1
|
Oladipo EK, Ojo TO, Elegbeleye OE, Bolaji OQ, Oyewole MP, Ogunlana AT, Olalekan EO, Abiodun B, Adediran DA, Obideyi OA, Olufemi SE, Salamatullah AM, Bourhia M, Younous YA, Adelusi TI. Exploring the nuclear proteins, viral capsid protein, and early antigen protein using immunoinformatic and molecular modeling approaches to design a vaccine candidate against Epstein Barr virus. Sci Rep 2024; 14:16798. [PMID: 39039173 PMCID: PMC11263613 DOI: 10.1038/s41598-024-66828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/04/2024] [Indexed: 07/24/2024] Open
Abstract
The available Epstein Barr virus vaccine has tirelessly harnessed the gp350 glycoprotein as its target epitope, but the result has not been preventive. Right here, we designed a global multi-epitope vaccine for EBV; with special attention to making sure all strains and preventive antigens are covered. Using a robust computational vaccine design approach, our proposed vaccine is armed with 6-16 mers linear B-cell epitopes, 4-9 mer CTL epitopes, and 8-15 mer HTL epitopes which are verified to induce interleukin 4, 10 & IFN-gamma. We employed deep computational mining coupled with expert intelligence in designing the vaccine, using human Beta defensin-3-which has been reported to induce the same TLRs as EBV-as the adjuvant. The tendency of the vaccine to cause autoimmune disorder is quenched by the assurance that the construct contains no EBNA-1 homolog. The protein vaccine construct exhibited excellent physicochemical attributes such as Aliphatic index 59.55 and GRAVY - 0.710; and a ProsaWeb Z score of - 3.04. Further computational analysis revealed the vaccine docked favorably with EBV indicted TLR 1, 2, 4 & 9 with satisfactory interaction patterns. With global coverage of 85.75% and the stable molecular dynamics result obtained for the best two interactions, we are optimistic that our nontoxic, non-allergenic multi-epitope vaccine will help to ameliorate the EBV-associated diseases-which include various malignancies, tumors, and cancers-preventively.
Collapse
Affiliation(s)
- Elijah Kolawole Oladipo
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
- Department of Microbiology, Laboratory of Molecular Biology, Immunology and Bioinformatics, Adeleke University, Ede, 232104, Nigeria
| | - Taiwo Ooreoluwa Ojo
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Oluwabamise Emmanuel Elegbeleye
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Olawale Quadri Bolaji
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Moyosoluwa Precious Oyewole
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
- Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria
| | - Abdeen Tunde Ogunlana
- Institute of Advanced Medical Research and Training (IAMRAT), College of Medicine, University of Ibadan, Ibadan, 200005, Nigeria
| | - Emmanuel Obanijesu Olalekan
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Bamidele Abiodun
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Daniel Adewole Adediran
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
| | | | - Seun Elijah Olufemi
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, 11, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier, 34000, France
| | | | - Temitope Isaac Adelusi
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria.
- Department of Surgery, School of Medicine, University of Connecticut Health, Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
2
|
Moharana M, Pattanayak SK, Khan F. Molecular recognition of bio-active triterpenoids from Swertia chirayita towards hepatitis Delta antigen: a mechanism through docking, dynamics simulation, Gibbs free energy landscape. J Biomol Struct Dyn 2023; 41:14651-14664. [PMID: 36856037 DOI: 10.1080/07391102.2023.2184173] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/18/2023] [Indexed: 03/02/2023]
Abstract
Medicinal plants the underpinning of indigenous herbal serve, are the possible source of key compounds for the development of new drugs. Hepatitis D, one of the most widespread infectious diseases associated with global public health issues. Therefore, we aim to screen natural compounds to find out potent inhibitor towards hepatitis delta antigen. Through ADMET investigation, we have screened twenty phytochemicals for this study. Additionally, using molecular docking, these phytochemicals were docked with the HDV protease which signifies the phytochemicals beta-amyrin, chiratenol, episwertenol and swertanone have a significant capability to bind with hepatitis D virus protein. The docking study was further accompanied by analyzes RMSD, RMSF, Rg, SASA, Hbond number, and principal component analysis through 100 ns MD simulations. Based on our principal component analysis, beta-amyrin, chiratenol, episwertenol and swertanone phytochemicals can be a potential drug candidates for inhibition of hepatitis D. The above observation is also supported by our Gibbs free energy landscape study. The potential therapeutic characteristics of the phytochemicals against hepatitis D inhibition offer additional support for the in vitro and in vivo studies in future.
