1
|
Wang Z, Wang Z, Zhang Z, Lu Q, Sheng Y, Song X, Huo R, Wang J, Zhai S. Comparative transcriptome reveals lignin biosynthesis being the key molecular pathway regulating oilseed rape growth treated by SiO 2 NPs and biochar. JOURNAL OF PLANT RESEARCH 2024:10.1007/s10265-024-01590-9. [PMID: 39537940 DOI: 10.1007/s10265-024-01590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Biochar and SiO2 NPs are effective soil conditioners, but the impacts and mechanisms of combined application in oilseed rape are not yet clear. Therefore, an experiment was designed to investigate oilseed rape growth, physiological indexes, and transcriptome sequencing under four treatments: control (CK), Platanus orientalis L. leaf biochar (B), SiO2 NPs (S), and BS. Our results showed that B, S and BS treatments all promoted the root growth, root activity and biomass of oilseed rape, especially the root length and fresh weight in BS, which were increased by 77.48% and 279.07%, respectively. Moreover, the three-dimensional fluorescence spectra of B and BS were similar, and the tyrosine-like substance proportion in B, S and BS increased from 7.8 to 9.4%, 10.2% and 19.5%, respectively. In transcriptome analysis, there were 10,280 differentially expressed genes (DEGs) shared in B and BS, 3431 DEGs shared in S and BS, and 2815 DEGs shared in B, S and BS. We also found that B, S and BS all regulated oilseed rape growth by inducing the lignin biosynthesis and the relevant genes encoding BBE-like, BGL, UDP in the phenylpropanoid biosynthesis pathway. The results provide gene regulation associated with the phenylpropanoid biosynthesis applying the biochar and SiO2 NPs, which can be used to increase biomass.
Collapse
Affiliation(s)
- Ziming Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Ziyue Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Zhaodi Zhang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Qiong Lu
- School of Geography and Environment, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Yikun Sheng
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Xiangyuan Song
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Ruipeng Huo
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Juyuan Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, 252059, China.
| | - Sheng Zhai
- School of Geography and Environment, Liaocheng University, Liaocheng, Shandong, 252059, China.
| |
Collapse
|
2
|
Chandon E, Nualkhao P, Vibulkeaw M, Tisarum R, Samphumphuang T, Sun J, Cha-Um S, Yooyongwech S. Mitigating excessive heat in Arabica coffee using nanosilicon and seaweed extract to enhance element homeostasis and photosynthetic recovery. BMC PLANT BIOLOGY 2024; 24:1064. [PMID: 39528925 PMCID: PMC11555975 DOI: 10.1186/s12870-024-05784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Global warming-related temperature increases have a substantial effect on plant and human health. The Arabica coffee plant is susceptible to growing in many places across the world where temperatures are rising. This study examines how nanosilicon and seaweed extracts can improve Arabica coffee plant resilience during heat stress treatment (49.0 ± 0.3 °C) by maintaining mineral homeostasis and photosynthetic ability upon recovery. RESULTS The principal component analysis arrangement of four treatments, nanosilicon (Si), seaweed extract (SWE), Si + SWE, and control (CT), showed each element ratio of magnesium, phosphorus, chloride, potassium, manganese, iron, copper, and zinc per silicon in ambient temperature and heat stress that found influenced upper shoot rather than basal shoot and root within 74.4% of largest feasible variance as first principal component. Magnesium and iron were clustered within the silicon group, with magnesium dominating and leading to a significant increase (p ≤ 0.05) in magnesium-to-silicon ratio in the upper shoot under heat conditions, especially in Si and Si + SWE treated plants (1.11 and 1.29 fold over SWE treated plant, respectively). The SWE and Si + SWE treated plants preserved chlorophyll content (15.01% and 28.67% over Si-treated plant, respectively) under heat stress, while the Si and Si + SWE treated plants restored photosynthetic efficiency (Fv/Fm) better than the SWE treated plant. CONCLUSIONS The concomitant of the Si + SWE treatment synergistically protected photosynthetic pigments and Fv/Fm by adjusting the magnesium-silicon homeostasis perspective in Arabica coffee to protect real-world agricultural practices and coffee cultivation under climate change scenarios.
Collapse
Affiliation(s)
- Ekkachak Chandon
- School of Interdisciplinary Studies (Kanchanaburi Campus), Mahidol University, Kanchanaburi, 71150, Thailand
| | - Patchawee Nualkhao
- School of Interdisciplinary Studies (Kanchanaburi Campus), Mahidol University, Kanchanaburi, 71150, Thailand
| | - Metee Vibulkeaw
- School of Interdisciplinary Studies (Kanchanaburi Campus), Mahidol University, Kanchanaburi, 71150, Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Jianqiang Sun
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8517, Japan
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Suravoot Yooyongwech
- School of Interdisciplinary Studies (Kanchanaburi Campus), Mahidol University, Kanchanaburi, 71150, Thailand.
| |
Collapse
|
3
|
Dev W, Sultana F, He S, Waqas M, Hu D, Aminu IM, Geng X, Du X. An insight into heat stress response and adaptive mechanism in cotton. JOURNAL OF PLANT PHYSIOLOGY 2024; 302:154324. [PMID: 39167998 DOI: 10.1016/j.jplph.2024.154324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
The growing worldwide population is driving up demand for cotton fibers, but production is hampered by unpredictable temperature rises caused by shifting climatic conditions. Numerous research based on breeding and genomics have been conducted to increase the production of cotton in environments with high and low-temperature stress. High temperature (HT) is a major environmental stressor with global consequences, influencing several aspects of cotton plant growth and metabolism. Heat stress-induced physiological and biochemical changes are research topics, and molecular techniques are used to improve cotton plants' heat tolerance. To preserve internal balance, heat stress activates various stress-responsive processes, including repairing damaged proteins and membranes, through various molecular networks. Recent research has investigated the diverse reactions of cotton cultivars to temperature stress, indicating that cotton plant adaptation mechanisms include the accumulation of sugars, proline, phenolics, flavonoids, and heat shock proteins. To overcome the obstacles caused by heat stress, it is crucial to develop and choose heat-tolerant cotton cultivars. Food security and sustainable agriculture depend on the application of genetic, agronomic, and, biotechnological methods to lessen the impacts of heat stress on cotton crops. Cotton producers and the textile industry both benefit from increased heat tolerance. Future studies should examine the developmental responses of cotton at different growth stages, emphasize the significance of breeding heat-tolerant cultivars, and assess the biochemical, physiological, and molecular pathways involved in seed germination under high temperatures. In a nutshell, a concentrated effort is required to raise cotton's heat tolerance due to the rising global temperatures and the rise in the frequency of extreme weather occurrences. Furthermore, emerging advances in sequencing technologies have made major progress toward successfully se sequencing the complex cotton genome.
Collapse
Affiliation(s)
- Washu Dev
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fahmida Sultana
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shoupu He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Muhammad Waqas
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Daowu Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, 57202, China
| | - Isah Mansur Aminu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoli Geng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, 57202, China.
| |
Collapse
|
4
|
Tapaça IDPE, Obieze CC, Pereira GVDM, Fangueiro D, Coutinho J, Fraga I, Partelli FL, Ramalho JC, Marques I, Ribeiro-Barros AI. Irradiance level and elevation shape the soil microbiome communities of Coffea arabica L. ENVIRONMENTAL MICROBIOME 2024; 19:75. [PMID: 39407337 PMCID: PMC11481607 DOI: 10.1186/s40793-024-00619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND The nexus plant-microbe-environment is essential to understand the ecosystem processes shaping plant health and fitness. Within this triangle, soils and associated microflora are among the key ecosystem's drivers, underpinning plant productivity and evolution. In this study, we conducted a comprehensive analysis (physicochemical properties, enzyme activities, and taxonomic diversity) of soils under the canopy projection of Coffea arabica trees along a gradient of elevation (600, 800, and 900 m) and shade (0, 50, 100%). RESULTS While shade had no influence on most parameters, altitude shaped the dynamics of microbial communities. Available phosphorus, soil organic carbon, and nitrate were significantly higher at 800 m, likely due to the higher activities of β-glucosidase and phosphatases at this altitude. Microbial biomass (carbon and nitrogen) and moisture were significantly higher at 600 and 900 m, which might be attributed to the abundance and richness of soil microorganisms. Indeed, metabarcoding analysis revealed a complex pattern of microbial consortia (bacteria, archaea, fungi) at the three altitudes, with the lowest index of richness recorded at 800 m. The highest number of Amplicon Sequence Variants was observed in bacteria, whose functional analysis revealed distinct metabolic adaptations across different altitudes. At 900 m, the main functional attributes favored the responses to environmental stimuli and microbial interactions; at 800 m, the predominant metabolic pathways were related to organic matter, fermentation, and bioremediation; and at the lower 600 m, the pathways shifted towards the breakdown of plant-derived compounds (e.g. geraniol, limonene, and pinene degradation). CONCLUSION Overall, the results indicate a higher effectiveness of the microbial consortium at 800 m, which might result in better nutrient cycling. The study highlights the importance of canopy shade species and elevation for the composition of microbial consortia in C. arabica, unveiling ecological functions beyond plant health, with implications for bio-based solutions and biotechnology.
Collapse
Affiliation(s)
- Inocência da Piedade E Tapaça
- Forest Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisbon, 1349-017, Portugal
- Mozambique Agricultural Research Institute (IIAM), Avenida das FPLM 2698, P.O. Box 3658, Mavalane B, Maputo, Mozambique
| | - Chinedu C Obieze
- Centre for Forest Research, Institute of Integrative Biology and Systems, Universite Laval, Québec, QC, G1V0A6, Canada
| | - Gilberto V de Melo Pereira
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba, PR, 81531-980, Brazil
| | - David Fangueiro
- Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisbon, 1349-017, Portugal
| | - João Coutinho
- Chemistry Centre, University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real, 5001-801, Portugal
| | - Irene Fraga
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real, 5001-801, Portugal
| | - Fábio L Partelli
- Department Ciências Agrárias e Biológicas (DCAB), Centro Universitário do Norte do Espírito Santo (CEUNES), Universidade Federal Espírito Santo (UFES), Rodovia BR 101 Norte, Km. 60, Bairro Litorâneo, São Mateus, ES, 29932- 540, Brazil
| | - José C Ramalho
- Forest Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisbon, 1349-017, Portugal
- Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Unidade de Geobiociências, Universidade NOVA de Lisboa (UNL), Caparica, Monte de Caparica, 2829-516, Portugal
| | - Isabel Marques
- Forest Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisbon, 1349-017, Portugal.
| | - Ana I Ribeiro-Barros
- Forest Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisbon, 1349-017, Portugal.
- Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Unidade de Geobiociências, Universidade NOVA de Lisboa (UNL), Caparica, Monte de Caparica, 2829-516, Portugal.
| |
Collapse
|
5
|
Sarzynski T, Vaast P, Rigal C, Marraccini P, Delahaie B, Georget F, Nguyen CTQ, Nguyen HP, Nguyen HTT, Ngoc QL, Ngan GK, Bossolasco L, Etienne H. Contrasted agronomical and physiological responses of five Coffea arabica genotypes under soil water deficit in field conditions. FRONTIERS IN PLANT SCIENCE 2024; 15:1443900. [PMID: 39450079 PMCID: PMC11500665 DOI: 10.3389/fpls.2024.1443900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024]
Abstract
Introduction Breeding programs have developed high-yielding Coffea arabica F1-hybrids as an adaptation against adverse conditions associated with climate change. However, theresponse to drought of coffee F1 hybrids has seldom been assessed. Methods A trial was established with five C. arabica genotypes (2 pure lines: Catimor and Marsellesa and 3 F1 hybrids: Starmaya, Centroamericano and Mundo Maya) planted under the leguminous tree species Leuceana leucocephala. Coffee growth, yield and physiological responses were assessed under a rain-fed (control: CON) and a rainfall reduction treatment (RR) for 2 years. Results The RR treatment created a long-term rainfall deficit in a region with suboptimal temperature similar to those predicted by climate change scenarios. Moreover, the RR treatment reduced soil water content by 14% over 2 successive years of production and increased hydric stress of the three F1-hybrids (leaf water potentials averaged -0.8 MPa under RR compared with -0.4 MPa under CON). Under RR, coffee yields were reduced from 16 to 75% compared to CON. Mundo Maya F1 hybrid was the sole high-yielding genotype apable of sustaining its yield under RR conditions. Our results suggested that its significant increase in fine root density (CON = 300 and RR = 910 root.m-2) and its maintenance of photosynthetic rate (2.5 - 3.5 mmol CO2 m-2 s-1) at high evaporative demand might explain why this genotype maintained high yield under RR condition. Discussion This work highlights a possible drought tolerance mechanism in fruit bearing adult coffee trees where the plant fine root number increases to intake more water in order to preserve turgor and sustainphotosynthesis at high ETo and therefore conserves high yield in dry conditions.
