1
|
Chen Q, Lei J, Li X, Zhang J, Liu D, Cui X, Ge F. Heterologous synthesis of ginsenoside F1 and its precursors in Nicotiana benthamiana. JOURNAL OF PLANT PHYSIOLOGY 2024; 299:154276. [PMID: 38801806 DOI: 10.1016/j.jplph.2024.154276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Ginsenoside F1 has high medicinal values, which is a kind of rare triterpene saponin isolated from Panax plants. The extremely low content of ginsenoside F1 in herbs has limited its research and application in medical field. In this work, we constructed a pathway in tobacco for the biosynthesis of ginsenoside F1 by metabolic engineering. Four enzyme genes (PnDDS, CYP716A47, CYP716S1 and UGT71A56) isolated from Panax notoginseng were introduced into tobacco. Thus, a biosynthetic pathway for ginsenoside F1 synthesis was artificially constructed in tobacco cells; moreover, the four exogenous genes could be expressed in the roots, stems and leaves of transgenic plants. Consequently, ginsenoside F1 and its precursors were successfully synthesized in the transgenic tobacco, compared with Panax plants, the content of ginsenoside F1 in transgenic tobacco was doubled. In addition, accumulation of ginsenoside F1 and its precursors in transgenic tobacco shows organ specificity. Based on these results, a new approach was established to produce rare ginsenoside F1; meanwhile, such strategy could also be employed in plant hosts for the heterologous synthesis of other important or rare natural products.
Collapse
Affiliation(s)
- Qin Chen
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jun Lei
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaolei Li
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Analytical & Testing Research Center, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jinyu Zhang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Diqiu Liu
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China.
| | - Feng Ge
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China.
| |
Collapse
|
2
|
Zhang W, Iqbal J, Hou Z, Fan Y, Dong J, Liu C, Yang T, Che D, Zhang J, Xin D. Genome-Wide Identification of the CYP716 Gene Family in Platycodon grandiflorus (Jacq.) A. DC. and Its Role in the Regulation of Triterpenoid Saponin Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1946. [PMID: 39065473 PMCID: PMC11281222 DOI: 10.3390/plants13141946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
The main type of saponins occurring in the root of Platycodon grandiflorus (Jacq.) A. DC. are oleanolic acid glycosides. The CYP716 gene family plays a major role in catalyzing the conversion of β-amyrin into oleanolic acid. However, studies on the CYP716 genes in P. grandiflorus are limited, and its evolutionary history remains poorly understood. In this study, 22 PgCYP716 genes were identified, distributed among seven subfamilies. Cis-acting elements of the PgCYP716 promoters were mainly involved in plant hormone regulation and responses to abiotic stresses. PgCYP716A264, PgCYP716A391, PgCYP716A291, and PgCYP716BWv3 genes were upregulated in the root and during saponin accumulation, as shown by RNA-seq analysis, suggesting that these four genes play an important role in saponin synthesis. The results of subcellular localization indicated that these four genes encoded membrane proteins. Furthermore, the catalytic activity of these four genes was proved in the yeast, which catalyzed the conversion of β-amyrin into oleanolic acid. We found that the content of β-amyrin, platycodin D, platycoside E, platycodin D3, and total saponins increased significantly when either of the four genes was over expressed in the transgenic hair root. In addition, the expression of PgSS, PgGPPS2, PgHMGS, and PgSE was also upregulated while these four genes were overexpressed. These data support that these four PgCYP716 enzymes oxidize β-amyrin to produce oleanolic acid, ultimately promoting saponin accumulation by activating the expression of upstream pathway genes. Our results enhanced the understanding of the functional variation among the PgCYP716 gene family involved in triterpenoid biosynthesis and provided a theoretical foundation for improving saponin content and enriching the saponin biosynthetic pathway in P. grandiflorus.
Collapse
Affiliation(s)
- Wuhua Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Javed Iqbal
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Zhihui Hou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Yingdong Fan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Jie Dong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Chengzhi Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Tao Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Daidi Che
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Jinzhu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Dawei Xin
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Zhou M, Fan J, Gao Y, Zheng C, Xu Y, Jia L, An X, Chen Z. Identification and analysis of UGT genes associated with triterpenoid saponin in soapberry (Sapindus mukorossi Gaertn.). BMC PLANT BIOLOGY 2024; 24:588. [PMID: 38902602 PMCID: PMC11191301 DOI: 10.1186/s12870-024-05281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Soapberry (Sapindus mukorossi) is an economically important multifunctional tree species. Triterpenoid saponins have many functions in soapberry. However, the types of uridine diphosphate (UDP) glucosyltransferases (UGTs) involved in the synthesis of triterpenoid saponins in soapberry have not been clarified. RESULTS In this study, 42 SmUGTs were identified in soapberry, which were unevenly distributed on 12 chromosomes and had sequence lengths of 450 bp to 1638 bp, with an average of 1388 bp. The number of amino acids in SmUGTs was 149 to 545, with an average of 462. Most SmUGTs were acidic and hydrophilic unstable proteins, and their secondary structures were mainly α-helices and random coils. All had conserved UDPGT and PSPG-box domains. Phylogenetic analysis divided them into four subclasses, which glycosylated different carbon atoms. Prediction of cis-acting elements suggested roles of SmUGTs in plant development and responses to environmental stresses. The expression patterns of SmUGTs differed according to the developmental stage of fruits, as determined by transcriptomics and RT-qPCR. Co-expression network analysis of SmUGTs and related genes/transcription factors in the triterpenoid saponin synthesis pathway was also performed. The results indicated potential roles for many transcription factors, such as SmERFs, SmGATAs and SmMYBs. A correlation analysis showed that 42 SmUGTs were crucial in saponin synthesis in soapberry. CONCLUSIONS Our findings suggest optimal targets for manipulating glycosylation in soapberry triterpenoid saponin biosynthesis; they also provide a theoretical foundation for further evaluation of the functions of SmUGTs and analyses of their biosynthetic mechanisms.
Collapse
Affiliation(s)
- Mingzhu Zhou
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, Ministry of Education of Engineering Research Centre for Forest and Grassland Carbon Sequestration, College of Forestry, Beijing Forestry University, P. O. Box 407, No.35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Jialin Fan
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, Ministry of Education of Engineering Research Centre for Forest and Grassland Carbon Sequestration, College of Forestry, Beijing Forestry University, P. O. Box 407, No.35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Yuhan Gao
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, Ministry of Education of Engineering Research Centre for Forest and Grassland Carbon Sequestration, College of Forestry, Beijing Forestry University, P. O. Box 407, No.35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Chunyuan Zheng
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, Ministry of Education of Engineering Research Centre for Forest and Grassland Carbon Sequestration, College of Forestry, Beijing Forestry University, P. O. Box 407, No.35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Yuanyuan Xu
- College of Forestry, Guangxi University, Nanning, 530004, China
| | - Liming Jia
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, Ministry of Education of Engineering Research Centre for Forest and Grassland Carbon Sequestration, College of Forestry, Beijing Forestry University, P. O. Box 407, No.35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Xinmin An
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Zhong Chen
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, Ministry of Education of Engineering Research Centre for Forest and Grassland Carbon Sequestration, College of Forestry, Beijing Forestry University, P. O. Box 407, No.35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
4
|
Zhang R, Li X, Qu J, Zhang D, Cao L, Qin X, Li Z. Intercropping with maize and sorghum-induced saikosaponin accumulation in Bupleurum chinense DC. by liquid chromatography-mass spectrometry-based metabolomics. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5035. [PMID: 38726730 DOI: 10.1002/jms.5035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 08/24/2024]
Abstract
Bupleuri Radix is an important medicinal plant, which has been used in China and other Asian countries for thousands of years. Cultivated Bupleurum chinense DC. (B. chinense) is the main commodity of Bupleuri Radix. The benefits of intercropping with various crops for B. chinense have been recognized; however, the influence of intercropping on the chemical composition of B. chinense is still unclear yet. In this study, intercropping with sorghum and maize exhibited little effect on the root length, root diameter, and single root mass of B. chinense. Only the intercropping with sorghum increased the root length of B. chinense slightly compared to the monocropping. In addition, 200 compounds were identified by UHPLC-Q-TOF-MS, and metabolomic combined with the Venn diagram and heatmap analysis showed apparent separation between the intercropped and monocropped B. chinense samples. Intercropping with sorghum and maize could both increase the saikosaponins, fatty acyls, and organic acids in B. chinense while decreasing the phospholipids. The influence of intercropping on the saikosaponin biosynthesis was probably related with the light intensity and hormone levels in B. chinense. Moreover, we found intercropping increased the anti-inflammatory activity of B. chinense. This study provides a scientific reference for the beneficial effect of intercropping mode of B. chinense.
