeutic application. Astaxanthin contains both a hydroxyl and a keto group, and this unique structure plays important roles in neutralizing ROS. The molecule quenches harmful singlet oxygen, scavenges peroxyl and hydroxyl radicals and converts them into more stable compounds, prevents the formation of free radicals, and inhibits the autoxidation chain reaction. It also acts as a metal chelator and converts metal prooxidants into harmless molecules. However, like many other carotenoids, astaxanthin is affected by the environmental conditions, e.g., pH, heat, or exposure to light. It is hence susceptible to structural modification, i.e., via isomerization, aggregation, or esterification, which alters its physiochemical properties. Here, we provide a concise overview of the distribution of astaxanthin in tissues, and astaxanthin structures, and their role in tackling singlet oxygen and free radicals. We highlight the effect of structural modification of astaxanthin molecules on the bioavailability and biological activity. These studies suggested that astaxanthin would be a promising dietary supplement for health applications.
Collapse
|
38
|
Du X, Wang C, Wu L, Li Z, Sadiq FA, Jiang Z, Chen F, Ni H, Li Q. Two-dimensional liquid chromatography analysis of all-trans-, 9-cis-, and 13-cis-astaxanthin in raw extracts from Phaffia rhodozyma. J Sep Sci 2020; 43:3206-3215. [PMID: 32506706 DOI: 10.1002/jssc.202000257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 11/09/2022]
Abstract
An effective two-dimensional liquid chromatography method has been established for the analysis of all-trans-astaxanthin and its geometric isomers from Phaffia rhodozyma employing a C18 column at the first dimension and a C30 column in the second dimension, connected by a 10-port valve using the photo-diode array detector. The regression equation of astaxanthin calibration curve was established, and the precision and accuracy values were found to be in the range of 0.32-1.14% and 98.21-106.13%, respectively. By using two-dimensional liquid chromatography, it was found that day light, ultrasonic treatment, and heat treatment have significant influence on the content of all-trans-astaxanthin in the extract from P. rhodozyma due to the transformation of all-trans-astaxanthin to cis-astaxanthin. The day light and ultrasonic treatments more likely transform all-trans-astaxanthin to 9-cis-astaxanthin, and the thermal treatment transforms all-trans-astaxanthin to 13-cis-astaxanthin. These results indicate that the two-dimensional liquid chromatography method can facilitate monitoring astaxanthin isomerization in the raw extract from P. rhodozyma. In addition, the study will provide a general reference for monitoring other medicals and bioactive chemicals with geometric isomers.
Collapse
Affiliation(s)
- Xiping Du
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, P. R. China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, P. R. China
| | - Chun Wang
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| | - Ling Wu
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, P. R. China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, P. R. China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, P. R. China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, P. R. China
| | - Faizan Ahmed Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, P. R. China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, P. R. China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, P. R. China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, P. R. China
| | - Qingbiao Li
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, P. R. China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, P. R. China
| |
Collapse
|
39
|
Possibility of Using Astaxanthin-Rich Dried Cell Powder from Paracoccus carotinifaciens to Improve Egg Yolk Pigmentation of Laying Hens. Symmetry (Basel) 2020. [DOI: 10.3390/sym12060923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The study investigated egg quality aspects such as astaxanthin concentration, E/Z-isomer ratio, and yolk color in laying hens fed with astaxanthin-containing diets. Dried Paracoccus carotinifaciens cell powder (Panaferd-AX) and fine cell powder (Panaferd-P) were used as sources of astaxanthin, with average particle diameters of approximately 100 μm and 10 μm, respectively. Paracoccus carotinifaciens contains valuable rare carotenoids such as adonirubin and adonixanthin, and thus the concentrations of these carotenoids in egg yolk were also evaluated. The E/Z-isomer ratios of the egg yolk carotenoids were determined by normal-phase high-performance liquid chromatography (HPLC) with an improved solvent system. Feeding diets containing P. carotinifaciens resulted in increased concentrations of astaxanthin, adonirubin, and adonixanthin in egg yolk, as well as a marked increase in the yolk color fan score; values associated with the Panaferd-P-containing diet were higher than those associated with the Panaferd-AX-containing diet. For example, the astaxanthin concentration in egg yolks of hens fed with the Panaferd-AX- and Panaferd-P-containing diets for 21 days were 1.21 μg/g and 1.85 μg/g, respectively. This indicates that the pulverization treatment of the P. carotinifaciens powder increased the efficiency of carotenoid accumulation in the egg yolk. Moreover, more than 95% of astaxanthin in P. carotinifaciens was present as the all-E-isomer. However, approximately 25% of astaxanthin in egg yolk was present as the Z-isomers. In recent years, astaxanthin Z-isomers have attracted substantial attention as they exhibit a greater bioavailability and bioactivity than the all-E-isomer. These data are important not only for understanding egg yolk pigmentation but also for improving the nutritional value of hens’ egg yolk through the addition of P. carotinifaciens to their diet.