Collapse
Affiliation(s)
- Thuan Sarzynski
- CIRAD (Centre de Coopération Internationale en Recherche Agronomique Pour le Développement), UMR DIADE, Montpellier, France
- UMR DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, France
- ECOM-SMS (Sustainable Management Services ECOM Agroindustrial), Ho Chi Minh City, Vietnam
| | - Philippe Vaast
- UMR Eco & Sols, CIRAD, Montpellier, France
- ICRAF, Vietnam Office, Hanoi, Vietnam
| | - Clément Rigal
- ICRAF, Vietnam Office, Hanoi, Vietnam
- CIRAD UMR ABSYS, Montpellier, France
- ABSYS, Université Montpellier, CIRAD, INRAE, Supagro, Montpellier, France
| | - Pierre Marraccini
- CIRAD (Centre de Coopération Internationale en Recherche Agronomique Pour le Développement), UMR DIADE, Montpellier, France
- UMR DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Boris Delahaie
- CIRAD (Centre de Coopération Internationale en Recherche Agronomique Pour le Développement), UMR DIADE, Montpellier, France
- UMR DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Frédéric Georget
- CIRAD (Centre de Coopération Internationale en Recherche Agronomique Pour le Développement), UMR DIADE, Montpellier, France
- UMR DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Chang Thi Quynh Nguyen
- NOMAFSI (Northern Mountainous Agriculture Forestry Science Institute) Mai Son Research Centre, Son La, Vietnam
| | - Hung Phi Nguyen
- NOMAFSI (Northern Mountainous Agriculture Forestry Science Institute) Mai Son Research Centre, Son La, Vietnam
| | | | | | | | - Laurent Bossolasco
- ECOM-SMS (Sustainable Management Services ECOM Agroindustrial), Ho Chi Minh City, Vietnam
| | - Hervé Etienne
- CIRAD (Centre de Coopération Internationale en Recherche Agronomique Pour le Développement), UMR DIADE, Montpellier, France
- UMR DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, France
| |
Collapse
|
6
|
Angelotti F, Hamada E, Bettiol W. A Comprehensive Review of Climate Change and Plant Diseases in Brazil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2447. [PMID: 39273931 PMCID: PMC11396851 DOI: 10.3390/plants13172447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/30/2024] [Indexed: 09/15/2024]
Abstract
Analyzing the impacts of climate change on phytosanitary problems in Brazil is crucial due to the country's special role in global food security as one of the largest producers of essential commodities. This review focuses on the effects of climate change on plant diseases and discusses its main challenges in light of Brazil's diverse agricultural landscape. To assess the risk of diseases caused by fungi, bacteria, viruses, oomycetes, nematodes, and spiroplasms, we surveyed 304 pathosystems across 32 crops of economic importance from 2005 to 2022. Results show that diseases caused by fungi account for 79% of the pathosystems evaluated. Predicting the occurrence of diseases in a changing climate is a complex challenge, and the continuity of this work is strategic for Brazil's agricultural defense. The future risk scenarios analyzed here aim to help guide disease mitigation for cropping systems. Despite substantial progress and ongoing efforts, further research will be needed to effectively prevent economic and environmental damage.
Collapse
Affiliation(s)
- Francislene Angelotti
- Embrapa Semi-Arid, Brazilian Agricultural Research Corporation, Petrolina 56302-970, Brazil
| | - Emília Hamada
- Embrapa Environment, Brazilian Agricultural Research Corporation, Jaguariúna 13918-110, Brazil
| | - Wagner Bettiol
- Embrapa Environment, Brazilian Agricultural Research Corporation, Jaguariúna 13918-110, Brazil
| |
Collapse
|
7
|
Dias CG, Martins FB, Martins MA. Climate risks and vulnerabilities of the Arabica coffee in Brazil under current and future climates considering new CMIP6 models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167753. [PMID: 37832692 DOI: 10.1016/j.scitotenv.2023.167753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
The susceptibility to climate change concerns the coffee market worldwide due to possible severe productivity losses. Brazil is the world's largest Arabica coffee producer and has crops in regions considered persistent climate change hotspots. Our study analyzed risks, vulnerabilities, and susceptibilities to pests and diseases in these regions under current and future climates and outlined adaptive measures to reduce future vulnerabilities. Ten risk indicators based on Arabica coffee requirements were proposed: water supply (Iw), base (TIB) and maximum temperature stresses (TImax), which delimit the temperature range where Arabica coffee grows and productivity is penalized outside both ranges, frost stress (TIfrost), diseases such as rust (DIrust), brown eye spot (DIbrown), and Phoma leaf spot (DIphoma), pests such as coffee berry borer (PIberry), coffee leaf miner (PIminer), and yield loss due to water stress (Iyg). Daily near-surface air temperature (minimum, mean, and maximum), relative humidity, precipitation, and global solar radiation were used from 16 General Circulation Models (GCMs) from the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP), which are derived from the Coupled Model Intercomparison Project Phase 6 (CMIP6) in three Shared Socioeconomic Pathways scenarios (SSP245, SSP370 and SSP585). All risk indicators were calculated for the current climate (1995-2014) and projected for the near (2041-2060), intermediate (2061-2080), and far future (2081-2100) in three SSPs and then classified into five risk classes (very low, low, moderate, high and very high). Our results indicated that due to increases in TImax and Iyg indicators, with high to very high risk in area and magnitude, Arabica coffee plantations will be negatively affected and economically unfeasible for about 35 % to 75 % of the studied area throughout the 21st century. Furthermore, the rust and the leaf miner will remain a concern in future climates due to increased temperatures and reduced relative humidity. The future of Arabica coffee crops in Brazil will depend on adopting effective adaptive measures and prudent agricultural strategies to address anticipated risks, including shifting crops to higher altitude areas, introducing more climate-resilient coffee cultivars/varieties, using agroforestry or intercropping systems, planting in closer spacing or higher density planting, and employing dripper or partial root-zone irrigation techniques.
Collapse
Affiliation(s)
- Cássia Gabriele Dias
- Federal University of Itajubá - Natural Resource Institute, C.P. 50, 37500-903 Itajubá, MG, Brazil.
| | - Fabrina Bolzan Martins
- Federal University of Itajubá - Natural Resource Institute, C.P. 50, 37500-903 Itajubá, MG, Brazil.
| | - Minella Alves Martins
- National Institute for Space Research - Impacts, Adaptation and Vulnerability Division, C.P. 515, 12227-010 São José dos Campos, SP, Brazil.
| |
Collapse
|
8
|
Bi X, Yu H, Hu F, Fu X, Li Y, Li Y, Yang Y, Liu D, Li G, Shi R, Dong W. A Systematic Analysis of the Correlation between Flavor Active Differential Metabolites and Multiple Bean Ripening Stages of Coffea arabica L. Molecules 2023; 29:180. [PMID: 38202762 PMCID: PMC10779739 DOI: 10.3390/molecules29010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Coffee cherries contain a crucial flavor-precursor and chemical substances influencing roasted bean quality, yet limited knowledge exists on metabolite changes during cherry ripening. Our study identified 1078 metabolites, revealing 46 core differential metabolites using a KEGG pathway analysis. At the GF vs. ROF stage, amino acid synthesis dominated; ROF vs. BRF featured nucleotide catabolism; BRF vs. PRF exhibited glycoside and flavonoid synthesis; and PRF vs. PBF involved secondary metabolite synthesis and catabolism. The PRF stage emerged as the optimal cherry-harvesting period. A correlation analysis identified core differential metabolites strongly linked to taste indicators, suggesting their potential as taste markers. Notably, nucleotides and derivatives exhibited significant negative correlations with glycosides and flavonoids during ripening. This research systematically analyzed flavor and active substances in green coffee beans during cherry ripening, offering valuable insights into substance formation in Coffea arabica L.
Collapse
Affiliation(s)
- Xiaofei Bi
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (X.B.); (H.Y.); (F.H.); (X.F.); (Y.L.); (Y.L.); (Y.Y.); (D.L.); (G.L.)
| | - Haohao Yu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (X.B.); (H.Y.); (F.H.); (X.F.); (Y.L.); (Y.L.); (Y.Y.); (D.L.); (G.L.)
| | - Faguang Hu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (X.B.); (H.Y.); (F.H.); (X.F.); (Y.L.); (Y.L.); (Y.Y.); (D.L.); (G.L.)
| | - Xingfei Fu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (X.B.); (H.Y.); (F.H.); (X.F.); (Y.L.); (Y.L.); (Y.Y.); (D.L.); (G.L.)
| | - Yanan Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (X.B.); (H.Y.); (F.H.); (X.F.); (Y.L.); (Y.L.); (Y.Y.); (D.L.); (G.L.)
| | - Yaqi Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (X.B.); (H.Y.); (F.H.); (X.F.); (Y.L.); (Y.L.); (Y.Y.); (D.L.); (G.L.)
| | - Yang Yang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (X.B.); (H.Y.); (F.H.); (X.F.); (Y.L.); (Y.L.); (Y.Y.); (D.L.); (G.L.)
| | - Dexin Liu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (X.B.); (H.Y.); (F.H.); (X.F.); (Y.L.); (Y.L.); (Y.Y.); (D.L.); (G.L.)
| | - Guiping Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (X.B.); (H.Y.); (F.H.); (X.F.); (Y.L.); (Y.L.); (Y.Y.); (D.L.); (G.L.)
| | - Rui Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| |
Collapse
|
9
|
Mateus-Rodríguez JF, Lahive F, Hadley P, Daymond AJ. Effects of simulated climate change conditions of increased temperature and [CO2] on the early growth and physiology of the tropical tree crop, Theobroma cacao L. TREE PHYSIOLOGY 2023; 43:2050-2063. [PMID: 37758447 PMCID: PMC10714407 DOI: 10.1093/treephys/tpad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/09/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Despite multiple studies of the impact of climate change on temperate tree species, experiments on tropical and economically important tree crops, such as cacao (Theobroma cacao L.), are still limited. Here, we investigated the combined effects of increased temperature and atmospheric carbon dioxide concentration ([CO2]) on the growth, photosynthesis and development of juvenile plants of two contrasting cacao genotypes: SCA 6 and PA 107. The factorial growth chamber experiment combined two [CO2] treatments (410 and 700 p.p.m.) and three day/night temperature regimes (control: 31/22 °C, control + 2.5 °C: 33.5/24.5 °C and control + 5.0 °C: 36/27 °C) at a constant vapour pressure deficit (VPD) of 0.9 kPa. At elevated [CO2], the final dry weight and the total and individual leaf areas increased in both genotypes, while the duration for individual leaf expansion declined in PA 107. For both genotypes, elevated [CO2] also improved light-saturated net photosynthesis (Pn) and intrinsic water-use efficiency (iWUE), whereas leaf transpiration (E) and stomatal conductance (gs) decreased. Under a constant low VPD, increasing temperatures above 31/22 °C enhanced the rates of Pn, E and gs in both genotypes, suggesting that photosynthesis responds positively to higher temperatures than previously reported for cacao. However, dry weight and the total and individual leaf areas declined with increases in temperature, which was more evident in SCA 6 than PA 107, suggesting the latter genotype was more tolerant to elevated temperature. Our results suggest that the combined effect of elevated [CO2] and temperature is likely to improve the early growth of high temperature-tolerant genotypes, while elevated [CO2] appeared to ameliorate the negative effects of increased temperatures on growth parameters of more sensitive material. The evident genotypic variation observed in this study demonstrates the scope to select and breed cacao varieties capable of adapting to future climate change scenarios.
Collapse
Affiliation(s)
- Julián Fernando Mateus-Rodríguez
- Centro de Investigación Palmira, Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA, Intersección Carrera 36A con Calle 23, Palmira, Valle del Cauca, Postcode 753533, Colombia
| | - Fiona Lahive
- School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading RG6 6EU, UK
| | - Paul Hadley
- School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading RG6 6EU, UK
| | - Andrew J Daymond
- School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading RG6 6EU, UK
| |
Collapse
|
10
|
de Oliveira US, de Souza AH, de Andrade MT, Oliveira LA, Gouvea DG, Martins SCV, Ramalho JDC, Cardoso AA, DaMatta FM. Carbon gain is coordinated with enhanced stomatal conductance and hydraulic architecture in coffee plants acclimated to elevated [CO 2]: The interplay with irradiance supply. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108145. [PMID: 37907041 DOI: 10.1016/j.plaphy.2023.108145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
We recently demonstrated that, under elevated [CO2] (eCa), coffee (Coffea arabica L.) plants grown at high light (HL), but not at low light (LL), display higher stomatal conductance (gs) than at ambient [CO2] (aCa). We then hypothesized that the enhanced gs at eCa/HL, if sustained at the long-term, would lead to adjustments in hydraulic architecture. To test this hypothesis, potted plants of coffee were grown in open-top chambers for 12 months under HL or LL (ca. 9 or 1 mol photons m-2 day-1, respectively); these light treatments were combined with two [CO2] levels (ca. 437 or 705 μmol mol-1, respectively). Under eCa/HL, increased gs was closely accompanied by increases in branch and leaf hydraulic conductances, suggesting a coordinated response between liquid- and vapor-phase water flows throughout the plant. Still under HL, eCa also resulted in increased Huber value (sapwood area-to-total leaf area), sapwood area-to-stem diameter, and root mass-to-total leaf area, thus further improving the water supply to the leaves. Our results demonstrate that Ca is a central player in coffee physiology increasing carbon gain through a close association between stomatal function and an improved hydraulic architecture under HL conditions.
Collapse
Affiliation(s)
- Uéliton S de Oliveira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Antonio H de Souza
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Moab T de Andrade
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Leonardo A Oliveira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil; Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Débora G Gouvea
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Samuel C V Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - José D C Ramalho
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505, Oeiras, Portugal; Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal
| | - Amanda A Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
11
|
de Souza AH, de Oliveira US, Oliveira LA, de Carvalho PHN, de Andrade MT, Pereira TS, Gomes Junior CC, Cardoso AA, Ramalho JDC, Martins SCV, DaMatta FM. Growth and Leaf Gas Exchange Upregulation by Elevated [CO 2] Is Light Dependent in Coffee Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1479. [PMID: 37050105 PMCID: PMC10097104 DOI: 10.3390/plants12071479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Coffee (Coffea arabica L.) plants have been assorted as highly suitable to growth at elevated [CO2] (eCa), although such suitability is hypothesized to decrease under severe shade. We herein examined how the combination of eCa and contrasting irradiance affects growth and photosynthetic performance. Coffee plants were grown in open-top chambers under relatively high light (HL) or low light (LL) (9 or 1 mol photons m-2 day-1, respectively), and aCa or eCa (437 or 705 μmol mol-1, respectively). Most traits were affected by light and CO2, and by their interaction. Relative to aCa, our main findings were (i) a greater stomatal conductance (gs) (only at HL) with decreased diffusive limitations to photosynthesis, (ii) greater gs during HL-to-LL transitions, whereas gs was unresponsive to the LL-to-HL transitions irrespective of [CO2], (iii) greater leaf nitrogen pools (only at HL) and higher photosynthetic nitrogen-use efficiency irrespective of light, (iv) lack of photosynthetic acclimation, and (v) greater biomass partitioning to roots and earlier branching. In summary, eCa improved plant growth and photosynthetic performance. Our novel and timely findings suggest that coffee plants are highly suited for a changing climate characterized by a progressive elevation of [CO2], especially if the light is nonlimiting.
