1
|
Liashuk OS, Fedinchyk A, Melnykov KP, Herasymchuk M, Alieksieieva D, Lesyk D, Bas YP, Keda TY, Yatsymyrskiy AV, Holota Y, Borysko P, Yarmolchuk VS, Grygorenko OO. 3,3-Difluorooxetane-A Versatile Functional Group for Bioisosteric Replacements in Drug Discovery. Chemistry 2024; 30:e202403277. [PMID: 39300786 DOI: 10.1002/chem.202403277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
Functional group (FG) is one of the cornerstone concepts in organic chemistry and related areas. The wide spread of bioisosterism ideas in medicinal chemistry and beyond caused a striking rise in demand for novel FGs with a defined impact on the developed compound properties. In this work, the evaluation of the 3,3-difluorooxetane unit (3,3-diFox) as a functional group for bioisosteric replacements is disclosed. A comprehensive experimental study (including multigram building block synthesis, quantification of steric and electronic properties, measurements of pKa, LogP, chemical stability, and biological evaluation of the 3,3-diFox-derived bioisostere of a drug candidate) revealed a prominent behavior of the 3,3-diFox fragment as a versatile substituent for early drug discovery programs.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Anastasiya Fedinchyk
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Kostiantyn P Melnykov
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Maksym Herasymchuk
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | | | - Dmytro Lesyk
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Yuliia P Bas
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Tetiana Ye Keda
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Andriy V Yatsymyrskiy
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Yuliia Holota
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Petro Borysko
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Volodymyr S Yarmolchuk
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| |
Collapse
|
2
|
Wu S, Yang Y, Lian X, Zhang F, Hu C, Tsien J, Chen Z, Sun Y, Vaidya A, Kim M, Sung YC, Xiao Y, Bian X, Wang X, Tian Z, Guerrero E, Robinson J, Basak P, Qin T, Siegwart DJ. Isosteric 3D Bicyclo[1.1.1]Pentane (BCP) Core-Based Lipids for mRNA Delivery and CRISPR/Cas Gene Editing. J Am Chem Soc 2024; 146:34733-34742. [PMID: 39655603 DOI: 10.1021/jacs.4c13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Lipid nanoparticles (LNPs) are an essential component of messenger RNA (mRNA) vaccines and genome editing therapeutics. Ionizable amino lipids, which play the most crucial role in enabling mRNA to overcome delivery barriers, have, to date, been restricted to two-dimensional (2D) architectures. Inspired by improved physicochemical properties resulting from the incorporation of three-dimensionality (3D) into small-molecule drugs, we report the creation of 3D ionizable lipid designs through the introduction of bicyclo[1.1.1]pentane (BCP) core motifs. BCP-based lipids enabled efficient in vivo mRNA delivery to the liver and spleen with significantly greater performance over 2D benzene- and cyclohexane-based analogues. Notably, lead BCP-NC2-C12 LNPs mediated ∼90% reduction in the PCSK9 serum protein level via CRISPR/Cas9 gene knockout, outperforming 2D controls and clinically used DLin-MC3-DMA LNPs at the same dose. Here, we introduce BCP-based designs with superior in vivo activity, thereby expanding the chemical scope of ionizable amino lipids from 2D to 3D and offering a promising avenue to improve mRNA and gene editing efficiency for the continued development of genetic medicines.
Collapse
Affiliation(s)
- Shiying Wu
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Yangyang Yang
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Xizhen Lian
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Fangyu Zhang
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Zexiang Chen
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Yehui Sun
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Amogh Vaidya
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Minjeong Kim
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Yun-Chieh Sung
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Yufen Xiao
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Xiaoyan Bian
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Xu Wang
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Zeru Tian
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Erick Guerrero
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Joshua Robinson
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Pratima Basak
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Daniel J Siegwart
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| |
Collapse
|
3
|
Uthumange SS, Liew AJH, Chee XW, Yeong KY. Ringing medicinal chemistry: The importance of 3-membered rings in drug discovery. Bioorg Med Chem 2024; 116:117980. [PMID: 39536361 DOI: 10.1016/j.bmc.2024.117980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Scaffold-based drug design has become increasingly prominent in the pharmaceutical field due to the systematic and effective approach through which it facilitates the development of novel drugs. The identification of key scaffolds provides medicinal chemists with a fundamental framework for subsequent research. With mounting evidence suggesting that increased aromaticity could impede the chances of developmental success for oral drug candidates, there is an imperative need for a more thorough exploration of alternative ring systems to mitigate attrition risks. The unique characteristics exhibited by three-membered rings have led to their application in medicinal chemistry. This review explores the use of cyclopropane-, aziridine-, thiirane-, and epoxide-containing compounds in drug discovery, focusing on their roles in approved medicines and drug candidates. Specifically, the importance of the three-membered ring systems in rending biological activity for each drug molecule was highlighted. The undeniable therapeutic value and intriguing features presented by these compounds suggest significant pharmacological potential, providing justification for their incorporation into the design of novel drug candidates.
Collapse
Affiliation(s)
- Sahani Sandalima Uthumange
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Angie Jun Hui Liew
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Xavier Wezen Chee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Keng Yoon Yeong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia.
| |
Collapse
|
4
|
Uribe L, Di Grande S, Mendolicchio M, Tasinato N, Barone V. Accurate Structure and Spectroscopic Properties of Azulene and Its Derivatives by Means of Pisa Composite Schemes and Vibrational Perturbation Theory to Second Order. J Phys Chem A 2024; 128:10474-10488. [PMID: 39588903 DOI: 10.1021/acs.jpca.4c05138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The structural and spectroscopic properties in the gas phase of azulene and some of its N-bearing derivatives have been analyzed by a general computational strategy based on the recent Pisa composite schemes (PCSs). First of all, an accurate semiexperimental equilibrium structure has been derived for azulene and employed to validate the geometrical parameters delivered by different quantum chemical methods. Next, different isomerization energies (azulene to naphthalene, 1-aza-azulene to quinoline and to other isomers) have been computed by an explicitly correlated PCS version employing frozen natural orbitals. Accurate geometries have been obtained by a cheaper PCS variant based on a double-hybrid functional improved by one-parameter bond corrections, with the same functional providing also remarkable harmonic frequencies. The corresponding equilibrium rotational constants show average deviations within 0.1% from experimental results when taking into account anharmonic vibrational corrections obtained by a global hybrid functional. Therefore, reliable computational estimates have been produced for the rotational constants of several nitrogen derivatives (isomeric aza-azulenes and guaiazulene), whose non-negligible dipole moments could allow experimental microwave characterizations. An analogous approach delivers infrared spectra in remarkable agreement with their experimental counterparts for naphthalene, quinoline, and azulene, together with reliable predictions for the still-unknown spectrum of 1-aza-azulene. In addition to their intrinsic interest, the results of this paper further confirm that a very accurate yet robust and user-friendly tool is now available for aiding high-resolution spectroscopic studies of quite large systems of current technological and/or biological interest.
Collapse
Affiliation(s)
- Lina Uribe
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Silvia Di Grande
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Marco Mendolicchio
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Nicola Tasinato
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | | |
Collapse
|
5
|
Melnykov KP, Liashuk OS, Holovach S, Shatnia V, Horbenko A, Lesyk D, Melnyk V, Skrypnik D, Beshtynarska A, Borysko P, Viniichuk O, Grygorenko OO. Physicochemical and Biological Evaluation of gem-Difluorinated Saturated Oxygen Heterocycles as Bioisosteres for Drug Discovery. Chemistry 2024:e202404390. [PMID: 39660537 DOI: 10.1002/chem.202404390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/12/2024]
Abstract
A comprehensive study on the physicochemical properties of gem-fluorinated O-heterocyclic substituents is reported. Systematic additive effects of introducing O- and gem-CF2 group introduction on acidic properties (pKa) of the corresponding carboxylic acids/protonated primary amines were demonstrated. The impact of the O/CF2 moieties on lipophilicity (LogP) was found to be complex; significant mutual influence of the corresponding polar moieties governed the compound's overall properties in this case. Biological evaluation of MAPK kinase inhibitors incorporating the title substituents demonstrated their utility as promising fragments for bioisosteric replacements in drug discovery campaigns.
Collapse
Affiliation(s)
- Kostiantyn P Melnykov
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Oleksandr S Liashuk
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Serhii Holovach
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyїv, 02660, Ukraine
| | - Valeriia Shatnia
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Beresteiskyi Avenue 37, Kyїv, 03056, Ukraine
| | - Artur Horbenko
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- V. I. Vernadsky Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine, Akademik Palladin Street 32/34, Kyїv, 03142, Ukraine
| | - Dmytro Lesyk
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Varvara Melnyk
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Daniil Skrypnik
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Anna Beshtynarska
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Petro Borysko
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Oleksandr Viniichuk
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| |
Collapse
|
6
|
Elfawal MA, Goetz E, Kim Y, Chen P, Savinov SN, Barasa L, Thompson PR, Aroian RV. High-Throughput Screening of More Than 30,000 Compounds for Anthelmintics against Gastrointestinal Nematode Parasites. ACS Infect Dis 2024. [PMID: 39653369 DOI: 10.1021/acsinfecdis.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Gastrointestinal nematodes (GINs) are among the most common parasites of humans, livestock, and companion animals. GIN parasites infect 1-2 billion people worldwide, significantly impacting hundreds of millions of children, pregnant women, and adult workers, thereby perpetuating poverty. Two benzimidazoles with suboptimal efficacy are currently used to treat GINs in humans as part of mass drug administrations, with many instances of lower-than-expected or poor efficacy and possible resistance. Thus, new anthelmintics are urgently needed. However, screening methods for new anthelmintics using human GINs typically have low throughput. Here, using our novel screening pipeline that starts with human hookworms, we screened 30,238 unique small molecules from a wide range of compound libraries, including ones with generic diversity, repurposed drugs, natural derivatives, known mechanisms of action, as well as multiple target-focused libraries (e.g., targeting kinases, GPCRs, and neuronal proteins). We identified 55 compounds with broad-spectrum activity against adult stages of two evolutionary divergent GINs, hookworms (Ancylostoma ceylanicum) and whipworms (Trichuris muris). Based on known databases, the targets of these 55 compounds were predicted in nematode parasites. One novel scaffold from the diversity set library, F0317-0202, showed good activity (high motility inhibition) against both GINs. To better understand this novel scaffold's structure-activity relationships (SAR), we screened 28 analogs and created SAR models highlighting chemical and functional groups required for broad-spectrum activity. These studies validate our new and efficient screening pipeline at the level of tens of thousands of compounds and provide an important set of new GIN-active compounds for developing novel and broadly active anthelmintics.
