1
|
Munoz B, Hayes M, Perkins-Veazie P, Gillitt N, Munoz M, Kay CD, Lila MA, Ferruzzi MG, Iorizzo M. Genotype and ripening method affect carotenoid content and bio-accessibility in banana. Food Funct 2024; 15:3433-3445. [PMID: 38436090 DOI: 10.1039/d3fo04632j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Bananas (Musa spp.) are a target crop for provitamin A carotenoids (pVACs) biofortification programs aiming at reducing the negative impact on health caused by vitamin A deficiency in vulnerable populations. However, studies to understand the effect of ripening methods and stages and the genotype on carotenoid content and bioaccessibility in the banana germplasm are scarce. This study evaluated carotenoid content and bioaccessibility in 27 different banana accessions at three maturation stages and two ripening methods (natural ripening and ethylene ripening). Across most accessions, total carotenoid content (TCC) increased from unripe to ripe fruit; only two accessions showed a marginal decrease. The ripening method affected carotenoid accumulation; 18 accessions had lower TCC when naturally ripened compared with the ethylene ripening group, while nine accessions showed higher TCC when ripened with exogenous ethylene, suggesting that treating bananas with exogenous ethylene might directly affect TCC accumulation, but the response is accession dependent. Additionally, carotenoid bioaccessibility varied across genotypes and was correlated with the amount of soluble starch and resistant starch. These findings highlight the importance of ripening methods and genotypes in maximizing banana carotenoid content and bioaccessibility, which could contribute to improving pVACs delivery in biofortification programs.
Collapse
Affiliation(s)
- Bryan Munoz
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 9 28081, USA
| | - Micaela Hayes
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Penelope Perkins-Veazie
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 9 28081, USA
| | | | - Miguel Munoz
- Research & Development Department, Dole, Standard Fruit Company de Costa Rica, San José, Costa Rica
| | - Colin D Kay
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Arkansas Children's Nutrition Center (ACNC), University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72202, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Arkansas Children's Nutrition Center (ACNC), University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72202, USA
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 9 28081, USA
| |
Collapse
|
2
|
Zhou C, Yang N, Tian C, Wen S, Zhang C, Zheng A, Hu X, Fang J, Zhang Z, Lai Z, Lin Y, Guo Y. The miR166 targets CsHDZ3 genes to negatively regulate drought tolerance in tea plant (Camellia sinensis). Int J Biol Macromol 2024; 264:130735. [PMID: 38471611 DOI: 10.1016/j.ijbiomac.2024.130735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/08/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Drought is the stressor with a significant adverse impact on the yield stability of tea plants. HD-ZIP III transcription factors (TFs) play important regulatory roles in plant growth, development, and stress responses. However, whether and how HD-ZIP III TFs are involved in drought response and tolerance in tea plants remains unclear. Here, we identified seven HD-ZIP III genes (CsHDZ3-1 to CsHDZ3-7) in tea plant genome. The evolutionary analysis demonstrated that CsHDZ3 members were subjected to purify selection. Subcellular localization analysis revealed that all seven CsHDZ3s located in the nucleus. Yeast self-activation and dual-luciferase reporter assays demonstrated that CsHDZ3-1 to CsHDZ3-4 have trans-activation ability whereas CsHDZ3-5 to CsHDZ3-7 served as transcriptional inhibitors. The qRT-PCR assay showed that all seven CsHDZ3 genes could respond to simulated natural drought stress and polyethylene glycol treatment. Further assays verified that all CsHDZ3 genes can be cleaved by csn-miR166. Overexpression of csn-miR166 inhibited the expression of seven CsHDZ3 genes and weakened drought tolerance of tea leaves. In contrast, suppression of csn-miR166 promoted the expression of seven CsHDZ3 genes and enhanced drought tolerance of tea leaves. These findings established the foundation for further understanding the mechanism of CsHDZ3-miR166 modules' participation in drought responses and tolerance.
Collapse
Affiliation(s)
- Chengzhe Zhou
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Niannian Yang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengjing Wen
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cheng Zhang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anru Zheng
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaowen Hu
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaxin Fang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhendong Zhang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Machado KLDG, Faria DV, Duarte MBS, Silva LAS, de Oliveira TDR, Falcão TCA, Batista DS, Costa MGC, Santa-Catarina C, Silveira V, Romanel E, Otoni WC, Nogueira FTS. Plant age-dependent dynamics of annatto pigment (bixin) biosynthesis in Bixa orellana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1390-1406. [PMID: 37975812 DOI: 10.1093/jxb/erad458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Age affects the production of secondary metabolites, but how developmental cues regulate secondary metabolism remains poorly understood. The achiote tree (Bixa orellana L.) is a source of bixin, an apocarotenoid used in diverse industries worldwide. Understanding how age-dependent mechanisms control bixin biosynthesis is of great interest for plant biology and for economic reasons. Here we overexpressed miRNA156 (miR156) in B. orellana to comprehensively study the effects of the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) module on age-dependent bixin biosynthesis in leaves. Overexpression of miR156 in annatto plants (miR156ox) reduced BoSPL transcript levels, impacted leaf ontogeny, lessened bixin production, and increased abscisic acid levels. Modulation of expression of BoCCD4-4 and BoCCD1, key genes in carotenoid biosynthesis, was associated with diverting the carbon flux from bixin to abscisic acid in miR156ox leaves. Proteomic analyses revealed an overall low accumulation of most secondary metabolite-related enzymes in miR156ox leaves, suggesting that miR156-targeted BoSPLs may be required to activate several secondary metabolic pathways. Our findings suggest that the conserved BomiR156-BoSPL module is deployed to regulate leaf dynamics of bixin biosynthesis, and may create novel opportunities to fine-tune bixin output in B. orellana breeding programs.