Collapse
Affiliation(s)
- Antonio H. de Souza
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Ueliton S. de Oliveira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Leonardo A. Oliveira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Pablo H. N. de Carvalho
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Moab T. de Andrade
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Talitha S. Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Carlos C. Gomes Junior
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Amanda A. Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - José D. C. Ramalho
- PlantStress & Biodiversity Lab., Centro de Estudos Florestais (CEF), Laboratório Associado Terra, Departamento de Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505 Oeiras, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - Samuel C. V. Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| |
Collapse
|
12
|
Max AC, Loram-Lourenço L, Silva FG, de Souza LHM, Dias JRM, Espíndula MC, Farnese FS, Hammond W, Torres-Ruiz JM, Cochard H, Menezes-Silva PE. A bitter future for coffee production? Physiological traits associated with yield reveal high vulnerability to hydraulic failure in Coffea canephora. PLANT, CELL & ENVIRONMENT 2023; 46:764-779. [PMID: 36517464 DOI: 10.1111/pce.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The increase in frequency and intensity of drought events have hampered coffee production in the already threatened Amazon region, yet little is known about key aspects underlying the variability in yield potential across genotypes, nor to what extent higher productivity is linked to reduced drought tolerance. Here we explored how variations in morphoanatomical and physiological leaf traits can explain differences in yield and vulnerability to embolism in 11 Coffea canephora genotypes cultivated in the Western Amazon. The remarkable variation in coffee yield across genotypes was tightly related to differences in their carbon assimilation and water transport capacities, revealing a diffusive limitation to photosynthesis linked by hydraulic constraints. Although a clear trade-off between water transport efficiency and safety was not detected, all the studied genotypes operated in a narrow and/or negative hydraulic safety margin, suggesting a high vulnerability to leaf hydraulic failure (HF), especially on the most productive genotypes. Modelling exercises revealed that variations in HF across genotypes were mainly associated with differences in leaf water vapour leakage when stomata are closed, reflecting contrasting growth strategies. Overall, our results provide a new perspective on the challenges of sustaining coffee production in the Amazon region under a drier and warmer climate.
Collapse
Affiliation(s)
- Aldo Custódio Max
- Federal Institute of Education, Science and Technology of Rondônia, Vilhena, Brazil
| | - Lucas Loram-Lourenço
- Laboratory of Applied Studies in Plant Physiology, Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | - Fabiano Guimarães Silva
- Laboratory of Applied Studies in Plant Physiology, Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | | | | | | | - Fernanda S Farnese
- Laboratory of Applied Studies in Plant Physiology, Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | - William Hammond
- Department of Agronomy, University of Florida, Gainesville, Florida, USA
| | | | - Hervé Cochard
- INRAE, PIAF, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Paulo Eduardo Menezes-Silva
- Laboratory of Applied Studies in Plant Physiology, Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| |
Collapse
|
13
|
Torrez V, Benavides-Frias C, Jacobi J, Speranza CI. Ecological quality as a coffee quality enhancer. A review. AGRONOMY FOR SUSTAINABLE DEVELOPMENT 2023; 43:19. [PMID: 36748099 PMCID: PMC9894527 DOI: 10.1007/s13593-023-00874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
As both coffee quality and sustainability become increasingly important, there is growing interest in understanding how ecological quality affects coffee quality. Here we analyze, for the first time, the state of evidence that ecological quality, in terms of biodiversity and ecosystem functions, impacts the quality of Coffea arabica and C. canephora, based on 78 studies. The following ecosystem functions were included: pollination; weed, disease, and pest control; water and soil fertility regulation. Biodiversity was described by the presence, percentage, and diversity of shade trees. Coffee quality was described by the green bean physical characteristics, biochemical compounds, and organoleptic characteristics. The presence and diversity of shade trees positively impacted bean size and weight and reduced the percentage of rejected beans, but these observations were not consistent over different altitudes. In fact, little is known about the diversity of shade trees and their influence on biochemical compounds. All biochemical compounds varied with the presence of shade, percentage of shade, and elevation. Coffee beans from more diverse tree shade plantations obtained higher scores for final total organoleptic quality than simplified tree shade and unshaded plantations. Decreasing ecological quality diminished ecosystem functions such as pollination, which in turn negatively affected bean quality. Shade affected pests and diseases in different ways, but weeds were reduced. High soil quality positively affected coffee quality. Shade improved the water use efficiency, such that coffee plants were not water stressed and coffee quality was improved. While knowledge on the influence of shade trees on overall coffee quality remains scarce, there is evidence that agroecosystem simplification is negatively correlated with coffee quality. Given global concerns about biodiversity and habitat loss, we recommend that the overall definition of coffee quality include measures of ecological quality, although these aspects are not always detectable in certain coffee quality characteristics or the final cup.
Collapse
Affiliation(s)
- Vania Torrez
- Instituto de Ecología, Universidad Mayor de San Andrés, La Paz, Bolivia
| | | | - Johanna Jacobi
- Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
14
|
Kiwuka C, Vos J, Douma JC, Musoli P, Mulumba JW, Poncet V, Anten NPR. Intraspecific variation in growth response to drought stress across geographic locations and genetic groups in Coffea canephora. Ecol Evol 2023; 13:e9715. [PMID: 36620399 PMCID: PMC9810788 DOI: 10.1002/ece3.9715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Uganda lies within the drier end of the natural distribution range of Coffea canephora and contains unexplored genetic material that could be drought-adapted and useful for developing climate-resilient varieties. Using water treatment: (i) ample and (ii) restricted-water, the response of 148 genotypes were studied comprising wild, feral and cultivated C. canephora. Biomass allocation, standing leaf area and leaf area growth data were collected. Linear mixed effect models and PCA were used to the analyze effect of water treatment on genotypes from different: (i) cultivation status, (ii) genetic groups and (iii) locations. We also assessed the relationship between drought tolerance for relative growth rate in leaf area (RGRA), total number of leaves (TNL), total leaf area (TLA) and total leaf dry weight (TLDW) of genotypes at final harvest. Restricted-water reduced RGRA across genetic groups (3.2-32.5%) and locations (7.1-36.7%) but not cultivation status. For TNL, TLA and TLDW, genotypes that performed well in ample-water performed worse under restricted-water, indicating growth-tolerance trade-off. Drought tolerance in RGRA and TNL were negatively correlated with wetness index suggesting some degree of adaptation to local climate. Findings indicate a growth-tolerance trade-off within this tropical tree species and drought tolerance of Uganda's C. canephora is somewhat associated with local climate.
Collapse
Affiliation(s)
- Catherine Kiwuka
- Centre for Crop Systems AnalysisWageningen UniversityWageningenThe Netherlands
- Plant Genetic Resources CentreNational Agricultural Research OrganizationEntebbeUganda
| | - Jan Vos
- Centre for Crop Systems AnalysisWageningen UniversityWageningenThe Netherlands
| | - Jacob C. Douma
- Centre for Crop Systems AnalysisWageningen UniversityWageningenThe Netherlands
| | - Pascal Musoli
- National Coffee Research InstituteNational Agricultural Research OrganizationMukonoUganda
| | - John W. Mulumba
- Plant Genetic Resources CentreNational Agricultural Research OrganizationEntebbeUganda
| | | | - Niels P. R. Anten
- Centre for Crop Systems AnalysisWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
15
|
Bilen C, El Chami D, Mereu V, Trabucco A, Marras S, Spano D. A Systematic Review on the Impacts of Climate Change on Coffee Agrosystems. PLANTS (BASEL, SWITZERLAND) 2022; 12:102. [PMID: 36616231 PMCID: PMC9824350 DOI: 10.3390/plants12010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Coffee production is fragile, and the Intergovernmental Panel on Climate Change (IPCC) reports indicate that climate change (CC) will reduce worldwide yields on average and decrease coffee-suitable land by 2050. This article adopted the systematic review approach to provide an update of the literature available on the impacts of climate change on coffee production and other ecosystem services following the framework proposed by the Millenium Ecosystem Assessment. The review identified 148 records from literature considering the effects of climate change and climate variability on coffee production, covering countries mostly from three continents (America, Africa, and Asia). The current literature evaluates and analyses various climate change impacts on single services using qualitative and quantitative methodologies. Impacts have been classified and described according to different impact groups. However, available research products lacked important analytical functions on the precise relationships between the potential risks of CC on coffee farming systems and associated ecosystem services. Consequently, the manuscript recommends further work on ecosystem services and their interrelation to assess the impacts of climate change on coffee following the ecosystem services framework.
Collapse
Affiliation(s)
- Christine Bilen
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’, 70126 Bari, BA, Italy
| | | | - Valentina Mereu
- Impacts on Agriculture, Forestry and Ecosystem Services (IAFES) Division, Euro-Mediterranean Center on Climate Changes (CMCC), 07100 Sassari, SS, Italy
| | - Antonio Trabucco
- Impacts on Agriculture, Forestry and Ecosystem Services (IAFES) Division, Euro-Mediterranean Center on Climate Changes (CMCC), 07100 Sassari, SS, Italy
| | - Serena Marras
- Impacts on Agriculture, Forestry and Ecosystem Services (IAFES) Division, Euro-Mediterranean Center on Climate Changes (CMCC), 07100 Sassari, SS, Italy
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, SS, Italy
| | - Donatella Spano
- Impacts on Agriculture, Forestry and Ecosystem Services (IAFES) Division, Euro-Mediterranean Center on Climate Changes (CMCC), 07100 Sassari, SS, Italy
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, SS, Italy
| |
Collapse
|
16
|
Liu X, Li A, Wang S, Lan C, Wang Y, Li J, Zhu J. Overexpression of Pyrus sinkiangensis HAT5 enhances drought and salt tolerance, and low-temperature sensitivity in transgenic tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1036254. [PMID: 36420018 PMCID: PMC9676457 DOI: 10.3389/fpls.2022.1036254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The homeodomain-leucine zipper protein HAT belongs to the homeodomain leucine zipper subfamily (HD-Zip) and is important for regulating plant growth and development and stress tolerance. To investigate the role of HAT5 in tolerance to drought, salt, and low temperature stress, we selected a HAT gene from Pyrus sinkiangensis Yü (Pyrus sinkiangensis T.T. Yu). The sequences were analyzed using ioinformatics, and the overexpressed tomato lines were obtained using molecular biology techniques. The phenotypes, physiological, and biochemical indexes of the wild-type and transgenic tomato lines were observed under different stress conditions. We found that the gene had the highest homology with PbrHAT5. Under drought and NaCl stress, osmotic regulatory substances (especially proline) were significantly accumulated, and antioxidant enzyme activities were enhanced. The malondialdehyde level and relative electrical conductivity of transgenic tomatoes under low temperature (freezing) stress were significantly higher than those of wild-type tomatoes. The reactive oxygen species scavenging system was unbalanced. This study found that PsHAT5 improved the tolerance of tomatoes to drought and salt stress by regulating proline metabolism and oxidative stress ability, reducing the production of reactive oxygen species, and maintaining normal cell metabolism. In conclusion, the PsHAT5 transcription factor has great potential in crop resistance breeding, which lays a theoretical foundation for future excavation of effective resistance genes of the HD-Zip family and experimental field studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin Li
- *Correspondence: Jianbo Zhu, ; Jin Li,
| | | |
Collapse
|
17
|
Vinci G, Marques I, Rodrigues AP, Martins S, Leitão AE, Semedo MC, Silva MJ, Lidon FC, DaMatta FM, Ribeiro-Barros AI, Ramalho JC. Protective Responses at the Biochemical and Molecular Level Differ between a Coffea arabica L. Hybrid and Its Parental Genotypes to Supra-Optimal Temperatures and Elevated Air [CO 2]. PLANTS (BASEL, SWITZERLAND) 2022; 11:2702. [PMID: 36297726 PMCID: PMC9610391 DOI: 10.3390/plants11202702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Climate changes with global warming associated with rising atmospheric [CO2] can strongly impact crop performance, including coffee, which is one of the most world's traded agricultural commodities. Therefore, it is of utmost importance to understand the mechanisms of heat tolerance and the potential role of elevated air CO2 (eCO2) in the coffee plant response, particularly regarding the antioxidant and other protective mechanisms, which are crucial for coffee plant acclimation. For that, plants of Coffea arabica cv. Geisha 3, cv. Marsellesa and their hybrid (Geisha 3 × Marsellesa) were grown for 2 years at 25/20 °C (day/night), under 400 (ambient CO2, aCO2) or 700 µL (elevated CO2, eCO2) CO2 L-1, and then gradually submitted to a temperature increase up to 42/30 °C, followed by recovery periods of 4 (Rec4) and 14 days (Rec14). Heat (37/28 °C and/or 42/30 °C) was the major driver of the response of the studied protective molecules and associated genes in all genotypes. That was the case for carotenoids (mostly neoxanthin and lutein), but the maximal (α + β) carotenes pool was found at 37/28 °C only in Marsellesa. All genes (except VDE) encoding for antioxidative enzymes (catalase, CAT; superoxide dismutases, CuSODs; ascorbate peroxidases, APX) or other protective proteins (HSP70, ELIP, Chape20, Chape60) were strongly up-regulated at 37/28 °C, and, especially, at 42/30 °C, in all genotypes, but with maximal transcription in Hybrid plants. Accordingly, heat greatly stimulated the activity of APX and CAT (all genotypes) and glutathione reductase (Geisha3, Hybrid) but not of SOD. Notably, CAT activity increased even at 42/30 °C, concomitantly with a strongly declined APX activity. Therefore, increased thermotolerance might arise through the reinforcement of some ROS-scavenging enzymes and other protective molecules (HSP70, ELIP, Chape20, Chape60). Plants showed low responsiveness to single eCO2 under unstressed conditions, while heat promoted changes in aCO2 plants. Only eCO2 Marsellesa plants showed greater contents of lutein, the pool of the xanthophyll cycle components (V + A + Z), and β-carotene, compared to aCO2 plants at 42/30 °C. This, together with a lower CAT activity, suggests a lower presence of H2O2, likely also associated with the higher photochemical use of energy under eCO2. An incomplete heat stress recovery seemed evident, especially in aCO2 plants, as judged by the maintenance of the greater expression of all genes in all genotypes and increased levels of zeaxanthin (Marsellesa and Hybrid) relative to their initial controls. Altogether, heat was the main response driver of the addressed protective molecules and genes, whereas eCO2 usually attenuated the heat response and promoted a better recovery. Hybrid plants showed stronger gene expression responses, especially at the highest temperature, when compared to their parental genotypes, but altogether, Marsellesa showed a greater acclimation potential. The reinforcement of antioxidative and other protective molecules are, therefore, useful biomarkers to be included in breeding and selection programs to obtain coffee genotypes to thrive under global warming conditions, thus contributing to improved crop sustainability.