Collapse
Affiliation(s)
- Mostafa A Elfawal
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Emily Goetz
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Youmie Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Paulina Chen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Sergey N Savinov
- Department of Science, Rivier University, Nashua, New Hampshire 03060, United States
| | - Leonard Barasa
- Department of Chemical Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Paul R Thompson
- Department of Chemical Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Raffi V Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
7
|
Amankrah SA, Salpadoru T, Cotton K, Patrauchan MA, Wozniak KL, Gerasimchuk N. Synthesis, Characterization and Antimicrobial Activity of Trimethylantimony(V) Biscyanoximates, a New Family of Antimicrobials. Molecules 2024; 29:5779. [PMID: 39683936 DOI: 10.3390/molecules29235779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/23/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Antimicrobial compounds play a critical role in combating microbial infections. However, the emergence of antibiotic and antifungal resistance and the scarcity of new antibiotic developments pose a significant threat and demand the discovery of new antimicrobials for both bacterial and fungal pathogens. Our previous work described the first generation (G1) of organoantimony-based compounds that showed antimicrobial activity against several bacterial and fungal pathogens. Here, we present our efforts in modifying these compounds by replacing the tetraphenyl backbone in G1 compounds with a trimethyl group, thereby generating a new series of compounds we refer to as "generation 2", G2. In addition to the novel backbone structure, we introduced three new anionic chloro-cyanoxime ligand groups, namely 2,4-diCl-PhCO-, 2,6-diCl-PhCO- and 2Cl-PhCO-, which were found to be biologically active in the past. Nine new compounds of SbMe3L2 composition were obtained in high yields and characterized by NMR, IR spectroscopies, thermogravimetric TG/DSC and X-ray single crystal analyses. The antibacterial activity of the cyanoximates was tested against three bacterial (Pseudomonas aeruginosa PAO1, Escherichia coli S17 and methicillin-resistant Staphylococcus aureus (MRSA) NRS70) and two fungal (Candida albicans strain SC5314 and Cryptococcus neoformans strain H99) pathogens. Two compounds, SbMe3(MCO)2 and SbMe3(2,4-diClPhCO)2, were active against bacterial strains and inhibited the growth of PAO1 and MRSA with MICs of 50 and 100 µg/mL, respectively. Three compounds, SbMe3(MCO)2, SbMe3(ECO)2 and SbMe3(TCO)2, were active against fungal strains and inhibited either one of or both C. albicans and C. neoformans at MICs of 2.6-66.67 μg/mL. In addition, SbMe3(TCO)2 and SbMe3(MCO)2 were fungicidal at MFC 33.33-66.67 μg/mL. Ultra-thin-layer TEM imaging suggested that SbMe3(MCO)2 targets the integrity of bacterial membranes. Overall, four of the studied G2 series compounds possess antimicrobial activity against a broad range of microbial pathogens, with particular potential against fungal pathogens, which will be explored in further studies.
Collapse
Affiliation(s)
- Seth A Amankrah
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, MO 65897, USA
| | - Tarosha Salpadoru
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kaitlyn Cotton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Karen L Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Nikolay Gerasimchuk
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, MO 65897, USA
| |
Collapse
|
8
|
Kirichok AA, Tkachuk H, Levchenko K, Granat D, Yegorova T, Lesyk D, Anisiforova A, Holota Y, Zomchak V, Bodenchuk I, Kosach V, Borysko P, Korzh RA, Al-Maali G, Kubyshkin V, Rzepa HS, Mykhailiuk PK. "Angular" Spirocyclic Azetidines: Synthesis, Characterization, and Evaluation in Drug Discovery. Angew Chem Int Ed Engl 2024:e202418850. [PMID: 39621438 DOI: 10.1002/anie.202418850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Indexed: 12/14/2024]
Abstract
The previously neglected "angular" spirocyclic azetidines have been synthesized, characterized, and validated in drug discovery. We have shown that these compounds could act as bioisosteres for common saturated six-membered heterocycles. Their incorporation into the structure of the anticancer drug Sonidegib (instead of morpholine), and Danofloxacine (instead of piperazine) provided novel patent-free analogs with similar physicochemical properties and high activity.
Collapse
Affiliation(s)
- Alexander A Kirichok
- Enamine Ltd, Winston Churchill st. 78, 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Volodymyrska 60, 01601, Kyiv, Ukraine
| | | | - Kostiantyn Levchenko
- Enamine Ltd, Winston Churchill st. 78, 02094, Kyiv, Ukraine
- Ivan Franko National University of Lviv, Department of Organic Chemistry, Kyryla i Mefodia St. 6, 79005, Lviv, Ukraine
| | - Dmitry Granat
- Enamine Ltd, Winston Churchill st. 78, 02094, Kyiv, Ukraine
| | - Tetyana Yegorova
- Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Volodymyrska 60, 01601, Kyiv, Ukraine
| | - Dmytro Lesyk
- Bienta, Winston Churchill st. 78, 02094, Kyiv, Ukraine
| | | | - Yuliia Holota
- Bienta, Winston Churchill st. 78, 02094, Kyiv, Ukraine
| | | | | | | | - Petro Borysko
- Bienta, Winston Churchill st. 78, 02094, Kyiv, Ukraine
| | - Rodion A Korzh
- Enamine Ltd, Winston Churchill st. 78, 02094, Kyiv, Ukraine
| | - Galeb Al-Maali
- Enamine Ltd, Winston Churchill st. 78, 02094, Kyiv, Ukraine
- M. G. Kholodny. Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | - Henry S Rzepa
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | - Pavel K Mykhailiuk
- Enamine Ltd, Winston Churchill st. 78, 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Volodymyrska 60, 01601, Kyiv, Ukraine
| |
Collapse
|
9
|
Zhang O, Lin H, Zhang H, Zhao H, Huang Y, Hsieh CY, Pan P, Hou T. Deep Lead Optimization: Leveraging Generative AI for Structural Modification. J Am Chem Soc 2024; 146:31357-31370. [PMID: 39499822 DOI: 10.1021/jacs.4c11686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The integration of deep learning-based molecular generation models into drug discovery has garnered significant attention for its potential to expedite the development process. Central to this is lead optimization, a critical phase where existing molecules are refined into viable drug candidates. As various methods for deep lead optimization continue to emerge, it is essential to classify these approaches more clearly. We categorize lead optimization methods into two main types: goal-directed and structure-directed. Our focus is on structure-directed optimization, which, while highly relevant to practical applications, is less explored compared to goal-directed methods. Through a systematic review of conventional computational approaches, we identify four tasks specific to structure-directed optimization: fragment replacement, linker design, scaffold hopping, and side-chain decoration. We discuss the motivations, training data construction, and current developments for each of these tasks. Additionally, we use classical optimization taxonomy to classify both goal-directed and structure-directed methods, highlighting their challenges and future development prospects. Finally, we propose a reference protocol for experimental chemists to effectively utilize Generative AI (GenAI)-based tools in structural modification tasks, bridging the gap between methodological advancements and practical applications.
Collapse
Affiliation(s)
- Odin Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Haitao Lin
- AI Lab, Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Hui Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Huifeng Zhao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yufei Huang
- AI Lab, Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Chang-Yu Hsieh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Peichen Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
10
|
Yoo J, Choi Y, Kim H, Park SB. Revisiting Pyrimidine-Embedded Molecular Frameworks to Probe the Unexplored Chemical Space for Protein-Protein Interactions. Acc Chem Res 2024; 57:3254-3265. [PMID: 39480992 PMCID: PMC11580176 DOI: 10.1021/acs.accounts.4c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
ConspectusProtein-protein interactions (PPIs) are essential in numerous biological processes and diseases, making them attractive yet challenging drug targets. While many advances have been made in traditional drug discovery, targeting PPIs has been difficult due to a lack of specialized chemical libraries designed to modulate these interactions. Current libraries mainly focus on conventional target proteins like enzymes or receptors as substrate analogs rather than small-molecule modulators targeting PPIs. These traditional drug targets behave differently from PPIs. Conventional druggable targets have relatively small surfaces and binding pockets that have allowed them to be targeted with current libraries, but PPIs behave differently than these traditional drug targets. As a result, there is an urgent need for an innovative approach to expand the druggable space.To address this, we developed a privileged substructure-based diversity-oriented synthesis (pDOS) strategy, aimed at creating maximal skeletal diversity to explore broader biochemical space. Pyrimidine serves as the privileged substructure in our approach, which employs several strategies: (i) silver-catalyzed or iodine-mediated tandem cyclizations to generate pyrimidine-embedded polyheterocycles; (ii) diverse pairing strategies to produce pyrimidodiazepine-containing polyheterocyclic skeletons with enhanced scaffold saturation; (iii) skeletal transformation to develop pyrimidine-fused medium-sized azacycles via chemoselective cleavages or migrations of N-N or C-N bond; (iv) design of small-molecule peptidomimetics that systematically mimic three pivotal protein secondary structures using pyrimidodiazepine-based scaffolds; and (v) identification of pyrimidodiazepine-based small-molecules that allosterically inhibits the interaction between human ACE2 and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to block viral entry into host cells.Through these approaches, we generated 39 distinct pyrimidine-embedded frameworks, demonstrating significant molecular diversity validated by chemoinformatic analyses such as Tanimoto similarity and principal moment of inertia (PMI) analysis. This molecular diversity extends pyrimidine structures beyond traditional linear or bicyclic forms, creating polyheterocycles with enhanced 3D structural diversity. These novel frameworks overcome the limitation of simpler privileged scaffolds, offering promising tools for modulating PPIs.Our pDOS approach highlights how privileged structure-embedded polyheterocycles, particularly those based on pyrimidine, can effectively target previously undruggable PPIs. This strategy provides a new direction for drug discovery, allowing for the development of small molecules that operate beyond traditional drug-like rules. In addition to expanding the chemical space for PPI modulation, our pDOS strategy enables the creation of scaffolds that are particularly suited for targeting complex and dynamic protein interfaces. This innovation could significantly impact therapeutic development, offering solutions for previously intractable drug targets. By expanding the scope of pyrimidine-based scaffolds, we have opened up new possibilities for targeting PPIs and advancing chemical biology.This perspective demonstrates the potential outlines of our pDOS strategy in creating structurally diverse frameworks, offering a platform for the discovery of PPI modulators and facilitating the exploration of untapped biochemical spaces in drug development, potentially transforming the way we approach these complex biological interactions.