Collapse
Affiliation(s)
- Kleiton Lima de Godoy Machado
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Daniele Vidal Faria
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Marcos Bruno Silva Duarte
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Lázara Aline Simões Silva
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Tadeu Dos Reis de Oliveira
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Thais Castilho Arruda Falcão
- Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), 12602-810, Lorena, SP, Brazil
| | - Diego Silva Batista
- Departamento de Agricultura, Universidade Federal da Paraíba, Campus III, 58220-000, Bananeiras, PB, Brazil
| | | | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia (LBT), CBB-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Elisson Romanel
- Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), 12602-810, Lorena, SP, Brazil
| | - Wagner Campos Otoni
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | | |
Collapse
|
4
|
Wei W, Yang YY, Wu CJ, Kuang JF, Lu WJ, Chen JY, Shan W. MaNAC19-MaXB3 regulatory module mediates sucrose synthesis in banana fruit during ripening. Int J Biol Macromol 2023; 253:127144. [PMID: 37802454 DOI: 10.1016/j.ijbiomac.2023.127144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Sucrose, a predominant sweetener in banana (Musa acuminata) fruit, determines sweetness and consumer preferences. Although sucrose phosphate synthase (SPS) is known to catalyze starch conversion into sucrose in banana fruit during the ripening process, the SPS regulatory mechanism during ripening still demands investigation. Hence, this study discovered that the MaSPS1 expression was promoted during ethylene-mediated ripening in banana fruit. MaNAC19, recognized as the MaSPS1 putative binding protein using yeast one-hybrid screening, directly binds to the MaSPS1 promoter, thereby transcriptionally activating its expression, which was verified by transient overexpression experiments, where the sucrose synthesis was accelerated through MaNAC19-induced transcription of MaSPS1. Interestingly, MaXB3, an ethylene-inhibited E3 ligase, was found to ubiquitinate MaNAC19, making it prone to proteasomal degradation, inhibiting transactivation of MaNAC19 to MaSPS1, thereby attenuating MaNAC19-promoted sucrose accumulation. This study's findings collectively illustrated the mechanistic basis of a MaXB3-MaNAC19-MaSPS1 regulatory module controlling sucrose synthesis during banana fruit ripening. These outcomes have broadened our understanding of the regulation mechanisms that contributed to sucrose metabolism occurring in transcriptional and post-transcriptional stages, which might help develop molecular approaches for controlling ripening and improving fruit quality.
Collapse
Affiliation(s)
- Wei Wei
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ying-Ying Yang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chao-Jie Wu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Fei Kuang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wang-Jin Lu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Ye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Liang MH, Li XY. Involvement of Transcription Factors and Regulatory Proteins in the Regulation of Carotenoid Accumulation in Plants and Algae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18660-18673. [PMID: 38053506 DOI: 10.1021/acs.jafc.3c05662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Carotenoids are essential for photosynthesis and photoprotection in photosynthetic organisms, which are widely used in food coloring, feed additives, nutraceuticals, cosmetics, and pharmaceuticals. Carotenoid biofortification in crop plants or algae has been considered as a sustainable strategy to improve human nutrition and health. However, the regulatory mechanisms of carotenoid accumulation are still not systematic and particularly scarce in algae. This article focuses on the regulatory mechanisms of carotenoid accumulation in plants and algae through regulatory factors (transcription factors and regulatory proteins), demonstrating the complexity of homeostasis regulation of carotenoids, mainly including transcriptional regulation as the primary mechanism, subsequent post-translational regulation, and cross-linking with other metabolic processes. Different organs of plants and different plant/algal species usually have specific regulatory mechanisms for the biosynthesis, storage, and degradation of carotenoids in response to the environmental and developmental signals. In plants and algae, regulators such as MYB, bHLH, MADS, bZIP, AP2/ERF, WRKY, and orange proteins can be involved in the regulation of carotenoid metabolism. And many more regulators, regulatory networks, and mechanisms need to be explored. Our paper will provide a basis for multitarget or multipathway engineering for carotenoid biofortification in plants and algae.