Collapse
Affiliation(s)
- Rui Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Xiangchuan Li
- Shanxi Institute of Medicine and Life Sciences, Taiyuan, China
| | - Jixu Qu
- Shanxi Institute of Medicine and Life Sciences, Taiyuan, China
| | - Doudou Zhang
- Shanxi Institute of Medicine and Life Sciences, Taiyuan, China
| | - Linxu Cao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| |
Collapse
|
5
|
Cui WJ, Li RH, Chen XL, Xia ZM, Liu SF, Li M, Chen L, Tian Y, Li B, Zhang GJ, Liu SC, Wang L. A review on triterpenoid and triterpenoid saponins from Xanthoceras sorbifolium Bung. Carbohydr Res 2024; 539:109120. [PMID: 38669825 DOI: 10.1016/j.carres.2024.109120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Xanthoceras sorbifolium Bunge, also known as Tu-Mu-Gua and Wen-Dan-Ge-Zi, has several applications. Clinical data and experimental studies have shown anti-tumor, anti-inflammatory, anti-bacterial, and anti-oxidant properties of Xanthoceras sorbifolium Bunge that inhibits prostate hyperplasia, lowers blood pressure and lipid level, and treats enuresis and urinary incontinence. It also has neuroprotective effects and can treat Alzheimer's disease and Parkinson's syndrome. The research on the chemical composition and pharmacological effects of Xanthoceras sorbifolium Bunge has been increasing. Triterpenoid and triterpenoid saponins are the main constituents in Xanthoceras sorbifolium Bunge and exhibit biological activities. In this review, we summarized the research progress on triterpenoids and their glycosides in Xanthoceras sorbifolia, including the chemical constituents, pharmacological activities, and biogenic pathways of triterpenoid mother nucleus. The results would provide a reference for further research and development of triterpenoids and their glycosides in Xanthoceras sorbifolia.
Collapse
Affiliation(s)
- Wen-Jin Cui
- Beijing University of Technology, BeiJing, 100124, China; Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China
| | - Rui-Hong Li
- Beijing University of Technology, BeiJing, 100124, China; Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China
| | - Xiao-Lan Chen
- Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China
| | - Zi-Ming Xia
- Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China
| | - Si-Fan Liu
- Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China
| | - Min Li
- Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China
| | - Li Chen
- Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China
| | - Ying Tian
- Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China
| | - Bin Li
- Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China
| | - Guang-Jie Zhang
- Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China.
| | - Shu-Chen Liu
- Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China.
| | - Lin Wang
- Beijing University of Technology, BeiJing, 100124, China; Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China.
| |
Collapse
|
6
|
Wang S, Meng D, Feng M, Li C, Wang Y. Efficient Plant Triterpenoids Synthesis in Saccharomyces cerevisiae: from Mechanisms to Engineering Strategies. ACS Synth Biol 2024; 13:1059-1076. [PMID: 38546129 DOI: 10.1021/acssynbio.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Triterpenoids possess a range of biological activities and are extensively utilized in the pharmaceutical, food, cosmetic, and chemical industries. Traditionally, they are acquired through chemical synthesis and plant extraction. However, these methods have drawbacks, including high energy consumption, environmental pollution, and being time-consuming. Recently, the de novo synthesis of triterpenoids in microbial cell factories has been achieved. This represents a promising and environmentally friendly alternative to traditional supply methods. Saccharomyces cerevisiae, known for its robustness, safety, and ample precursor supply, stands out as an ideal candidate for triterpenoid biosynthesis. However, challenges persist in industrial production and economic feasibility of triterpenoid biosynthesis. Consequently, metabolic engineering approaches have been applied to improve the triterpenoid yield, leading to substantial progress. This review explores triterpenoids biosynthesis mechanisms in S. cerevisiae and strategies for efficient production. Finally, the review also discusses current challenges and proposes potential solutions, offering insights for future engineering.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dong Meng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Meilin Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
7
|
Wang S, Zhao X, Li C, Dong J, Ma J, Long Y, Xing Z. DNA methylation regulates the secondary metabolism of saponins to improve the adaptability of Eleutherococcus senticosus during drought stress. BMC Genomics 2024; 25:330. [PMID: 38565995 PMCID: PMC10986080 DOI: 10.1186/s12864-024-10237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Plant growth and development can be significantly impacted by drought stress. Plants will adjust the synthesis and accumulation of secondary metabolites to improve survival in times of water constraint. Simultaneously, drought stress can lead to modifications in the DNA methylation status of plants, and these modifications can directly impact gene expression and product synthesis by changing the DNA methylation status of functional genes involved in secondary metabolite synthesis. However, further research is needed to fully understand the extent to which DNA methylation modifies the content of secondary metabolites to mediate plants' responses to drought stress, as well as the underlying mechanisms involved. Our study found that in Eleutherococcus senticosus (E. senticosus), moderate water deprivation significantly decreased DNA methylation levels throughout the genome and at the promoters of EsFPS, EsSS, and EsSE. Transcription factors like EsMYB-r1, previously inhibited by DNA methylation, can re-bind to the EsFPS promotor region following DNA demethylation. This process promotes gene expression and, ultimately, saponin synthesis and accumulation. The increased saponin levels in E. senticosus acted as antioxidants, enhancing the plant's adaptability to drought stress.
Collapse
Affiliation(s)
- Shuo Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - XueLei Zhao
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Chang Li
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Jing Dong
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - JiaCheng Ma
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - YueHong Long
- College of Life Sciences, North China University of Science and Technology, Tangshan, China.
| | - ZhaoBin Xing
- College of Life Sciences, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
8
|
Li T, Liu X, Xiang H, Zhu H, Lu X, Feng B. Two-Phase Fermentation Systems for Microbial Production of Plant-Derived Terpenes. Molecules 2024; 29:1127. [PMID: 38474639 PMCID: PMC10934027 DOI: 10.3390/molecules29051127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Microbial cell factories, renowned for their economic and environmental benefits, have emerged as a key trend in academic and industrial areas, particularly in the fermentation of natural compounds. Among these, plant-derived terpenes stand out as a significant class of bioactive natural products. The large-scale production of such terpenes, exemplified by artemisinic acid-a crucial precursor to artemisinin-is now feasible through microbial cell factories. In the fermentation of terpenes, two-phase fermentation technology has been widely applied due to its unique advantages. It facilitates in situ product extraction or adsorption, effectively mitigating the detrimental impact of product accumulation on microbial cells, thereby significantly bolstering the efficiency of microbial production of plant-derived terpenes. This paper reviews the latest developments in two-phase fermentation system applications, focusing on microbial fermentation of plant-derived terpenes. It also discusses the mechanisms influencing microbial biosynthesis of terpenes. Moreover, we introduce some new two-phase fermentation techniques, currently unexplored in terpene fermentation, with the aim of providing more thoughts and explorations on the future applications of two-phase fermentation technology. Lastly, we discuss several challenges in the industrial application of two-phase fermentation systems, especially in downstream processing.
Collapse
Affiliation(s)
- Tuo Li
- Correspondence: (T.L.); (B.F.)
| | | | | | | | | | - Baomin Feng
- College of Life and Health, Dalian University, Dalian 116622, China; (X.L.); (H.X.); (H.Z.); (X.L.)
| |
Collapse
|
9
|
Guo H, Chen T, Zhu H, Wang H, Huo YX. Engineering amino acid residues of pentacyclic triterpene synthases for improving the activity. Appl Microbiol Biotechnol 2024; 108:195. [PMID: 38324205 PMCID: PMC10850208 DOI: 10.1007/s00253-024-13030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/10/2023] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
Pentacyclic triterpenoids exhibit a wide range of biological activities which have wide applications in the food, cosmetics, and pharmaceutical industries. High-performance chassis strains have been developed for the production of various pentacyclic triterpenoids, e.g., lupane-type and oleanane-type triterpenoids. The production of common pentacyclic triterpenes and their derivatives is limited by the poor activity of typical pentacyclic triterpene synthases (PTSs). However, a general strategy applicable to typical PTSs is still lacking. As typical pentacyclic triterpenes are derived from the baccharenyl cation, engineering the non-active-site residues in the MXXXXR motif might be beneficial for the catalytic efficiencies of typical PTSs by the stabilization of the baccharenyl cation. Here, we develop a general strategy for improving the activity of typical PTSs. As a proof of concept, the activity of three PTSs such as lupeol synthase, β-amyrin synthase, and α-amyrin synthases was significantly increased up to 7.3-fold by site-directed saturation mutagenesis. This strategy could be applied to improve the activity of various typical PTSs. KEY POINTS: • The strategy could be applied to typical PTSs for improving the activity. • The catalytic activity of typical PTSs was significantly increased.
Collapse
Affiliation(s)
- Hao Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China
| | - Tongtong Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China
| | - Hanrong Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China
| | - Huiyan Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China.
- Beijing Institute of Technology (Tangshan), Translational Research Center, Hebei, China.
| |
Collapse
|
10
|
Yang J, Liu Y, Zhong D, Xu L, Gao H, Keasling JD, Luo X, Chou HH. Combinatorial optimization and spatial remodeling of CYPs to control product profile. Metab Eng 2023; 80:119-129. [PMID: 37703999 DOI: 10.1016/j.ymben.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Activating inert substrates is a challenge in nature and synthetic chemistry, but essential for creating functionally active molecules. In this work, we used a combinatorial optimization approach to assemble cytochrome P450 monooxygenases (CYPs) and reductases (CPRs) to achieve a target product profile. By creating 110 CYP-CPR pairs and iteratively screening different pairing libraries, we demonstrated a framework for establishing a CYP network that catalyzes six oxidation reactions at three different positions of a chemical scaffold. Target product titer was improved by remodeling endoplasmic reticulum (ER) size and spatially controlling the CYPs' configuration on the ER. Out of 47 potential products that could be synthesized, 86% of the products synthesized by the optimized network was our target compound quillaic acid (QA), the aglycone backbone of many pharmaceutically important saponins, and fermentation achieved QA titer 2.23 g/L.