Collapse
Affiliation(s)
- Jeong
Yeon Yoo
- Department of Chemistry, Seoul
National University, Seoul 08826, Korea (South)
| | - Yoona Choi
- Department of Chemistry, Seoul
National University, Seoul 08826, Korea (South)
| | - Heejun Kim
- Department of Chemistry, Seoul
National University, Seoul 08826, Korea (South)
| | - Seung Bum Park
- Department of Chemistry, Seoul
National University, Seoul 08826, Korea (South)
| |
Collapse
|
11
|
Lux DM, Lee DJ, Sapkota RR, Giri R. Iron-Mediated Dialkylation of Alkenylarenes with Benzyl Bromides. J Org Chem 2024; 89:16292-16299. [PMID: 38572911 PMCID: PMC11450104 DOI: 10.1021/acs.joc.3c02548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
We disclose a method for the dibenzylation of alkenylarenes with benzyl bromides using iron powder. This reaction generates branched alkyl scaffolds adorned with functionalized aryl rings through the formation of two new C(sp3)-C(sp3) bonds at the vicinal carbons of alkenes. This protocol tolerates electron-rich, electron-neutral, and electron-poor benzyl bromides and alkenylarenes. Mechanistic studies suggest the formation of benzylic radical intermediates as a result of single-electron transfer from the iron, which is intercepted by alkenylarenes.
Collapse
Affiliation(s)
- Daniel M Lux
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Daniel J Lee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rishi R Sapkota
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
12
|
Fan W, Huang X, Yu S, Bian Q, Wang B. Synthesis and Fungicidal Activity Evaluation of Novel Triazole Thione/Thioether Derivatives Containing a Pyridylpyrazole Moiety. Chem Biodivers 2024:e202402388. [PMID: 39536334 DOI: 10.1002/cbdv.202402388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Compounds containing N-pyridylpyrazole motif have aroused interest and brought about research hotspots due to their highly-efficient insecticidal activity. The fungicidal potential of N-pyridylpyrazole derivatives has gradually been disclosed in recent years. To discover new agrochemicals with poly-heterocyclic features, a series of novel triazole thione/thioether derivatives containing pyridylpyrazole motif (8-11) was synthesized. The new compounds were identified by melting point, 1H-NMR, 13C NMR, 19F NMR, HRMS, and elemental analysis. The bioassays showed that most of the pyridylpyrazole-containing triazole thione Mannich bases possessed favorable in vitro fungicidal activity toward pathogenic fungi, such as Magnaporthe oryzae, Sclerotinia sclerotiorum, Botrytis cinerea and Fusarium verticillioides, and were comparable with those of the contrast compounds A and triadimefon. Some of them exhibited moderate to good in vivo fungicidal activity against S. sclerotiorum at 0.2 mg/mL (e. g. 8f control efficacy: 60.9±3.2 %). The SEM observation displayed that 8f might cause disruption of cell membrane and wall of S. sclerotiorum. Compounds 8a, 8c, 8f-8h, 8p and 9b can serve as promising new fungicidal agents to make further structural optimization. The findings in this article provide useful clue and guidance for the design and development of new poly-heterocyclic agrochemicals.
Collapse
Affiliation(s)
- Wenqi Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaobing Huang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shujing Yu
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Baolei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
13
|
Zhang SR, Yue JP, Wang LF, Gui YY, Zhang W, Yu DG, Ye JH. Dearomative hydroamination of heteroarenes catalyzed by the phenolate photocatalyst. Chem Commun (Camb) 2024; 60:13083-13086. [PMID: 39440373 DOI: 10.1039/d4cc03879g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Dearomative functionalization of heteroarenes offers an attractive and sustainable approach for the rapid construction of complex 3D heterocyclic scaffolds from planar structures. Despite progress in this field, dearomative amination of heteroarenes via a radical anion intermediate remains a challenge. Here, we report a photoredox-catalyzed dearomative hydroamination of heteroarenes with hydrazodiformates under mild and transition-metal-free reaction conditions. Various benzofurans and benzothiophenes can efficiently participate in this transformation. A series of mechanistic experiments revealed that heteroaryl radical anions are the crucial intermediates, generated through photo-induced electron transfer between the excited phenolate photocatalyst and heteroarenes.
Collapse
Affiliation(s)
- Shu-Rong Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Long-Fu Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Yong-Yuan Gui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
14
|
Wen SY, Chen JJ, Zheng Y, Han JX, Huang HM. Energy-Transfer Enabled 1,4-Aryl Migration. Angew Chem Int Ed Engl 2024:e202415495. [PMID: 39498962 DOI: 10.1002/anie.202415495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/07/2024]
Abstract
Functional group translocation is undoubtedly a pivotal synthetic transformation in organic chemistry. Numerous types of reactions involving radical 1,2-aryl or 1,4-aryl migration via electron transfer mechanism have been extensively investigated. Nevertheless, energy-transfer enabled 1,4-arylation remains unknown. Herein we disclose that an unprecedented di-π-ethane rearrangement featuring 1,4-aryl migration facilitated by energy transfer catalysis under visible light conditions. The newly developed mild protocol exhibits tolerance towards diverse functional groups and enables the migration of a multitude of aromatic rings, encompassing both electron-withdrawing and electron-rich functional groups. The open-shell strategy has also found successful application in the modification of several drugs. Large-scale experiments, continuous-flow experiment, and versatile manipulation of products have demonstrated the robustness and potential utility of this synthetic method. Preliminary mechanistic studies have supported the involvement of radical species in this di-π-ethane rearrangement and have also provided evidence for the energy transfer mechanism.
Collapse
Affiliation(s)
- Shu-Ya Wen
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210 Shanghai, China
| | - Jun-Jie Chen
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210 Shanghai, China
| | - Yu Zheng
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210 Shanghai, China
| | - Jia-Xun Han
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210 Shanghai, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210 Shanghai, China
| |
Collapse
|
15
|
Brisson J, Balasa R, Bowra A, Hill DC, Doshi AS, Tan DHS, Perez-Brumer A. Motivations for enrollment in a COVID-19 ring-based post-exposure prophylaxis trial: qualitative examination of participant experiences. BMC Med Res Methodol 2024; 24:267. [PMID: 39501157 PMCID: PMC11536907 DOI: 10.1186/s12874-024-02394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/29/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Ring-based studies are a novel research design commonly used for research involving infectious diseases: contacts of newly infected individuals form a ring that is targeted for interventions (e.g., vaccine, post-exposure prophylaxis). Given the novelty of the research design, it is critical to obtain feedback from participants on their experiences with ring-based studies to help with the development of future trials. METHODS In 2021, we conducted 26 semi-structured interviews with adult participants of a COVID-19 ring-based post-exposure prophylaxis trial based in Canada. We applied a purposive sampling approach and electronically recruited participants who tested positive for COVID-19 (Index Cases) and either agreed or declined for the study team to contact their potentially exposed contacts. We also included individuals who participated in the trial after being potentially exposed to an Index Case (known as Ring Members), and those who declined to participate after potential exposure. The methodological design of semi-structured interviews allowed participants to share their opinions and experiences in the trial (e.g., elements they enjoyed and disliked regarding their participation in the study). RESULTS The majority of participants in our study were women (62%) and the average age was 37.3 years (SD = 13.2). Overall, participants reported being highly satisfied with partaking in the ring-based trial. Notably, no substantial complaints were voiced about the trial's design involving contact after exposure. The most common reason of satisfaction was the knowledge of potentially helping others by advancing knowledge for a greater cause (e.g., development of potential treatment to prevent SARS-CoV-2 infection). Other reasons were curiosity about participating in a trial, and an activity to fill free time during the pandemic. A central element of dislike was confusion about instructions with the trial (e.g., independent at home SARS-CoV-2 testing). Additionally, maintaining confidentiality was a crucial concern for participants, who sought assurance that their data would not be shared beyond the scope of the study. CONCLUSIONS Our results have the potential to inform future research, including clinical trials such as ring-based studies, by incorporating insights from participants' experiences into the development of study protocols. Despite some protocol-related challenges, participants expressed high satisfaction, driven by the desire to advance science and potentially aid others.
Collapse
Affiliation(s)
- Julien Brisson
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, 5th Floor, Room 554, Toronto, ON, M5T 3M7, Canada.
| | - Rebecca Balasa
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, 5th Floor, Room 554, Toronto, ON, M5T 3M7, Canada
| | - Andrea Bowra
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, 5th Floor, Room 554, Toronto, ON, M5T 3M7, Canada
| | - David C Hill
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, 5th Floor, Room 554, Toronto, ON, M5T 3M7, Canada
| | - Aarti S Doshi
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, 5th Floor, Room 554, Toronto, ON, M5T 3M7, Canada
| | - Darrell H S Tan
- Division of Infectious Diseases, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- MAP Centre for Urban Health Solutions, St. Michael's Hospital, Toronto, ON, Canada
| | - Amaya Perez-Brumer
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, 5th Floor, Room 554, Toronto, ON, M5T 3M7, Canada
| |
Collapse
|
16
|
Lee YC, Chen YC, Wu CF, Yoo WJ. Synthesis of 1-Substituted Bicyclo[2.1.1]hexan-2-ones via a Sequential SmI 2-Mediated Pinacol Coupling and Acid-Catalyzed Pinacol Rearrangement Reaction. Org Lett 2024; 26:9352-9356. [PMID: 39436356 PMCID: PMC11536404 DOI: 10.1021/acs.orglett.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
A two-step procedure, combining a SmI2-mediated transannular pinacol coupling reaction with an acid-catalyzed pinacol rearrangement process, was employed to prepare a diverse range of 1-substituted bicyclo[2.1.1]hexan-5-ones from cyclobutanedione derivatives. To underscore the significance of these bicyclic ketones in drug synthesis, an sp3-rich analog of nitazoxanide, a well-known antiparasitic and antiviral agent, was synthesized.