Collapse
Affiliation(s)
- Ming-Hua Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xian-Yi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
6
|
Li Q, Lin H, Lin HT, Lin MS, Wang H, Wei W, Chen JY, Lu WJ, Shao XF, Fan ZQ. The metabolism of membrane lipid participates in the occurrence of chilling injury in cold-stored banana fruit. Food Res Int 2023; 173:113415. [PMID: 37803753 DOI: 10.1016/j.foodres.2023.113415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
Banana fruit is highly vulnerable to chilling injury (CI) during cold storage, which results in quality deterioration and commodity reduction. The purpose of this study was to investigate the membrane lipid metabolism mechanism underlying low temperature-induced CI in banana fruit. Chilling temperature significantly induced CI symptoms in banana fruit, compared to control temperature (22 °C). Using physiological experiments and transcriptomic analyses, we found that chilling temperature (7 °C) increased CI index, malondialdehyde content, and cell membrane permeability. Additionally, chilling temperature upregulated the genes encoding membrane lipid-degrading enzymes, such as lipoxygenase (LOX), phospholipase D (PLD), phospholipase C (PLC), phospholipase A (PLA), and lipase, but downregulated the genes encoding fatty acid desaturase (FAD). Moreover, chilling temperature raised the activities of LOX, PLD, PLC, PLA, and lipase, inhibited FAD activity, lowered contents of unsaturated fatty acids (USFAs) (γ-linolenic acid and linoleic acid), phosphatidylcholine, and phosphatidylinositol, but retained higher contents of saturated fatty acids (SFAs) (stearic acid and palmitic acid), free fatty acids, phosphatidic acid, lysophosphatidic acid, diacylglycerol, a lower USFAs index, and a lower ratio of USFAs to SFAs. Together, these results revealed that chilling temperature-induced chilling injury of bananas were caused by membrane integrity damage and were associated with the enzymatic and genetic manipulation of membrane lipid metabolism. These activities promoted the degradation of membrane phospholipids and USFAs in fresh bananas during cold storage.
Collapse
Affiliation(s)
- Qian Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Han Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - He-Tong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Meng-Shi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xing-Feng Shao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Zhong-Qi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
7
|
Wei W, Yang YY, Chen JY, Lakshmanan P, Kuang JF, Lu WJ, Shan W. MaNAC029 modulates ethylene biosynthesis and fruit quality and undergoes MaXB3-mediated proteasomal degradation during banana ripening. J Adv Res 2023; 53:33-47. [PMID: 36529351 PMCID: PMC10658243 DOI: 10.1016/j.jare.2022.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/12/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTIONS Ethylene regulates ripening by activating various metabolic pathways that controlcolor, aroma, flavor, texture, and consequently, the quality of fruits. However, the modulation of ethylene biosynthesis and quality formation during banana fruit ripening remains unclear. OBJECTIVES The present study aimed to identify the regulatory module that regulates ethylene and fruit quality-related metabolisms during banana fruit ripening. METHODS We used RNA-seq to compare unripe and ripe banana fruits and identified a ripening-induced NAC transcription factor, MaNAC029. We further performed DNA affinity purification sequencing to identify the MaNAC029's target genes involved in ethylene biosynthesis and fruit quality formation, and electrophoretic mobility shift assay, chromatin immunoprecipitation with real-time polymerase chain reaction and dual luciferase assays to explore the underlying regulatory mechanisms. Immunoprecipitation combined with mass spectrometry, yeast two-hybrid assay, and bimolecular fluorescence complementation assay were used to screen and verify the proteins interacting with MaNAC029. Finally, the function of MaNAC029 and its interacting protein associated with ethylene biosynthesis and quality formation was verified through transient overexpression experiments in banana fruits. RESULTS The study identified a nucleus-localized, ripening-induced NAC transcription factor MaNAC029. It transcriptionally activated genes associated with ethylene biosynthesis and a variety of cellular metabolisms related to fruit quality formation (cell wall degradation, starch degradation, aroma compound synthesis, and chlorophyll catabolism) by directly modulating their promoter activity during ripening. Overexpression of MaNAC029 in banana fruits activated ethylene biosynthesis and accelerated fruit ripening and quality formation. Notably, the E3 ligase MaXB3 interacted with and ubiquitinated MaNAC029 protein, facilitating MaNAC029 proteasomal degradation. Consistent with this finding, MaXB3 overexpression attenuated MaNAC029-enhanced ethylene biosynthesis and quality formation. CONCLUSION Our findings demonstrate that a MaXB3-MaNAC029 module regulates ethylene biosynthesis and a series of cellular metabolisms related to fruit quality formation during banana ripening. These results expand the understanding of the transcriptional and post-translational mechanisms of fruit ripening and quality formation.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ying-Ying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Prakash Lakshmanan
- Sugarcane Research Institute, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia 4067, QLD, Australia
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Zhu L, Shan W, Cai D, Lin Z, Wu C, Wei W, Yang Y, Lu W, Chen J, Su X, Kuang J. High temperature elevates carotenoid accumulation of banana fruit via upregulation of MaEIL9 module. Food Chem 2023; 412:135602. [PMID: 36739724 DOI: 10.1016/j.foodchem.2023.135602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/12/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Banana is a good source of carotenoids, which are bioactive metabolites with health beneficial properties for human. However, the molecular mechanism of carotenoid accumulation in banana fruit is largely unclear. In this study, we found that high temperature elevated carotenoid production in banana pulp, which is presumably due to upregulation of a subset of carotenogenic genes as well as a carotenoid biosynthesis regulator MaSPL16. Moreover, an ethylene signaling component MaEIL9 was identified, whose transcript and protein contents were also induced by high temperature. In addition, MaEIL9 positively regulates transcription of MaDXR1, MaPDS1, MaZDS1 and MaSPL16 through directly targeting their promoters. Overexpression of MaEIL9 in tomato fruit substantially increased the expression of carotenoid formation genes and elevated carotenoid content. Importantly, transiently silencing MaEIL9 in banana fruit weakened carotenoid production caused by high temperature. Taken together, these results indicate that high temperature induces carotenoid production in banana fruit, at least in part, through MaEIL9-mediated activation of MaDXR1, MaPDS1, MaZDS1 and MaSPL16 expression.