Collapse
Affiliation(s)
- Jiazeng Yang
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Yuguang Liu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Dacai Zhong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Linlin Xu
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Haixin Gao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Jay D Keasling
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China; Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, CA, 94720, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Xiaozhou Luo
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Howard H Chou
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China.
| |
Collapse
|
11
|
Huang C, Chen Y, Cheng S, Li M, Wang L, Cheng M, Li F, Cao Y, Song H. Enhanced acetate utilization for value-added chemicals production in Yarrowia lipolytica by integration of metabolic engineering and microbial electrosynthesis. Biotechnol Bioeng 2023; 120:3013-3024. [PMID: 37306471 DOI: 10.1002/bit.28465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
The limited supply of reducing power restricts the efficient utilization of acetate in Yarrowia lipolytica. Here, microbial electrosynthesis (MES) system, enabling direct conversion of inward electrons to NAD(P)H, was used to improve the production of fatty alcohols from acetate based on pathway engineering. First, the conversion efficiency of acetate to acetyl-CoA was reinforced by heterogenous expression of ackA-pta genes. Second, a small amount of glucose was used as cosubstrate to activate the pentose phosphate pathway and promote intracellular reducing cofactors synthesis. Third, through the employment of MES system, the final fatty alcohols production of the engineered strain YLFL-11 reached 83.8 mg/g dry cell weight (DCW), which was 6.17-fold higher than the initial production of YLFL-2 in shake flask. Furthermore, these strategies were also applied for the elevation of lupeol and betulinic acid synthesis from acetate in Y. lipolytica, demonstrating that our work provides a practical solution for cofactor supply and the assimilation of inferior carbon sources.
Collapse
Affiliation(s)
- Congcong Huang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yaru Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Shuai Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Mengxu Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Luxin Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Meijie Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
12
|
Li Y, Wang J, Li L, Song W, Li M, Hua X, Wang Y, Yuan J, Xue Z. Natural products of pentacyclic triterpenoids: from discovery to heterologous biosynthesis. Nat Prod Rep 2023; 40:1303-1353. [PMID: 36454108 DOI: 10.1039/d2np00063f] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Covering: up to 2022Pentacyclic triterpenoids are important natural bioactive substances that are widely present in plants and fungi. They have significant medicinal efficacy, play an important role in reducing blood glucose and protecting the liver, and have anti-inflammatory, anti-oxidation, anti-fatigue, anti-viral, and anti-cancer activities. Pentacyclic triterpenoids are derived from the isoprenoid biosynthetic pathway, which generates common precursors of triterpenes and steroids, followed by cyclization with oxidosqualene cyclases (OSCs) and decoration via cytochrome P450 monooxygenases (CYP450s) and glycosyltransferases (GTs). Many biosynthetic pathways of triterpenoid saponins have been elucidated by studying their metabolic regulation network through the use of multiomics and identifying their functional genes. Unfortunately, natural resources of pentacyclic triterpenoids are limited due to their low content in plant tissues and the long growth cycle of plants. Based on the understanding of their biosynthetic pathway and transcriptional regulation, plant bioreactors and microbial cell factories are emerging as alternative means for the synthesis of desired triterpenoid saponins. The rapid development of synthetic biology, metabolic engineering, and fermentation technology has broadened channels for the accumulation of pentacyclic triterpenoid saponins. In this review, we summarize the classification, distribution, structural characteristics, and bioactivity of pentacyclic triterpenoids. We further discuss the biosynthetic pathways of pentacyclic triterpenoids and involved transcriptional regulation. Moreover, the recent progress and characteristics of heterologous biosynthesis in plants and microbial cell factories are discussed comparatively. Finally, we propose potential strategies to improve the accumulation of triterpenoid saponins, thereby providing a guide for their future biomanufacturing.
Collapse
Affiliation(s)
- Yanlin Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Linyong Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Wenhui Song
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Min Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Xin Hua
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Yu Wang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, PR China.
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
13
|
Wang R, Liu X, Lv B, Sun W, Li C. Designing Intracellular Compartments for Efficient Engineered Microbial Cell Factories. ACS Synth Biol 2023; 12:1378-1395. [PMID: 37083286 DOI: 10.1021/acssynbio.2c00671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
With the rapid development of synthetic biology, various kinds of microbial cell factories (MCFs) have been successfully constructed to produce high-value-added compounds. However, the complexity of metabolic regulation and pathway crosstalk always cause issues such as intermediate metabolite accumulation, byproduct generation, and metabolic burden in MCFs, resulting in low efficiencies and low yields of industrial biomanufacturing. Such issues could be solved by spatially rearranging the pathways using intracellular compartments. In this review, design strategies are summarized and discussed based on the types and characteristics of natural and artificial subcellular compartments. This review systematically presents information for the construction of efficient MCFs with intracellular compartments in terms of four aspects of design strategy goals: (1) improving local reactant concentration; (2) intercepting and isolating competing pathways; (3) providing specific reaction substances and environments; and (4) storing and accumulating products.
Collapse
Affiliation(s)
- Ruwen Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xin Liu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Wentao Sun
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Center for Synthetic and System Biology, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
14
|
Pan F, Zhao X, Liu F, Luo Z, Chen S, Liu Z, Zhao Z, Liu M, Wang L. Triterpenoids in Jujube: A Review of Composition, Content Diversity, Pharmacological Effects, Synthetic Pathway, and Variation during Domestication. PLANTS (BASEL, SWITZERLAND) 2023; 12:1501. [PMID: 37050126 PMCID: PMC10096698 DOI: 10.3390/plants12071501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Chinese jujube (Ziziphus jujuba Mill.) and its wild ancestor, sour jujube (Z. acidojujuba C.Y. Cheng & M.J. Liu), is a Ziziphus genus in the Rhamnaceae family. ZJ and ZA are rich in a variety of active ingredients, with triterpenoids being a unique active ingredient, which are present in the fruit, leaves, branches, and roots. More than 120 triterpenoids have been identified in ZJ and ZA, and have various biological activities. For example, betulinic and ursolic acids have anticancer, antioxidant, antibacterial and antiviral activities. ceanothic, alphitolic, and zizyberanalic acids possess anti-inflammatory activities. The MVA pathway is a synthetic pathway for triterpenoids in ZJ and ZA, and 23 genes of the MVA pathway are known to regulate triterpene synthesis in ZJ and ZA. In order to better understand the basic situation of triterpenoids in ZJ and ZA, this paper reviews the types, content dynamic changes, activities, pharmacokinetics, triterpenoid synthesis pathways, and the effects of domestication on triterpenoids in ZJ and ZA, and provides some ideas for the future research of triterpenoids in ZJ and ZA. In addition, there are many types of ZJ and ZA triterpenoids, and most of the studies on their activities are on lupane- and ursane-type triterpenes, while the activities of the ceanothane-type and saponin are less studied and need additional research.
Collapse
Affiliation(s)
- Fuxu Pan
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xuan Zhao
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071000, China
| | - Fawei Liu
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Zhi Luo
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Shuangjiang Chen
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Zhiguo Liu
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071000, China
| | - Zhihui Zhao
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071000, China
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071000, China
| | - Lili Wang
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
15
|
Pathological changes of the spleen in mice infected with influenza against the background of the use of saponin tauroside Sx1. ACTA BIOMEDICA SCIENTIFICA 2023. [DOI: 10.29413/abs.2023-8.1.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Background. It is well known that viral infections are able to cause an imbalance of the interferon system and inhibition of cellular and phagocytic reactions of the body. One of the possible solutions of the flu treatment problem may be the application of immunomodulators of native plant origin since the influenza virus possesses a suppressive effect on cellular immunity and the interferon system.The aim. To evaluate the effect of saponin tauroside Sx1 obtained from Crimean ivy leaves on histological changes in the spleen of mice infected with influenza A/WSN/1/33(H1N1) virus.Material and methods. We used 78 male BALB/c mice weighing 16–18 g which were divided into the groups: control (K; n = 12); healthy animals treated with saponin (KS; n = 22); animals infected with influenza virus A/WSN/1/33(H1N1) (V; n = 22); infected animals treated with saponin tauroside Sx1 twice a day for 3 days (SV; n = 22). Histological studies of the spleen were performed on the 4th (subgroups V, SV, KS) and 14th day (2V, 2SV, 2KS).Results. The spleen tissue of the KS subgroup demonstrated hyperplasia of the white pulp in the form of lymphoid nodules expansion. On the 4th day in the KS subgroup a statistically significant increase in the total area of the lymphoid nodules by 3.9 times compared to the K subgroup was observed. In subgroup V, there was a sharp decrease in the area of white pulp and in 2V the lymphoid nodules zones were practically indistinguishable. Applied correction in the SV and 2SV subgroups significantly ceased the damaging effect of the virus: the lymphoid nodules area increased by 2.7 times in the 2SV subgroup compared to 2V.Conclusion. Infection with the H1N1 influenza virus leads to compensatory activation of the immune response, however, on the 14th day, a pronounced depletion of the splenic white pulp occurred. The introduction of saponin tauroside Sx1 enhanced the functional activity of the spleen due to an increase of the white pulp area.