Collapse
Affiliation(s)
- Yung-Chi Lee
- Department
of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yi-Chen Chen
- Department
of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chun-Fu Wu
- Department
of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Woo-Jin Yoo
- Department
of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Center
for Emerging Materials and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
17
|
Saejong P, Zhong J, Rojas JJ, White AJP, Choi C, Bull JA. Synthesis of 3,3-Disubstituted Thietane Dioxides. J Org Chem 2024; 89:15718-15732. [PMID: 39392182 PMCID: PMC11536365 DOI: 10.1021/acs.joc.4c01843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
4-Membered heterocycles have been increasingly exploited in medicinal chemistry and, as small polar motifs, often show important influence on activity and physicochemical properties. Thietane dioxides similarly offer potential in both agricultural and pharmaceutical applications but are notably understudied. Here we report a divergent approach to 3,3-disubstituted thietane dioxide derivatives by forming carbocations on the 4-membered ring with catalytic Lewis or Brønsted acids. Benzylic tertiary alcohols of the thietane dioxides are coupled directly with arenes, thiols, and alcohols.
Collapse
Affiliation(s)
- Peerawat Saejong
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K.
| | - Jianing Zhong
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K.
| | - Juan J. Rojas
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K.
| | - Andrew J. P. White
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K.
| | - Chulho Choi
- Medicine
Design, Pfizer Research and Development, Groton, Connecticut 06340, United States
| | - James A. Bull
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K.
| |
Collapse
|
18
|
Elfawal MA, Goetz E, Kim YM, Chen P, Savinov SN, Barasa L, Thompson PR, Aroian RV. High-throughput screening of more than 30,000 compounds for anthelmintics against gastrointestinal nematode parasites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594481. [PMID: 39554023 PMCID: PMC11565780 DOI: 10.1101/2024.05.16.594481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Gastrointestinal nematodes (GINs) are amongst the most common parasites of humans, livestock, and companion animals. GIN parasites infect 1-2 billion people worldwide, significantly impacting hundreds of millions of children, pregnant women, and adult workers, thereby perpetuating poverty. Two benzimidazoles with suboptimal efficacy are currently used to treat GINs in humans as part of mass drug administrations, with many instances of lower-than-expected or poor efficacy and possible resistance. Thus, new anthelmintics are urgently needed. However, screening methods for new anthelmintics using human GINs typically have low throughput. Here, using our novel screening pipeline that starts with human hookworms, we screened 30,238 unique small molecules from a wide range of compound libraries, including ones with generic diversity, repurposed drugs, natural derivatives, known mechanisms of action, as well as multiple target-focused libraries (e.g., targeting kinases, GPCRs, and neuronal proteins). We identified 55 compounds with broad-spectrum activity against adult stages of two evolutionary divergent GINs, hookworms ( Ancylostoma ceylanicum ) and whipworms ( Trichuris muris ). Based on known databases, the targets of these 55 compounds were predicted in nematode parasites. One novel scaffold from the diversity set library, F0317-0202, showed good activity (high motility inhibition) against both GINs. To better understand this novel scaffold's structure-activity relationships (SAR), we screened 28 analogs and created SAR models highlighting chemical and functional groups required for broad-spectrum activity. These studies validate our new and efficient screening pipeline at the level of tens of thousands of compounds and provide an important set of new GIN-active compounds for developing novel and broadly-active anthelmintics.
Collapse
|
19
|
Lee AL, Mooney DT, McKee H. Direct C-H functionalisation of azoles via Minisci reactions. Org Biomol Chem 2024. [PMID: 39479918 DOI: 10.1039/d4ob01526f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Azoles have widespread applications in medicinal chemistry; for example, thiazoles, imidazoles, benzimidazoles, isoxazoles, tetrazoles and triazoles appear in the top 25 most frequently used N-heterocycles in FDA-approved drugs. Efficient routes for the late-stage C-H functionalisation of azole cores would therefore be highly desirable. The Minisci reaction, a nucleophilic radical addition reaction onto N-heterocyclic bases, is a direct C-H functionalisation reaction that has the potential to be a powerful method for C-H functionalisations of azole scaffolds. However, azoles have not been as widely studied as substrates for modern Minisci-type reactions as they are often more electron-rich and thus more challenging substrates compared to electron-poor 6-membered N-heterocycles such as quinolines, pyrazines and pyridines typically used in Minisci reactions. Nevertheless, with the prevalence of azole scaffolds in drug design, the Minisci reaction has the potential to be a transformative tool for late-stage C-H functionalisations to efficiently access decorated azole motifs. This review thus aims to give an overview of the C-H functionalisation of azoles via Minisci-type reactions, highlighting recent progress, existing limitations and potential areas for growth.
Collapse
Affiliation(s)
- Ai-Lan Lee
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - David T Mooney
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Heather McKee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
20
|
Verma DP, Tripathi AK, Thakur AK. Innovative Strategies and Methodologies in Antimicrobial Peptide Design. J Funct Biomater 2024; 15:320. [PMID: 39590524 PMCID: PMC11595219 DOI: 10.3390/jfb15110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple lines of research have led to the hypothesis that antimicrobial peptides (AMPs) are an important component of the innate immune response, playing a vital role in the defense against a wide range of infectious diseases. In this review, we explore the occurrence and availability of antimicrobial proteins and peptides across various species, highlighting their natural abundance and evolutionary significance. The design of AMPs has been driven by the identification of key structural and functional features, which are essential for optimizing their antimicrobial activity and reducing toxicity to host cells. We discuss various approaches, including rational design, high-throughput screening, and computational modeling, that have been employed to develop novel AMPs with enhanced efficacy. A particular focus is given to the identification and characterization of peptide fragments derived from naturally occurring host defense proteins, which offer a promising avenue for the discovery of new AMPs. The incorporation of artificial intelligence (AI) and machine learning (ML) tools into AMP research has further accelerated the identification, optimization, and application of these peptides. This review also discusses the current status and therapeutic potential of AMPs, emphasizing their role in addressing the growing issue of antibiotic resistance. The conclusion highlights the importance of continued research and innovation in AMP development to fully harness their potential as next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Devesh Pratap Verma
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Amit Kumar Tripathi
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ashwani Kumar Thakur
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
21
|
Greco FA, Krämer A, Wahl L, Elson L, Ehret TAL, Gerninghaus J, Möckel J, Müller S, Hanke T, Knapp S. Synthesis and evaluation of chemical linchpins for highly selective CK2α targeting. Eur J Med Chem 2024; 276:116672. [PMID: 39067440 DOI: 10.1016/j.ejmech.2024.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Casein kinase-2 (CK2) are serine/threonine kinases with dual co-factor (ATP and GTP) specificity, that are involved in the regulation of a wide variety of cellular functions. Small molecules targeting CK2 have been described in the literature targeting different binding pockets of the kinase with a focus on type I inhibitors such as the recently published chemical probe SGC-CK2-1. In this study, we investigated whether known allosteric inhibitors binding to a pocket adjacent to helix αD could be combined with ATP mimetic moieties defining a novel class of ATP competitive compounds with a unique binding mode. Linking both binding sites requires a chemical linking moiety that would introduce a 90-degree angle between the ATP mimetic ring system and the αD targeting moiety, which was realized using a sulfonamide. The synthesized inhibitors were highly selective for CK2 with binding constants in the nM range and low micromolar activity. While these inhibitors need to be further improved, the present work provides a structure-based design strategy for highly selective CK2 inhibitors.
Collapse
Affiliation(s)
- Francesco A Greco
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt Am Main, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt Am Main, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt Am Main, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt Am Main, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DKTK Site Frankfurt-Mainz, 69120 Heidelberg, Germany
| | - Laurenz Wahl
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt Am Main, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt Am Main, Germany
| | - Lewis Elson
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt Am Main, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt Am Main, Germany
| | - Theresa A L Ehret
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt Am Main, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt Am Main, Germany
| | - Joshua Gerninghaus
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt Am Main, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt Am Main, Germany
| | - Janina Möckel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt Am Main, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt Am Main, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt Am Main, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt Am Main, Germany
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt Am Main, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt Am Main, Germany.
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt Am Main, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt Am Main, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DKTK Site Frankfurt-Mainz, 69120 Heidelberg, Germany.
| |
Collapse
|
22
|
Charron O, Kosiuha M, Phansavath P, Ratovelomanana-Vidal V, Gontard G, Meyer C. Asymmetric Transfer Hydrogenation of gem-Difluorocyclopropenyl Ketones: The Synthesis and Functionalization of Enantioenriched cis gem-Difluorocyclopropyl Ketones. J Org Chem 2024; 89:14073-14080. [PMID: 39284014 DOI: 10.1021/acs.joc.4c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The asymmetric transfer hydrogenation of gem-difluorocyclopropenyl ketones, catalyzed by a Noyori-Ikariya ruthenium complex, was developed to access substituted optically enriched cis-disubstituted gem-difluorocyclopropyl ketones, and the value of these latter building blocks was illustrated by the synthesis of heterocycles fused to the difluorocyclopropyl moiety.
Collapse
Affiliation(s)
- Olivier Charron
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris-PSL, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | - Marharyta Kosiuha
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, PSL University, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phannarath Phansavath
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, PSL University, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Virginie Ratovelomanana-Vidal
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, PSL University, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Geoffrey Gontard
- CNRS, Institut Parisien de Chimie Moléculaire, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Christophe Meyer
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris-PSL, CNRS, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
23
|
Konaklieva MI, Plotkin BJ. Activity of Organoboron Compounds against Biofilm-Forming Pathogens. Antibiotics (Basel) 2024; 13:929. [PMID: 39452196 PMCID: PMC11504661 DOI: 10.3390/antibiotics13100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Bacteria have evolved and continue to change in response to environmental stressors including antibiotics. Antibiotic resistance and the ability to form biofilms are inextricably linked, requiring the continuous search for alternative compounds to antibiotics that affect biofilm formation. One of the latest drug classes is boron-containing compounds. Over the last several decades, boron has emerged as a prominent element in the field of medicinal chemistry, which has led to an increasing number of boron-containing compounds being considered as potential drugs. The focus of this review is on the developments in boron-containing organic compounds (BOCs) as antimicrobial/anti-biofilm probes and agents.