Collapse
Affiliation(s)
- Maheswata Moharana
- Department of Chemistry, National Institute of Technology, Raipur, India
| | | | - Fahmida Khan
- Department of Chemistry, National Institute of Technology, Raipur, India
| |
Collapse
|
3
|
Khan MS, Khan IM, Ahmad SU, Rahman I, Khan MZ, Khan MSZ, Abbas Z, Noreen S, Liu Y. Immunoinformatics design of B and T-cell epitope-based SARS-CoV-2 peptide vaccination. Front Immunol 2023; 13:1001430. [PMID: 36685569 PMCID: PMC9846236 DOI: 10.3389/fimmu.2022.1001430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
SARS-COV-2 is a virulent respiratory virus, first identified in China (Wuhan) at the end of 2019. Scientists and researchers are trying to find any possible solution to this deadly viral disease. Different drug source agents have been identified, including western medicine, natural products, and traditional Chinese medicine. They have the potential to counteract COVID-19. This virus immediately affects the liver and causes a decrease in oxygen levels. In this study, multiple vacciome approaches were employed for designing a multi-epitope subunit vaccine for battling against SARS-COV-2. Vaccine designing, immunogenicity, allergenic, and physico-chemical assessment were performed by using the vacciome approach. The vaccine design is likely to be antigenic and produce potent interactions with ACE2 and NSP3 receptors. The developed vaccine has also been given to in-silico cloning models and immune response predictions. A total number of 12 CTL and 12 HTL antigenic epitopes were predicted from three selected covid-19 virulent proteins (spike protein, nucleocapsid protein, and membrane proteins, respectively) based on C-terminal cleavage and MHC binding scores. These predicted epitopes were amalgamated by AYY and GPGPG linkers, and a β-defensins adjuvant was inserted into the N-terminus of this vaccine. This analysis shows that the recommended vaccine can produce immune responses against SARS-COV-2. Designing and developing of the mentioned vaccine will require further experimental validation.
Collapse
Affiliation(s)
- Muhammad Shehzad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
- Department of Physics, College of Science, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Syed Umair Ahmad
- Department of Bioinformatics Hazara University Mansehra, Mansehra, Pakistan
| | - Ishrat Rahman
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Muhammad Zahoor Khan
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Shah Zeb Khan
- Department of Biotechnology, University of Science and Technology of Bannu, Bannu, Pakistan
- School of Biomedical Science and Biomedical Engineering, Southeast University, Nanjing, China
| | - Zain Abbas
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Shumaila Noreen
- Department of Zoology, Hazara University, Mansehra, Pakistan
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| |
Collapse
|
4
|
Awasthi A, Kumar N, Mishra A, Ravi R, Dalal A, Shankar S, Chandra R. Noscapine-Amino Acid Conjugates Suppress the Progression of Cancer Cells. ACS Pharmacol Transl Sci 2022; 5:1292-1304. [PMID: 36524011 PMCID: PMC9745893 DOI: 10.1021/acsptsci.2c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer deaths globally; 1 in 16 people are diagnosed with lung cancer in their lifetime. Microtubules, a critical cytoskeletal assembly, have an essential role in cell division. Interference with the microtubule assembly leads to genetic instability during mitosis and cancer cell death. Currently, available antimitotic drugs such as vincas and taxanes are limited due to side effects such as alopecia, myelosuppression, and drug resistance. Noscapine, an opium alkaloid, is a tubulin-binding agent and can alter the microtubule assembly, causing cancer cell death. Amino acids are fundamental building blocks for protein synthesis, making them essential for the biosynthesis of cancer cells. However, the ability of amino acids in drug transportation has yet to be exploited in developing noscapine analogues as a potential drug candidate for cancer. Hence, in the present study, we have explored the ninth position of noscapine by introducing a hydroxymethylene group using the Blanc reaction and further coupled it with a series of amino acids to construct five target conjugates in good yields. The synthesized amino acid conjugate molecules were biologically evaluated against the A549 lung cancer cell line, among which the noscapine-tryptophan conjugate showed IC50 = 32 μM, as compared to noscapine alone (IC50 = 73 μM). Morphological changes in cancer cells, cell cycle arrest in the G1 phase, and ethidium bromide/acridine orange staining indicated promising anticancer properties. Molecular docking confirmed strong binding to tubulin, with a score of -41.47 kJ/mol with all 3D coordinates and significant involvement of molecular forces, including the hydrogen bonds and hydrophobic interactions. Molecular dynamics simulations demonstrated a stable binding of noscapine-tryptophan conjugate for a prolonged time (100 ns) with the involvement of free energy through the reaction coordinates analyses, solving the bioavailability of parent noscapine to the body.
Collapse
Affiliation(s)
- Amardeep Awasthi
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Neeraj Kumar
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois60611, United States
| | - Abhijeet Mishra
- Department of Biochemistry, Shivaji College, University of Delhi, Delhi-110027, India
| | - Rangnath Ravi
- Department of Chemistry, Shivaji College, University of Delhi, Delhi-110027, India
| | - Anu Dalal
- Department of Chemistry, Indian Institute of Technology, Delhi, Delhi-110016, India
| | - Saurav Shankar
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi-110007, India
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi-110007, India
- Institute of Nano Medical Sciences, University of Delhi, Delhi-110007, India
| |
Collapse
|
5
|
Cheng P, Xue Y, Wang J, Jia Z, Wang L, Gong W. Evaluation of the consistence between the results of immunoinformatics predictions and real-world animal experiments of a new tuberculosis vaccine MP3RT. Front Cell Infect Microbiol 2022; 12:1047306. [PMID: 36405961 PMCID: PMC9666678 DOI: 10.3389/fcimb.2022.1047306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
Background Our previous study developed a novel peptide-based vaccine, MP3RT, to fight against tuberculosis (TB) infection in a mouse model. However, the consistency between the immunoinformatics predictions and the results of real-world animal experiments on the MP3RT vaccine remains unclear. Method In this study, we predicted the antigenicity, immunogenicity, physicochemical parameters, secondary structure, and tertiary structure of MP3RT using bioinformatics technologies. The immune response properties of the MP3RT vaccine were then predicted using the C-ImmSim server. Finally, humanized mice were used to verify the characteristics of the humoral and cellular immune responses induced by the MP3RT vaccine. Results MP3RT is a non-toxic and non-allergenic vaccine with an antigenicity index of 0.88 and an immunogenicity index of 0.61, respectively. Our results showed that the MP3RT vaccine contained 53.36% α-helix in the secondary structure, and the favored region accounted for 98.22% in the optimized tertiary structure. The binding affinities of the MP3RT vaccine to the human leukocyte antigen (HLA)-DRB1*01:01 allele, toll-like receptor-2 (TLR-2), and TLR-4 receptors were -1234.1 kcal/mol, -1066.4 kcal/mol, and -1250.4 kcal/mol, respectively. The results of the C-ImmSim server showed that the MP3RT vaccine could stimulate T and B cells to produce immune responses, such as high levels of IgM and IgG antibodies, IFN-γ, TNF-α, and IL-2 cytokines. Results from real-world animal experiments showed that the MP3RT vaccine could stimulate the humanized mice to produce high levels of IgG and IgG2a antibodies and IFN-γ+ T lymphocytes. Furthermore, the levels of IFN-γ, IL-2, and IL-6 cytokines in mice immunized with the MP3RT vaccine were significantly higher than those in the control group. Conclusion MP3RT is a highly antigenic and immunogenic potential vaccine that can effectively induce Th1-type immune responses in silico analysis and animal experiments. This study lays the foundation for evaluating the value of computational tools and immunoinformatic techniques in reverse vaccinology research.