Collapse
|
16
|
Xu Y, Liu J, Ji X, Zhao G, Zhao T, Wang X, Wang L, Gao S, Hao Y, Gao Y, Gao Y, Weng X, Jia L, Chen Z. Integrative analysis of microRNAs and mRNAs reveals the regulatory networks of triterpenoid saponin metabolism in Soapberry ( Sapindus mukorossi Gaertn.). FRONTIERS IN PLANT SCIENCE 2023; 13:1037784. [PMID: 36699854 PMCID: PMC9869041 DOI: 10.3389/fpls.2022.1037784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/19/2022] [Indexed: 06/13/2023]
Abstract
Triterpenoid saponin are important secondary metabolites and bioactive constituents of soapberry (Sapindus mukorossi Gaertn.) and are widely used in medicine and toiletry products. However, little is known about the roles of miRNAs in the regulation of triterpenoid saponin biosynthesis in soapberry. In this study, a total of 3036 miRNAs were identified, of which 1372 miRNAs were differentially expressed at different stages of pericarp development. Important KEGG pathways, such as terpenoid backbone biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, and basal transcription factors were highlighted, as well the roles of some key miRNAs, such as ath-miR5021, han-miR3630-3p, and ppe-miR858, which may play important roles in regulating triterpenoid saponin biosynthesis. In addition, 58 miRNAs might participate in saponin biosynthesis pathways by predicting the targets of those miRNAs to 53 saponin biosynthesis structural genes. And 75 miRNAs were identified to potentially play vital role in saponin accumulation by targeting transcript factor genes, bHLH, bZIP, ERF, MYB, and WRKY, respectively, which are candidate regulatory genes in the pathway of saponin biosynthesis. The results of weighted gene coexpression network analysis (WGCNA) suggested that two saponin-specific miRNA modules and 10 hub miRNAs may participate in saponin biosynthesis. Furthermore, multiple miRNA-mRNA regulatory networks potentially involved in saponin biosynthesis were generated, e.g., ath-miR5021-SmIDI2/SmGPS5/SmbAS1/SmCYP71D-3/SmUGT74G-2, han-miR3630-3p-SmCYP71A-14/SmbHLH54/SmMYB135/SmWRKY32, and ppe-miR858-SmMYB5/SmMYB32. qRT-PCR analysis validated the expression patterns of nine miRNAs and 12 corresponding target genes. This study represents the first comprehensive analysis of miRNAs in soapberry and lays the foundation for further understanding of miRNA-based regulation in triterpenoid saponin biosynthesis.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Jiming Liu
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Xiangqin Ji
- Bioinformatics Analysis Department, Hangzhou KaiTai Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Guochun Zhao
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Tianyun Zhao
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Xin Wang
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Lixian Wang
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Shilun Gao
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Yingying Hao
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Yuhan Gao
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Yuan Gao
- Planning and Design Institute of Forest Products Industry, National Forestry and Grassland Administration, Beijing, China
| | - Xuehuang Weng
- Research and Development Department, Yuanhua Forestry Biological Technology Co., Ltd., Sanming, Fujian, China
| | - Liming Jia
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Zhong Chen
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
17
|
Zhao Y, Ma Y, Li J, Liu B, Liu X, Zhang J, Zhang M, Wang C, Zhang L, Lv W, Mu G. Transcriptomics-metabolomics joint analysis: New highlight into the triterpenoid saponin biosynthesis in quinoa ( Chenopodium quinoa Willd.). FRONTIERS IN PLANT SCIENCE 2022; 13:964558. [PMID: 36340365 PMCID: PMC9627512 DOI: 10.3389/fpls.2022.964558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Quinoa (Chenopodium quinoa Willd.) contains various physiologically active substances, including vitamins, polyphenols, flavonoids, phytosterols, and saponins. Research showed that saponins were the protective substances in the outer layer of quinoa seeds to defend against microbes, herbivores, and insects. Because the aglycones of quinoa saponins are triterpenoids, they are called triterpenoid saponins (TSs). In addition, the presence of TS imparted bitterness in quinoa and resulted in anticancer and anti-inflammatory effects. In this study, the seeds of low-saponin quinoa, NT376-2 (N), and high-saponin quinoa, B-12071(B), at 30 and 60 days after flowering (DAF) were used to measure the TS content and evaluated for their transcriptomic and metabolomic profiles. The amounts of TS were found to significantly differ between all possible comparisons: N and B at 30 DAF (N1_vs_B1), N and B at 60 DAF (N2_vs_B2), N at 30 DAF and 60 DAF (N1_vs_N2), and B at 30 DAF and 60 DAF (B1_vs_B2). RNA sequencing (RNA-seq) was used to screen differentially expressed genes (DEGs) and revealed 14,703 upregulated DEGs and 26,267 downregulated DEGs in the four comparison groups. The 311 overlapping DEGs found in the four comparisons were used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to screen for DEGs related to TS biosynthesis in quinoa. Metabolomics analysis identified acetyl-CoA, 1-hydroxy-2-methyl-2-butenyl-4-diphosphate, farnesal, and (S)-2,3-epoxysqualene as the key differentially accumulated metabolites (DAMs). Transcriptomics-metabolomics joint analysis showed that triterpenoid biosynthesis and terpenoid backbone biosynthesis were the enriched pathways of TS biosynthesis; farnesal were the key DAMs shared in the four comparison groups and associated with 10 key candidate DEGs related to TS biosynthesis in quinoa. These results provided important references for in-depth research on the metabolic mechanism of TS in quinoa.
Collapse
Affiliation(s)
- Yulu Zhao
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Hebei Provincial Crop Germplasm Resources, Hebei Agricultural University, Baoding, China
| | - Yucong Ma
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Hebei Provincial Crop Germplasm Resources, Hebei Agricultural University, Baoding, China
| | - Jiawei Li
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Hebei Provincial Crop Germplasm Resources, Hebei Agricultural University, Baoding, China
| | - Bin Liu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Hebei Provincial Crop Germplasm Resources, Hebei Agricultural University, Baoding, China
| | - Xiaoqing Liu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Hebei Provincial Crop Germplasm Resources, Hebei Agricultural University, Baoding, China
| | - Jianheng Zhang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Hebei Provincial Crop Germplasm Resources, Hebei Agricultural University, Baoding, China
| | - Min Zhang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Hebei Provincial Crop Germplasm Resources, Hebei Agricultural University, Baoding, China
| | - Chunmei Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Hebei Provincial Crop Germplasm Resources, Hebei Agricultural University, Baoding, China
| | - Liping Zhang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Hebei Provincial Crop Germplasm Resources, Hebei Agricultural University, Baoding, China
| | - Wei Lv
- National Semi-arid Agricultural Engineering Technology Research Center, Shijiazhuang, China
| | - Guojun Mu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Hebei Provincial Crop Germplasm Resources, Hebei Agricultural University, Baoding, China
| |
Collapse
|
18
|
Qin J, Yue X, Fang S, Qian M, Zhou S, Shang X, Yang W. Nitrogen addition modifies the relative gene expression level and accumulation of carbon-based bioactive substances in Cyclocarya paliurus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 188:70-80. [PMID: 35988389 DOI: 10.1016/j.plaphy.2022.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
In China, lots of Cyclocarya paliurus plantations have been established for tea and functional food production on nitrogen (N)-limited land. The optimum N levels require for biosynthesis and accumulation of carbon-based bioactive substances vary among plant species. This study integrated field trial with hydroponic culture to assess impact of nitrogen addition on accumulation and relative gene expression level of carbon-based secondary metabolites in C. paliurus. N addition significantly influenced not only contents of polyphenols, flavonoids and triterpenoids and relative gene expression levels of their biosynthetic pathway in C. paliurus leaves but also leaf biomass production and the bioactive substance accumulations. An intermediate N addition induced the highest contents of polyphenols, flavonoids and triterpenoids in leaves, but the optimized accumulation of these bioactive substances in the leaves was the trade-off between their contents and leaf biomass production. Correlation analysis showed that related gene expression levels were closely correlated with contents of their leaf corresponding secondary metabolites. Compared with ratios of carbon/N (C/N) and carbon/phosphorus (C/P) in the soil, ratios of C/N and C/P in the leaves were more strongly related to the contents and accumulations of polyphenols, flavonoids and triterpenoids. To obtain higher yields of targeted phytochemicals, the threshold ratios of C/N and C/P in the leaves are recommended for N and P fertilization at similar sites. Overall, our findings would provide the theoretical basis and technical support for manipulating N fertilization in C. paliurus plantations to obtain higher accumulations of targeted bioactive substances.
Collapse
Affiliation(s)
- Jian Qin
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Xiliang Yue
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Shengzuo Fang
- College of Forestry, Nanjing Forestry University, Nanjing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
| | - Mengyu Qian
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Shuntao Zhou
- Anhui Green and Selenium Technology Development Company in Agriculture and Ecology, Shitai, China
| | - Xulan Shang
- College of Forestry, Nanjing Forestry University, Nanjing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wanxia Yang
- College of Forestry, Nanjing Forestry University, Nanjing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
19
|
Guo H, Wang H, Chen T, Guo L, Blank LM, Ebert BE, Huo YX. Engineering Critical Amino Acid Residues of Lanosterol Synthase to Improve the Production of Triterpenoids in Saccharomyces cerevisiae. ACS Synth Biol 2022; 11:2685-2696. [PMID: 35921601 DOI: 10.1021/acssynbio.2c00098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Triterpenoids are a subgroup of terpenoids and have wide applications in the food, cosmetics, and pharmaceutical industries. The heterologous production of various triterpenoids in Saccharomyces cerevisiae, as well as other microbes, has been successfully implemented as these production hosts not only produce the precursor of triterpenoids 2,3-oxidosqualene by the mevalonate pathway but also allow simple expression of plant membrane-anchored enzymes. Nevertheless, 2,3-oxidosqualene is natively converted to lanosterol catalyzed by the endogenous lanosterol synthase (Erg7p), causing low production of recombinant triterpenoids. While simple deletion of ERG7 was not effective, in this study, the critical amino acid residues of Erg7p were engineered to lower this critical enzyme activity. The engineered S. cerevisiae indeed accumulated 2,3-oxidosqualene up to 180 mg/L. Engineering triterpenoid synthesis into the ERG7-modified strain resulted in 7.3- and 3-fold increases in the titers of dammarane-type and lupane-type triterpenoids, respectively. This study presents an efficient inducer-free strategy for lowering Erg7p activity, thereby providing 2,3-oxidosqualene for the enhanced production of various triterpenoids.