Collapse
Affiliation(s)
- Gabriella Vinci
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum, The University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Isabel Marques
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana P. Rodrigues
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Sónia Martins
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - António E. Leitão
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - Magda C. Semedo
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - Maria J. Silva
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - Fernando C. Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Ana I. Ribeiro-Barros
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - José C. Ramalho
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
18
|
Physiological Changes of Arabica Coffee under Different Intensities and Durations of Water Stress in the Brazilian Cerrado. PLANTS 2022; 11:plants11172198. [PMID: 36079581 PMCID: PMC9460576 DOI: 10.3390/plants11172198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
Coffee farmers have faced problems due to drought periods, with irrigation being necessary. In this sense, this study aimed to evaluate the responses to different levels and durations of water deficit in arabica coffee genotypes in the Cerrado region. The experiment consisted of three Coffea arabica genotypes and five water regimes: full irrigation (FI 100 and FI 50—full irrigation with 100% and 50% replacement of evapotranspiration, respectively), water deficit (WD 100 and WD 50—water deficit from June to September, with 100% and 50% replacement of evapotranspiration, respectively) and rainfed (without irrigation). The variables evaluated were gas exchange, relative water content (RWC) and productivity. The results showed that during stress, plants under the FI water regime showed higher gas exchange and RWC, differently from what occurred in the WD and rainfed treatments; however, after irrigation, coffee plants under WDs regained their photosynthetic potential. Rainfed and WD 50 plants had more than 50% reduction in RWC compared to FIs. The Iapar 59 cultivar was the most productive genotype and the E237 the lowest. Most importantly, under rainfed conditions, the plants showed lower physiological and productive potential, indicating the importance of irrigation in Coffea arabica in the Brazilian Cerrado.
Collapse
|
19
|
Description of an Arabica Coffee Ideotype for Agroforestry Cropping Systems: A Guideline for Breeding More Resilient New Varieties. PLANTS 2022; 11:plants11162133. [PMID: 36015436 PMCID: PMC9414076 DOI: 10.3390/plants11162133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Climate change (CC) is already impacting Arabica coffee cultivation in the intertropical zone. To deal with this situation, it is no longer possible to manage this crop using industrial agriculture techniques, which has been the main strategy implemented since the Green Revolution. Developing a more sustainable agriculture system that respects people and the environment is essential to guarantee future generations’ access to natural resources. In the case of Arabica coffee, the solution has been found. Agroforestry is proposed as an ecosystem-based strategy to mitigate and adapt to CC. At least 60% of Arabica coffee is produced in agroforestry systems (AFSs), which are the most sustainable way to produce coffee. Nevertheless, AFS coffee cultivation is currently uncompetitive partly because all modern varieties, selected for full-sun intensive cropping systems, have low yields in shaded environments. Here we review the reasons why agroforestry is part of the solution to CC, and why no breeding work has been undertaken for this cropping system. Based on the literature data, for breeding purposes we also define for the first time one possible coffee ideotype required for AFS coffee cultivation. The four main traits are: (1) productivity based on F1 hybrid vigor, tree volume and flowering intensity under shade; (2) beverage quality by using wild Ethiopian accessions as female progenitors and selecting for this criterion using specific biochemical and molecular predictors; (3) plant health to ensure good tolerance to stress, especially biotic; and (4) low fertilization to promote sustainable production. For each of these traits, numerous criteria with threshold values to be achieved per trait were identified. Through this research, an ecosystem-based breeding strategy was defined to help create new F1 hybrid varieties within the next 10 years.
Collapse
|
20
|
Chalchissa FB, Diga GM, Feyisa GL, Tolossa AR. Impacts of extreme agroclimatic indicators on the performance of coffee ( Coffea arabica L.) aboveground biomass in Jimma Zone, Ethiopia. Heliyon 2022; 8:e10136. [PMID: 36016531 PMCID: PMC9396549 DOI: 10.1016/j.heliyon.2022.e10136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022] Open
Abstract
Estimating crop biomass is critical for countries whose primary source of income is agriculture. It is a valuable indicator for evaluating crop yields and provides information to growers and managers for developing climate change adaptation strategies. The objective of the study was to model the impacts of agroclimatic indicators on the performance of aboveground biomass (AGB) in Arabica coffee trees, a critical income source for millions of Ethiopians. One hundred thirty-five coffee tree stump diameters were measured at 40 cm above ground level. The historical (1998–2010) and future (2041–2070) agroclimatic data were downloaded from the European Copernicus climate change services website. All datasets were tested for missing data, outliers, and multicollinearity and were grouped into three clusters using the K-mean clustering method. The parameter estimates (coefficients of regression) were analyzed using a generalized regression model. The performance of coffee trees' AGB in each cluster was estimated using an artificial neural network model. The future expected change in AGB of coffee trees was compared using a paired t-test. The regression model’s results reveal that the sensitivity of C. arabica to agroclimatic variables significantly differs based on the kind of indicator, RCP scenario, and microclimate. Under the current climatic conditions, the rise of the coldest minimum (TNn) and warmest (TXx) temperatures raises the AGB of the coffee tree, but the rise of the warmest minimum (TNx) and coldest maximum (TXn) temperatures decreased it (P < 0.05). Under the RCP4.5, the rise of consecutively dry days (CDD) and TNx would increase the AGB of the coffee tree, while TNx and TXx would decrease it (P < 0.05). Except for TXx, all indicators would significantly reduce the AGB of coffee trees under RCP8.5 (P < 0.05). The average values of AGB under the current, RCP4.5, and RCP85 climate change scenarios, respectively, were 26.66, 28.79, and 24.41 kg/tree. The predicted values of AGB under RCP4.5 and RCP8.5 will be higher in the first and third clusters and lower in the second cluster in the 2060s compared to the current climatic conditions. As a result, early warning systems and adaptive strategies will be necessary to reduce the detrimental consequences of climate change. More research into the effects of other climatic conditions on crops, such as physiologically effective degree days, cold, hot, and rainy periods, is also required.
Collapse
Affiliation(s)
| | - Girma Mamo Diga
- Ethiopia Agricultural Research Institute, Addis Ababa, Ethiopia
| | | | | |
Collapse
|
21
|
Lobo AKM, Catarino ICA, Silva EA, Centeno DC, Domingues DS. Physiological and Molecular Responses of Woody Plants Exposed to Future Atmospheric CO2 Levels under Abiotic Stresses. PLANTS 2022; 11:plants11141880. [PMID: 35890514 PMCID: PMC9322912 DOI: 10.3390/plants11141880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
Climate change is mainly driven by the accumulation of carbon dioxide (CO2) in the atmosphere in the last century. Plant growth is constantly challenged by environmental fluctuations including heat waves, severe drought and salinity, along with ozone accumulation in the atmosphere. Food security is at risk in an increasing world population, and it is necessary to face the current and the expected effects of global warming. The effects of the predicted environment scenario of elevated CO2 concentration (e[CO2]) and more severe abiotic stresses have been scarcely investigated in woody plants, and an integrated view involving physiological, biochemical and molecular data is missing. This review highlights the effects of elevated CO2 in the metabolism of woody plants and the main findings of its interaction with abiotic stresses, including a molecular point of view, aiming to improve the understanding of how woody plants will face the predicted environmental conditions. Overall, e[CO2] stimulates photosynthesis and growth and attenuates mild to moderate abiotic stress in woody plants if root growth and nutrients are not limited. Moreover, e[CO2] does not induce acclimation in most tree species. Some high-throughput analyses involving omics techniques were conducted to better understand how these processes are regulated. Finally, knowledge gaps in the understanding of how the predicted climate condition will affect woody plant metabolism were identified, with the aim of improving the growth and production of this plant species.
Collapse
Affiliation(s)
- Ana Karla M. Lobo
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
- Correspondence: (A.K.M.L.); (D.S.D.)
| | - Ingrid C. A. Catarino
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
| | - Emerson A. Silva
- Institute of Environmental Research, São Paulo 04301-002, Brazil;
| | - Danilo C. Centeno
- Centre for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil;
| | - Douglas S. Domingues
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
- Correspondence: (A.K.M.L.); (D.S.D.)
| |
Collapse
|
22
|
A Systematic Mapping Study of Coffee Quality throughout the Production-to-Consumer Chain. J FOOD QUALITY 2022. [DOI: 10.1155/2022/8019251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Coffee is one of the most consumed beverages in the world and is crucial in the economy of many developing countries. The search to improve coffee quality comes from many fronts, as do the many ways to measure quality and the factors that affect it. Several techniques are used to measure the different metrics to assess coffee quality, across different types of coffee samples and species, and throughout the entire process from farm to cup. In this work, we conducted a systematic mapping study of 1,470 articles to identify the aspects of quality that are the most important in the scientific literature to evaluate coffee throughout the processing chain. The study revealed that cup quality and biochemical composition are the most researched quality attributes. The main objective of the reviewed studies is the correlation between different quality measurements. The most used techniques are the analytical chemistry methods. The most studied species is Coffea arabica. The most used sample presentation is green coffee. The postharvest stage is the most researched, in which quality control receives more attention. In the preharvest stage, management practices stand out. Finally, the most used type of research was the evaluation research.
Collapse
|
23
|
Koutouleas A, Sarzynski T, Bordeaux M, Bosselmann AS, Campa C, Etienne H, Turreira-García N, Rigal C, Vaast P, Ramalho JC, Marraccini P, Ræbild A. Shaded-Coffee: A Nature-Based Strategy for Coffee Production Under Climate Change? A Review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.877476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Coffee is deemed to be a high-risk crop in light of upcoming climate changes. Agroforestry practices have been proposed as a nature-based strategy for coffee farmers to mitigate and adapt to future climates. However, with agroforestry systems comes shade, a highly contentious factor for coffee production in terms of potential yield reduction, as well as additional management needs and interactions between shade trees and pest and disease. In this review, we summarize recent research relating to the effects of shade on (i) farmers' use and perceptions, (ii) the coffee microenvironment, (iii) pest and disease incidence, (iv) carbon assimilation and phenology of coffee plants, (v) coffee quality attributes (evaluated by coffee bean size, biochemical compounds, and cup quality tests), (vi) breeding of new Arabica coffee F1 hybrids and Robusta clones for future agroforestry systems, and (vii) coffee production under climate change. Through this work, we begin to decipher whether shaded systems are a feasible strategy to improve the coffee crop sustainability in anticipation of challenging climate conditions. Further research is proposed for developing new coffee varieties adapted to agroforestry systems (exhibiting traits suitable for climate stressors), refining extension tools by selecting locally-adapted shade trees species and developing policy and economic incentives enabling the adoption of sustainable agroforestry practices.
Collapse
|
24
|
Antidiarrheal Effect of 80% Methanol Extract and Fractions of the Roasted Seed of Coffea arabica Linn (Rubiaceae) in Swiss Albino Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9914936. [PMID: 35096121 PMCID: PMC8791727 DOI: 10.1155/2022/9914936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/01/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Globally in 2019, diarrhea was the second leading cause of mortality in children, accounting for more than half a million under-five deaths yearly. Several societies use Coffea arabica Linn for the treatment of diarrhea. However, its use is not scientifically validated. OBJECTIVE The study was conducted to evaluate antidiarrheal activity of 80% methanol extract and solvent fractions of roasted seed of Coffea arabica Linn in mice. METHODS Coffea arabica Linn seed was roasted, milled, extracted, and fractionated using hexane, ethyl acetate, and distilled water. Castor oil-induced diarrhea, enteropooling, and motility tests were conducted. Effects on onset, number of feces, weight of feces, fluid content, volume and weight of intestinal content, and motility were evaluated by administering 100 mg/kg, 200 mg/kg, and 400 mg/kg of each extract. Negative controls received 10 ml/kg of the vehicle, and positive controls received either loperamide (3 mg/kg) or atropine (1 mg/kg). Data were analyzed using one-way ANOVA followed by Tukey's post hoc test. RESULTS Ethyl acetate fraction at all tested doses significantly prolonged (p < 0.05) onset of diarrhea. The number and weight of feces were also reduced significantly by crude extract and ethyl acetate fraction. Reduction in fluid content was observed at 200 mg/kg and 400 mg/kg of the crude extract (p < 0.01) and aqueous fraction (p < 0.001) as well as all tested doses of ethyl acetate fraction (p < 0.001). Similarly, the crude extract, ethyl acetate fraction, and aqueous fraction showed a significant reduction in the volume and weight of intestinal content. At 400 mg/kg, the crude extract, hexane fraction, aqueous fraction, and all doses of ethyl acetate fraction showed significant antimotility activity. CONCLUSION The results of this study revealed that the roasted seed of Coffea arabica Linn has antidiarrheal activity.