Collapse
Affiliation(s)
- Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou, Hebei, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Zaixing Jia
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, Hebei, China
| | - Liang Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
In Silico Studies on Zinc Oxide Based Nanostructured Oil Carriers with Seed Extracts of Nigella sativa and Pimpinella anisum as Potential Inhibitors of 3CL Protease of SARS-CoV-2. Molecules 2022; 27:molecules27134301. [PMID: 35807545 PMCID: PMC9268682 DOI: 10.3390/molecules27134301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Coming into the second year of the pandemic, the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants continue to be a serious health hazard globally. A surge in the omicron wave, despite the discovery of the vaccines, has shifted the attention of research towards the discovery and use of bioactive compounds, being potential inhibitors of the viral structural proteins. The present study aimed at the green synthesis of zinc oxide (ZnO) nanoparticles with seed extracts of Nigella sativa and Pimpinella anisum—loaded nanostructured oil carriers (NLC)—using a mixture of olive and black seed essential oils. The synthesized ZnO NLC were extensively characterized. In addition, the constituent compounds in ZnO NLC were investigated as a potential inhibitor for the SARS-CoV-2 main protease (3CLpro or Mpro) where 27 bioactive constituents, along with ZnO in the nanostructure, were subjected to molecular docking studies. The resultant high-score compounds were further validated by molecular dynamics simulation. The study optimized the compounds dithymoquinone, δ-hederin, oleuropein, and zinc oxide with high docking energy scores (ranging from −7.9 to −9.9 kcal/mol). The RMSD and RMSF data that ensued also mirrored these results for the stability of proteins and ligands. RMSD and RMSF data showed no conformational change in the protein during the MD simulation. Histograms of every simulation trajectory explained the ligand properties and ligand–protein contacts. Nevertheless, further experimental investigations and validation of the selected candidates are imperative to take forward the applicability of the nanostructure as a potent inhibitor of COVID-19 (Coronavirus Disease 2019) for clinical trials.
Collapse
|
7
|
Designing of a Novel Multi-Antigenic Epitope-Based Vaccine against E. hormaechei: An Intergraded Reverse Vaccinology and Immunoinformatics Approach. Vaccines (Basel) 2022; 10:vaccines10050665. [PMID: 35632421 PMCID: PMC9143018 DOI: 10.3390/vaccines10050665] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/14/2022] Open
Abstract
Enterobacter hormaechei is involved in multiple hospital-associated infections and is resistant to beta-lactam and tetracycline antibiotics. Due to emerging antibiotics resistance in E. hormaechei and lack of licensed vaccine availability, efforts are required to overcome the antibiotics crisis. In the current research study, a multi-epitope-based vaccine against E. hormaechei was designed using reverse vaccinology and immunoinformatic approaches. A total number of 50 strains were analyzed from which the core proteome was extracted. One extracellular (curlin minor subunit CsgB) and two periplasmic membrane proteins (flagellar basal-body rod protein (FlgF) and flagellar basal body P-ring protein (FlgI) were prioritized for B and T-cell epitope prediction. Only three filtered TPGKMDYTS, GADMTPGKM and RLSAESQAT epitopes were used when designing the vaccine construct. The epitopes were linked via GPGPG linkers and EAAAK linker-linked cholera toxin B-subunit adjuvant was used to enhance the immune stimulation efficacy of the vaccine. Docking studies of the vaccine construct with immune cell receptors revealed better interactions, vital for generating proper immune reactions. Docked complexes of vaccine with MHC-I, MHC-II and Tool-like receptor 4 (TLR-4) reported the lowest binding energy of −594.1 kcal/mol, −706.7 kcal/mol, −787.2 kcal/mol, respectively, and were further subjected to molecular dynamic simulations. Net binding free energy calculations also confirmed that the designed vaccine has a strong binding affinity for immune receptors and thus could be a good vaccine candidate for future experimental investigations.