Collapse
Affiliation(s)
- Lisha Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Danling Cai
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zengxiang Lin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chaojie Wu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Yang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wangjin Lu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xinguo Su
- Guangdong AIB Polytechnic College, Guangzhou 510507, China.
| | - Jianfei Kuang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Liang MH, Xie SR, Chen HH, Jiang JG. DbMADS regulates carotenoid metabolism by repressing two carotenogenic genes in the green alga Dunaliella sp. FACHB-847. J Cell Physiol 2023; 238:1324-1335. [PMID: 37087727 DOI: 10.1002/jcp.31017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 04/24/2023]
Abstract
MADS transcription factors are involved in the regulation of fruit development and carotenoid metabolism in plants. However, whether and how carotenoid accumulation is regulated by algal MADS are largely unknown. In this study, we first used functional complementation to confirm the functional activity of phytoene synthase from the lutein-rich Dunaliella sp. FACHB-847 (DbPSY), the key rate-limiting enzyme in the carotenoid biosynthesis. Promoters of DbPSY and DbLcyB (lycopene β-cyclase) possessed multiple cis-acting elements such as light-, UV-B-, dehydration-, anaerobic-, and salt-responsive elements, W-box, and C-A-rich-G-box (MADS-box). Meanwhile, we isolated one nucleus-localized MADS transcription factor (DbMADS), belonging to type I MADS gene. Three carotenogenic genes, DbPSY, DbLcyB, and DbBCH (β-carotene hydroxylase) genes were upregulated at later stages, which was well correlated with the carotenoid accumulation. In contrast, DbMADS gene was highly expressed at lag phase with low carotenoid accumulation. Yeast one-hybrid assay and dual-luciferase reporter assay demonstrated that DbMADS could directly bind to the promoters of two carotenogenic genes, DbPSY and DbLcyB, and repress their transcriptions. This study suggested that DbMADS may act as a negative regulator of carotenoid biosynthesis by repressing DbPSY and DbLcyB at the lag phase, which provide new insights into the regulatory mechanisms of carotenoid metabolism in Dunaliella.
Collapse
Affiliation(s)
- Ming-Hua Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shan-Rong Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Hao-Hong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
10
|
Sheng O, Yin Z, Huang W, Chen M, Du M, Kong Q, Fernie AR, Yi G, Yan S. Metabolic profiling reveals genotype-associated alterations in carotenoid content during banana postharvest ripening. Food Chem 2023; 403:134380. [DOI: 10.1016/j.foodchem.2022.134380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
|
11
|
Zhu L, Chen L, Wu C, Shan W, Cai D, Lin Z, Wei W, Chen J, Lu W, Kuang J. Methionine oxidation and reduction of the ethylene signaling component MaEIL9 are involved in banana fruit ripening. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:150-166. [PMID: 36103229 DOI: 10.1111/jipb.13363] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The ethylene insensitive 3/ethylene insensitive 3-like (EIN3/EIL) plays an indispensable role in fruit ripening. However, the regulatory mechanism that links post-translational modification of EIN3/EIL to fruit ripening is largely unknown. Here, we studied the expression of 13 MaEIL genes during banana fruit ripening, among which MaEIL9 displayed higher enhancement particularly in the ripening stage. Consistent with its transcript pattern, abundance of MaEIL9 protein gradually increased during the ripening process, with maximal enhancement in the ripening. DNA affinity purification (DAP)-seq analysis revealed that MaEIL9 directly targets a subset of genes related to fruit ripening, such as the starch hydrolytic genes MaAMY3D and MaBAM1. Stably overexpressing MaEIL9 in tomato fruit hastened fruit ripening, whereas transiently silencing this gene in banana fruit retarded the ripening process, supporting a positive role of MaEIL9 in fruit ripening. Moreover, oxidation of methionines (Met-129, Met-130, and Met-282) in MaEIL9 resulted in the loss of its DNA-binding capacity and transcriptional activation activity. Importantly, we identified MaEIL9 as a potential substrate protein of methionine sulfoxide reductase A MaMsrA4, and oxidation of Met-129, Met-130, and Met-282 in MaEIL9 could be restored by MaMsrA4. Collectively, our findings reveal a novel regulatory network controlling banana fruit ripening, which involves MaMsrA4-mediated redox regulation of the ethylene signaling component MaEIL9.