Collapse
Affiliation(s)
- Hao Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| | - Huiyang Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| | - Tongtong Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| | - Liwei Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| | - Lars M Blank
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University Worringer Weg 1, 52074 Aachen, Germany
| | - Birgitta E Ebert
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Cnr College Rd & Cooper Rd, St Luci a, QLD 4072, Australia
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| |
Collapse
|
20
|
Xu Y, Zhao G, Ji X, Liu J, Zhao T, Gao Y, Gao S, Hao Y, Gao Y, Wang L, Weng X, Chen Z, Jia L. Metabolome and Transcriptome Analysis Reveals the Transcriptional Regulatory Mechanism of Triterpenoid Saponin Biosynthesis in Soapberry ( Sapindus mukorossi Gaertn.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7095-7109. [PMID: 35638867 DOI: 10.1021/acs.jafc.2c01672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soapberry (Sapindus mukorossi Gaertn.) pericarps are rich in valuable bioactive triterpenoid saponins. However, the saponin content dynamics and the molecular regulatory network of saponin biosynthesis in soapberry pericarps remain largely unclear. Here, we performed combined metabolite profiling and transcriptome analysis to identify saponin accumulation kinetic patterns, investigate gene networks, and characterize key candidate genes and transcription factors (TFs) involved in saponin biosynthesis in soapberry pericarps. A total of 54 saponins were tentatively identified, including 25 that were differentially accumulated. Furthermore, 49 genes putatively involved in sapogenin backbone biosynthesis and some candidate genes assumed to be responsible for the backbone modification, including 41 cytochrome P450s and 45 glycosyltransferases, were identified. Saponin-specific clusters/modules were identified by Mfuzz clustering and weighted gene coexpression network analysis, and one TF-gene regulatory network underlying saponin biosynthesis was proposed. The results of yeast one-hybrid assay and electrophoretic mobility shift assay suggested that SmbHLH2, SmTCP4, and SmWRKY27 may play important roles in the triterpenoid saponin biosynthesis by directly regulating the transcription of SmCYP71D-3 in the soapberry pericarp. Overall, these findings provide valuable information for understanding the molecular regulatory mechanism of saponin biosynthesis, enriching the gene resources, and guiding further research on triterpenoid saponin accumulation in soapberry pericarps.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing 100083, China
| | - Guochun Zhao
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing 100083, China
| | - Xiangqin Ji
- Hangzhou KaiTai Biotechnology Co., Ltd., Hangzhou, Zhejiang 310030, China
| | - Jiming Liu
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing 100083, China
| | - Tianyun Zhao
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing 100083, China
| | - Yuan Gao
- Planning and Design Institute of Forest Products Industry, National Forestry and Grassland Administration, Beijing 100010, China
| | - Shilun Gao
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing 100083, China
| | - Yingying Hao
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing 100083, China
| | - Yuhan Gao
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing 100083, China
| | - Lixian Wang
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing 100083, China
| | - Xuehuang Weng
- Yuanhua Forestry Biological Technology Co., Ltd., Sanming, Fujian 354500, China
| | - Zhong Chen
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Liming Jia
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
21
|
Homologous Expression and Characterization of α-L-rhamnosidase from Aspergillus niger for the Transformation of Flavonoids. Appl Biochem Biotechnol 2022; 194:3453-3467. [PMID: 35366188 DOI: 10.1007/s12010-022-03894-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
Aspergillus niger has been used for homologous and heterologous expressions of many protein products. In this study, the α-L-rhamnosidase from A. niger (Rha-N1, GenBank XP_001389086.1) was homologously expressed in A. niger 3.350 by Agrobacterium tumefaciens-mediated transformation. The enzyme activity of Rha-N1 was 0.658 U/mL, which was obtained by cultivation of engineered A. niger in a 5-L bioreactor. Rha-N1 was purified by affinity chromatography and characterized. The optimum temperature and optimum pH for Rha-N1 were 60 °C and 4.5, respectively. Enzyme activity was promoted by Al3+, Li+, Mg2+, and Ba2+ and was inhibited by Mn2+, Fe3+, Ca2+, Cu2+, and organic solvents. The result indicated that rutin was the most suitable substrate for Rha-N1 by comparison with the other two flavonoid substrates hesperidin and naringin. The transformed products of isoquercitrin, hesperetin-7-O-glucoside, and prunin were identified by LC-MS and 1H-NMR.
Collapse
|
22
|
Li X, Liu J, Zuo TT, Hu Y, Li Z, Wang HD, Xu XY, Yang WZ, Guo DA. Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis. Nat Prod Rep 2022; 39:875-909. [PMID: 35128553 DOI: 10.1039/d1np00071c] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2011 to the end of 2020Panax species (Araliaceae), particularly P. ginseng, P. quinquefolius, and P. notoginseng, have a long history of medicinal use because of their remarkable tonifying effects, and currently serve as crucial sources for various healthcare products, functional foods, and cosmetics, aside from their vast clinical preparations. The huge market demand on a global scale prompts the continuous prosperity in ginseng research concerning the discovery of new compounds, precise quality control, ADME (absorption/disposition/metabolism/excretion), and biosynthesis pathways. Benefitting from the ongoing rapid development of analytical technologies, e.g. multi-dimensional chromatography (MDC), personalized mass spectrometry (MS) scan strategies, and multi-omics, highly recognized progress has been made in driving ginseng analysis towards "systematicness, integrity, personalization, and intelligentization". Herein, we review the advances in the phytochemistry, quality control, metabolism, and biosynthesis pathway of ginseng over the past decade (2011-2020), with 410 citations. Emphasis is placed on the introduction of new compounds isolated (saponins and polysaccharides), and the emerging novel analytical technologies and analytical strategies that favor ginseng's authentic use and global consumption. Perspectives on the challenges and future trends in ginseng analysis are also presented.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Jie Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Tian-Tian Zuo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, China
| | - Hong-da Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Xiao-Yan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Wen-Zhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - De-An Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
23
|
Zargar AN, Lymperatou A, Skiadas I, Kumar M, Srivastava P. Structural and functional characterization of a novel biosurfactant from Bacillus sp. IITD106. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127201. [PMID: 34560483 DOI: 10.1016/j.jhazmat.2021.127201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Plant saponins are attractive biosurfactants and have been used to enhance phytoremediation. There are only limited reports on saponins produced by bacteria. Here, we report structural and functional characterization of a novel saponin produced by Bacillus sp. IITD106. Biosurfactant production was determined by emulsion index, drop collapse, oil displacement and hemolytic assays. The biosurfactant was stable over a range of temperature (30 °C to 70 °C), salinity (0-150 g liter-1) and pH (4-10). The surface tension of the medium reduced from 58.89 mN/m to 27.29 mN/m using the isolated biosurfactant. Chromatographic analysis revealed the biosurfactant to be a glycolipid. LCMS, FT-IR and NMR analysis identified the biosurfactant to be a saponin containing two sugar groups and a 5 ringed triterpene sapogenin unit. Genome sequencing of the strain revealed the presence of genes responsible for biosynthesis of saponin. Statistical optimization of culture medium resulted in 9.3-fold increase in biosurfactant production. Kinetics study of biosurfactant production performed in a stirred tank batch bioreactor resulted in 6.04 g liter-1 and 6.9 g liter-1 biomass and biosurfactant concentration, respectively. The biosurfactant was found to solubilize polycyclic aromatic hydrocarbons. The potential of cell free biosurfactant containing broth to enhance oil recovery was tested in a sand pack column and recovery of 63% of residual oil was observed. To our knowledge this is the first report of saponin production by any of the strains of Bacillus.
Collapse
Affiliation(s)
- Arif Nissar Zargar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India; Indian Oil Corporation, R&D Centre, Sector-13, Faridabad 121007, India; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Anna Lymperatou
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Ioannis Skiadas
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Manoj Kumar
- Indian Oil Corporation, R&D Centre, Sector-13, Faridabad 121007, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
24
|
Du MM, Zhu ZT, Zhang GG, Zhao YQ, Gao B, Tao XY, Liu M, Ren YH, Wang FQ, Wei DZ. Engineering Saccharomyces cerevisiae for Hyperproduction of β-Amyrin by Mitigating the Inhibition Effect of Squalene on β-Amyrin Synthase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:229-237. [PMID: 34955018 DOI: 10.1021/acs.jafc.1c06712] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The study aims to enhance β-amyrin production in Saccharomyces cerevisiae by peroxisome compartmentalization. First, overaccumulated squalene was determined as a key limiting factor for the production of β-amyrin since it could inhibit the activity of β-amyrin synthase GgbAs1. Second, to mitigate the inhibition effect, the enhanced squalene synthesis pathway was compartmentalized into peroxisomes to insulate overaccumulated squalene from GgbAs1, and thus the specific titer of β-amyrin reached 57.8 mg/g dry cell weight (DCW), which was 2.6-fold higher than that of the cytosol engineering strain. Third, by combining peroxisome compartmentalization with the "push-pull-restrain" strategy (ERG1 and GgbAs1 overexpression and ERG7 weakening), the production of β-amyrin was further increased to 81.0 mg/g DCW (347.0 mg/L). Finally, through fed-batch fermentation in a 5 L fermenter, the titer of β-amyrin reached 2.6 g/L, which is the highest reported to date. The study provides a new perspective to engineering yeasts as a platform for triterpene production.