Collapse
|
8
|
Kumar N, Awasthi A, Kumari A, Sood D, Jain P, Singh T, Sharma N, Grover A, Chandra R. Antitussive noscapine and antiviral drug conjugates as arsenal against COVID-19: a comprehensive chemoinformatics analysis. J Biomol Struct Dyn 2022; 40:101-116. [PMID: 32815796 PMCID: PMC7484584 DOI: 10.1080/07391102.2020.1808072] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
Coronavirus pandemic has caused a vast number of deaths worldwide. Thus creating an urgent need to develop effective counteragents against novel coronavirus disease (COVID-19). Many antiviral drugs have been repurposed for treatment but implicated minimal recovery, which further advanced the need for clearer insights and innovation to derive effective therapeutics. Strategically, Noscapine, an approved antitussive drug with positive effects on lung linings may show favorable outcomes synergistically with antiviral drugs in trials. Hence, we have theoretically examined the combinatorial drug therapy by culminating the existing experimental results with in silico analyses. We employed the antitussive noscapine in conjugation with antiviral drugs (Chloroquine, Umifenovir, Hydroxychloroquine, Favlplravir and Galidesivir). We found that Noscapine-Hydroxychloroquine (Nos-Hcq) conjugate has strong binding affinity for the main protease (Mpro) of SARS-CoV-2, which performs key biological function in virus infection and progression. Nos-Hcq was analyzed through molecular dynamics simulation. The MD simulation for 100 ns affirmed the stable binding of conjugation unprecedentedly through RMSD and radius of gyration plots along with critical reaction coordinate binding free energy profile. Also, dynamical residue cross-correlation map with principal component analysis depicted the stable binding of Nos-Hcq conjugate to Mpro domains with optimal secondary structure statistics of complex dynamics. Also, we reveal the drugs with stable binding to major domains of Mpro can significantly improve the work profile of reaction coordinates, drug accession and inhibitory regulation of Mpro. The designed combinatorial therapy paves way for further prioritized in vitro and in vivo investigations for drug with robust binding against Mpro of SARS-CoV-2.
Collapse
Affiliation(s)
- Neeraj Kumar
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Amardeep Awasthi
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Anchala Kumari
- School of Biotechnology, Jawaharlal Nehru University, Delhi, India
| | - Damini Sood
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Pallavi Jain
- Department of Chemistry, SRM-IST, NCR Campus, Ghaziabad, India
| | - Taru Singh
- Microbiology, ICMR-National Institute of Malaria Research, University College of Medical Sciences, New Delhi, India
| | - Neera Sharma
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, Delhi, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
9
|
Mia MM, Hasan M, Hasan MM, Khan SS, Rahman MN, Ahmed S, Basak A, Sakib MN, Banik S. Multi-epitope based subunit vaccine construction against Banna virus targeting on two outer proteins (VP4 and VP9): A computational approach. INFECTION GENETICS AND EVOLUTION 2021; 95:105076. [PMID: 34500093 DOI: 10.1016/j.meegid.2021.105076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022]
Abstract
Recently, RNA viruses have gained a mammoth concern for causing various outbreaks, and due to pandemics, they are acquiring additional attention throughout the world. An emerging RNA as well as vector-borne Banna Virus (BAV) is a human pathogen resulting in encephalitis, fever, headache, muscle aches, and severe coma. Besides human, pathogenic BAV was also detected from pigs, cattle, ticks, midges, and mosquitoes in Indonesia, China, and Vietnam. Due to high mutation tendency and dearth of a species barrier, this virus will consider as a significant threat in the near future throughout the planet, particularly in Africa. Despite of severe human case fatalities in several countries, there are no specific therapeutics, available vaccines, and other preventive measures against BAV. Thus, to find out the effective therapeutics and preventive strategies are crying exigency. In the present study, a unique multi-epitope-based peptide vaccine candidate is constructed using bioinformatics' tools that efficiently instigate immune cells for generating BAV antibodies. The potential vaccine candidates were developed using both T and B -cell epitopes. UniprotKB database was used to retrieve of two outer proteins (VP9 and VP4), and homologous sequences of BAV taxid: 7763, 649,604, 77,763, and 8453 were searched by NCBI BLAST. These serotypes are the most closely associated with the disease. Then combining the best-selected epitopes in various combinations with different adjuvants, three distinct vaccine candidates were formed. The validity tests were performed for the screened vaccine candidate regarding stability, allergenicity, and antigenicity parameters. Moreover, molecular dynamic simulations of the selected vaccine with TLR-8 immune receptor confirmed the stability of the binding pose and showed a significant response to immune cells. Thus, the results established that the designed chimeric peptide vaccine could enhance the immune response against BAV.
Collapse
Affiliation(s)
- Md Mukthar Mia
- Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh; Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh..
| | - Mahamudul Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh..
| | - Md Mahadi Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Sumaya Shargin Khan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mohammad Nahian Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Shakil Ahmed
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Ankita Basak
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md Nazmuj Sakib
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Shrabonti Banik
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
10
|
In silico designing of vaccine candidate against Clostridium difficile. Sci Rep 2021; 11:14215. [PMID: 34244557 PMCID: PMC8271013 DOI: 10.1038/s41598-021-93305-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Clostridium difficile is a spore-forming gram-positive bacterium, recognized as the primary cause of antibiotic-associated nosocomial diarrhoea. Clostridium difficile infection (CDI) has emerged as a major health-associated infection with increased incidence and hospitalization over the years with high mortality rates. Contamination and infection occur after ingestion of vegetative spores, which germinate in the gastro-intestinal tract. The surface layer protein and flagellar proteins are responsible for the bacterial colonization while the spore coat protein, is associated with spore colonization. Both these factors are the main concern of the recurrence of CDI in hospitalized patients. In this study, the CotE, SlpA and FliC proteins are chosen to form a multivalent, multi-epitopic, chimeric vaccine candidate using the immunoinformatics approach. The overall reliability of the candidate vaccine was validated in silico and the molecular dynamics simulation verified the stability of the vaccine designed. Docking studies showed stable vaccine interactions with Toll‐Like Receptors of innate immune cells and MHC receptors. In silico codon optimization of the vaccine and its insertion in the cloning vector indicates a competent expression of the modelled vaccine in E. coli expression system. An in silico immune simulation system evaluated the effectiveness of the candidate vaccine to trigger a protective immune response.