Collapse
Affiliation(s)
- Lisha Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chaojie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Danling Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zengxiang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
12
|
Zhao Y, Duan X, Wang L, Gao G, Xu C, Qi H. Transcription Factor CmNAC34 Regulated CmLCYB-Mediated β-Carotene Accumulation during Oriental Melon Fruit Ripening. Int J Mol Sci 2022; 23:9805. [PMID: 36077205 PMCID: PMC9455964 DOI: 10.3390/ijms23179805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Ripened oriental melon (Cucumis melo) with orange-colored flesh is rich in β-carotene. Lycopene β-cyclase (LCYB) is the synthetic enzyme that directly controls the massive accumulation of β-carotene. However, the regulatory mechanism underlying the CmLCYB-mediated β-carotene accumulation in oriental melon is fairly unknown. Here, we screened and identified a transcription factor, CmNAC34, by combining bioinformatics analysis and yeast one-hybrid screen with CmLCYB promoter. CmNAC34 was located in the nucleus and acted as a transcriptional activator. The expression profile of CmNAC34 was consistent with that of CmLCYB during the fruit ripening. Additionally, the transient overexpression of CmNAC34 in oriental melon fruit promoted the expression of CmLCYB and enhanced β-carotene concentration, while transient silence of CmNAC34 in fruit was an opposite trend, which indicated CmNAC34 could modulate CmLCYB-mediated β-carotene biosynthesis in oriental melon. Finally, the yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), β-glucuronidase (GUS) analysis assay, and luciferase reporter (LUC) assay indicated that CmNAC34 could bind to the promoter of CmLCYB and positively regulated the CmLCYB transcription level. These findings suggested that CmNAC34 acted as an activator to regulate β-carotene accumulation by directly binding the promoter of CmLCYB, which provides new insight into the regulatory mechanism of carotenoid metabolism during the development and ripening of oriental melon.
Collapse
Affiliation(s)
| | | | | | | | - Chuanqiang Xu
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang 110866, China
| | - Hongyan Qi
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang 110866, China
| |
Collapse
|
13
|
Li Z, Wang J, Fu Y, Jing Y, Huang B, Chen Y, Wang Q, Wang XB, Meng C, Yang Q, Xu L. The Musa troglodytarum L. genome provides insights into the mechanism of non-climacteric behaviour and enrichment of carotenoids. BMC Biol 2022; 20:186. [PMID: 36002843 PMCID: PMC9400310 DOI: 10.1186/s12915-022-01391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/15/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Karat (Musa troglodytarum L.) is an autotriploid Fe'i banana of the Australimusa section. Karat was domesticated independently in the Pacific region, and karat fruit are characterized by a pink sap, a deep yellow-orange flesh colour, and an abundance of β-carotene. Karat fruit showed non-climacteric behaviour, with an approximately 215-day bunch filling time. These features make karat a valuable genetic resource for studying the mechanisms underlying fruit development and ripening and carotenoid biosynthesis. RESULTS Here, we report the genome of M. troglodytarum, which has a total length of 603 Mb and contains 37,577 predicted protein-coding genes. After divergence from the most recent common ancestors, M. troglodytarum (T genome) has experienced fusion of ancestral chromosomes 8 and 9 and multiple translocations and inversions, unlike the high synteny with few rearrangements found among M. schizocarpa (S genome), M. acuminata (A genome) and M. balbisiana (B genome). Genome microsynteny analysis showed that the triplication of MtSSUIIs due to chromosome rearrangement may lead to the accumulation of carotenoids and ABA in the fruit. The expression of duplicated MtCCD4s is repressed during ripening, leading to the accumulation of α-carotene, β-carotene and phytoene. Due to a long terminal repeat (LTR)-like fragment insertion upstream of MtERF11, karat cannot produce large amounts of ethylene but can produce ABA during ripening. These lead to non-climacteric behaviour and prolonged shelf-life, which contributes to an enrichment of carotenoids and riboflavin. CONCLUSIONS The high-quality genome of M. troglodytarum revealed the genomic basis of non-climacteric behaviour and enrichment of carotenoids, riboflavin, flavonoids and free galactose and provides valuable resources for further research on banana domestication and breeding and the improvement of nutritional and bioactive qualities.