Collapse
Affiliation(s)
- Meng-Meng Du
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Zhan-Tao Zhu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Ge-Ge Zhang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Yun-Qiu Zhao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Xin-Yi Tao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Min Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Yu-Hong Ren
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Dong-Zhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
25
|
Yates PS, Roberson J, Ramsue LK, Song BH. Bridging the Gaps between Plant and Human Health: A Systematic Review of Soyasaponins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14387-14401. [PMID: 34843230 DOI: 10.1021/acs.jafc.1c04819] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Saponins, prominent secondary plant metabolites, are recognized for their roles in plant defense and medicinal benefits. Soyasaponins, commonly derived from legumes, are a class of triterpenoid saponins that demonstrate significant potential for plant and human health applications. Previous research and reviews largely emphasize human health effects of soyasaponins. However, the biological effects of soyasaponins and their implications for plants in the context of human health have not been well-discussed. This review provides comprehensive discussions on the biological roles of soyasaponins in plant defense and rhizosphere microbial interactions; biosynthetic regulation and compound production; immunological effects and potential for therapeutics; and soyasaponin acquisition attributed to processing effects, bioavailability, and biotransformation processes based on recent soyasaponin research. Given the multifaceted biological effects elicited by soyasaponins, further research warrants an integrated approach to understand molecular mechanisms of regulations in their production as well as their applications in plant and human health.
Collapse
Affiliation(s)
- Ping S Yates
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28262, United States
| | - Julia Roberson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28262, United States
| | - Lyric K Ramsue
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28262, United States
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28262, United States
| |
Collapse
|
26
|
Zeng G, Li Z, Zhao Z. Analysis of weighted gene co-expression network of triterpenoid-related transcriptome characteristics from different strains of Wolfiporia cocos. Sci Rep 2021; 11:18207. [PMID: 34521885 PMCID: PMC8440546 DOI: 10.1038/s41598-021-97616-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
The fungus Wolfiporia cocos has wide-ranging and important medicinal value, and its dried sclerotia are used as a traditional Chinese medicine. Modern studies have shown that triterpenoid, the active ingredient of W. cocos, have a variety of pharmacological effects. The aim of our research was to determine the key genes related to triterpenoid biosynthesis, which may be useful for the genetic modification of cell-engineered bacteria for triterpenoid biosynthesis. In this study, two monospore strains, DZAC-WP-H-29 (high-yielding) and DZAC-WP-L-123 (low-yielding), were selected from the sexually propagated offspring of strain 5.78 of W. cocos, and the mycelia were cultured for 17, 34, and 51 days, respectively. Weighted gene co-expression network analysis (WGCNA) method was used to analyze transcriptional expressions. The results show that eight core genes (ACAT1-b, hgsA, mvd1, SQLE, erg6, TAT, erg26, and erg11) are associated with the triterpenoid synthesis pathway, and Pm20d2 and norA outside the pathway may be important genes that influence the biosynthesis and accumulation of W. cocos triterpenoid. The biosynthesis of W. cocos triterpenoid is closely related to the expression of sterol metabolic pathway genes. The role of these genes in triterpenoid synthesis complements our knowledge on the biosynthesis and accumulation of W. cocos triterpenoid, and also provides a reference for the target gene modification of engineered bacteria for the fermentation production of triterpenoid.
Collapse
Affiliation(s)
| | - Zhong Li
- Guizhou University, Guiyang, 550025, China.
| | - Zhi Zhao
- Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
27
|
Xu K, Zhao YJ, Ahmad N, Wang JN, Lv B, Wang Y, Ge J, Li C. O-glycosyltransferases from Homo sapiens contributes to the biosynthesis of Glycyrrhetic Acid 3-O-mono-β-D-glucuronide and Glycyrrhizin in Saccharomyces cerevisiae. Synth Syst Biotechnol 2021; 6:173-179. [PMID: 34322606 PMCID: PMC8283272 DOI: 10.1016/j.synbio.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
Glycyrrhizin (GL) and Glycyrrhetic Acid 3-O-mono-β-D-glucuronide (GAMG) are the typical triterpenoid glycosides found in the root of licorice, a popular medicinal plant that exhibits diverse physiological effects and pharmacological manifestations. However, only few reports are available on the glycosylation enzymes involved in the biosynthesis of these valuable compounds with low conversion yield so far. In mammals, glycosyltransferases are involved in the phase II metabolism and may provide new solutions for us to engineer microbial strains to produce high valued compounds due to the substrate promiscuity of these glycosyltransferases. In this study, we mined the genomic databases of mammals and evaluated 22 candidate genes of O-glycosyltransferases by analyzing their catalytic potential for O-glycosylation of the native substrate, glycyrrhetinic acid (GA) for its glycodiversification. Out of 22 selected glycosyltransferases, only UGT1A1 exhibited high catalytic performance for biosynthesis of the key licorice compounds GL and GAMG. Molecular docking results proposed that the enzymatic activity of UGT1A1 was likely owing to the stable hydrogen bonding interactions and favorite conformations between the amino acid residues around substrate channels (P82~R85) and substrates. Furthermore, the complete biosynthesis pathway of GL was reconstructed in Saccharomyces cerevisiae for the first time, resulting in the production of 5.98 ± 0.47 mg/L and 2.31 ± 0.21 mg/L of GL and GAMG, respectively.
Collapse
Affiliation(s)
- Ke Xu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan, 063000, PR China
| | - Yu-jia Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
- Beijing Institute of Metrology, Beijing, 100029, PR China
- School of Pharmacy, Tsinghua University, Beijing, 100084, PR China
| | - Nadeem Ahmad
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Jing-nan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Ying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Jun Ge
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Chun Li
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| |
Collapse
|
28
|
Liang Z, Zhi H, Fang Z, Zhang P. Genetic engineering of yeast, filamentous fungi and bacteria for terpene production and applications in food industry. Food Res Int 2021; 147:110487. [PMID: 34399483 DOI: 10.1016/j.foodres.2021.110487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 01/05/2023]
Abstract
Terpenes are a major class of natural aromatic compounds in grapes and wines to offer the characteristic flavor and aroma, serving as important quality traits of wine products. Saccharomyces cerevisiae represents an excellent cell factory platform for large-scale bio-based terpene production. This review describes the biosynthetic pathways of terpenes in different organisms. The metabolic engineering of S. cerevisiae for promoting terpene biosynthesis and the alternative microbial engineering platforms including filamentous fungi and Escherichia coli are also elaborated. Additionally, the potential applications of the terpene products from engineered microorganisms in food and beverage industries are also discussed. This review provides comprehensive information for an innovative supply way of terpene via microbial cell factory, which could facilitate the development and application of this technique at the industrial scale.
Collapse
Affiliation(s)
- Zijian Liang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hang Zhi
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
29
|
Li W, Sun W, Li C. Engineered microorganisms and enzymes for efficiently synthesizing plant natural products. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Muñoz-Labrador A, Azcarate S, Lebrón-Aguilar R, Quintanilla-López JE, Galindo-Iranzo P, Kolida S, Methven L, Rastall RA, Moreno FJ, Hernandez-Hernandez O. High-Yield Synthesis of Transglycosylated Mogrosides Improves the Flavor Profile of Monk Fruit Extract Sweeteners. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1011-1019. [PMID: 33428404 DOI: 10.1021/acs.jafc.0c07267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Luo Han Guo fruit extract (Siraitia grosvenorii), mainly composed of mogroside V (50%), could be considered a suitable alternative to free sugars; however, its commercial applications are limited by its unpleasant off-notes. In the present work, a central composite design method was employed to optimize the transglycosylation of a mogroside extract using cyclodextrin glucosyltransferases (CGTases) from three different bacteriological sources (Paenibacillus macerans, Geobacillus sp., and Thermoanaerobacter sp.) considering various experimental parameters such as maltodextrin and mogroside concentration, temperature, time of reaction, enzymatic activity, and pH. Product structures were determined by liquid chromatography coupled to a diode-array detector (LC-DAD), liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Sensory analysis of glucosylated mogrosides showed an improvement in flavor attributes relevant to licorice flavor and aftereffect. Consequently, an optimum methodology was developed to produce new modified mogrosides more suitable when formulating food products as free sugar substitutes.
Collapse
Affiliation(s)
- Ana Muñoz-Labrador
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Silvana Azcarate
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - Rosa Lebrón-Aguilar
- Institute of Physical Chemistry "Rocasolano" (IQFR-CSIC), Serrano 119, 28006 Madrid, Spain
| | | | - Plácido Galindo-Iranzo
- Institute of Physical Chemistry "Rocasolano" (IQFR-CSIC), Serrano 119, 28006 Madrid, Spain
| | - Sofia Kolida
- OptiBiotix Health Plc, Innovation Centre, Innovation Way, Heslington, York YO10 5DG, United Kingdom
| | - Lisa Methven
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading RG6 6AP, United Kingdom
| | - Robert A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading RG6 6AP, United Kingdom
| | - F Javier Moreno
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | | |
Collapse
|
31
|
Yao L, Wang J, He J, Huang L, Gao W. Endophytes, biotransforming microorganisms, and engineering microbial factories for triterpenoid saponins production. Crit Rev Biotechnol 2021; 41:249-272. [PMID: 33472430 DOI: 10.1080/07388551.2020.1869691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Triterpenoid saponins are structurally diverse secondary metabolites. They are the main active ingredient of many medicinal plants and have a wide range of pharmacological effects. Traditional production of triterpenoid saponins, directly extracted from cultivated plants, cannot meet the rapidly growing demand of pharmaceutical industry. Microorganisms with triterpenoid saponins production ability (especially Agrobacterium genus) and biotransformation ability, such as fungal species in Armillaria and Aspergillus genera and bacterial species in Bacillus and Intestinal microflora, represent a valuable source of active metabolites. With the development of synthetic biology, engineering microorganisms acquired more potential in terms of triterpenoid saponins production. This review focusses on potential mechanisms and the high yield strategies of microorganisms with inherent production or biotransformation ability of triterpenoid saponins. Advances in the engineering of microorganisms, such as Saccharomyces cerevisiae, Yarrowia lipolytica, and Escherichia coli, for the biosynthesis triterpenoid saponins de novo have also been reported. Strategies to increase the yield of triterpenoid saponins in engineering microorganisms are summarized following four aspects, that is, introduction of high efficient gene, optimization of enzyme activity, enhancement of metabolic flux to target compounds, and optimization of fermentation conditions. Furthermore, the challenges and future directions for improving the yield of triterpenoid saponins biosynthesis in engineering microorganisms are discussed.