Collapse
|
25
|
de Sousa GF, Silva MA, de Morais EG, Van Opbergen GAZ, Van Opbergen GGAZ, de Oliveira RR, Amaral D, Brown P, Chalfun-Junior A, Guilherme LRG. Selenium enhances chilling stress tolerance in coffee species by modulating nutrient, carbohydrates, and amino acids content. FRONTIERS IN PLANT SCIENCE 2022; 13:1000430. [PMID: 36172560 PMCID: PMC9511033 DOI: 10.3389/fpls.2022.1000430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 05/03/2023]
Abstract
The effects of selenium (Se) on plant metabolism have been reported in several studies triggering plant tolerance to abiotic stresses, yet, the effects of Se on coffee plants under chilling stress are unclear. This study aimed to evaluate the effects of foliar Se application on coffee seedlings submitted to chilling stress and subsequent plant recovery. Two Coffea species, Coffea arabica cv. Arara, and Coffea canephora clone 31, were submitted to foliar application of sodium selenate solution (0.4 mg plant-1) or a control foliar solution, then on day 2 plants were submitted to low temperature (10°C day/4°C night) for 2 days. After that, the temperature was restored to optimal (25°C day/20°C night) for 2 days. Leaf samples were collected three times (before, during, and after the chilling stress) to perform analyses. After the chilling stress, visual leaf injury was observed in both species; however, the damage was twofold higher in C. canephora. The lower effect of cold on C. arabica was correlated to the increase in ascorbate peroxidase and higher content of starch, sucrose, and total soluble sugars compared with C. canephora, as well as a reduction in reducing sugars and proline content during the stress and rewarming. Se increased the nitrogen and sulfur content before stress but reduced their content during low temperature. The reduced content of nitrogen and sulfur during stress indicates that they were remobilized to stem and roots. Se supply reduced the damage in C. canephora leaves by 24% compared with the control. However, there was no evidence of the Se effects on antioxidant enzymatic pathways or ROS activity during stress as previously reported in the literature. Se increased the content of catalase during the rewarming. Se foliar supply also increased starch, amino acids, and proline, which may have reduced symptom expression in C. canephora in response to low temperature. In conclusion, Se foliar application can be used as a strategy to improve coffee tolerance under low-temperature changing nutrient remobilization, carbohydrate metabolism, and catalase activity in response to rewarming stress, but C. arabica and C. canephora respond differently to chilling stress and Se supply.
Collapse
Affiliation(s)
| | | | | | | | | | - Raphael R. de Oliveira
- Department of Biology, Plant Physiology Sector, Federal University of Lavras, Lavras, Brazil
| | - Douglas Amaral
- Agriculture and Natural Resources, University of California, Hanford, Hanford, CA, United States
| | - Patrick Brown
- Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Antonio Chalfun-Junior
- Department of Biology, Plant Physiology Sector, Federal University of Lavras, Lavras, Brazil
| | | |
Collapse
|
26
|
Does Shade Impact Coffee Yield, Tree Trunk, and Soil Moisture on Coffea canephora Plantations in Mondulkiri, Cambodia? SUSTAINABILITY 2021. [DOI: 10.3390/su132413823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Shade is a natural condition for coffee plants; however, unshaded plantations currently predominate in Asia. The benefits of shading increase as the environment becomes less favorable for coffee cultivation, e.g., because of climate change. It is necessary to determine the effects of shade on the yield of Coffea canephora and on the soil water availability. Therefore, three coffee plantations (of 3, 6, and 9 ha) in the province of Mondulkiri, Cambodia, were selected to evaluate the effect of shade on Coffea canephora yields, coffee bush trunk changes, and soil moisture. Our study shows that shade-grown coffee delivers the same yields as coffee that is grown without shading in terms of coffee bean weight or size (comparing average values and bean variability), the total weight of coffee fruits per coffee shrub and the total weight of 100 fruits (fresh and dry). Additionally, fruit ripeness was not influenced by shade in terms of variability nor in terms of a possible delay in ripening. There was no difference in the coffee stem diameter changes between shaded and sunny sites, although the soil moisture was shown to be higher throughout the shaded sites.
Collapse
|
27
|
Ahammed GJ, Guang Y, Yang Y, Chen J. Mechanisms of elevated CO 2-induced thermotolerance in plants: the role of phytohormones. PLANT CELL REPORTS 2021; 40:2273-2286. [PMID: 34269828 DOI: 10.1007/s00299-021-02751-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/29/2021] [Indexed: 05/20/2023]
Abstract
Rising atmospheric CO2 is a key driver of climate change, intensifying drastic changes in meteorological parameters. Plants can sense and respond to changes in environmental parameters including atmospheric CO2 and temperatures. High temperatures beyond the physiological threshold can significantly affect plant growth and development and thus attenuate crop productivity. However, elevated atmospheric CO2 can mitigate the deleterious effects of heat stress on plants. Despite a large body of literature supporting the positive impact of elevated CO2 on thermotolerance, the underlying biological mechanisms and precise molecular pathways that lead to enhanced tolerance to heat stress remain largely unclear. Under heat stress, elevated CO2-induced expression of respiratory burst oxidase homologs (RBOHs) and reactive oxygen species (ROS) signaling play a critical role in stomatal movement, which optimizes gas exchange to enhance photosynthesis and water use efficiency. Notably, elevated CO2 also fortifies antioxidant defense and redox homeostasis to alleviate heat-induced oxidative damage. Both hormone-dependent and independent pathways have been shown to mediate high CO2-induced thermotolerance. The activation of heat-shock factors and subsequent expression of heat-shock proteins are thought to be the essential mechanism downstream of hormone and ROS signaling. Here we review the role of phytohormones in plant response to high atmospheric CO2 and temperatures. We also discuss the potential mechanisms of elevated CO2-induced thermotolerance by focusing on several key phytohormones such as ethylene. Finally, we address some limitations of our current understanding and the need for further research to unveil the yet-unknown crosstalk between plant hormones in mediating high CO2-induced thermotolerance in plants.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yelan Guang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Youxin Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
- Pingxiang University, Pingxiang, Jiangxi, China.
| |
Collapse
|
28
|
Ahmed S, Brinkley S, Smith E, Sela A, Theisen M, Thibodeau C, Warne T, Anderson E, Van Dusen N, Giuliano P, Ionescu KE, Cash SB. Climate Change and Coffee Quality: Systematic Review on the Effects of Environmental and Management Variation on Secondary Metabolites and Sensory Attributes of Coffea arabica and Coffea canephora. FRONTIERS IN PLANT SCIENCE 2021; 12:708013. [PMID: 34691093 PMCID: PMC8531415 DOI: 10.3389/fpls.2021.708013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Climate change is impacting crop performance and agricultural systems around the world with implications for farmers and consumers. We carried out a systematic review to synthesize evidence regarding the effects of environmental factors associated with climate change and management conditions associated with climate adaptation on the crop quality of a culturally-relevant perennial crop, coffee (Coffea arabica and Coffea canephora). Seventy-three articles were identified that addressed the study's research question including 42 articles on environmental factors, 20 articles on management conditions, and 11 articles on both. While variation was found between studies, findings highlight that coffee quality is vulnerable to changes in light exposure, altitude, water stress, temperature, carbon dioxide, and nutrient management. Both increases as well as decreases were found in secondary metabolites and sensory attributes that determine coffee quality in response to shifts in environmental and management conditions. The most consistent evidence identified through this systematic review includes the following two trends: (1) increased altitude is associated with improved sensory attributes of coffee and; (2) increased light exposure is associated with decreased sensory attributes of coffee. Research gaps were found regarding the effects of shifts in carbon dioxide, water stress, and temperature on the directionality (increase, decrease, or non-linear) of coffee quality and how this varies with location, elevation, and management conditions. This systematic review further identified the following research needs: (1) long-term studies that examine the interactive effects of multiple environmental factors and management conditions on coffee quality; (2) studies that examine the interaction between sensory attributes and secondary metabolites that determine coffee quality and; (3) studies on the feasibility of various climate-adaptation strategies for mitigating the effects of climate change on coffee quality. Evidence-based innovations are needed to mitigate climate impacts on coffee quality toward enhanced sustainability and resilience of the coffee sector from farm to cup.
Collapse
Affiliation(s)
- Selena Ahmed
- Food and Health Lab, Department of Health and Human Development, Montana State University, Bozeman, MT, United States
| | - Sarah Brinkley
- Department of Horticultural Sciences, Center for Coffee Research and Education, Texas A&M University, College Station, TX, United States
| | - Erin Smith
- Food and Health Lab, Department of Health and Human Development, Montana State University, Bozeman, MT, United States
| | - Ariella Sela
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Mitchell Theisen
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Cyrena Thibodeau
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Teresa Warne
- Food and Health Lab, Department of Health and Human Development, Montana State University, Bozeman, MT, United States
| | | | | | - Peter Giuliano
- Specialty Coffee Association, Santa Ana, CA, United States
- Coffee Science Foundation, Santa Ana, CA, United States
| | | | - Sean B. Cash
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| |
Collapse
|
29
|
Catarino ICA, Monteiro GB, Ferreira MJP, Torres LMB, Domingues DS, Centeno DC, Lobo AKM, Silva EA. Elevated [CO2] Mitigates Drought Effects and Increases Leaf 5-O-Caffeoylquinic Acid and Caffeine Concentrations During the Early Growth of Coffea Arabica Plants. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.676207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Increasing atmospheric [CO2] is thought to contribute to changes in precipitation patterns, increasing heatwaves and severe drought scenarios. However, how the combination of elevated [CO2] and progressive drought affect plant metabolism is poorly understood. Aiming to investigate the effects of this environmental condition on photosynthesis and specialized metabolites in leaves of Coffea arabica during the early growth, plants fertilized with ambient (a[CO2]-400 ppm) and elevated (e[CO2]-800 ppm) [CO2] were exposed to well-watered (WW) or water-deficit (WD) regimes for 40 days. Over the 40-day-water-withdrawal, soil moisture, and leaf water potential decreased compared to WW-condition. Elevated [CO2] stimulates CO2 assimilation (A) and intrinsic water use efficiency (iWUE) even under WD. Drought condition slightly changed stomatal conductance, transpiration rate and maximum quantum efficiency of photosystem II (PSII) regardless of [CO2] compared to WW-plants. Total soluble amino acid concentration did not change significantly, while total phenolic compounds concentration decreased under e[CO2] regardless of water regimes. The combination of e[CO2]+WD increased the 5-O-caffeoylquinic acid (5-CQA) and caffeine amounts by 40-day when compared to a[CO2]+WD plants. Altogether, these results suggest that e[CO2] buffers mild-drought stress in young C. arabica by increasing A, iWUE and stimulating changes in the leaf contents of 5-CQA and caffeine.
Collapse
|
30
|
Rodrigues AM, Jorge T, Osorio S, Pott DM, Lidon FC, DaMatta FM, Marques I, Ribeiro-Barros AI, Ramalho JC, António C. Primary Metabolite Profile Changes in Coffea spp. Promoted by Single and Combined Exposure to Drought and Elevated CO 2 Concentration. Metabolites 2021; 11:metabo11070427. [PMID: 34209624 PMCID: PMC8303404 DOI: 10.3390/metabo11070427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Climate change scenarios pose major threats to many crops worldwide, including coffee. We explored the primary metabolite responses in two Coffea genotypes, C. canephora cv. Conilon Clone 153 and C. arabica cv. Icatu, grown at normal (aCO2) or elevated (eCO2) CO2 concentrations of 380 or 700 ppm, respectively, under well-watered (WW), moderate (MWD), or severe (SWD) water deficit conditions, in order to assess coffee responses to drought and how eCO2 can influence such responses. Primary metabolites were analyzed with a gas chromatography time-of-flight mass spectrometry metabolomics platform (GC-TOF-MS). A total of 48 primary metabolites were identified in both genotypes (23 amino acids and derivatives, 10 organic acids, 11 sugars, and 4 other metabolites), with differences recorded in both genotypes. Increased metabolite levels were observed in CL153 plants under single and combined conditions of aCO2 and drought (MWD and SWD), as opposed to the observed decreased levels under eCO2 in both drought conditions. In contrast, Icatu showed minor differences under MWD, and increased levels (especially amino acids) only under SWD at both CO2 concentration conditions, although with a tendency towards greater increases under eCO2. Altogether, CL153 demonstrated large impact under MWD, and seemed not to benefit from eCO2 in either MWD and SWD, in contrast with Icatu.
Collapse
Affiliation(s)
- Ana M. Rodrigues
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal; (A.M.R.); (T.J.)
| | - Tiago Jorge
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal; (A.M.R.); (T.J.)
| | - Sonia Osorio
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga—Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain; (S.O.); (D.M.P.)
| | - Delphine M. Pott
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga—Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain; (S.O.); (D.M.P.)
| | - Fernando C. Lidon
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa 36570-090, Brazil;
| | - Isabel Marques
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Ana I. Ribeiro-Barros
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal;
- Correspondence: (A.I.R.-B.); (J.C.R.); (C.A.)
| | - José C. Ramalho
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal;
- Correspondence: (A.I.R.-B.); (J.C.R.); (C.A.)
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal; (A.M.R.); (T.J.)