Collapse
Affiliation(s)
- Zhiying Li
- grid.453499.60000 0000 9835 1415Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China ,Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737 Hainan China ,Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737 Hainan China ,National Gene Bank of Tropical Crops, Danzhou, 571700 Hainan China
| | - Jiabin Wang
- grid.453499.60000 0000 9835 1415Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China ,Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737 Hainan China ,Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737 Hainan China ,National Gene Bank of Tropical Crops, Danzhou, 571700 Hainan China
| | - Yunliu Fu
- grid.453499.60000 0000 9835 1415Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China ,Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737 Hainan China ,Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737 Hainan China ,National Gene Bank of Tropical Crops, Danzhou, 571700 Hainan China
| | - Yonglin Jing
- grid.453499.60000 0000 9835 1415Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China ,Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737 Hainan China ,Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737 Hainan China ,National Gene Bank of Tropical Crops, Danzhou, 571700 Hainan China
| | - Bilan Huang
- grid.453499.60000 0000 9835 1415Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China ,Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737 Hainan China ,Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737 Hainan China ,National Gene Bank of Tropical Crops, Danzhou, 571700 Hainan China
| | - Ying Chen
- grid.428986.90000 0001 0373 6302College of Horticulture and Landscape Architecture, Hainan University, Haikou, 570228 China
| | - Qinglong Wang
- grid.453499.60000 0000 9835 1415Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China
| | - Xiao Bing Wang
- grid.453499.60000 0000 9835 1415Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China ,Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737 Hainan China ,Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737 Hainan China ,National Gene Bank of Tropical Crops, Danzhou, 571700 Hainan China
| | - Chunyang Meng
- grid.453499.60000 0000 9835 1415Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China ,Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737 Hainan China ,Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737 Hainan China ,National Gene Bank of Tropical Crops, Danzhou, 571700 Hainan China
| | - Qingquan Yang
- grid.453499.60000 0000 9835 1415Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China ,Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737 Hainan China ,Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737 Hainan China ,National Gene Bank of Tropical Crops, Danzhou, 571700 Hainan China
| | - Li Xu
- grid.453499.60000 0000 9835 1415Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China ,Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737 Hainan China ,Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737 Hainan China ,National Gene Bank of Tropical Crops, Danzhou, 571700 Hainan China
| |
Collapse
|
14
|
Liu GS, Li HL, Grierson D, Fu DQ. NAC Transcription Factor Family Regulation of Fruit Ripening and Quality: A Review. Cells 2022; 11:cells11030525. [PMID: 35159333 PMCID: PMC8834055 DOI: 10.3390/cells11030525] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/18/2023] Open
Abstract
The NAC transcription factor (TF) family is one of the largest plant-specific TF families and its members are involved in the regulation of many vital biological processes during plant growth and development. Recent studies have found that NAC TFs play important roles during the ripening of fleshy fruits and the development of quality attributes. This review focuses on the advances in our understanding of the function of NAC TFs in different fruits and their involvement in the biosynthesis and signal transduction of plant hormones, fruit textural changes, color transformation, accumulation of flavor compounds, seed development and fruit senescence. We discuss the theoretical basis and potential regulatory models for NAC TFs action and provide a comprehensive view of their multiple roles in modulating different aspects of fruit ripening and quality.
Collapse
Affiliation(s)
- Gang-Shuai Liu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (G.-S.L.); (H.-L.L.)
| | - Hong-Li Li
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (G.-S.L.); (H.-L.L.)
| | - Donald Grierson
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
- Plant Sciences Division, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Da-Qi Fu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (G.-S.L.); (H.-L.L.)
- Correspondence:
| |
Collapse
|
15
|
Mathiazhagan M, Chidambara B, Hunashikatti LR, Ravishankar KV. Genomic Approaches for Improvement of Tropical Fruits: Fruit Quality, Shelf Life and Nutrient Content. Genes (Basel) 2021; 12:1881. [PMID: 34946829 PMCID: PMC8701245 DOI: 10.3390/genes12121881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
The breeding of tropical fruit trees for improving fruit traits is complicated, due to the long juvenile phase, generation cycle, parthenocarpy, polyploidy, polyembryony, heterozygosity and biotic and abiotic factors, as well as a lack of good genomic resources. Many molecular techniques have recently evolved to assist and hasten conventional breeding efforts. Molecular markers linked to fruit development and fruit quality traits such as fruit shape, size, texture, aroma, peel and pulp colour were identified in tropical fruit crops, facilitating Marker-assisted breeding (MAB). An increase in the availability of genome sequences of tropical fruits further aided in the discovery of SNP variants/Indels, QTLs and genes that can ascertain the genetic determinants of fruit characters. Through multi-omics approaches such as genomics, transcriptomics, metabolomics and proteomics, the identification and quantification of transcripts, including non-coding RNAs, involved in sugar metabolism, fruit development and ripening, shelf life, and the biotic and abiotic stress that impacts fruit quality were made possible. Utilizing genomic assisted breeding methods such as genome wide association (GWAS), genomic selection (GS) and genetic modifications using CRISPR/Cas9 and transgenics has paved the way to studying gene function and developing cultivars with desirable fruit traits by overcoming long breeding cycles. Such comprehensive multi-omics approaches related to fruit characters in tropical fruits and their applications in breeding strategies and crop improvement are reviewed, discussed and presented here.
Collapse
Affiliation(s)
| | | | | | - Kundapura V. Ravishankar
- Division of Basic Sciences, ICAR Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, India; (M.M.); (B.C.); (L.R.H.)