Collapse
|
11
|
Jain A, Prajapati SK, Tripathi M, Raichur AM, Kanwar JR. Exploring the room for repurposed hydroxychloroquine to impede COVID-19: toxicities and multipronged combination approaches with pharmaceutical insights. Expert Rev Clin Pharmacol 2021; 14:715-734. [PMID: 33769888 DOI: 10.1080/17512433.2021.1909473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: SARS-CoV-2 has fatally affected the whole world with millions of deaths. Amidst the dilemma of a breakthrough in vaccine development, hydroxychloroquine (HCQ) was looked upon as a prospective repurposed candidate. It has confronted numerous controversies in the past few months as a chemoprophylactic and treatment option for COVID-19. Recently, it has been withdrawn by the World Health Organization for its use in an ongoing pandemic. However, its benefit/risk ratio regarding its use in COVID-19 disease remains poorly justified. An extensive literature search was done using Scopus, PubMed, Google Scholar, www.cdc.gov, www.fda.gov, and who.int.Areas covered: Toxicity vexations of HCQ; pharmaceutical perspectives on new advances in drug delivery approaches; computational modeling (PBPK and PD modeling) overtures; multipronged combination approaches for enhanced synergism with antiviral and anti-inflammatory agents; immuno-boosting effects.Expert commentary: Harnessing the multipronged pharmaceutical perspectives will optimistically help the researchers, scientists, biotech, and pharmaceutical companies to bring new horizons in the safe and efficacious utilization of HCQ alone or in combination with remdesivir and immunomodulatory molecules like bovine lactoferrin in a fight against COVID-19. Combinational therapies with free forms or nanomedicine based targeted approaches can act synergistically to boost host immunity and stop SARS-CoV-2 replication and invasion to impede the infection.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Materials Engineering, Indian Institute of Science, Bangalore - Karnataka, India
| | - Shiv Kumar Prajapati
- Department of Pharmaceutical Sciences, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, Uttar Pradesh, India
| | - Madhavi Tripathi
- Department of Materials Engineering, Indian Institute of Science, Bangalore - Karnataka, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bangalore - Karnataka, India
| | - Jagat R Kanwar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, Madhya Pradesh, India
| |
Collapse
|
12
|
Mugunthan SP, Harish MC. Multi-epitope-Based Vaccine Designed by Targeting Cytoadherence Proteins of Mycoplasma gallisepticum. ACS OMEGA 2021; 6:13742-13755. [PMID: 34095666 PMCID: PMC8173551 DOI: 10.1021/acsomega.1c01032] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/04/2021] [Indexed: 05/18/2023]
Abstract
Mycoplasma gallisepticum causes chronic respiratory disease in chickens leading to large economic losses in the poultry industry, and the impacts remain to be a great challenge for a longer period. Among the other approaches, a vaccine targeting the adhesion proteins of M. gallisepticum would be a promising candidate in controlling the infection. Thus, the present study is aimed to design a multi-epitope vaccine candidate using cytoadhesion proteins of M. gallisepticum through an advanced immunoinformatics approach. As a result, the multi-epitope vaccine was constructed, which comprised potential T-cell and B-cell binding epitopes with appropriate adjuvants. The designed multi-epitope vaccine represented high antigenicity with viable physiochemical properties. The prospective three-dimensional structure of the epitope was predicted, refined, and validated. The molecular docking analysis of multi-epitope vaccine candidates with the chicken Toll-like receptor-5 predicted effective binding. Furthermore, codon optimization and in silico cloning ensured high expression. Thus, the present finding indicates that the engineered multi-epitope vaccine is structurally stable and can induce a strong immune response. Furthermore, the multi-epitope vaccine is suggested to be a suitable vaccine candidate for the M. gallisepticum infection due to its effective binding capacity and precise specificity.