- Correspondence: (A.I.R.-B.); (J.C.R.); (C.A.)
| |
Collapse
|
31
|
Semedo JN, Rodrigues AP, Lidon FC, Pais IP, Marques I, Gouveia D, Armengaud J, Silva MJ, Martins S, Semedo MC, Dubberstein D, Partelli FL, Reboredo FH, Scotti-Campos P, Ribeiro-Barros AI, DaMatta FM, Ramalho JC. Intrinsic non-stomatal resilience to drought of the photosynthetic apparatus in Coffea spp. is strengthened by elevated air [CO2]. TREE PHYSIOLOGY 2021; 41:708-727. [PMID: 33215189 DOI: 10.1093/treephys/tpaa158] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/11/2020] [Indexed: 05/10/2023]
Abstract
Growing water restrictions associated with climate changes constitute daunting challenges to crop performance. This study unveils the impacts of moderate (MWD) or severe (SWD) water deficit, and their interaction with air [CO2], on the photosynthetic apparatus of Coffea canephora Pierre ex A. Froehner cv. Conilon Clone 153 (CL153) and Coffea arabica L. cv. Icatu. Seven year-old potted plants grown under 380 (aCO2) or 700 μl l -1 (eCO2) [CO2] gradually reached predawn water potentials between -1.6 and -2.1 MPa (MWD), and below -3.5 MPa (SWD). Under drought, stomata closure was chiefly related to abscisic acid (ABA) rise. Increasing drought severity progressively affected gas exchange and fluorescence parameters in both genotypes, with non-stomatal limitations becoming gradually dominating, especially regarding the photochemical and biochemical components of CL153 SWD plants. In contrast, Icatu plants were highly tolerant to SWD, with minor, if any, negative impacts on the potential photosynthetic functioning and components (e.g., Amax, Fv/Fm, electron carriers, photosystems (PSs) and ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) activities). Besides, drought-stressed Icatu plants displayed increased abundance of a large set of proteins associated with the photosynthetic apparatus (PSs, light-harvesting complexes, cyclic electron flow, RuBisCO activase) regardless of [CO2]. Single eCO2 did not promote stomatal and photosynthetic down-regulation in both genotypes. Instead, eCO2 increased photosynthetic performance, moderately reinforced photochemical (PSs activity, electron carriers) and biochemical (RuBisCO, ribulose-5-phosphate kinase) components, whereas photoprotective mechanisms and protein abundance remained mostly unaffected. In both genotypes, under MWD, eCO2 superimposition delayed stress severity and promoted photosynthetic functioning with lower energy dissipation and PSII impacts, whereas stomatal closure was decoupled from increases in ABA. In SWD plants, most impacts on the photosynthetic performance were reduced by eCO2, especially in the moderately drought affected CL153 genotype, although maintaining RuBisCO as the most sensitive component, deserving special breeder's attention to improve coffee sustainability under future climate scenarios.
Collapse
Affiliation(s)
- José N Semedo
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras 2784-505, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
| | - Ana P Rodrigues
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, Lisboa 1349-017, Portugal
| | - Fernando C Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
| | - Isabel P Pais
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras 2784-505, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
| | - Isabel Marques
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, Lisboa 1349-017, Portugal
| | - Duarte Gouveia
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze F-F-30200, France
| | - Jean Armengaud
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze F-F-30200, France
| | - Maria J Silva
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, Lisboa 1349-017, Portugal
| | - Sónia Martins
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, Lisboa 1959-007, Portugal
| | - Magda C Semedo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, Lisboa 1959-007, Portugal
| | - Danielly Dubberstein
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Departamento de Ciências Agrárias e Biológicas (DCAB), Centro Universitário do Norte do Espírito Santo (CEUNES), Universidade Federal Espírito Santo (UFES), Rod. BR 101 Norte, Km. 60, Bairro Litorâneo, São Mateu-ES, CEP 29932-540, Brazil
| | - Fábio L Partelli
- Departamento de Ciências Agrárias e Biológicas (DCAB), Centro Universitário do Norte do Espírito Santo (CEUNES), Universidade Federal Espírito Santo (UFES), Rod. BR 101 Norte, Km. 60, Bairro Litorâneo, São Mateu-ES, CEP 29932-540, Brazil
| | - Fernando H Reboredo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
| | - Paula Scotti-Campos
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras 2784-505, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
| | - Ana I Ribeiro-Barros
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, Lisboa 1349-017, Portugal
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa, Viçosa, MG 36570-900, Brazil
| | - José C Ramalho
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, Lisboa 1349-017, Portugal
| |
Collapse
|
32
|
Abstract
Current climate change impact studies on coffee have not considered impact on coffee typicities that depend on local microclimatic, topographic and soil characteristics. Thus, this study aims to provide a quantitative risk assessment of the impact of climate change on suitability of five premium specialty coffees in Ethiopia. We implement an ensemble model of three machine learning algorithms to predict current and future (2030s, 2050s, 2070s, and 2090s) suitability for each specialty coffee under four Shared Socio-economic Pathways (SSPs). Results show that the importance of variables determining coffee suitability in the combined model is different from those for specialty coffees despite the climatic factors remaining more important in determining suitability than topographic and soil variables. Our model predicts that 27% of the country is generally suitable for coffee, and of this area, only up to 30% is suitable for specialty coffees. The impact modelling showed that the combined model projects a net gain in coffee production suitability under climate change in general but losses in five out of the six modelled specialty coffee growing areas. We conclude that depending on drivers of suitability and projected impacts, climate change will significantly affect the Ethiopian speciality coffee sector and area-specific adaptation measures are required to build resilience.
Collapse
|
33
|
de Oliveira Santos M, Coelho LS, Carvalho GR, Botelho CE, Torres LF, Vilela DJM, Andrade AC, Silva VA. Photochemical efficiency correlated with candidate gene expression promote coffee drought tolerance. Sci Rep 2021; 11:7436. [PMID: 33795742 PMCID: PMC8016967 DOI: 10.1038/s41598-021-86689-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to identify the correlation between photochemical efficiency and candidate genes expression to elucidate the drought tolerance mechanisms in coffee progenies (Icatu Vermelho IAC 3851-2 × Catimor UFV 1602-215) previously identified as tolerant in field conditions. Four progenies (2, 5, 12 and 15) were evaluated under water-deficit conditions (water deficit imposed 8 months after transplanting seedlings to the pots) and under irrigated system. Evaluations of physiological parameters and expression of candidate genes for drought tolerance were performed. Progeny 5 showed capacity to maintain water potential, which contributed to lower qP variation between irrigated and deficit conditions. However, the increases of qN and NPQ in response to stress indicate that this progeny is photochemically responsive to small variations of Ψam protecting the photosystem and maintaining qP. Data obtained for progeny 12 indicated a lower water status maintenance capacity, but with increased qN and NPQ providing maintenance of the ɸPSII and ETR parameters. A PCA analysis revealed that the genes coding regulatory proteins, ABA-synthesis, cellular protectors, isoforms of ascorbate peroxidase clearly displayed a major response to drought stress and discriminated the progenies 5 and 12 which showed a better photochemical response. The genes CaMYB1, CaERF017, CaEDR2, CaNCED, CaAPX1, CaAPX5, CaGolS3, CaDHN1 and CaPYL8a were up-regulated in the arabica coffee progenies with greater photochemical efficiency under deficit and therefore contributing to efficiency of the photosynthesis in drought tolerant progenies.
Collapse
Affiliation(s)
| | - Larissa Sousa Coelho
- Universidade Federal de Lavras, Campus Universitário, Lavras, Minas Gerais, Brazil
| | - Gladyston Rodrigues Carvalho
- Empresa de Pesquisa Agropecuária de Minas Gerais, Epamig Sul, Campus da Universidade Federal Lavras - UFLA, Rodovia Lavras/Ijaci Km 02, Cx. P. 176, Lavras, Minas Gerais, Brazil
| | - Cesar Elias Botelho
- Empresa de Pesquisa Agropecuária de Minas Gerais, Epamig Sul, Campus da Universidade Federal Lavras - UFLA, Rodovia Lavras/Ijaci Km 02, Cx. P. 176, Lavras, Minas Gerais, Brazil
| | | | | | - Alan Carvalho Andrade
- Embrapa Café, Inova Café, Campus Universitário da Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Vânia Aparecida Silva
- Empresa de Pesquisa Agropecuária de Minas Gerais, Epamig Sul, Campus da Universidade Federal Lavras - UFLA, Rodovia Lavras/Ijaci Km 02, Cx. P. 176, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
34
|
A Transcriptomic Approach to Understanding the Combined Impacts of Supra-Optimal Temperatures and CO 2 Revealed Different Responses in the Polyploid Coffea arabica and Its Diploid Progenitor C. canephora. Int J Mol Sci 2021; 22:ijms22063125. [PMID: 33803866 PMCID: PMC8003141 DOI: 10.3390/ijms22063125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding the effect of extreme temperatures and elevated air (CO2) is crucial for mitigating the impacts of the coffee industry. In this work, leaf transcriptomic changes were evaluated in the diploid C. canephora and its polyploid C. arabica, grown at 25 °C and at two supra-optimal temperatures (37 °C, 42 °C), under ambient (aCO2) or elevated air CO2 (eCO2). Both species expressed fewer genes as temperature rose, although a high number of differentially expressed genes (DEGs) were observed, especially at 42 °C. An enrichment analysis revealed that the two species reacted differently to the high temperatures but with an overall up-regulation of the photosynthetic machinery until 37 °C. Although eCO2 helped to release stress, 42 °C had a severe impact on both species. A total of 667 photosynthetic and biochemical related-DEGs were altered with high temperatures and eCO2, which may be used as key probe genes in future studies. This was mostly felt in C. arabica, where genes related to ribulose-bisphosphate carboxylase (RuBisCO) activity, chlorophyll a-b binding, and the reaction centres of photosystems I and II were down-regulated, especially under 42°C, regardless of CO2. Transcriptomic changes showed that both species were strongly affected by the highest temperature, although they can endure higher temperatures (37 °C) than previously assumed.
Collapse
|
35
|
Machado Filho JA, Rodrigues WP, Baroni DF, Pireda S, Campbell G, de Souza GAR, Verdin Filho AC, Arantes SD, de Oliveira Arantes L, da Cunha M, Gambetta GA, Rakocevic M, Ramalho JC, Campostrini E. Linking root and stem hydraulic traits to leaf physiological parameters in Coffea canephora clones with contrasting drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153355. [PMID: 33581558 DOI: 10.1016/j.jplph.2020.153355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Knowing the key hydraulic traits of different genotypes at early seedling stages can potentially provide crucial information and save time for breeding programs. In the current study we investigated: (1) how root, stem and whole plant conductivities are linked to xylem traits, and (2) how the integrated hydraulic system impacts leaf water potential, gas exchange, chlorophyll a fluorescence and the growth of three coffee cultivars (clones of Coffea canephora Pierre ex Froehner cv. Conilon) with known differences in drought tolerance. The Conilon clones CL 14, CL 5 V and CL 109A, classified as tolerant, moderately tolerant, and sensitive to drought respectively, were grown under non-limiting soil-water supply but high atmospheric demand (i.e., high VPDair). CL 14 and CL 5 V displayed higher root and stem hydraulic conductance and conductivity, and higher whole plant conductivity than CL 109A, and these differences were associated with higher root growth traits. In addition, CL 109A exhibited a non-significant trend towards wider vessels. Collectively, these responses likely contributed to reduce leaf water potential in CL 109A, and in turn, reduced leaf gas exchange, especially during elevated VPDair. Even when grown under well-watered conditions, the elevated VPDair observed during this study resulted in key differences in the hydraulic traits between the cultivars corresponding to differences in plant water status, gas exchange, and photochemical activity. Together these results suggest that coffee hydraulic traits, even when grown under non-water stress conditions, can be considered in breeding programs targeting more productive and efficient genotypes under drought and high atmospheric demand.
Collapse
Affiliation(s)
- José Altino Machado Filho
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, 29052-010, Vitória, ES, Brazil
| | - Weverton Pereira Rodrigues
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Avenida Brejo do Pinto, S/N, 65975-000, Estreito, Maranhão, Brazil.
| | - Danilo Força Baroni
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego, 2000, CEP: 28013620, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Saulo Pireda
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Glaziele Campbell
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Guilherme Augusto Rodrigues de Souza
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego, 2000, CEP: 28013620, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Sara Dousseau Arantes
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, 29052-010, Vitória, ES, Brazil
| | - Lúcio de Oliveira Arantes
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, 29052-010, Vitória, ES, Brazil
| | - Maura da Cunha
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Gregory A Gambetta
- EGFV (UMR 1287), Bordeaux-Sciences Agro, INRAE, Université de Bordeaux, ISVV, 210 chemin de Leysotte, 33882 Villenave d'Ornon, France
| | - Miroslava Rakocevic
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Avenida Brejo do Pinto, S/N, 65975-000, Estreito, Maranhão, Brazil
| | - José Cochicho Ramalho
- Lab. Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Centro de Estudos Florestais (CEF), Departamento de Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Av. República, 2784-505, Oeiras, Portugal; GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Eliemar Campostrini
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Avenida Brejo do Pinto, S/N, 65975-000, Estreito, Maranhão, Brazil.
| |
Collapse
|
36
|
Mendes E, Duarte N. Mid-Infrared Spectroscopy as a Valuable Tool to Tackle Food Analysis: A Literature Review on Coffee, Dairies, Honey, Olive Oil and Wine. Foods 2021; 10:foods10020477. [PMID: 33671755 PMCID: PMC7926530 DOI: 10.3390/foods10020477] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, food adulteration and authentication are topics of utmost importance for consumers, food producers, business operators and regulatory agencies. Therefore, there is an increasing search for rapid, robust and accurate analytical techniques to determine the authenticity and to detect adulteration and misrepresentation. Mid-infrared spectroscopy (MIR), often associated with chemometric techniques, offers a fast and accurate method to detect and predict food adulteration based on the fingerprint characteristics of the food matrix. In the first part of this review the basic concepts of infrared spectroscopy, sampling techniques, as well as an overview of chemometric tools are summarized. In the second part, recent applications of MIR spectroscopy to the analysis of foods such as coffee, dairy products, honey, olive oil and wine are discussed, covering a timespan from 2010 to mid-2020. The literature gathered in this article clearly reveals that the MIR spectroscopy associated with attenuated total reflection acquisition mode and different chemometric tools have been broadly applied to address quality, authenticity and adulteration issues. This technique has the advantages of being simple, fast and easy to use, non-destructive, environmentally friendly and, in the future, it can be applied in routine analyses and official food control.