Collapse
Affiliation(s)
- Monika I. Konaklieva
- Department of Chemistry, American University, 4400 Massachusetts Ave. NW, Washington, DC 20016, USA
| | - Balbina J. Plotkin
- Department of Microbiology and Immunology, Midwestern University, 555 31st St., Downers Grove, IL 60515, USA;
| |
Collapse
|
24
|
Avellaneda-Tamayo JF, Agudo-Muñoz NA, Sánchez-Galán JE, López-Pérez JL, Medina-Franco JL. Chemoinformatic Characterization of NAPROC-13: A Database for Natural Product 13C NMR Dereplication. JOURNAL OF NATURAL PRODUCTS 2024; 87:2216-2229. [PMID: 39269718 PMCID: PMC11443490 DOI: 10.1021/acs.jnatprod.4c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Natural products (NPs) are secondary metabolites of natural origin with broad applications across various human activities, particularly the discovery of bioactive compounds. Structural elucidation of new NPs entails significant cost and effort. On the other hand, the dereplication of known compounds is crucial for the early exclusion of irrelevant compounds in contemporary pharmaceutical research. NAPROC-13 stands out as a publicly accessible database, providing structural and 13C NMR spectroscopic information for over 25 000 compounds, rendering it a pivotal resource in natural product (NP) research, favoring open science. This study seeks to quantitatively analyze the chemical content, structural diversity, and chemical space coverage of NPs within NAPROC-13, compared to FDA-approved drugs and a very diverse subset of NPs, UNPD-A. Findings indicated that NPs in NAPROC-13 exhibit properties comparable to those in UNPD-A, albeit showcasing a notably diverse array of structural content, scaffolds, ring systems of pharmaceutical interest, and molecular fragments. NAPROC-13 covers a specific region of the chemical multiverse (a generalization of the chemical space from different chemical representations) regarding physicochemical properties and a region as broad as UNPD-A in terms of the structural features represented by fingerprints.
Collapse
Affiliation(s)
- Juan F. Avellaneda-Tamayo
- DIFACQUIM
Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - Naicolette A. Agudo-Muñoz
- Science
and Technology Faculty, Universidad Tecnológica de Panamá,
Campus Metropolitano Víctor Levi Sasso, Avenida Universidad Tecnológica, Vía Puente Centenario, Panama City 0819-07289, Panama
- Grupo
de Investigación en Biotecnología, Bioinformática
y Biología de Sistemas (GIBBS), Universidad Tecnológica
de Panama, Panama City, Panama
| | - Javier E. Sánchez-Galán
- Facultad
de Ingeniería de Sistemas Computacionales, Universidad Tecnológica
de Panamá, Campus Metropolitano Víctor Levi Sasso, Avenida Universidad Tecnológica, Vía
Puente Centenario, Panama City 0819-07289, Panama
- Grupo
de Investigación en Biotecnología, Bioinformática
y Biología de Sistemas (GIBBS), Universidad Tecnológica
de Panama, Panama City, Panama
| | - José L. López-Pérez
- Departamento
de Ciencias Farmacéuticas, Área de Química Farmacéutica,
Facultad de Farmacia, CIETUS, IBSAL, Campus Miguel de Unamuno, University of Salamanca, 37007, Salamanca, Spain
- Departamento
de Farmacología, Facultad de Medicina, CIPFAR, Universidad de Panamá, Panama City, Panama
| | - José L. Medina-Franco
- DIFACQUIM
Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| |
Collapse
|
25
|
Chen S, Zhong F. GPCRSPACE: A New GPCR Real Expanded Library Based on Large Language Models Architecture and Positive Sample Machine Learning Strategies. J Med Chem 2024; 67:16912-16922. [PMID: 39288965 DOI: 10.1021/acs.jmedchem.4c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The quest for novel therapeutics targeting G protein-coupled receptors (GPCRs), essential in numerous physiological processes, is crucial in drug discovery. Despite the abundance of GPCR-targeting drugs, many receptors lack selective modulators, indicating a significant untapped therapeutic potential. To bridge this gap, we introduce GPCRSPACE, a novel GPCR-focused purchasable real chemical library developed using the G protein-coupled receptors large language models (GPCR LLM) architecture. Different from traditional machine learning models, GPCR LLM uses a positive sample machine learning strategy for training and does not need to construct any negative samples. This not only reduces false negatives but also reduces the time to label negative samples. GPCR LLM accelerates the identification and screening of potential GPCR-interactive compounds by learning the chemical space of GPCR-targeting molecules. GPCRSPACE, built on GPCR LLM, outperforms existing chemical data sets in synthesizability, structural diversity, and GPCR-likeness, making it a valuable tool for GPCR drug discovery.
Collapse
Affiliation(s)
- Shiming Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Feisheng Zhong
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
26
|
Itoh K, Nakahara H, Takashino A, Hara A, Katsuno A, Abe Y, Mizuguchi T, Karaki F, Hirayama S, Nagai K, Seki R, Sato N, Okuyama K, Hashimoto M, Tokunaga K, Ishida H, Mikami F, Kwofie KD, Kawada H, Lin B, Nunomura K, Kanai T, Hatta T, Tsuji N, Haruta J, Fujii H. Anti-Schistosomal activity and ADMET properties of 1,2,5-oxadiazinane-containing compound synthesized by visible-light photoredox catalysis. RSC Med Chem 2024; 15:d4md00599f. [PMID: 39399310 PMCID: PMC11467761 DOI: 10.1039/d4md00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/24/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024] Open
Abstract
The incorporation of saturated nitrogen-containing heterocycle 1,2,5-oxadiazinane into small molecules represents a compelling avenue in drug discovery due to its unexplored behavior within biological systems and incomplete protocols for synthesis. In this study, we present 1,2,5-oxadiazinane, an innovative heterocyclic bioisostere of piperizin-2-one and novel chemotype of the anti-schistosomal drug praziquantel (PZQ), which has been the only clinical drug available for three decades. PZQ is associated with significant drawbacks, including poor solubility, a bitter taste, and low metabolic stability. Therefore, the discovery of a new class of anti-schistosomal agents is imperative. To address this challenge, we introduce a pioneering method for the synthesis of 1,2,5-oxadiazinane derivatives through the cycloaddition of nitrones with N,N,N',N'-tetraalkyldiaminomethane in the presence of an IrIII complex photosensitizer. This transformative reaction offers a streamlined route to various kinds of 1,2,5-oxadiazinanes that is characterized by mild reaction conditions and broad substrate scope. Mechanistic investigations suggest that the photoredox pathway underlies the [3 + 3] photocycloaddition process. Thus, based on bioisosteric replacement, we identified a remarkable molecule as a new chemotype of a potent anti-schistosomal compound that not only exhibits superior solubility, but also retains the potent biological activity inherent to PZQ.
Collapse
Affiliation(s)
- Kennosuke Itoh
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Hiroki Nakahara
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Atsushi Takashino
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Aya Hara
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Akiho Katsuno
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Yuriko Abe
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Takaaki Mizuguchi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Fumika Karaki
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Shigeto Hirayama
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Kenichiro Nagai
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Reiko Seki
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Noriko Sato
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Kazuki Okuyama
- Department of Material Science, Graduate School of Science, Josai University 1-1 Keyakidai Sakado Saitama 350-0295 Japan
| | - Masashi Hashimoto
- Department of Material Science, Graduate School of Science, Josai University 1-1 Keyakidai Sakado Saitama 350-0295 Japan
| | - Ken Tokunaga
- Division of Liberal Arts, Center for Promotion of Higher Education, Kogakuin University 2665-1 Nakano-machi Hachioji Tokyo 192-0015 Japan
| | - Hitoshi Ishida
- Graduate School of Science and Engineering, Department of Chemistry, Materials and Bioengineering, Kansai University 3-3-35 Yamate-cho Suita Osaka 564-8680 Japan
| | - Fusako Mikami
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0374 Japan
| | - Kofi Dadzie Kwofie
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0374 Japan
| | - Hayato Kawada
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0374 Japan
| | - Bangzhong Lin
- Drug Innovation Center Lead Exploration Unit, Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadagaoka Suita Osaka 565-0871 Japan
| | - Kazuto Nunomura
- Drug Innovation Center Lead Exploration Unit, Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadagaoka Suita Osaka 565-0871 Japan
| | - Toshio Kanai
- Drug Innovation Center Lead Exploration Unit, Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadagaoka Suita Osaka 565-0871 Japan
| | - Takeshi Hatta
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0374 Japan
| | - Naotoshi Tsuji
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0374 Japan
| | - Junichi Haruta
- Drug Innovation Center Lead Exploration Unit, Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadagaoka Suita Osaka 565-0871 Japan
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| |
Collapse
|
27
|
Mooney DT, McKee H, Batch TS, Drane S, Moore PR, Lee AL. Direct C-H amidation of 1,3-azoles: light-mediated, photosensitiser-free vs. thermal. Chem Commun (Camb) 2024; 60:10752-10755. [PMID: 39248036 DOI: 10.1039/d4cc02742f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
We have developed one thermal and one light-mediated method for direct Minisci-type C-H amidation of 1,3-azoles, which are applicable to thiazoles, benzothiazoles, benzimidazoles, and for the first time, imidazoles. The new visible light-mediated approach can be rendered photosensitiser/photocatalyst-free and likely proceeds via an electron donor-acceptor (EDA) complex, the first direct Minisci-type amidation to do so.