| |
Collapse
|
16
|
Liu J, Liu M, Wang J, Zhang J, Miao H, Wang Z, Jia C, Zhang J, Xu B, Jin Z. Transcription factor MaMADS36 plays a central role in regulating banana fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7078-7091. [PMID: 34282447 DOI: 10.1093/jxb/erab341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Bananas are model fruits for studying starch conversion and climactericity. Starch degradation and ripening are two important biological processes that occur concomitantly in banana fruit. Ethylene biosynthesis and postharvest fruit ripening processes, i.e. starch degradation, fruit softening, and sugar accumulation, are highly correlated and thus could be controlled by a common regulatory switch. However, this switch has not been identified. In this study, we transformed red banana (Musa acuminata L.) with sense and anti-sense constructs of the MaMADS36 transcription factor gene (also MuMADS1, Ma05_g18560.1). Analysis of these lines showed that MaMADS36 interacts with 74 other proteins to form a co-expression network and could act as an important switch to regulate ethylene biosynthesis, starch degradation, softening, and sugar accumulation. Among these target genes, musa acuminata beta-amylase 9b (MaBAM9b, Ma05_t07800.1), which encodes a starch degradation enzyme, was selected to further investigate the regulatory mechanism of MaMADS36. Our findings revealed that MaMADS36 directly binds to the CA/T(r)G box of the MaBAM9b promoter to increase MaBAM9b transcription and, in turn, enzyme activity and starch degradation during ripening. These results will further our understanding of the fine regulatory mechanisms of MADS-box transcription factors in regulating fruit ripening, which can be applied to breeding programs to improve fruit shelf-life.
Collapse
Affiliation(s)
- Juhua Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Mengting Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Horticulture, Hainan University, Haikou, China
| | - Jingyi Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jing Zhang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hongxia Miao
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhuo Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Caihong Jia
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianbin Zhang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhiqiang Jin
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
17
|
Yang Y, Jiang M, Feng J, Wu C, Shan W, Kuang J, Chen J, Hu Z, Lu W. Transcriptome analysis of low-temperature-affected ripening revealed MYB transcription factors-mediated regulatory network in banana fruit. Food Res Int 2021; 148:110616. [PMID: 34507760 DOI: 10.1016/j.foodres.2021.110616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Low temperature leads to abnormal ripening and poor quality of the harvested banana fruit, which is an urgent problem limiting the development of industry in China. To comprehensively understand the mechanism underlying low-temperature-affected ripening, we performed comparative RNA-Seq analysis of ethylene-induced ripening of banana fruit after 3 days of pre-storage at 7 °C and 22 °C. A total of 986 differentially expressed genes (DEGs) were identified in both RT-0 d versus RT-3 d, LT-0 d versus LT-3 d, RT-0 d versus LT-0 d and RT-3 d versus LT-3 d, and the RNA-Seq outputs of 15 randomly selective DEGs were verified using qRT-PCR. Among the 986 DEGs obtained in the four groups, 9 MYB genes (MaMYB75/281/219/4/151/156/3/37 and MaMYB3R1) and 32 genes related to carotenoid biosynthesis (MaPSY1/2a), flavor formation (MaLOX6, MaADH7, MaAAT1), sucrose transport (MaSUS2/4), ethylene production (MaSAM1, MaACO9/10/12, MaACS1/12), starch degradation (MaAMY1A/1B, MaPHS1/2, MaMEX2, MapGlcT1) and cell wall degradation (MaPG3/X1, MaPME25/41, MaXTH5/7/22/23/25, MaEXP2/20/A1/A15) were characterized. Combining transcription factor binding site (TFBS) analysis as well as cis-acting element analysis, the regulatory network of low-temperature-affected ripening mediated by MYBs were constructed. The data generated in this study may unravel the transcriptional regulatory network of MYBs associated with low-temperature-affected ripening and provide a solid foundation for future studies.
Collapse
Affiliation(s)
- Yingying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Mengge Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jintao Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chaojie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoyan Hu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Xie X, Yue S, Shi B, Li H, Cui Y, Wang J, Yang P, Li S, Li X, Bian S. Comprehensive Analysis of the SBP Family in Blueberry and Their Regulatory Mechanism Controlling Chlorophyll Accumulation. FRONTIERS IN PLANT SCIENCE 2021; 12:703994. [PMID: 34276754 PMCID: PMC8281205 DOI: 10.3389/fpls.2021.703994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
SQUAMOSA Promoter Binding Protein (SBP) family genes act as central players to regulate plant growth and development with functional redundancy and specificity. Addressing the diversity of the SBP family in crops is of great significance to precisely utilize them to improve agronomic traits. Blueberry is an important economic berry crop. However, the SBP family has not been described in blueberry. In the present study, twenty VcSBP genes were identified through data mining against blueberry transcriptome databases. These VcSBPs could be clustered into eight groups, and the gene structures and motif compositions are divergent among the groups and similar within each group. The VcSBPs were differentially expressed in various tissues. Intriguingly, 10 VcSBPs were highly expressed at green fruit stages and dramatically decreased at the onset of fruit ripening, implying that they are important regulators during early fruit development. Computational analysis showed that 10 VcSBPs were targeted by miR156, and four of them were further verified by degradome sequencing. Moreover, their functional diversity was studied in Arabidopsis. Noticeably, three VcSBPs significantly increased chlorophyll accumulation, and qRT-PCR analysis indicated that VcSBP13a in Arabidopsis enhanced the expression of chlorophyll biosynthetic genes such as AtDVR, AtPORA, AtPORB, AtPORC, and AtCAO. Finally, the targets of VcSBPs were computationally identified in blueberry, and the Y1H assay showed that VcSBP13a could physically bind to the promoter region of the chlorophyll-associated gene VcLHCB1. Our findings provided an overall framework for individually understanding the characteristics and functions of the SBP family in blueberry.