Collapse
|
37
|
Genetic diversity of native and cultivated Ugandan Robusta coffee (Coffea canephora Pierre ex A. Froehner): Climate influences, breeding potential and diversity conservation. PLoS One 2021; 16:e0245965. [PMID: 33556074 PMCID: PMC7870046 DOI: 10.1371/journal.pone.0245965] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 01/12/2021] [Indexed: 11/22/2022] Open
Abstract
Wild genetic resources and their ability to adapt to environmental change are critically important in light of the projected climate change, while constituting the foundation of agricultural sustainability. To address the expected negative effects of climate change on Robusta coffee trees (Coffea canephora), collecting missions were conducted to explore its current native distribution in Uganda over a broad climatic range. Wild material from seven forests could thus be collected. We used 19 microsatellite (SSR) markers to assess genetic diversity and structure of this material as well as material from two ex-situ collections and a feral population. The Ugandan C. canephora diversity was then positioned relative to the species’ global diversity structure. Twenty-two climatic variables were used to explore variations in climatic zones across the sampled forests. Overall, Uganda’s native C. canephora diversity differs from other known genetic groups of this species. In northwestern (NW) Uganda, four distinct genetic clusters were distinguished being from Zoka, Budongo, Itwara and Kibale forests A large southern-central (SC) cluster included Malabigambo, Mabira, and Kalangala forest accessions, as well as feral and cultivated accessions, suggesting similarity in genetic origin and strong gene flow between wild and cultivated compartments. We also confirmed the introduction of Congolese varieties into the SC region where most Robusta coffee production takes place. Identified populations occurred in divergent environmental conditions and 12 environmental variables significantly explained 16.3% of the total allelic variation across populations. The substantial genetic variation within and between Ugandan populations with different climatic envelopes might contain adaptive diversity to cope with climate change. The accessions that we collected have substantially enriched the diversity hosted in the Ugandan collections and thus contribute to ex situ conservation of this vital genetic resource. However, there is an urgent need to develop strategies to enhance complementary in-situ conservation of Coffea canephora in native forests in northwestern Uganda.
Collapse
|
38
|
Craparo ACW, Van Asten PJA, Läderach P, Jassogne LTP, Grab SW. Warm nights drive Coffea arabica ripening in Tanzania. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:181-192. [PMID: 32929544 DOI: 10.1007/s00484-020-02016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Studies have demonstrated that plant phenophases (e.g. budburst, flowering, ripening) are occurring increasingly earlier in the season across diverse ecologies globally. Despite much interest that climate change impacts have on coffee (Coffea arabica), relatively little is known about the driving factors determining its phenophases. Using high-resolution microclimatic data, this study provides initial insights on how climate change is impacting C. arabica phenophases in Tanzania. In particular, we use generalized additive models to show how warming nocturnal temperatures (Tnight), as opposed to day-time or maximum temperatures, have a superseding effect on the ripening of coffee and subsequent timing of harvest. A warm night index (WNI), generated from mean nocturnal temperature, permits accurate prediction of the start of the harvest season, which is superior to existing methods using growing degree days (GDD). The non-linear function indicates that a WNI of 15 °C is associated with the latest ripening coffee cherries (adjusted R2 = 0.95). As the WNI increases past the inflection point of ~ 16 °C, ripening occurs earlier and progresses more or less linearly at a rate of ~ 17 ± 1.95 days for every 1 °C increase in WNI. Using the WNI will thus not only allow farmers to more accurately predict their harvest start date, but also assist with identifying the most suitable adaptation strategies which may reduce harvest-related costs and buffer potential losses in quality and production.
Collapse
Affiliation(s)
- A C W Craparo
- International Center for Tropical Agriculture (CIAT), Hanoi, Vietnam.
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, P/Bag3, WITS, Johannesburg, 2050, South Africa.
| | | | - P Läderach
- International Center for Tropical Agriculture (CIAT), Rome, Italy
| | - L T P Jassogne
- International Institute of Tropical Agriculture (IITA), Kampala, Uganda
| | - S W Grab
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, P/Bag3, WITS, Johannesburg, 2050, South Africa
| |
Collapse
|
39
|
Almeida WL, Ávila RT, Pérez-Molina JP, Barbosa ML, Marçal DMS, de Souza RPB, Martino PB, Cardoso AA, Martins SCV, DaMatta FM. The interplay between irrigation and fruiting on branch growth and mortality, gas exchange and water relations of coffee trees. TREE PHYSIOLOGY 2021; 41:35-49. [PMID: 32879972 DOI: 10.1093/treephys/tpaa116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
The overall coordination between gas exchanges and plant hydraulics may be affected by soil water availability and source-to-sink relationships. Here we evaluated how branch growth and mortality, leaf gas exchange and metabolism are affected in coffee (Coffea arabica L.) trees by drought and fruiting. Field-grown plants were irrigated or not, and maintained with full or no fruit load. Under mild water deficit, irrigation per se did not significantly impact growth but markedly reduced branch mortality in fruiting trees, despite similar leaf assimilate pools and water status. Fruiting increased net photosynthetic rate in parallel with an enhanced stomatal conductance, particularly in irrigated plants. Mesophyll conductance and maximum RuBisCO carboxylation rate remained unchanged across treatments. The increased stomatal conductance in fruiting trees over nonfruiting ones was unrelated to internal CO2 concentration, foliar abscisic acid (ABA) levels or differential ABA sensitivity. However, stomatal conductance was associated with higher stomatal density, lower stomatal sensitivity to vapor pressure deficit, and higher leaf hydraulic conductance and capacitance. Increased leaf transpiration rate in fruiting trees was supported by coordinated alterations in plant hydraulics, which explained the maintenance of plant water status. Finally, by preventing branch mortality, irrigation can mitigate biennial production fluctuations and improve the sustainability of coffee plantations.
Collapse
Affiliation(s)
- Wellington L Almeida
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa 36570-900, Brazil
| | - Rodrigo T Ávila
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa 36570-900, Brazil
| | - Junior P Pérez-Molina
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa 36570-900, Brazil
- Laboratorio de Ecología Funcional y Ecosistemas Tropicales, Escuela de Ciencias Biológicas, Universidad Nacional Costa Rica, Avenida 1, Calle 9, Heredia 863000, Costa Rica
| | - Marcela L Barbosa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa 36570-900, Brazil
| | - Dinorah M S Marçal
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa 36570-900, Brazil
| | - Raylla P B de Souza
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa 36570-900, Brazil
| | - Pedro B Martino
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa 36570-900, Brazil
| | - Amanda A Cardoso
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa 36570-900, Brazil
| | - Samuel C V Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa 36570-900, Brazil
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa 36570-900, Brazil
| |
Collapse
|
40
|
Marçal DMS, Avila RT, Quiroga-Rojas LF, de Souza RPB, Gomes Junior CC, Ponte LR, Barbosa ML, Oliveira LA, Martins SCV, Ramalho JDC, DaMatta FM. Elevated [CO 2] benefits coffee growth and photosynthetic performance regardless of light availability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:524-535. [PMID: 33293205 DOI: 10.1016/j.plaphy.2020.11.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Despite being evolved in shaded environments, most coffee (Coffea arabica L.) is cultivated worldwide under sparse shade or at full sunlight. Coffee is ranked as greatly responsive to climate change (CC), and shading has been considered an important management strategy for mitigating the harmful CC outcomes on the crop. However, there is no information on the effects of enhanced [CO2] (eCa) on coffee performance in response to light availability. Here, we examined how carbon assimilation and use are affected by eCa in combination with contrasting light levels. For that, greenhouse-grown plants were submitted to varying light levels (16 or 7.5 mol photons m-2 day-1) and [CO2] (ca. 380 or 740 μmol mol-1 air) over six months. We demonstrated that both high light and eCa improved growth and photosynthetic performance, independently. Despite marginal alterations in biomass partitioning, some allometric changes, such as higher root biomass-to-total leaf area and lower leaf area ratio under the combination of eCa and high light were found. Stimulation of photosynthetic rates by eCa occurred with no direct effect on stomatal and mesophyll conductances, and no signs of photosynthetic down-regulation were found irrespective of treatments. Particularly at high light, eCa led to decreases in both photorespiration rates and oxidative pressure. Overall, our novel findings suggest that eCa could tandemly act with shading to mitigate the harmful CC effects on coffee sustainability.
Collapse
Affiliation(s)
- Dinorah M S Marçal
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Rodrigo T Avila
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | | | - Raylla P B de Souza
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Carlos C Gomes Junior
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Lucas R Ponte
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Marcela L Barbosa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Leonardo A Oliveira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Samuel C V Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - José D C Ramalho
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505, Oeiras, Portugal; Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal.
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
41
|
Marques I, Fernandes I, David PH, Paulo OS, Goulao LF, Fortunato AS, Lidon FC, DaMatta FM, Ramalho JC, Ribeiro-Barros AI. Transcriptomic Leaf Profiling Reveals Differential Responses of the Two Most Traded Coffee Species to Elevated [CO 2]. Int J Mol Sci 2020; 21:ijms21239211. [PMID: 33287164 PMCID: PMC7730880 DOI: 10.3390/ijms21239211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
As atmospheric [CO2] continues to rise to unprecedented levels, understanding its impact on plants is imperative to improve crop performance and sustainability under future climate conditions. In this context, transcriptional changes promoted by elevated CO2 (eCO2) were studied in genotypes from the two major traded coffee species: the allopolyploid Coffea arabica (Icatu) and its diploid parent, C. canephora (CL153). While Icatu expressed more genes than CL153, a higher number of differentially expressed genes were found in CL153 as a response to eCO2. Although many genes were found to be commonly expressed by the two genotypes under eCO2, unique genes and pathways differed between them, with CL153 showing more enriched GO terms and metabolic pathways than Icatu. Divergent functional categories and significantly enriched pathways were found in these genotypes, which altogether supports contrasting responses to eCO2. A considerable number of genes linked to coffee physiological and biochemical responses were found to be affected by eCO2 with the significant upregulation of photosynthetic, antioxidant, and lipidic genes. This supports the absence of photosynthesis down-regulation and, therefore, the maintenance of increased photosynthetic potential promoted by eCO2 in these coffee genotypes.
Collapse
Affiliation(s)
- Isabel Marques
- Plant-Environment Interactions and Biodiversity Lab (PlantStress & Biodiversity), Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 2784-505 Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (P.H.D.); (O.S.P.)
- Correspondence: (I.M.); (J.C.R.); (A.I.R.-B.)
| | - Isabel Fernandes
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (P.H.D.); (O.S.P.)
| | - Pedro H.C. David
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (P.H.D.); (O.S.P.)
| | - Octávio S. Paulo
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (P.H.D.); (O.S.P.)
| | - Luis F. Goulao
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Ana S. Fortunato
- GREEN-IT—Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade NOVA de Lisboa (UNL), Av. da República, 2780-157 Oeiras, Portugal;
| | - Fernando C. Lidon
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa 36570-900 (MG), Brazil;
| | - José C. Ramalho
- Plant-Environment Interactions and Biodiversity Lab (PlantStress & Biodiversity), Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 2784-505 Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
- Correspondence: (I.M.); (J.C.R.); (A.I.R.-B.)
| | - Ana I. Ribeiro-Barros
- Plant-Environment Interactions and Biodiversity Lab (PlantStress & Biodiversity), Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 2784-505 Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
- Correspondence: (I.M.); (J.C.R.); (A.I.R.-B.)
| |
Collapse
|
42
|
Venancio LP, Filgueiras R, Mantovani EC, do Amaral CH, da Cunha FF, Dos Santos Silva FC, Althoff D, Dos Santos RA, Cavatte PC. Impact of drought associated with high temperatures on Coffea canephora plantations: a case study in Espírito Santo State, Brazil. Sci Rep 2020; 10:19719. [PMID: 33184345 PMCID: PMC7665182 DOI: 10.1038/s41598-020-76713-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023] Open
Abstract
Droughts are major natural disasters that affect many parts of the world all years and recently affected one of the major conilon coffee-producing regions of the world in state of Espírito Santo, which caused a huge crisis in the sector. Therefore, the objective of this study was to conduct an analysis with technical-scientific basis of the real impact of drought associated with high temperatures and irradiances on the conilon coffee (Coffea canephora Pierre ex Froehner) plantations located in the north, northwest, and northeast regions of the state of Espírito Santo, Brazil. Data from 2010 to 2016 of rainfall, air temperature, production, yield, planted area and surface remote sensing were obtained from different sources, statistically analyzed, and correlated. The 2015/2016 season was the most affected by the drought and high temperatures (mean annual above 26 °C) because, in addition to the adverse weather conditions, coffee plants were already damaged by the climatic conditions of the previous season. The increase in air temperature has higher impact (negative) on production than the decrease in annual precipitation. The average annual air temperatures in the two harvest seasons that stood out for the lowest yields (i.e. 2012/2013 and 2015/2016) were approximately 1 °C higher than in the previous seasons. In addition, in the 2015/2016 season, the average annual air temperature was the highest in the entire series. The spatial and temporal distribution of Enhanced Vegetation Index values enabled the detection and perception of droughts in the conilon coffee-producing regions of Espírito Santo. The rainfall volume accumulated in the periods from September to December and from April to August are the ones that most affect coffee yield. The conilon coffee plantations in these regions are susceptible to new climate extremes, as they continue to be managed under irrigation and full sun. The adoption of agroforestry systems and construction of small reservoirs can be useful to alleviate these climate effects, reducing the risk of coffee production losses and contributing to the sustainability of crops in Espírito Santo.