Collapse
Affiliation(s)
- David T Mooney
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Heather McKee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Tabea S Batch
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Samuel Drane
- Early Chemical Development, Pharmaceutical Sciences, R&D BioPharmaceuticals, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Peter R Moore
- Early Chemical Development, Pharmaceutical Sciences, R&D BioPharmaceuticals, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Ai-Lan Lee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
28
|
Ding Z, Wang Z, Wang Y, Wang X, Xue Y, Xu M, Zhang H, Xu L, Li P. Regio- and Diastereoselective Synthesis of Polysubstituted Piperidines Enabled by Boronyl Radical-Catalyzed (4+2) Cycloaddition. Angew Chem Int Ed Engl 2024; 63:e202406612. [PMID: 38924325 DOI: 10.1002/anie.202406612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Piperidines are widely present in small molecule drugs and natural products. Despite many methods have been developed for their synthesis, new approaches to polysubstituted piperidines are highly desirable. This work presents a radical (4+2) cycloaddition reaction for synthesis of piperidines featuring dense substituents at 3,4,5-positions that are not readily accessible by known methods. Using commercially available diboron(4) compounds and 4-phenylpyridine as the catalyst precursors, the boronyl radical-catalyzed cycloaddition between 3-aroyl azetidines and various alkenes, including previously unreactive 1,2-di-, tri-, and tetrasubstituted alkenes, has delivered the polysubstituted piperidines in generally high yield and diastereoselectivity. The reaction also features high modularity, atom economy, broad substrate scope, metal-free conditions, simple catalysts and operation. The utilization of the products has been demonstrated by selective transformations. A plausible mechanism, with the ring-opening of azetidine as the rate-limiting step, has been proposed based on the experimental and computational results.
Collapse
Affiliation(s)
- Zhengwei Ding
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhijun Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Yingying Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Xicheng Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yuanji Xue
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Ming Xu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Hailong Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
29
|
Wu WB, Xu B, Yang XC, Wu F, He HX, Zhang X, Feng JJ. Enantioselective formal (3 + 3) cycloaddition of bicyclobutanes with nitrones enabled by asymmetric Lewis acid catalysis. Nat Commun 2024; 15:8005. [PMID: 39266575 PMCID: PMC11393060 DOI: 10.1038/s41467-024-52419-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
The absence of catalytic asymmetric methods for synthesizing chiral (hetero)bicyclo[n.1.1]alkanes has hindered their application in new drug discovery. Here we demonstrate the achievability of an asymmetric polar cycloaddition of bicyclo[1.1.0]butane using a chiral Lewis acid catalyst and a bidentate chelating bicyclo[1.1.0]butane substrate, as exemplified by the current enantioselective formal (3 + 3) cycloaddition of bicyclo[1.1.0]butanes with nitrones. In addition to the diverse bicyclo[1.1.0]butanes incorporating an acyl imidazole group or an acyl pyrazole moiety, a wide array of nitrones are compatible with this Lewis acid catalysis, successfully assembling two congested quaternary carbon centers and a chiral aza-trisubstituted carbon center in the pharmaceutically important hetero-bicyclo[3.1.1]heptane product with up to 99% yield and >99% ee.
Collapse
Affiliation(s)
- Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, P. R. China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, P. R. China
| | - Bing Xu
- Department of Chemistry, Fudan University, Shanghai, P.R. China
| | - Xue-Chun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Heng-Xian He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Xu Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China.
| |
Collapse
|
30
|
Zhu H, Manchado A, Omar Farah A, McKay AP, Cordes DB, Cheong PHY, Kasten K, Smith AD. Isothiourea-Catalysed Acylative Dynamic Kinetic Resolution of Tetra-substituted Morpholinone and Benzoxazinone Lactols. Angew Chem Int Ed Engl 2024; 63:e202402908. [PMID: 38713293 DOI: 10.1002/anie.202402908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
The development of methods to allow the selective acylative dynamic kinetic resolution (DKR) of tetra-substituted lactols is a recognised synthetic challenge. In this manuscript, a highly enantioselective isothiourea-catalysed acylative DKR of tetra-substituted morpholinone and benzoxazinone-derived lactols is reported. The scope and limitations of this methodology have been developed, with high enantioselectivity and good to excellent yields (up to 89 %, 99 : 1 er) observed across a broad range of substrate derivatives incorporating substitution at N(4) and C(2), di- and spirocyclic substitution at C(5) and C(6), as well as benzannulation (>35 examples in total). The DKR process is amenable to scale-up on a 1 g laboratory scale. The factors leading to high selectivity in this DKR process have been probed through computation, with an N-C=O⋅⋅⋅isothiouronium interaction identified as key to producing ester products in highly enantioenriched form.
Collapse
Affiliation(s)
- Haoxiang Zhu
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Alejandro Manchado
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos 1-5, 37008, Salamanca, Spain
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA
| | - Aidan P McKay
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA
| | - Kevin Kasten
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
31
|
Ripenko V, Sham V, Levchenko V, Holovchuk S, Vysochyn D, Klymov I, Kyslyi D, Veselovych S, Zhersh S, Dmytriv Y, Tolmachev A, Sadkova I, Pishel I, Horbatok K, Kosach V, Nikandrova Y, Mykhailiuk PK. Light-enabled scalable synthesis of bicyclo[1.1.1]pentane halides and their functionalizations. NATURE SYNTHESIS 2024; 3:1538-1549. [PMID: 39664797 PMCID: PMC11628397 DOI: 10.1038/s44160-024-00637-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 08/02/2024] [Indexed: 12/13/2024]
Abstract
In 2012, bicyclo[1.1.1]pentanes were demonstrated to be bioisosteres of the benzene ring. Here, we report a general scalable reaction between alkyl iodides and propellane that provides bicyclo[1.1.1]pentane iodides in milligram, gram and even kilogram quantities. The reaction is performed in flow and requires just light; no catalysts, initiators or additives are needed. The reaction is clean enough that, in many cases, evaporation of the reaction mixture provides products in around 90% purity that can be directly used in further transformations without any purification. Combined with the subsequent functionalization, >300 bicyclo[1.1.1]pentanes for medicinal chemistry have been prepared. So far, this is the most general and scalable approach towards functionalized bicyclo[1.1.1]pentanes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yurii Dmytriv
- Enamine Ltd., Kyiv, Ukraine
- National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ngo DT, Garwood JJA, Nagib DA. Cyclopropanation with Non-Stabilized Carbenes via Ketyl Radicals. J Am Chem Soc 2024; 146:24009-24015. [PMID: 39049431 DOI: 10.1021/jacs.4c07388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A radical mechanism enables simple and robust access to nonstabilized, alkyl iron carbenes for novel (2 + 1) cycloadditions. This Fe-catalyzed strategy employs simple, aliphatic aldehydes as carbene precursors in a practical, efficient, and stereoselective cyclopropanation. This air- and water-tolerant method permits convenient generation of iron carbenes and coupling to an exceptionally wide range of sterically and electronically diverse alkenes (nucleophilic, electrophilic, and neutral). A transient ketyl radical intermediate is key to accessing and harnessing this rare, alkyl iron carbene reactivity. Mechanistic experiments confirm the (a) intermediacy of ketyl radicals, (b) iron carbene formation by radical capture, and (c) nonconcerted nature of the (2 + 1) cycloaddition.
Collapse
Affiliation(s)
- Duong T Ngo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jacob J A Garwood
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
33
|
Ives RA, Maturi W, Gill MT, Rankine C, McGonigal PR. A guide to bullvalene stereodynamics. Chem Sci 2024; 15:d4sc03700f. [PMID: 39220163 PMCID: PMC11358867 DOI: 10.1039/d4sc03700f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Here, we analyze the stereodynamic properties of bullvalenes using principal moments of inertia and exit vector plots to draw comparisons with commonly used ring systems in medicinal chemistry. To aid analyses, we first classify (i) the four elementary rearrangement steps available to substituted bullvalenes, which (ii) can be described by applying positional descriptors (α, β, γ, and δ) to the substituents. We also (iii) derive an intuitive equation to calculate the number of isomers for a given bullvalene system. Using DFT-modelled structures for di-, tri-, and tetrasubstituted bullvalenes, generated using a newly developed computational tool (bullviso), we show that their 3D shapes and the exit vectors available from the bullvalene scaffold make them comparable to other bioisosteres currently used to replace planar aromatic ring systems in drug discovery. Unlike conventional ring systems, the shapeshifting valence isomerism of bullvalenes gives rise to numerous shapes and substituent relationships attainable as a concentration-independent dynamic covalent library from a single compound. We visualize this property by applying population weightings to the principal moments of inertia and exit vector analyses to reflect the relative thermodynamic stabilities of the available isomers.
Collapse
Affiliation(s)
- Robert A Ives
- Department of Chemistry, University of York Heslington York YO10 5DD UK
- Department of Chemistry, Durham University Lower Mountjoy, Stockton Road Durham DH1 3LE UK
| | - William Maturi
- Department of Chemistry, University of York Heslington York YO10 5DD UK
- Department of Chemistry, Durham University Lower Mountjoy, Stockton Road Durham DH1 3LE UK
| | - Matthew T Gill
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Conor Rankine
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Paul R McGonigal
- Department of Chemistry, University of York Heslington York YO10 5DD UK
- Department of Chemistry, Durham University Lower Mountjoy, Stockton Road Durham DH1 3LE UK
| |
Collapse
|
34
|
Guerrero M, Rentería-Gómez Á, Das D, Gutierrez O. Fe-Catalyzed Fluoroalkyl(hetero)arylation of Vinyl Azaarenes: Rapid and Modular Synthesis of Unsymmetrical 1,1-Bis(hetero)arylalkanes. Org Lett 2024; 26:7015-7020. [PMID: 39141436 PMCID: PMC11348425 DOI: 10.1021/acs.orglett.4c02515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
In contrast to transition-metal-catalyzed difunctionalization of activated alkenes, selective alkylarylation of vinyl azaarenes is underdeveloped. Consequently, the lack of modular and rapid syntheses of 1,1-bis(hetero)arylalkanes limits their exploration in medicinal chemistry. Herein we report a protocol using commercially available iron salts, bisphosphine ligands, fluoroalkyl halides, and Grignard reagents that enables the selective 1,2-fluoroalkyl(hetero)arylation of vinyl azaarenes. We demonstrate the versatility and robustness of the method through the selective synthesis of a range of unsymmetrical 1,1-bis(hetero)arylalkenes, including pyridine N-oxides, triazoles, pyrazines, carbazoles, indazoles, and 1,2-azaborines. Mechanistic insights from experimental and computational investigations support a radical pathway and provide insights into the role of non-covalent interactions in iron catalysis.