Collapse
Affiliation(s)
- Susithra Priyadarshni Mugunthan
- Plant Genetic Engineering and Molecular Farming Lab, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| | - Mani Chandra Harish
- Plant Genetic Engineering and Molecular Farming Lab, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| |
Collapse
|
13
|
Obaidullah AJ, Alanazi MM, Alsaif NA, Albassam H, Almehizia AA, Alqahtani AM, Mahmud S, Sami SA, Emran TB. Immunoinformatics-guided design of a multi-epitope vaccine based on the structural proteins of severe acute respiratory syndrome coronavirus 2. RSC Adv 2021; 11:18103-18121. [PMID: 35480208 PMCID: PMC9033181 DOI: 10.1039/d1ra02885e] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in a contagious respiratory tract infection that has become a global burden since the end of 2019. Notably, fewer patients infected with SARS-CoV-2 progress from acute disease onset to death compared with the progression rate associated with two other coronaviruses, SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Several research organizations and pharmaceutical industries have attempted to develop successful vaccine candidates for the prevention of COVID-19. However, increasing evidence indicates that the SARS-CoV-2 genome undergoes frequent mutation; thus, an adequate analysis of the viral strain remains necessary to construct effective vaccines. The current study attempted to design a multi-epitope vaccine by utilizing an approach based on the SARS-CoV-2 structural proteins. We predicted the antigenic T- and B-lymphocyte responses to four structural proteins after screening all structural proteins according to specific characteristics. The predicted epitopes were combined using suitable adjuvants and linkers, and a secondary structure profile indicated that the vaccine shared similar properties with the native protein. Importantly, the molecular docking analysis and molecular dynamics simulations revealed that the constructed vaccine possessed a high affinity for toll-like receptor 4 (TLR4). In addition, multiple descriptors were obtained from the simulation trajectories, including the root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), solvent-accessible surface area (SASA), and radius of gyration (R g), demonstrating the rigid nature and inflexibility of the vaccine and receptor molecules. In addition, codon optimization, based on Escherichia coli K12, was used to determine the GC content and the codon adaptation index (CAI) value, which further followed for the incorporation into the cloning vector pET28+(a). Collectively, these findings suggested that the constructed vaccine could be used to modulate the immune reaction against SARS-CoV-2.
Collapse
Affiliation(s)
- Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Hussam Albassam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University Abha 62529 Saudi Arabia
| | - Shafi Mahmud
- Microbiology Laboratory, Bioinformatics Division, Department of Genetic Engineering and Biotechnology, University of Rajshahi Rajshahi 6205 Bangladesh
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong Chittagong 4331 Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh Chittagong 4381 Bangladesh
| |
Collapse
|
14
|
Click triazole as a linker for drug repurposing against SARs-CoV-2: A greener approach in race to find COVID-19 therapeutic. CURRENT RESEARCH IN GREEN AND SUSTAINABLE CHEMISTRY 2021; 4. [PMCID: PMC7874918 DOI: 10.1016/j.crgsc.2021.100064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
WHO holding the hands of the scientific commune and trying to repurpose the drugs against the SARS-CoV-2. The robust scientific data has illustrated the probable mechanistic path of SARS-CoV-2 entry and action in damaging the cells. Which further has demonstrated Hydroxychloroquine (HCQ; antimalarial drug) as promising drug therapeutic; apart from certain setbacks to be an excellent agent in treating COVID-19. In the present study, we have explored the derivatives of HCQ, conjugated with bioactive agents by the virtue of sustainably modified clicked triazole approach as potential Mpro enzyme inhibitors. In results, we found the chloroquinetrithaizone has strong binding affinity for the Mpro enzyme of SARS CoV-2. We also found the stable binding of CQ-TrOne conjugate with Mpro by MD simulation studies through RMSD, RMSF and Rg calculations. Moreover, in conjunction with critical reaction coordinate outcomes, binding MMGB/PB energy profile depicted the efficient binding affinity towards Mpro. Also, DFT analyses illustrated the stability of the repurposed drug under study. These significant outcomes have shown high potency of compounds and can be further assessed through in vitro and in vivo assays to develop the effective drug against COVID-19.
Collapse
|
15
|
Alom MW, Shehab MN, Sujon KM, Akter F. Exploring E, NS3, and NS5 proteins to design a novel multi-epitope vaccine candidate against West Nile Virus: An in-silico approach. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
16
|
Singh N, Rai SN, Singh V, Singh MP. Molecular characterization, pathogen-host interaction pathway and in silico approaches for vaccine design against COVID-19. J Chem Neuroanat 2020; 110:101874. [PMID: 33091590 PMCID: PMC7571424 DOI: 10.1016/j.jchemneu.2020.101874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
COVID-19 has forsaken the world because of extremely high infection rates and high mortality rates. At present we have neither medicine nor vaccine to prevent this pandemic. Lockdowns, curfews, isolations, quarantines, and social distancing are the only ways to mitigate their infection. This is badly affecting the mental health of people. Hence, there is an urgent need to address this issue. Coronavirus disease 2019 (COVID-19) is caused by a novel Betacorona virus named SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) which has emerged in the city of Wuhan in China and declared a pandemic by WHO since it affected almost all the countries the world, infected 24,182,030 people and caused 825,798 death as per data are compiled from John Hopkins University (JHU). The genome of SARS-CoV-2 has a single-stranded positive (+) sense RNA of ∼30 kb nucleotides. Phylogenetic analysis reveals that SARS-CoV-2 shares the highest nucleotide sequence similarity (∼79 %) with SARS-CoV. Envelope and nucleocapsids are two evolutionary conserved regions of SARS-CoV-2 having a sequence identity of about 96 % and 89.6 %, respectively as compared to SARS-CoV. The characterization of SARS-CoV-2 is based on polymerase chain reaction (PCR) and metagenomic next-generation sequencing. Transmission of this virus in the human occurs through the respiratory tract and decreases the respiration efficiency of lungs. Humans are generally susceptible to SARS-CoV-2 with an incubation period of 2-14 days. The virus first infects the lower airway and bind with angiotensin-converting enzyme 2 (ACE2) of alveolar epithelial cells. Due to the unavailability of drugs or vaccines, it is very urgent to design potential vaccines or drugs for COVID-19. Reverse vaccinology and immunoinformatic play an important role in designing potential vaccines against SARS-CoV-2. The suitable vaccine selects for SARS-CoV-2 based on binding energy between the target protein and the designed vaccine. The stability and activity of the designed vaccine can be estimated by using molecular docking and dynamic simulation approaches. This review mainly focused on the brief up to date information about COVID-19, molecular characterization, pathogen-host interaction pathways involved during COVID-19 infection. It also covers potential vaccine design against COVID-19 by using various computational approaches. SARS-CoV-2 enters brain tissue through the different pathway and harm human's brain and causes severe neurological disruption.