Collapse
|
40
|
Zhang L, Cao W, Gao Y, Yang R, Zhang X, Xu J, Tang Q. Astaxanthin (ATX) enhances the intestinal mucosal functions in immunodeficient mice. Food Funct 2020; 11:3371-3381. [PMID: 32232254 DOI: 10.1039/c9fo02555c] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing pressure of life may bring some disease risks and stress injuries, which may destroy the immune system and result in intestinal mucosal immune disorders. In this study, the effects of different doses of ATX (30 mg per kg b.w., 60 mg per kg b.w. and 120 mg per kg b.w.) on intestinal mucosal functions were explored in cyclophosphamide (Cy)-induced immunodeficient mice. The results showed that continuous intraperitoneal injection of 100 mg per kg b.w. Cy for three days led to a persistent decrease of body weight and a range of abnormalities in the intestine of C57BL/6 mice. However, administration of ATX at 60 and 120 mg per kg b.w. could effectively prevent intestinal mucosa from this damage, including reduced levels of oxidative stress (MDA, GSH and GSH-PX), increased intestinal morphological structural integrity, stimulative growth of goblet cells and mucous secretion, decreased development of Paneth cells and expression levels of antimicrobial peptides (AMPs) (Reg-3γ and lysozyme), increased IgA secretion, ameliorative main gut flora (especially total bacteria, Lactobacillus and Enterobacteriaceae spp. ) and its metabolites (acetic acid, propionic acid and butyric acid). These protective effects of ATX were better than those of control-β-carotene in general. Our results may provide a new protective measure to keep intestinal mucosal barriers, which is of great significance for maintaining immune function in the body.
Collapse
Affiliation(s)
- Lirong Zhang
- College of Food Science and Engineering, Ocean University of China, Yushan Road 5th, Qingdao, Shandong Province 266003, China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Honda M, Kageyama H, Hibino T, Ichihashi K, Takada W, Goto M. Isomerization of Commercially Important Carotenoids (Lycopene, β-Carotene, and Astaxanthin) by Natural Catalysts: Isothiocyanates and Polysulfides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3228-3237. [PMID: 32074447 DOI: 10.1021/acs.jafc.0c00316] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Effects of natural catalysts, isothiocyanates and polysulfides, on Z-isomerization and decomposition of (all-E)-carotenoids (lycopene, β-carotene, and astaxanthin) after heat treatment were investigated. When isothiocyanates were added to (all-E)-carotenoid solutions and heated, Z-isomerization and decomposition of carotenoids were enhanced and the degree differed depending on the isothiocyanate type. Interestingly, when polysulfides were applied in the same manner, in addition to promoting the Z-isomerization reaction, they markedly improved the thermal stability of carotenoids. Successively, we investigated the reaction characteristics of allyl isothiocyanate (AITC) and diallyl disulfide (DADS) using (all-E)-lycopene; that is, effects of the amount added, solvent used, and reaction temperature and time, as well as the combination use on Z-isomerization and decomposition of lycopene, were investigated. With increases in the amount added and reaction temperature and time, Z-isomerization of lycopene was promoted for both catalysts. The high-temperature treatment tests clearly showed that AITC induced thermal decomposition of lycopene, whereas DADS improved the lycopene stability. Moreover, the simultaneous use of AITC and DADS resulted in a synergetic effect on the Z-isomerization efficiency.