Collapse
Affiliation(s)
| | | | - Deborshee Das
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
35
|
Han W, Ren YY, Tang MY, Ji YF, Ge D, Ma M, Shen ZL, Chu XQ. Combining (CH 2O) n and (NH 4) 2CO 3 as a Formamidine Equivalent for "Four-in-One" Synthesis of Fluoroalkylated 2- H-Pyrimidines. Org Lett 2024; 26:7078-7082. [PMID: 39119970 DOI: 10.1021/acs.orglett.4c02785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Multicomponent reactions hold the potential to maximize the synthetic efficiency in the preparation of diverse and complex molecular scaffolds. An unprecedented formal [3+1+1+1] annulation approach for the one-step synthesis of fluoroalkylated 2-H-pyrimidines commencing from perfluoroalkyl alkenes, paraformaldehyde, and ammonium carbonate is described. By harnessing readily accessible (CH2O)n and cheap (NH4)2CO3 as a formamidine surrogate, this method effectively replaces traditionally preformed amidines with a pyrimidine assembly. The multicomponent reaction proceeds in a step-economical, operationally simple, metal-free, and additive-free manner, featuring a broad substrate scope, excellent functional group compatibility, and scalability. The potential for the synthetic elaboration of the obtained 2-H-pyrimidine is further demonstrated in the alkylation and vinylation of its C2 position.
Collapse
Affiliation(s)
- Wei Han
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuan-Yuan Ren
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ming-Yao Tang
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yi-Fan Ji
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
36
|
Jana R, Pradhan K. Shining light on the nitro group: distinct reactivity and selectivity. Chem Commun (Camb) 2024; 60:8806-8823. [PMID: 39081204 DOI: 10.1039/d4cc02582b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The nitro moiety is an indispensable functional group in organic synthesis due to its facile introduction and reduction to the corresponding amines for a plethora of organic transformations. Owing to its distinct electronegative and conventional properties, it has been used for activated aromatic nucleophilic substitution (SNAr) reactions, Smiles reactions, Henry reactions, acyl anion equivalents, etc. Recently, the excellent photochemical properties of nitroarenes have been rediscovered by several groups, and their untapped potential in organic synthesis under UV or visible light irradiation has been exploited. Photoexcited nitroarenes can undergo facile reduction to amines, azo-coupling, metal-free reductive C-N coupling with boronic acids via a 1,2-boronate shift, hydrogen atom transfer (HAT), oxygen atom transfer for anaerobic oxidation of organic molecules, molecular editing via nitrene intermediates, denitrative coupling of β-nitrostyrene, radical α-alkylation of nitroalkanes, etc. They have also been used as a photolabile protecting group in medicinal chemistry and chemical biology applications. Here, we summarise the recent findings on visible-light-mediated transformations involving nitro-containing organic molecules.
Collapse
Affiliation(s)
- Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India.
| | - Kangkan Pradhan
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
37
|
Zhang Z, Poletti L, Leonori D. A Radical Strategy for the Alkylation of Amides with Alkyl Halides by Merging Boryl Radical-Mediated Halogen-Atom Transfer and Copper Catalysis. J Am Chem Soc 2024; 146:22424-22430. [PMID: 39087940 DOI: 10.1021/jacs.4c05487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Amide alkylation is a fundamental process in organic chemistry. However, the low nucleophilicity of amides means that divergent coupling with alkyl electrophiles is often not achievable. To circumvent this reactivity challenge, individual amine synthesis followed by amidation with standard coupling agents is generally required. Herein, we demonstrate a radical solution to this challenge by using an amine-borane complex and copper catalysis under oxidative conditions. While borohydride reagents are generally used as reducing agents in ionic chemistry, their conversion into amine-ligated boryl radicals diverts their reactivity toward halogen-atom transfer. This enables the conversion of alkyl halides into the corresponding alkyl radicals for amide functionalization via copper catalysis. The process is applicable to the N-alkylation of primary amides employing unactivated alkyl iodides and bromides, and it was also showcased in the late-state functionalization of both complex amide- and halide-containing drugs.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52056, Germany
| | - Lorenzo Poletti
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52056, Germany
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52056, Germany
| |
Collapse
|
38
|
Zhou JL, Xiao Y, He L, Gao XY, Yang XC, Wu WB, Wang G, Zhang J, Feng JJ. Palladium-Catalyzed Ligand-Controlled Switchable Hetero-(5 + 3)/Enantioselective [2σ+2σ] Cycloadditions of Bicyclobutanes with Vinyl Oxiranes. J Am Chem Soc 2024; 146:19621-19628. [PMID: 38739092 DOI: 10.1021/jacs.4c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
For nearly 60 years, significant research efforts have been focused on developing strategies for the cycloaddition of bicyclobutanes (BCBs). However, higher-order cycloaddition and catalytic asymmetric cycloaddition of BCBs have been long-standing formidable challenges. Here, we report Pd-catalyzed ligand-controlled, tunable cycloadditions for the divergent synthesis of bridged bicyclic frameworks. The dppb ligand facilitates the formal (5+3) cycloaddition of BCBs and vinyl oxiranes, yielding valuable eight-membered ethers with bridged bicyclic scaffolds in 100% regioselectivity. The Cy-DPEphos ligand promotes selective hetero-[2σ+2σ] cycloadditions to access pharmacologically important 2-oxabicyclo[3.1.1]heptane (O-BCHeps). Furthermore, the corresponding catalytic asymmetric synthesis of O-BCHeps with 94-99% ee has been achieved using chiral (S)-DTBM-Segphos, representing the first catalytic asymmetric cross-dimerization of two strained rings. The obtained O-BCHeps are promising bioisosteres for ortho-substituted benzenes.
Collapse
Affiliation(s)
- Jin-Lan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Linke He
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xin-Yu Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xue-Chun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, Shanghai 200438, P.R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| |
Collapse
|
39
|
Roy S, Wang Y, Zhao X, Dayananda T, Chu JM, Zhang Y, Fasan R. Stereodivergent Synthesis of Pyridyl Cyclopropanes via Enzymatic Activation of Pyridotriazoles. J Am Chem Soc 2024; 146:19673-19679. [PMID: 39008121 DOI: 10.1021/jacs.4c06103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Hemoproteins have recently emerged as powerful biocatalysts for new-to-nature carbene transfer reactions. Despite this progress, these strategies have remained largely limited to diazo-based carbene precursor reagents. Here, we report the development of a biocatalytic strategy for the stereoselective construction of pyridine-functionalized cyclopropanes via the hemoprotein-mediated activation of pyridotriazoles (PyTz) as stable and readily accessible carbene sources. This method enables the asymmetric cyclopropanation of a variety of olefins, including electron-rich and electrodeficient ones, with high activity, high stereoselectivity, and enantiodivergent selectivity, providing access to mono- and diarylcyclopropanes that incorporate a pyridine moiety and thus two structural motifs of high value in medicinal chemistry. Mechanistic studies reveal a multifaceted role of 7-halogen substitution in the pyridotriazole reagent toward favoring multiple catalytic steps in the transformation. This work provides the first example of asymmetric olefin cyclopropanation with pyridotriazoles, paving the way to the exploitation of these attractive and versatile reagents for enzyme-catalyzed carbene-mediated reactions.
Collapse
Affiliation(s)
- Satyajit Roy
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Yining Wang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Xinyi Zhao
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Thakshila Dayananda
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Jia-Min Chu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Rudi Fasan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| |
Collapse
|
40
|
Yamini P, Babbar A, Yadagiri D. Light-Driven Intramolecular Cyclopropanation of Alkene-Tethered N-Tosylhydrazones: Synthesis of Fused-Cyclopropane γ-Lactones. Org Lett 2024; 26:6035-6040. [PMID: 38985949 DOI: 10.1021/acs.orglett.4c02182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Fused-cyclopropane ring-containing γ-lactone compounds are versatile building blocks in many fields, including the synthesis of biologically active compounds. Here, we report the light-driven intramolecular cyclopropanation of alkene-tethered N-tosylhydrazones in the presence of Cs2CO3 and visible light. We have synthesized various electronically and sterically substituted and heterocyclic-containing fused-(spiro)cyclopropane γ-lactone compounds in good yields under transition metal-free conditions using a radical-free approach. In addition, the one-pot synthesis of fused-cyclopropane γ-lactones from α-ketoesters and their synthetic utility are also presented.
Collapse
Affiliation(s)
- Pokhriyal Yamini
- Laboratory of Organic Synthesis and Catalysis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Akanksha Babbar
- Laboratory of Organic Synthesis and Catalysis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Dongari Yadagiri
- Laboratory of Organic Synthesis and Catalysis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
41
|
Narra RR, Unnithan VG, Liu Y, Guo Z. Rapid Access to Divergent Fused Polycycles Via One-Pot A 3 Coupling and Intramolecular Diels-Alder Reaction. Chemistry 2024; 30:e202401449. [PMID: 38749918 DOI: 10.1002/chem.202401449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Indexed: 06/29/2024]
Abstract
Divergent nitrogen-containing fused polycyclic ring systems are constructed from simple starting materials via a one-pot aldehyde-alkyne-amine (A3) coupling and intramolecular Diels-Alder reaction. This domino reaction directly furnishes linear 5/5/5 and 5/5/6, or nonlinear 5/5/6/5, polycyclic rings containing an oxa-bridged fused 5/5 bicycle and a 1,6-enyne substructure. One-step derivation of the oxa-bridged 5/5 bicycle leads to a polyfunctionalized 5/5 bicycle with tetrahydrofuran fused back-to-back to pyrroline or a 6/5 bicycle with the hexahydro-1H-isoindole structure, while cycloisomerizing the enyne substructure adds an extra fused 5-membered ring to afford functionalized linear 5/5/5/5 or 5/5/5/5/5 fused ring systems from selected substrates. In addition, the one-pot product can be designed so that the alkyne moiety is hydroalkoxylated to form an additional heterocyle in a linear 5/5/5/6 or nonlinear 5/5/6/5/5 ring system. This diversity-oriented synthetic approach thus allows rapid access to an under-explored structural space for discovery of new biological or non-biological activities or functions.