Collapse
Affiliation(s)
- Nidhi Singh
- Centre of Bioinformatics, University of Allahabad, Prayagraj, 211002, India
| | - Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002, India
| | - Veer Singh
- School of Biochemical Engineering, IIT (BHU) Varanasi, 221005, India
| | - Mohan P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
17
|
Kumar N, Sood D, Chandra R. Vaccine Formulation and Optimization for Human Herpes Virus-5 through an Immunoinformatics Framework. ACS Pharmacol Transl Sci 2020; 3:1318-1329. [PMID: 33344905 DOI: 10.1021/acsptsci.0c00139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Indexed: 12/12/2022]
Abstract
In the current situation, the importance of vaccines for viral diseases has become the need of the hour. The scientific community in the field of virology has taken it upon themselves to develop vaccines for viral infections before an epidemic or pandemic situation arises. Human herpes virus-5 is an emerging situation that has alarming cases with major health concerns, including congenital impairments and infections leading to cancer states. Vaccination is the route most likely to succeed in the battleground with viral infections and consequences. Hence in the present manuscript, we have formulated the multiepitope subunit vaccine and optimized it with the advanced computational immunological framework. As a result, we report the subunit vaccine for HHV-5, comprised of promiscuous cytotoxic T-lymphocytes epitopes, helper T-lymphocytes, and B-cell epitopes engineered with putative adjuvants to ensure the strong immune response. The formulated subunit vaccine depicted high antigenicity and immunogenicity along with sustainable physicochemical characteristics. Molecular dynamics simulation analyses revealed the strong binding of the vaccine with MHC receptors (MHC-1 and MHC-2) and the virus progression specific membrane receptor TLR2 for a 100 ns MD simulation run. The interacting trajectory analysis of the vaccine showed stable binding with minimal deviations through RMSD, RMSF, and secondary structure confinement plot analyses for a long span of 100 ns. Interestingly, the vaccine showed robust immune response statistics for a prolonged time with evoking T-cell and B-cell populations with other vital players of the immune system, through the machine learning-based immune simulation approach. This study paved the way to a multiepitope vaccine for HHV-5 employing the immunoinformatics networks.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Damini Sood
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
18
|
Mechanistic interaction of triflate based noscapine ionic liquid with BSA: Spectroscopic and chemoinformatics approaches. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113695] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Kumar N, Sood D, Chandra R. Design and optimization of a subunit vaccine targeting COVID-19 molecular shreds using an immunoinformatics framework. RSC Adv 2020; 10:35856-35872. [PMID: 35517103 PMCID: PMC9056885 DOI: 10.1039/d0ra06849g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
COVID-19 has been declared as a global health emergency and exposed the world to a deadly virus, which has dramatically changed the lives of humans for an unknown period of time. In the battleground with the virus, we have employed an immunoinformatics framework to design a robust vaccine as an insurance plan for the future. The pathogenic sequence with cryptic epitope taken from patients in Wuhan, China, was harnessed to design a promiscuous cytotoxic T-lymphocyte, helper T-lymphocyte, and B-cell epitope based subunit vaccine, engineered with adjuvants and conformational linkers. The reported vaccine has high antigenicity and immunogenicity profiles with potential TAP affinity, which ensures elevated antigen processing capability. It has strong binding with major histocompatibility complex (MHC) receptors (MHC-1 and MHC-2) and virus-specific membrane receptor TLR-2, with scores of -1010.7, -1035.7, and -1076.3 kcal mol-1, respectively. Molecular dynamics simulation analysis was used to assess the stable binding with TLR-2 with minimal atomic motions through a deformation plot, covariance matrix, and elastic network. Importantly, an in silico immunization assay showed the reliable elicitation of key players in terms of immune cells together with memory cells to evoke adaptive immune responses upon administration of the construct. In view of favorable outcomes, we also propose a plausible vaccine mechanism to elicit an immune response to fight coronavirus.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Delhi Delhi 110007 India
| | - Damini Sood
- Department of Chemistry, University of Delhi Delhi 110007 India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi Delhi 110007 India
| |
Collapse
|
20
|
Kumar N, Sood D, van der Spek PJ, Sharma HS, Chandra R. Molecular Binding Mechanism and Pharmacology Comparative Analysis of Noscapine for Repurposing against SARS-CoV-2 Protease. J Proteome Res 2020; 19:4678-4689. [PMID: 32786685 DOI: 10.1021/acs.jproteome.0c00367] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Originating in the city of Wuhan in China in December 2019, COVID-19 has emerged now as a global health emergency with a high number of deaths worldwide. COVID-19 is caused by a novel coronavirus, referred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in pandemic conditions around the globe. We are in the battleground to fight against the virus by rapidly developing therapeutic strategies in tackling SARS-CoV-2 and saving human lives from COVID-19. Scientists are evaluating several known drugs either for the pathogen or the host; however, many of them are reported to be associated with side effects. In the present study, we report the molecular binding mechanisms of the natural alkaloid, noscapine, for repurposing against the main protease of SARS-CoV-2, a key enzyme involved in its reproduction. We performed the molecular dynamics (MD) simulation in an explicit solvent to investigate the molecular mechanisms of noscapine for stable binding and conformational changes to the main protease (Mpro) of SARS-CoV-2. The drug repurposing study revealed the high potential of noscapine and proximal binding to the Mpro enzyme in a comparative binding pattern analyzed with chloroquine, ribavirin, and favipiravir. Noscapine binds closely to binding pocket-3 of the Mpro enzyme and depicted stable binding with RMSD 0.1-1.9 Å and RMSF profile peak conformational fluctuations at 202-306 residues, and a Rg score ranging from 21.9 to 22.4 Å. The MM/PB (GB) SA calculation landscape revealed the most significant contribution in terms of binding energy with ΔPB -19.08 and ΔGB -27.17 kcal/mol. The electrostatic energy distribution in MM energy was obtained to be -71.16 kcal/mol and depicted high free energy decomposition (electrostatic energy) at 155-306 residues (binding pocket-3) of Mpro by a MM force field. Moreover, the dynamical residue cross-correlation map also stated that the high pairwise correlation occurred at binding residues 200-306 of the Mpro enzyme (binding pocket-3) with noscapine. Principal component analysis depicted the enhanced movement of protein atoms with a high number of static hydrogen bonds. The obtained binding results of noscapine were also well correlated with the pharmacokinetic parameters of antiviral drugs.