Collapse
Affiliation(s)
- Lu Yao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Junping He
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
32
|
Dai L, Qin L, Hu Y, Huang JW, Hu Z, Min J, Sun Y, Guo RT. Structural dissection of unnatural ginsenoside-biosynthetic UDP-glycosyltransferase Bs-YjiC from Bacillus subtilis for substrate promiscuity. Biochem Biophys Res Commun 2020; 534:73-78. [PMID: 33310191 DOI: 10.1016/j.bbrc.2020.11.104] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022]
Abstract
Glycosylation catalyzed by uridine diphosphate-dependent glycosyltransferases (UGT) contributes to the chemical and functional diversity of a number of natural products. Bacillus subtilis Bs-YjiC is a robust and versatile UGT that holds potentials in the biosynthesis of unnatural bioactive ginsenosides. To understand the molecular mechanism underlying the substrate promiscuity of Bs-YjiC, we solved crystal structures of Bs-YjiC and its binary complex with uridine diphosphate (UDP) at resolution of 2.18 Å and 2.44 Å, respectively. Bs-YjiC adopts the classical GT-B fold containing the N-terminal and C-terminal domains that accommodate the sugar acceptor and UDP-glucose, respectively. Molecular docking indicates that the spacious sugar-acceptor binding pocket of Bs-YjiC might be responsible for its broad substrate spectrum and unique glycosylation patterns toward protopanaxadiol-(PPD) and PPD-type ginsenosides. Our study reveals the structural basis for the aglycone promiscuity of Bs-YjiC and will facilitate the protein engineering of Bs-YjiC to synthesize novel bioactive glycosylated compounds.
Collapse
Affiliation(s)
- Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Lujiao Qin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yumei Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Zheyang Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
33
|
Ofosu FK, Daliri EBM, Elahi F, Chelliah R, Lee BH, Oh DH. New Insights on the Use of Polyphenols as Natural Preservatives and Their Emerging Safety Concerns. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.525810] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
34
|
Yu Y, Rasool A, Liu H, Lv B, Chang P, Song H, Wang Y, Li C. Engineering Saccharomyces cerevisiae for high yield production of α-amyrin via synergistic remodeling of α-amyrin synthase and expanding the storage pool. Metab Eng 2020; 62:72-83. [DOI: 10.1016/j.ymben.2020.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/15/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022]
|
35
|
Muhammad A, Feng X, Rasool A, Sun W, Li C. Production of plant natural products through engineered Yarrowia lipolytica. Biotechnol Adv 2020; 43:107555. [DOI: 10.1016/j.biotechadv.2020.107555] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
|
36
|
New frontiers: harnessing pivotal advances in microbial engineering for the biosynthesis of plant-derived terpenoids. Curr Opin Biotechnol 2020; 65:88-93. [DOI: 10.1016/j.copbio.2020.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 01/01/2023]
|
37
|
Comparative transcriptome analysis of root, stem, and leaf tissues of Entada phaseoloides reveals potential genes involved in triterpenoid saponin biosynthesis. BMC Genomics 2020; 21:639. [PMID: 32933468 PMCID: PMC7493163 DOI: 10.1186/s12864-020-07056-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background Entada phaseoloides (L.) Merr. is an important traditional medicinal plant. The stem of Entada phaseoloides is popularly used as traditional medicine because of its significance in dispelling wind and dampness and remarkable anti-inflammatory activities. Triterpenoid saponins are the major bioactive compounds of Entada phaseoloides. However, genomic or transcriptomic technologies have not been used to study the triterpenoid saponin biosynthetic pathway in this plant. Results We performed comparative transcriptome analysis of the root, stem, and leaf tissues of Entada phaseoloides with three independent biological replicates and obtained a total of 53.26 Gb clean data and 116,910 unigenes, with an average N50 length of 1218 bp. Putative functions could be annotated to 42,191 unigenes (36.1%) based on BLASTx searches against the Non-redundant, Uniprot, KEGG, Pfam, GO, KEGG and COG databases. Most of the unigenes related to triterpenoid saponin backbone biosynthesis were specifically upregulated in the stem. A total of 26 cytochrome P450 and 17 uridine diphosphate glycosyltransferase candidate genes related to triterpenoid saponin biosynthesis were identified. The differential expressions of selected genes were further verified by qPT-PCR. Conclusions The dataset reported here will facilitate the research about the functional genomics of triterpenoid saponin biosynthesis and genetic engineering of Entada phaseoloides.
Collapse
|
38
|
Wang F, Jiang ZB, Wu XL, Liang DL, Zhang N, Li M, Shi L, Duan CG, Ma XL, Zhang DZ. Structural determination and in vitro tumor cytotoxicity evaluation of five new cycloartane glycosides from Asplenium ruprechtii Sa. Kurata. Bioorg Chem 2020; 102:104085. [DOI: 10.1016/j.bioorg.2020.104085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 11/24/2022]
|
39
|
Yang B, Feng X, Li C. Microbial Cell Factory for Efficiently Synthesizing Plant Natural Products via Optimizing the Location and Adaptation of Pathway on Genome Scale. Front Bioeng Biotechnol 2020; 8:969. [PMID: 32923436 PMCID: PMC7457125 DOI: 10.3389/fbioe.2020.00969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/27/2020] [Indexed: 01/03/2023] Open
Abstract
Plant natural products (PNPs) possess important pharmacological activities and are widely used in cosmetics, health care products, and as food additives. Currently, most PNPs are mainly extracted from cultivated plants, and the yield is limited by the long growth cycle, climate change and complex processing steps, which makes the process unsustainable. However, the complex structure of PNPs significantly reduces the efficiency of chemical synthesis. With the development of metabolic engineering and synthetic biology, heterologous biosynthesis of PNPs in microbial cell factories offers an attractive alternative. Based on the in-depth mining and analysis of genome and transcriptome data, the biosynthetic pathways of a number of natural products have been successfully elucidated, which lays the crucial foundation for heterologous production. However, there are several problems in the microbial synthesis of PNPs, including toxicity of intermediates, low enzyme activity, multiple auxotrophic dependence, and uncontrollable metabolic network. Although various metabolic engineering strategies have been developed to solve these problems, optimizing the location and adaptation of pathways on the whole-genome scale is an important strategy in microorganisms. From this perspective, this review introduces the application of CRISPR/Cas9 in editing PNPs biosynthesis pathways in model microorganisms, the influences of pathway location, and the approaches for optimizing the adaptation between metabolic pathways and chassis hosts for facilitating PNPs biosynthesis.
Collapse
Affiliation(s)
- Bo Yang
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xudong Feng
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.,Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
40
|
Nitrogen Forms Alter Triterpenoid Accumulation and Related Gene Expression in Cyclocarya paliurus (Batalin) Iljinsk. Seedlings. FORESTS 2020. [DOI: 10.3390/f11060631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cyclocarya paliurus (Batalin) Iljinsk. is a multiple function tree species distributed in subtropical areas, and its leaves have been used in medicine and nutraceutical foods in China. However, little information on the effects of nitrogen (N) forms and ratios on growth and secondary metabolite accumulation is available for C. paliurus. The impact of five NO3−/NH4+ ratios on biomass production, triterpenoid accumulation and related gene expression in C. paliurus seedlings was evaluated at the middle N nutrition supply. Significant differences in seedling growth, triterpenoid accumulation and relative gene expression were observed among the different NO3−/NH4+ ratio treatments. The highest triterpenoid content was achieved in a sole NO3− or NH4+ nutrition, while the mixed N nutrition with equal ratio of NO3− to NH4+ produced the highest biomass production in the seedlings. However, the highest triterpenoid accumulation was achieved at the treatment with the ratio of NO3−/NH4+ = 2.33. Therefore, the mixed N nutrition of NO3− and NH4+ was beneficial to the triterpenoid accumulation per plant. The relative expression of seven genes that are involved in triterpenoid biosynthesis were all up-regulated under the sole NH4+ or NO3− nutrition conditions, and significantly positive correlations between triterpenoid content and relative gene expression of key enzymes were detected in the leaves. Our results indicated that NO3− is the N nutrition preferred by C. paliurus, but the mixture of NO3− and NH4+ at an appropriate ratio would improve the leaf triterpenoid yield per area.