Collapse
Affiliation(s)
- Luan Peroni Venancio
- Agricultural Engineering Department, Federal University of Viçosa (UFV), Viçosa, 36570-900, Brazil.
| | - Roberto Filgueiras
- Agricultural Engineering Department, Federal University of Viçosa (UFV), Viçosa, 36570-900, Brazil
| | | | - Cibele Hummel do Amaral
- Forest Engineering Department, Federal University of Viçosa (UFV), Viçosa, 36570-900, Brazil
| | - Fernando França da Cunha
- Agricultural Engineering Department, Federal University of Viçosa (UFV), Viçosa, 36570-900, Brazil
| | | | - Daniel Althoff
- Agricultural Engineering Department, Federal University of Viçosa (UFV), Viçosa, 36570-900, Brazil
| | - Robson Argolo Dos Santos
- Agricultural Engineering Department, Federal University of Viçosa (UFV), Viçosa, 36570-900, Brazil
| | - Paulo Cezar Cavatte
- Biology Department, Federal University of Espírito Santo (UFES), Alegre, 29500-000, Brazil
| |
Collapse
|
43
|
de Oliveira RR, Ribeiro THC, Cardon CH, Fedenia L, Maia VA, Barbosa BCF, Caldeira CF, Klein PE, Chalfun-Junior A. Elevated Temperatures Impose Transcriptional Constraints and Elicit Intraspecific Differences Between Coffee Genotypes. FRONTIERS IN PLANT SCIENCE 2020; 11:1113. [PMID: 32849685 PMCID: PMC7396624 DOI: 10.3389/fpls.2020.01113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/06/2020] [Indexed: 05/19/2023]
Abstract
The projected impact of global warming on coffee production may require the heat-adapted genotypes in the next decades. To identify cellular strategies in response to warmer temperatures, we compared the effect of elevated temperature on two commercial Coffea arabica L. genotypes exploring leaf physiology, transcriptome, and carbohydrate/protein composition. Growth temperatures were 23/19°C (day/night), as optimal condition (OpT), and 30/26°C (day/night) as a possible warmer scenario (WaT). The cv. Acauã showed lower levels of leaf temperature (Tleaf) under both conditions compared to cv. Catuaí, whereas slightly or no differences for other leaf physiological parameters. Therefore, to explore temperature responsive pathways the leaf transcriptome was examined using RNAseq. Genotypes showed a marked number of differentially-expressed genes (DEGs) under OpT, however DEGs strongly decrease in both at WaT condition indicating a transcriptional constraint. DEGs responsive to WaT revealed shared and genotype-specific genes mostly related to carbohydrate metabolism. Under OpT, leaf starch content was greater in cv. Acauã and, as WaT temperature was imposed, the leaf soluble sugar did not change in contrast to cv. Catuaí, although the levels of leaf starch, sucrose, and leaf protein decreased in both genotypes. These findings revealed intraspecific differences in the underlying transcriptional and metabolic interconnected pathways responsive to warmer temperatures, which is potentially linked to thermotolerance, and thus may be useful as biomarkers in breeding for a changing climate.
Collapse
Affiliation(s)
| | | | - Carlos Henrique Cardon
- Plant Physiology Sector, Biology Department, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| | - Lauren Fedenia
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | | | | | - Cecílio Frois Caldeira
- Plant Physiology Sector, Biology Department, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, United States
| | - Antonio Chalfun-Junior
- Plant Physiology Sector, Biology Department, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| |
Collapse
|
44
|
Dubberstein D, Lidon FC, Rodrigues AP, Semedo JN, Marques I, Rodrigues WP, Gouveia D, Armengaud J, Semedo MC, Martins S, Simões-Costa MC, Moura I, Pais IP, Scotti-Campos P, Partelli FL, Campostrini E, Ribeiro-Barros AI, DaMatta FM, Ramalho JC. Resilient and Sensitive Key Points of the Photosynthetic Machinery of Coffea spp. to the Single and Superimposed Exposure to Severe Drought and Heat Stresses. FRONTIERS IN PLANT SCIENCE 2020; 11:1049. [PMID: 32733525 PMCID: PMC7363965 DOI: 10.3389/fpls.2020.01049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/25/2020] [Indexed: 05/23/2023]
Abstract
This study unveils the single and combined drought and heat impacts on the photosynthetic performance of Coffea arabica cv. Icatu and C. canephora cv. Conilon Clone 153 (CL153). Well-watered (WW) potted plants were gradually submitted to severe water deficit (SWD) along 20 days under adequate temperature (25/20°C, day/night), and thereafter exposed to a gradual temperature rise up to 42/30°C, followed by a 14-day water and temperature recovery. Single drought affected all gas exchanges (including Amax ) and most fluorescence parameters in both genotypes. However, Icatu maintained Fv/Fm and RuBisCO activity, and reinforced electron transport rates, carrier contents, and proton gradient regulation (PGR5) and chloroplast NADH dehydrogenase-like (NDH) complex proteins abundance. This suggested negligible non-stomatal limitations of photosynthesis that were accompanied by a triggering of protective cyclic electron transport (CEF) involving both photosystems (PSs). These findings contrasted with declines in RuBisCO and PSs activities, and cytochromes (b559 , f, b563 ) contents in CL153. Remarkable heat tolerance in potential photosynthetic functioning was detected in WW plants of both genotypes (up to 37/28°C or 39/30°C), likely associated with CEF in Icatu. Yet, at 42/30°C the tolerance limit was exceeded. Reduced Amax and increased Ci values reflected non-stomatal limitations of photosynthesis, agreeing with impairments in energy capture (F0 rise), PSII photochemical efficiency, and RuBisCO and Ru5PK activities. In contrast to PSs activities and electron carrier contents, enzyme activities were highly heat sensitive. Until 37/28°C, stresses interaction was largely absent, and drought played the major role in constraining photosynthesis functioning. Harsher conditions (SWD, 42/30°C) exacerbated impairments to PSs, enzymes, and electron carriers, but uncontrolled energy dissipation was mitigated by photoprotective mechanisms. Most parameters recovered fully between 4 and 14 days after stress relief in both genotypes, although some aftereffects persisted in SWD plants. Icatu was more drought tolerant, with WW and SWD plants usually showing a faster and/or greater recovery than CL153. Heat affected both genotypes mostly at 42/30°C, especially in SWD and Icatu plants. Overall, photochemical components were highly tolerant to heat and to stress interaction in contrast to enzymes that deserve special attention by breeding programs to increase coffee sustainability in climate change scenarios.
Collapse
Affiliation(s)
- Danielly Dubberstein
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, Brazil
| | - Fernando C. Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Ana P. Rodrigues
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
| | - José N. Semedo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
| | - Isabel Marques
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
| | - Weverton P. Rodrigues
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Univ. Estadual Norte Fluminense (UENF), Darcy Ribeiro, Brazil
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Estreito, Brazil
| | - Duarte Gouveia
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Bagnols-sur-Cèze, France
| | - Magda C. Semedo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - Sónia Martins
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - Maria C. Simões-Costa
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
| | - I. Moura
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
| | - Isabel P. Pais
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
| | - Paula Scotti-Campos
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
| | - Fábio L. Partelli
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, Brazil
| | - Eliemar Campostrini
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Univ. Estadual Norte Fluminense (UENF), Darcy Ribeiro, Brazil
| | - Ana I. Ribeiro-Barros
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Fábio M. DaMatta
- Dept. Biologia Vegetal, Univ. Federal Viçosa (UFV), Viçosa, Brazil
| | - José C. Ramalho
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| |
Collapse
|
45
|
Kath J, Byrareddy VM, Craparo A, Nguyen-Huy T, Mushtaq S, Cao L, Bossolasco L. Not so robust: Robusta coffee production is highly sensitive to temperature. GLOBAL CHANGE BIOLOGY 2020; 26:3677-3688. [PMID: 32223007 DOI: 10.1111/gcb.15097] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/30/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
Coffea canephora (robusta coffee) is the most heat-tolerant and 'robust' coffee species and therefore considered more resistant to climate change than other types of coffee production. However, the optimum production range of robusta has never been quantified, with current estimates of its optimal mean annual temperature range (22-30°C) based solely on the climatic conditions of its native range in the Congo basin, Central Africa. Using 10 years of yield observations from 798 farms across South East Asia coupled with high-resolution precipitation and temperature data, we used hierarchical Bayesian modeling to quantify robusta's optimal temperature range for production. Our climate-based models explained yield variation well across the study area with a cross-validated mean R2 = .51. We demonstrate that robusta has an optimal temperature below 20.5°C (or a mean minimum/maximum of ≤16.2/24.1°C), which is markedly lower, by 1.5-9°C than current estimates. In the middle of robusta's currently assumed optimal range (mean annual temperatures over 25.1°C), coffee yields are 50% lower compared to the optimal mean of ≤20.5°C found here. During the growing season, every 1°C increase in mean minimum/maximum temperatures above 16.2/24.1°C corresponded to yield declines of ~14% or 350-460 kg/ha (95% credible interval). Our results suggest that robusta coffee is far more sensitive to temperature than previously thought. Current assessments, based on robusta having an optimal temperature range over 22°C, are likely overestimating its suitable production range and its ability to contribute to coffee production as temperatures increase under climate change. Robusta supplies 40% of the world's coffee, but its production potential could decline considerably as temperatures increase under climate change, jeopardizing a multi-billion dollar coffee industry and the livelihoods of millions of farmers.
Collapse
Affiliation(s)
- Jarrod Kath
- Centre for Applied Climate Sciences, University of Southern Queensland, Toowoomba, Qld, Australia
| | - Vivekananda M Byrareddy
- Centre for Applied Climate Sciences, University of Southern Queensland, Toowoomba, Qld, Australia
| | - Alessandro Craparo
- International Center for Tropical Agriculture (CIAT), Hanoi, Vietnam
- CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Cali, Colombia
| | - Thong Nguyen-Huy
- Centre for Applied Climate Sciences, University of Southern Queensland, Toowoomba, Qld, Australia
- Vietnam National Space Center, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Shahbaz Mushtaq
- Centre for Applied Climate Sciences, University of Southern Queensland, Toowoomba, Qld, Australia
| | - Loc Cao
- Sustainable Management Services, ECOM Agroindustrial, Ho Chi Minh City, Vietnam
| | - Laurent Bossolasco
- Sustainable Management Services, ECOM Agroindustrial, Ho Chi Minh City, Vietnam
| |
Collapse
|
46
|
Maciel DA, Silva VA, Alves HMR, Volpato MML, de Barbosa JPRA, de Souza VCO, Santos MO, Silveira HRDO, Dantas MF, de Freitas AF, Carvalho GR, Oliveira dos Santos J. Leaf water potential of coffee estimated by landsat-8 images. PLoS One 2020; 15:e0230013. [PMID: 32187201 PMCID: PMC7080268 DOI: 10.1371/journal.pone.0230013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/19/2020] [Indexed: 11/18/2022] Open
Abstract
Traditionally, water conditions of coffee areas are monitored by measuring the leaf water potential (ΨW) throughout a pressure pump. However, there is a demand for the development of technologies that can estimate large areas or regions. In this context, the objective of this study was to estimate the ΨW by surface reflectance values and vegetation indices obtained from the Landsat-8/OLI sensor in Minas Gerais-Brazil Several algorithms using OLI bands and vegetation indexes were evaluated and from the correlation analysis, a quadratic algorithm that uses the Normalized Difference Vegetation Index (NDVI) performed better, with a correlation coefficient (R2) of 0.82. Leave-One-Out Cross-Validation (LOOCV) was performed to validate the models and the best results were for NDVI quadratic algorithm, presenting a Mean Absolute Percentage Error (MAPE) of 27.09% and an R2 of 0.85. Subsequently, the NDVI quadratic algorithm was applied to Landsat-8 images, aiming to spatialize the ΨW estimated in a representative area of regional coffee planting between September 2014 to July 2015. From the proposed algorithm, it was possible to estimate ΨW from Landsat-8/OLI imagery, contributing to drought monitoring in the coffee area leading to cost reduction to the producers.
Collapse
Affiliation(s)
- Daniel Andrade Maciel
- Pós-Graduação/Sensoriamento Remoto, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP, Brasil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Marcheafave GG, Pauli ED, Tormena CD, Ortiz MCV, de Almeida AG, Rakocevic M, Bruns RE, Scarminio IS. Factorial design fingerprint discrimination of Coffea arabica beans under elevated carbon dioxide and limited water conditions. Talanta 2020; 209:120591. [DOI: 10.1016/j.talanta.2019.120591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/28/2019] [Accepted: 11/23/2019] [Indexed: 10/25/2022]
|
48
|
Meng LS. Compound Synthesis or Growth and Development of Roots/Stomata Regulate Plant Drought Tolerance or Water Use Efficiency/Water Uptake Efficiency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3595-3604. [PMID: 29589939 DOI: 10.1021/acs.jafc.7b05990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Water is crucial to plant growth and development because it serves as a medium for all cellular functions. Thus, the improvement of plant drought tolerance or water use efficiency/water uptake efficiency is important in modern agriculture. In this review, we mainly focus on new genetic factors for ameliorating drought tolerance or water use efficiency/water uptake efficiency of plants and explore the involvement of these genetic factors in the regulation of improving plant drought tolerance or water use efficiency/water uptake efficiency, which is a result of altered stomata density and improving root systems (primary root length, hair root growth, and lateral root number) and enhanced production of osmotic protectants, which is caused by transcription factors, proteinases, and phosphatases and protein kinases. These results will help guide the synthesis of a model for predicting how the signals of genetic and environmental stress are integrated at a few genetic determinants to control the establishment of either water use efficiency or water uptake efficiency. Collectively, these insights into the molecular mechanism underpinning the control of plant drought tolerance or water use efficiency/water uptake efficiency may aid future breeding or design strategies to increase crop yield.
Collapse
Affiliation(s)
- Lai-Sheng Meng
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , People's Republic of China
| |
Collapse
|