Collapse
Affiliation(s)
- Neeraj Kumar
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Damini Sood
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Peter J van der Spek
- Division of Clinical Bioinformatics, Department of Pathology, Erasmus MC, University Medical Center, 3015GD Rotterdam, The Netherlands.,Erasmus Center for Data Analysis (ECDA), Rotterdam, The Netherlands
| | - Hari S Sharma
- Division of Clinical Bioinformatics, Department of Pathology, Erasmus MC, University Medical Center, 3015GD Rotterdam, The Netherlands.,Erasmus Center for Data Analysis (ECDA), Rotterdam, The Netherlands
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
21
|
Kar T, Narsaria U, Basak S, Deb D, Castiglione F, Mueller DM, Srivastava AP. A candidate multi-epitope vaccine against SARS-CoV-2. Sci Rep 2020; 10:10895. [PMID: 32616763 PMCID: PMC7331818 DOI: 10.1038/s41598-020-67749-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
In the past two decades, 7 coronaviruses have infected the human population, with two major outbreaks caused by SARS-CoV and MERS-CoV in the year 2002 and 2012, respectively. Currently, the entire world is facing a pandemic of another coronavirus, SARS-CoV-2, with a high fatality rate. The spike glycoprotein of SARS-CoV-2 mediates entry of virus into the host cell and is one of the most important antigenic determinants, making it a potential candidate for a vaccine. In this study, we have computationally designed a multi-epitope vaccine using spike glycoprotein of SARS-CoV-2. The overall quality of the candidate vaccine was validated in silico and Molecular Dynamics Simulation confirmed the stability of the designed vaccine. Docking studies revealed stable interactions of the vaccine with Toll-Like Receptors and MHC Receptors. The in silico cloning and codon optimization supported the proficient expression of the designed vaccine in E. coli expression system. The efficiency of the candidate vaccine to trigger an effective immune response was assessed by an in silico immune simulation. The computational analyses suggest that the designed multi-epitope vaccine is structurally stable which can induce specific immune responses and thus, can be a potential vaccine candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Tamalika Kar
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Utkarsh Narsaria
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Srijita Basak
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Debashrito Deb
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Filippo Castiglione
- Institute for Applied Computing, National Research Council of Italy, Via dei Taurini, Rome, Italy
| | - David M Mueller
- Center for Genetic Diseases, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | - Anurag P Srivastava
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India.
| |
Collapse
|
22
|
De Vita S, Chini MG, Lauro G, Bifulco G. Accelerating the repurposing of FDA-approved drugs against coronavirus disease-19 (COVID-19). RSC Adv 2020; 10:40867-40875. [PMID: 35519188 PMCID: PMC9057693 DOI: 10.1039/d0ra09010g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
The recent release of the main protein structures belonging to SARS CoV-2, responsible for the coronavirus disease-19 (COVID-19), strongly pushed for identifying valuable drug treatments. With this aim, we show a repurposing study on FDA-approved drugs applying a new computational protocol and introducing a novel parameter called IVSratio. Starting with a virtual screening against three SARS CoV-2 targets (main protease, papain-like protease, spike protein), the top-ranked molecules were reassessed combining the Inverse Virtual Screening novel approach and MM-GBSA calculations. Applying this protocol, a list of drugs was identified against the three investigated targets. Also, the top-ranked selected compounds on each target (rutin vs. main protease, velpatasvir vs. papain-like protease, lomitapide vs. spike protein) were further tested with molecular dynamics simulations to confirm the promising binding modes, obtaining encouraging results such as high stability of the complex during the simulation and a good protein–ligand interaction network involving some important residues of each target. Moreover, the recent outcomes highlighting the inhibitory activity of quercetin, a natural compound strictly related to rutin, on the SARS-CoV-2 main protease, strengthened the applicability of the proposed workflow. New computational protocol applied to a repurposing campaign against SARS-CoV-2.![]()
Collapse
Affiliation(s)
- Simona De Vita
- Department of Pharmacy
- University of Salerno
- Fisciano 84084
- Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory
- University of Molise
- 86090 Pesche (IS)
- Italy
| | - Gianluigi Lauro
- Department of Pharmacy
- University of Salerno
- Fisciano 84084
- Italy
| | | |
Collapse
|