Collapse
Affiliation(s)
- Masaki Honda
- Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
| | - Hakuto Kageyama
- Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
| | - Takashi Hibino
- Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
| | - Kohei Ichihashi
- Innovation Division, Kagome Company, Ltd., Nishitomiyama, Nasushiobara 329-2762, Japan
| | - Wataru Takada
- Innovation Division, Kagome Company, Ltd., Nishitomiyama, Nasushiobara 329-2762, Japan
| | - Motonobu Goto
- Department of Materials Process Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
42
|
Honda M, Kageyama H, Hibino T, Sowa T, Kawashima Y. Efficient and environmentally friendly method for carotenoid extraction from Paracoccus carotinifaciens utilizing naturally occurring Z-isomerization-accelerating catalysts. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Honda M, Ishikawa H, Hayashi Y. Alterations in lycopene concentration and
Z
‐isomer content in egg yolk of hens fed all‐
E
‐isomer‐rich and
Z
‐isomer‐rich lycopene. Anim Sci J 2019; 90:1261-1269. [DOI: 10.1111/asj.13276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Masaki Honda
- Department of Chemistry, Faculty of Science & Technology Meijo University Nagoya Japan
| | - Hiroto Ishikawa
- Experimental Farm, Faculty of Agriculture Meijo University Kasugai Japan
| | - Yoshiaki Hayashi
- Experimental Farm, Faculty of Agriculture Meijo University Kasugai Japan
| |
Collapse
|
44
|
Honda M, Kageyama H, Hibino T, Zhang Y, Diono W, Kanda H, Yamaguchi R, Takemura R, Fukaya T, Goto M. Improved Carotenoid Processing with Sustainable Solvents Utilizing Z-Isomerization-Induced Alteration in Physicochemical Properties: A Review and Future Directions. Molecules 2019; 24:molecules24112149. [PMID: 31181605 PMCID: PMC6600244 DOI: 10.3390/molecules24112149] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 11/20/2022] Open
Abstract
Carotenoids—natural fat-soluble pigments—have attracted considerable attention because of their potential to prevent of various diseases, such as cancer and arteriosclerosis, and their strong antioxidant capacity. They have many geometric isomers due to the presence of numerous conjugated double bonds in the molecule. However, in plants, most carotenoids are present in the all-E-configuration. (all-E)-Carotenoids are characterized by high crystallinity as well as low solubility in safe and sustainable solvents, such as ethanol and supercritical CO2 (SC-CO2). Thus, these properties result in the decreased efficiency of carotenoid processing, such as extraction and emulsification, using such sustainable solvents. On the other hand, Z-isomerization of carotenoids induces alteration in physicochemical properties, i.e., the solubility of carotenoids dramatically improves and they change from a “crystalline state” to an “oily (amorphous) state”. For example, the solubility in ethanol of lycopene Z-isomers is more than 4000 times higher than the all-E-isomer. Recently, improvement of carotenoid processing efficiency utilizing these changes has attracted attention. Namely, it is possible to markedly improve carotenoid processing using safe and sustainable solvents, which had previously been difficult to put into practical use due to the low efficiency. The objective of this paper is to review the effect of Z-isomerization on the physicochemical properties of carotenoids and its application to carotenoid processing, such as extraction, micronization, and emulsification, using sustainable solvents. Moreover, aspects of Z-isomerization methods for carotenoids and functional difference, such as bioavailability and antioxidant capacity, between isomers are also included in this review.
Collapse
Affiliation(s)
- Masaki Honda
- Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan.
| | - Hakuto Kageyama
- Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan.
| | - Takashi Hibino
- Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan.
| | - Yelin Zhang
- Department of Materials Process Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Wahyu Diono
- Department of Materials Process Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Hideki Kanda
- Department of Materials Process Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Ryusei Yamaguchi
- Technical Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Ryota Takemura
- Innovation Division, Kagome Company, Limited, Nishitomiyama, Nasushiobara 329-2762, Japan.
| | - Tetsuya Fukaya
- Innovation Division, Kagome Company, Limited, Nishitomiyama, Nasushiobara 329-2762, Japan.
- Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Motonobu Goto
- Department of Materials Process Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
45
|
Yang C, Hassan YI, Liu R, Zhang H, Chen Y, Zhang L, Tsao R. Anti-Inflammatory Effects of Different Astaxanthin Isomers and the Roles of Lipid Transporters in the Cellular Transport of Astaxanthin Isomers in Caco-2 Cell Monolayers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6222-6231. [PMID: 31117505 DOI: 10.1021/acs.jafc.9b02102] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The anti-inflammatory effects and cellular transport mechanisms of all- E-astaxanthin and its 9Z- and 13Z-isomers were investigated in a Caco-2 cell monolayer model. All three astaxanthin isomers at 1.2 μM significantly reduced the TNF-α-induced secretion of IL-8 by 22-27%. Z-Astaxanthins, especially 9 Z-astaxanthin exhibited greater anti-inflammatory effect than all- E-astaxanthin by down-regulating pro-inflammatory cytokines COX-2 and TNF-α gene expression to 0.88 ± 0.01-fold and 0.83 ± 0.17-fold that of the negative control (NC), respectively. The anti-inflammatory effects of astaxanthin isomers were achieved via modulating the NF-κB signaling pathway as they down-regulated TNF-α-induced phosphorylation of IκBα from 5.3 ± 0.19-fold to 3.8 ± 0.33-4.5 ± 0.27-fold of NC. The scavenger receptor class B type I protein (SR-BI) was found to facilitate the cellular uptake of astaxanthin isomers. Its inhibitor (BLT-1) and antibody (Anti-SRBI) significantly reduced cellular uptake efficiency of all- E-astaxanthin (18.9% and 16.7%, respectively) and 13Z-astaxanthin (28.8% and 30.2%, respectively), but not of 9Z-astaxanthin. The molecular docking experiment showed that 13 Z-astaxanthin had significantly higher affinity with SR-BI (atomic contact energy: -420.31) than all- E-astaxanthin and 9 Z-astaxanthin, which at least partially supports the higher bioavailability of 13 Z-astaxanthin observed in vivo by others.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , P. R. China