Collapse
Affiliation(s)
- Xin Xie
- College of Plant Science, Jilin University, Changchun, China
| | - Shaokang Yue
- College of Plant Science, Jilin University, Changchun, China
| | - Baosheng Shi
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Hongxue Li
- College of Plant Science, Jilin University, Changchun, China
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON Canada
- Department of Biology, Western University, London, ON, Canada
| | - Jingying Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Pengjie Yang
- College of Plant Science, Jilin University, Changchun, China
| | - Shuchun Li
- Department of Pain, Second Hospital of Jilin University, Changchun, China
| | - Xuyan Li
- College of Plant Science, Jilin University, Changchun, China
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
19
|
Li S, Chen K, Grierson D. Molecular and Hormonal Mechanisms Regulating Fleshy Fruit Ripening. Cells 2021; 10:1136. [PMID: 34066675 PMCID: PMC8151651 DOI: 10.3390/cells10051136] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
This article focuses on the molecular and hormonal mechanisms underlying the control of fleshy fruit ripening and quality. Recent research on tomato shows that ethylene, acting through transcription factors, is responsible for the initiation of tomato ripening. Several other hormones, including abscisic acid (ABA), jasmonic acid (JA) and brassinosteroids (BR), promote ripening by upregulating ethylene biosynthesis genes in different fruits. Changes to histone marks and DNA methylation are associated with the activation of ripening genes and are necessary for ripening initiation. Light, detected by different photoreceptors and operating through ELONGATED HYPOCOTYL 5(HY5), also modulates ripening. Re-evaluation of the roles of 'master regulators' indicates that MADS-RIN, NAC-NOR, Nor-like1 and other MADS and NAC genes, together with ethylene, promote the full expression of genes required for further ethylene synthesis and change in colour, flavour, texture and progression of ripening. Several different types of non-coding RNAs are involved in regulating expression of ripening genes, but further clarification of their diverse mechanisms of action is required. We discuss a model that integrates the main hormonal and genetic regulatory interactions governing the ripening of tomato fruit and consider variations in ripening regulatory circuits that operate in other fruits.
Collapse
Affiliation(s)
- Shan Li
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Donald Grierson
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| |
Collapse
|
20
|
Zhao Z, Liu Z, Mao X. Biotechnological Advances in Lycopene β-Cyclases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11895-11907. [PMID: 33073992 DOI: 10.1021/acs.jafc.0c04814] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lycopene β-cyclase is one of the key enzymes in the biosynthesis of carotenoids, which catalyzes the β-cyclization of both ends of lycopene to produce β-carotene. Lycopene β-cyclases are found in a wide range of sources, mainly plants and microorganisms. Lycopene β-cyclases have been extensively studied for their important catalytic activity, including for use in genetic engineering to modify plants and microorganisms, as a blocking target for lycopene industrial production strains, and for their genetic and physiological effects related to microorganic and plant biological traits. This review of lycopene β-cyclases summarizes the major studies on their basic classification, functional activity, metabolic engineering, and plant science.
Collapse
Affiliation(s)
- Zilong Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
21
|
Gao H, Zhang L, Zhang KL, Yang L, Ma YY, Xu ZQ. Tobacco NtabSPL6-2 can enhance local and systemic resistances of Arabidopsis thaliana to bacterial and fungal pathogens. JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153263. [PMID: 32836021 DOI: 10.1016/j.jplph.2020.153263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
NtabSPL6-2 of Nicotiana tabacum was introduced into Arabidopsis by Agrobacterium-mediated floral-dip method. Compared to wild-type Col-0 plants, the arrangement of cauline leaves in NtabSPL6-2 transgenic plants was converted into opposite from simple and alternate, and the margin of rosette leaves was serrated. NtabSPL6-2 transgenic plants possessed a significantly greater fresh weight. Subcellular localization by fusion with GFP confirmed that the encoded product of NtabSPL6-2 existed in the nucleus. The leaves of NtabSPL6-2 transgenic plants exhibited an enhanced capacity to restrain the bacterial reproduction after infection by Pseudomonas syringae, accompanied by higher expression of the pathogenesis-related gene PR1 in the infiltrated leaves, indicating NtabSPL6-2 could improve the defense response of Arabidopsis to P. syringae at the local sites. Similarly, it was confirmed that NtabSPL6-2 could enhance the systemic acquired resistance of Arabidopsis in response to P. syringae. In addition, the area of necrotic plaque appearing on the transgenic leaves inoculated with Botrytis cinerea was smaller and accompanied by an upregulation of PR1 and PR5, indicating NtabSPL6-2 transgenic leaves were less susceptible to the fungal pathogen. Moreover, there was less accumulation of reactive oxygen species (H2O2 and O2-) and malondialdehyde in the local infected sites of transgenic plants, whereas the wild-type Col-0 plants were more oxidatively injured after infestation by B. cinerea.
Collapse
Affiliation(s)
- Hang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Li Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Kai-Li Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Liu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Ye-Ye Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China.
| |
Collapse
|