Collapse
|
41
|
Mrudulakumari Vasudevan U, Lee EY. Flavonoids, terpenoids, and polyketide antibiotics: Role of glycosylation and biocatalytic tactics in engineering glycosylation. Biotechnol Adv 2020; 41:107550. [PMID: 32360984 DOI: 10.1016/j.biotechadv.2020.107550] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids, terpenoids, and polyketides are structurally diverse secondary metabolites used widely as pharmaceuticals and nutraceuticals. Most of these molecules exist in nature as glycosides, in which sugar residues act as a decisive factor in their architectural complexity and bioactivity. Engineering glycosylation through selective trimming or extension of the sugar residues in these molecules is a prerequisite to their commercial production as well to creating novel derivatives with specialized functions. Traditional chemical glycosylation methods are tedious and can offer only limited end-product diversity. New in vitro and in vivo biocatalytic tools have emerged as outstanding platforms for engineering glycosylation in these three classes of secondary metabolites to create a large repertoire of versatile glycoprofiles. As knowledge has increased about secondary metabolite-associated promiscuous glycosyltransferases and sugar biosynthetic machinery, along with phenomenal progress in combinatorial biosynthesis, reliable industrial production of unnatural secondary metabolites has gained momentum in recent years. This review highlights the significant role of sugar residues in naturally occurring flavonoids, terpenoids, and polyketide antibiotics. General biocatalytic tools used to alter the identity and pattern of sugar molecules are described, followed by a detailed illustration of diverse strategies used in the past decade to engineer glycosylation of these valuable metabolites, exemplified with commercialized products and patents. By addressing the challenges involved in current bio catalytic methods and considering the perspectives portrayed in this review, exceptional drugs, flavors, and aromas from these small molecules could come to dominate the natural-product industry.
Collapse
Affiliation(s)
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
42
|
Zhu L, Yin P, Xie T, Liu X, Yang L, Wang S, Li J, Liu H. Interaction between soyasaponin and soy β-conglycinin or glycinin: Air-water interfacial behavior and foaming property of their mixtures. Colloids Surf B Biointerfaces 2020; 186:110707. [PMID: 31830706 DOI: 10.1016/j.colsurfb.2019.110707] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/10/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
The interaction between soyasaponin and soy β-conglycinin (7S) or glycinin (11S), adsorption of their mixtures at air-water interface, and foaming properties of the mixed system were investigated in this study. Fluorescence spectroscopy results showed that there was a weak binding of soyasaponin with 7S or 11S in bulk solutions, leading to the conformational changes of protein by nonspecific hydrophobic interactions. Dynamic surface properties of soyasaponin-7S/11S mixtures indicated that the composite layers formed via their weak interactions due to the synergy of reducing surface tension and the plateau of elasticity at the interface. Most mixtures represented high foam forming ability and stability except 0.2 % soyasaponin mixture, which could be a consequence that the surface behavior was dominated by soyasaponin under this concentration, and low surface elasticity lead to a less stable interfacial film. Overall, foamability of soyasaponin-7S mixtures were better than 11S ones. All data of this work was helpful to understand air-water behaviors of soyasaponin-7S/11S mixtures. This mixed system has shown good potential for further foam related industrial applications.
Collapse
Affiliation(s)
- Lijie Zhu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China
| | - Peng Yin
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China
| | - Tianyu Xie
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China
| | - Xiuying Liu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China
| | - Jun Li
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| |
Collapse
|
43
|
Sui W, Zhou M, Xu Y, Wang G, Zhao H, Lv X. Hydrothermal deglycosylation and deconstruction effect of steam explosion: Application to high-valued glycyrrhizic acid derivatives from liquorice. Food Chem 2019; 307:125558. [PMID: 31644977 DOI: 10.1016/j.foodchem.2019.125558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022]
Abstract
In this work, steam explosion (SE) was exploited as a green and facile process to deconstruct liquorice's structure and deglycosylate glycyrrhizic acid (GL) to improve conversion and diffusion efficacy of GL and its hydrolyzed products. Results showed SE induced auto-hydrolysis of GL into glycyrrhetic acid 3-O-mono-β-D-glucuronide (GAMG) and glycyrrhetinic acid (GA), by which 30.71% of GL conversion, 5.24% and 21.47% of GAMG and GA formation were obtained. GL hydrolytic pathways were revealed by reaction kinetics and thermodynamics, which possessed complex consecutive and parallel reactions with endothermic, non-spontaneous and entropy-decreasing features. SE referred to cause cleavage of the β-1,3 glycosidic bond in GL which was hydrolyzed to GA as a main product and GAMG and glucuronic acids as minor products. Diffusion of hydrolyzed products was accelerated by raising the diffusion coefficient and shortening the equilibrium time by over 90%. This work provides a sustainable and efficient route for product conversion and function enhancement of bioactive components.
Collapse
Affiliation(s)
- Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Mengjia Zhou
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yi Xu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Guanhua Wang
- Tianjin Key Laboratory of Pulp and Paper, College of Paper Making Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huan Zhao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaoling Lv
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
44
|
Lyu X, Lee J, Chen WN. Potential Natural Food Preservatives and Their Sustainable Production in Yeast: Terpenoids and Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4397-4417. [PMID: 30844263 DOI: 10.1021/acs.jafc.8b07141] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Terpenoids and polyphenols are high-valued plant secondary metabolites. Their high antimicrobial activities demonstrate their huge potential as natural preservatives in the food industry. With the rapid development of metabolic engineering, it has become possible to realize large-scale production of non-native terpenoids and polyphenols by using the generally recognized as safe (GRAS) strain, Saccharomyces cerevisiae, as a cell factory. This review will summarize the major terpenoid and polyphenol compounds with high antimicrobial properties, describe their native metabolic pathways as well as antimicrobial mechanisms, and highlight current progress on their heterologous biosynthesis in S. cerevisiae. Current challenges and perspectives for the sustainable production of terpenoid and polyphenol as natural food preservatives via S. cerevisiae will also be discussed.
Collapse
Affiliation(s)
- Xiaomei Lyu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Jaslyn Lee
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| |
Collapse
|
45
|
Zhang X, Yu Y, Jiang S, Yu H, Xiang Y, Liu D, Qu Y, Cui X, Ge F. Oleanane-Type Saponins Biosynthesis in Panax notoginseng via Transformation of β-Amyrin Synthase Gene from Panax japonicus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1982-1989. [PMID: 30742432 DOI: 10.1021/acs.jafc.8b07183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Oleanane-type saponins considered as the main medicinal ingredients in Panax japonicus are not found in Panax notoginseng. β-Amyrin synthase (βAS) was recognized as the first key enzyme in the biosynthetic branch of oleanane-type saponins. In this study, βAS gene from P. japonicus ( PjβAS) was transferred into P. notoginseng cells. Along with PjβAS expression in the transgenic cells, the expression levels of several key enzyme genes related to triterpenoid saponins biosynthesis and the content of P. notoginseng saponins were also increased. Two oleanane-type saponins, chikusetsusaponin IV and chikusetsusaponin IVa, contained in P. japonicus were first discovered in transgenic P. notoginseng cells. This study successfully constructed a biosynthetic pathway of oleanane-type saponins in P. notoginseng by introducing just one gene into the species. On the basis of this discovery and previous studies, the common biosynthetic pathway of triterpenoid saponins in Panax genus may be unified to some extent.
Collapse
Affiliation(s)
- Xiang Zhang
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming 650500 , China
| | - Yilin Yu
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming 650500 , China
| | - Sen Jiang
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming 650500 , China
| | - Hong Yu
- School of Life Science , Yunnan University , Kunming 650500 , China
| | - Yingying Xiang
- Department of Stomatology , Yan'an Hospital Affiliated to Kunming Medical University , Kunming 650031 , China
| | - Diqiu Liu
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming 650500 , China
- Yunnan Key Laboratory of Panax notoginseng , Kunming University of Science and Technology , Kunming 650500 , China
| | - Yuan Qu
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming 650500 , China
- Yunnan Key Laboratory of Panax notoginseng , Kunming University of Science and Technology , Kunming 650500 , China
| | - Xiuming Cui
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming 650500 , China
- Yunnan Key Laboratory of Panax notoginseng , Kunming University of Science and Technology , Kunming 650500 , China
| | - Feng Ge
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming 650500 , China
- Yunnan Key Laboratory of Panax notoginseng , Kunming University of Science and Technology , Kunming 650500 , China
| |
Collapse
|
46
|
Enzymatic Synthesis of Novel Glycyrrhizic Acid Glucosides Using a Promiscuous Bacillus Glycosyltransferase. Catalysts 2018. [DOI: 10.3390/catal8120615] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glycyrrhetinic acid (GA) and glycyrrhizin (GA-3-O-[β-d-glucuronopyranosyl-(1→2)-β-d-glucuronopyranoside], GL) are the major bioactive components of Glycyrrhiza uralensis and possess multifarious notable biological activities. UDP-glycosyltransferase (UGT)–catalyzed glycosylation remarkably extends the structural and functional diversification of GA-glycoside derivatives. In this study, six glucosides (1–6) of GA and GL were synthesized using a Bacillus subtilis 168–originated flexible UDP-glycosyltransferase Bs-YjiC. Bs-YjiC could transfer a glucosyl moiety from UDP-glucose to the free C3 hydroxyl and/or C30 carboxyl groups of GA and GL and further elongate the C30 glucosyl chain via a β-1-2-glycosidic bond. Glycosylation significantly increased the water solubility of these novel glucosides by 4–90 folds. In vitro assays showed that GA monoglucosides (1 and 2) showed stronger antiproliferative activity against human liver cancer cells HepG2 and breast cancer cells MCF-7 than that of GL and GL glucosides. These findings provide significant insights into the important role of promiscuous UGTs for the enzymatic synthesis of novel bioactive GA derivatives.
Collapse
|