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , P. R. China
| | - Yousef I Hassan
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Ronghua Liu
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Hua Zhang
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Yuhuan Chen
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , P. R. China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , P. R. China
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , P. R. China
| | - Rong Tsao
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| |
Collapse
|
46
|
Kim SH, Lim JW, Kim H. Astaxanthin Inhibits Mitochondrial Dysfunction and Interleukin-8 Expression in Helicobacter pylori-Infected Gastric Epithelial Cells. Nutrients 2018; 10:E1320. [PMID: 30231525 PMCID: PMC6164770 DOI: 10.3390/nu10091320] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection leads to gastric inflammation, peptic ulcer and gastric carcinoma. H. pylori activates NADPH oxidase and increases reactive oxygen species (ROS), which induce NF-κB activation and IL-8 expression in gastric epithelial cells. Dysfunctional mitochondria trigger inflammatory cytokine production. Peroxisome proliferator-activated receptors-γ (PPAR-γ) regulate inflammatory response. Astaxanthin is a powerful antioxidant that protects cells against oxidative stress. The present study was aimed at determining whether astaxanthin inhibits H. pylori-induced mitochondrial dysfunction, NF-κB activation, and IL-8 expression via PPAR-γ activation in gastric epithelial cells. Gastric epithelial AGS cells were treated with astaxanthin, NADPH oxidase inhibitor apocynin and PPAR-γ antagonist GW9662, and infected with H. pylori. As a result, H. pylori caused an increase in intracellular and mitochondrial ROS, NF-κB activation and IL-8 expression, but decreased mitochondrial membrane potential and ATP level. Astaxanthin inhibited H. pylori-induced alterations (increased ROS, mitochondrial dysfunction, NF-κB activation, and IL-8 expression). Astaxanthin activated PPAR-γ and its target gene catalase in H. pylori-infected cells. Apocynin reduced ROS and inhibited IL-8 expression while astaxanthin did not affect NADPH oxidase activity. Inhibitory effects of astaxanthin on ROS levels and IL-8 expression were suppressed by addition of GW9662. In conclusion, astaxanthin inhibits H. pylori-induced mitochondrial dysfunction and ROS-mediated IL-8 expression by activating PPAR-γ and catalase in gastric epithelial cells. Astaxanthin may be beneficial for preventing oxidative stress-mediated gastric inflammation-associated H. pylori infection.
Collapse
Affiliation(s)
- Suhn Hyung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
47
|
Nanoparticle formation of PVP/astaxanthin inclusion complex by solution-enhanced dispersion by supercritical fluids (SEDS): Effect of PVP and astaxanthin Z-isomer content. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.02.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Liu X, Chen X, Liu H, Cao Y. Antioxidation and anti-aging activities of astaxanthin geometrical isomers and molecular mechanism involved in Caenorhabditis elegans. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
49
|
Yang C, Fischer M, Kirby C, Liu R, Zhu H, Zhang H, Chen Y, Sun Y, Zhang L, Tsao R. Bioaccessibility, cellular uptake and transport of luteins and assessment of their antioxidant activities. Food Chem 2017; 249:66-76. [PMID: 29407933 DOI: 10.1016/j.foodchem.2017.12.055] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 01/21/2023]
Abstract
A rapid method for producing 9Z- and 13'Z-isomers from all-E-lutein was developed using I-TiO2 as catalyst. In a simulated in vitro gastrointestinal digestion model, both trans-cis isomerization of all-E-lutein and cis-trans isomerization of Z-luteins occurred during the intestinal phase. The bioaccessibility of all isomers was between 14 and 23%, and it was higher for Z-luteins. In a Caco-2 cell monolayer model, all isomers were relatively stable during cellular uptake and transport across the membrane as no significant isomerization and degradation was detected, but all-E-lutein exhibited significantly higher cellular uptake and transport efficiencies. These results suggest that Z-luteins found in human plasma may likely be formed before intestinal absorption. 13'Z-Lutein also exhibited highest antioxidant activity in FRAP, DPPH and ORAC-L assays, but no significant difference in cell-based antioxidant assay compared with other isomers. Future studies on the different antioxidant activities of cis isomers of lutein in vivo will provide further explanation.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Maike Fischer
- Charlottetown Research & Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, Prince Edward Island C1A 4N6, Canada
| | - Chris Kirby
- Charlottetown Research & Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, Prince Edward Island C1A 4N6, Canada
| | - Ronghua Liu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Honghui Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Hua Zhang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Yuhuan Chen
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada; State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yong Sun
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada; State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada.
| |
Collapse
|