Collapse
Affiliation(s)
- Rajashekar Reddy Narra
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | - Yifan Liu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zhihong Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
42
|
Peter S, Kalakoti Y, Sundar D. Identifying High-Quality Leads among Screened Anticancerous Compounds Using SMILES Representations. ACS OMEGA 2024; 9:30645-30653. [PMID: 39035912 PMCID: PMC11256111 DOI: 10.1021/acsomega.4c02801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024]
Abstract
Cancer is a lethal disease that affects numerous people worldwide. Chemotherapy stands as one of the most effective treatment regimens to combat cancer. Nevertheless, anticancer drugs face a high failure rate due to safety and efficacy issues. Drug failure could be subdued by instigating drug leads with reduced toxicity and enhanced efficacy. Computer-aided drug discovery endorses drug leads in manoeuvring protein and ligand structures or representations. Simplified molecular input line entry system (SMILES) is a linear notation representing the three-dimensional structure of a molecule using symbols and alphanumeric characters. SMILES representation hoards rings and scaffold structures in its depiction. Mining ring and scaffold patterns from molecular SMILES would assist in ascertaining biological properties based on molecular patterns. Moreover, the emergence of artificial intelligence (AI) technologies would accelerate identification of efficient anticancer drug leads. AI algorithms proclaimed for their pattern recognition ability could be employed for identifying molecular patterns from SMILES representation, thereby enabling property prediction. Consequently, we developed a multilayer perceptron (MLP) model for the prediction of anticancer activity using SMILES of NCI-60 cancer growth inhibition data. Furthermore, the top 8 frequent scaffolds were identified on preliminary analysis of cancer growth inhibition data and ChEMBL drugs. The developed MLP model classified anticancer and nonanticancer compounds with a classification accuracy of 0.92. Also, benchmarking of the developed model with machine learning algorithms exhibited better performance of the MLP model.
Collapse
Affiliation(s)
- Swathik
Clarancia Peter
- Regional
Centre for Biotechnology (RCB), Faridabad, Haryana 121001, India
- Department
of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India
| | - Yogesh Kalakoti
- Department
of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India
| | - Durai Sundar
- Department
of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India
- Yardi
School of Artificial Intelligence, Indian
Institute of Technology (IIT) Delhi, New Delhi 110016, India
- Institute
of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru 560100, India
| |
Collapse
|
43
|
Heinzke AL, Pahl A, Zdrazil B, Leach AR, Waldmann H, Young RJ, Leeson PD. Occurrence of "Natural Selection" in Successful Small Molecule Drug Discovery. J Med Chem 2024; 67:11226-11241. [PMID: 38949112 PMCID: PMC11247505 DOI: 10.1021/acs.jmedchem.4c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 07/02/2024]
Abstract
Published compounds from ChEMBL version 32 are used to seek evidence for the occurrence of "natural selection" in drug discovery. Three measures of natural product (NP) character were applied, to compare time- and target-matched compounds reaching the clinic (clinical compounds in phase 1-3 development and approved drugs) with background compounds (reference compounds). Pseudo-NPs (PNPs), containing NP fragments combined in ways inaccessible by nature, are increasing over time, reaching 67% of clinical compounds first disclosed since 2010. PNPs are 54% more likely to be found in post-2008 clinical versus reference compounds. The majority of target classes show increased clinical compound NP character versus their reference compounds. Only 176 NP fragments appear in >1000 clinical compounds published since 2008, yet these make up on average 63% of the clinical compound's core scaffolds. There is untapped potential awaiting exploitation, by applying nature's building blocks─"natural intelligence"─to drug design.
Collapse
Affiliation(s)
- A. Lina Heinzke
- European
Molecular Biology Laboratory, European Bioinformatics
Institute, Wellcome Genome Campus, Hinxton CB10 1SD, Cambridgeshire, U.K.
| | - Axel Pahl
- Compound
Management and Screening Center, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Barbara Zdrazil
- European
Molecular Biology Laboratory, European Bioinformatics
Institute, Wellcome Genome Campus, Hinxton CB10 1SD, Cambridgeshire, U.K.
| | - Andrew R. Leach
- European
Molecular Biology Laboratory, European Bioinformatics
Institute, Wellcome Genome Campus, Hinxton CB10 1SD, Cambridgeshire, U.K.
| | - Herbert Waldmann
- Department
of Chemical Biology, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
- Faculty
of Chemistry and Chemical Biology, Technical
University Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | | | - Paul D. Leeson
- Paul Leeson
Consulting Ltd., Nuneaton CV13 6LZ, Warwickshire, U.K.
| |
Collapse
|
44
|
Ghosh KK, RajanBabu TV. Ligand Effects in Carboxylic Ester- and Aldehyde-Assisted β-C-H Activation in Regiodivergent and Enantioselective Cycloisomerization-Hydroalkenylation and Cycloisomerization-Hydroarylation, and [2 + 2 + 2]-Cycloadditions of 1,6-Enynes. J Am Chem Soc 2024; 146:18753-18770. [PMID: 38935521 PMCID: PMC11415009 DOI: 10.1021/jacs.4c06796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Herein, we report room temperature, atom-economic protocols for high regio- and enantioselective tandem cycloisomerization-hydroarylation and cycloisomerization-hydroalkenylation of 1,6-enynes leading to vicinal carba-functionalized pyrrolidines, tetrahydrofurans, and cyclopentanes. The latter steps in these processes involve carbonyl-coordination-assisted ortho-C-H activation of aromatic aldehydes and esters, and, a similar, yet rarely seen, β-C-H activation in the case of the acrylates. Synthetically useful enantioselective versions of such reactions are rare and are limited to the C2-H activation of indoles and pyrroles. A similar reaction is also observed with N-vinylphthalimide, which also has a carbonyl group suitable for C-H activation. A dibenzooxaphosphole ligand, (2S,2S',3S,3S')-MeO-BIBOP was uniquely identified as crucial to achieving the challenging regio- and enantioselectivity. This methodology gives access to substituted five-membered carbo- and heterocyclic compounds in good yields and excellent enantioselectivities under a low catalyst loading. A primary KIE of 3.5 is observed in an intermolecular competition experiment with methyl benzoate and d5-methyl benzoate, which indicates that the C-H cleavage is the turnover-limiting step of this process. Unlike the acrylates, which undergoes exclusive hydroalkenylation, a β, γ-unsaturated ester, methyl but-3-enoate, undergoes the highly enantioselective cycloisomerization-coupling sequence with a 1,6-enyne giving either a [2 + 2 + 2]-cycloaddition with (S, S)-BDPP or hydroalkenylation with (2S,2'S,3S,3'S)-MeO-BIBOP depending on the ligand employed. The (E)-configuration of the newly formed double bond at the terminal alkynyl carbon (of the starting enyne) in the hydroalkenylation product of β,γ-unsaturated ester suggests a more classical migratory insertion-β-hydride elimination route for the formation of this product.
Collapse
Affiliation(s)
- Kiron K Ghosh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - T V RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
45
|
Zhang F, Sasmal HS, Rana D, Glorius F. Switchable and Chemoselective Arene Hydrogenation for Efficient Late Stage Applications. J Am Chem Soc 2024; 146:18682-18688. [PMID: 38934861 DOI: 10.1021/jacs.4c05883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The incorporation of three-dimensional structures into drug molecules has demonstrated significant improvements in clinical success. Late-stage saturation of drug molecules provides a direct pathway for this transformation. However, achieving selective and controllable reduction of aromatic rings remains challenging, particularly when multiple aromatic rings coexist. Herein, we present the switchable and chemoselective hydrogenation of benzene and pyridine rings. The utility of the protocol has been comprehensively investigated in diversified substrates with the assistance of a fragment-screening technique. This approach provides convenient access to a diverse array of cyclohexane and piperidine compounds, prevalent in various bioactive molecules and drugs. Furthermore, it discloses promising avenues for applications in the late-stage switchable saturation of drugs, facilitating an increase in the fraction of sp3-carbons which holds the potential to enhance the medicinal properties of drugs.
Collapse
Affiliation(s)
- Fuhao Zhang
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Himadri Sekhar Sasmal
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Debanjan Rana
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
46
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
47
|
Hao Y, Wang H, Liu X, Gai W, Hu S, Liu W, Miao Z, Gan Y, Yu X, Shi R, Tan Y, Kang T, Hai A, Zhao Y, Fu Y, Tang Y, Ye L, Liu J, Liang X, Ke B. Deep simulated annealing for the discovery of novel dental anesthetics with local anesthesia and anti-inflammatory properties. Acta Pharm Sin B 2024; 14:3086-3109. [PMID: 39027234 PMCID: PMC11252475 DOI: 10.1016/j.apsb.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 07/20/2024] Open
Abstract
Multifunctional therapeutics have emerged as a solution to the constraints imposed by drugs with singular or insufficient therapeutic effects. The primary challenge is to integrate diverse pharmacophores within a single-molecule framework. To address this, we introduced DeepSA, a novel edit-based generative framework that utilizes deep simulated annealing for the modification of articaine, a well-known local anesthetic. DeepSA integrates deep neural networks into metaheuristics, effectively constraining molecular space during compound generation. This framework employs a sophisticated objective function that accounts for scaffold preservation, anti-inflammatory properties, and covalent constraints. Through a sequence of local editing to navigate the molecular space, DeepSA successfully identified AT-17, a derivative exhibiting potent analgesic properties and significant anti-inflammatory activity in various animal models. Mechanistic insights into AT-17 revealed its dual mode of action: selective inhibition of NaV1.7 and 1.8 channels, contributing to its prolonged local anesthetic effects, and suppression of inflammatory mediators via modulation of the NLRP3 inflammasome pathway. These findings not only highlight the efficacy of AT-17 as a multifunctional drug candidate but also highlight the potential of DeepSA in facilitating AI-enhanced drug discovery, particularly within stringent chemical constraints.
Collapse
Affiliation(s)
- Yihang Hao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Haofan Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xianggen Liu
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Wenrui Gai
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shilong Hu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wencheng Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhuang Miao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Gan
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xianghua Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Rongjia Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongzhen Tan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ting Kang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ao Hai
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Zhao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yihang Fu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yaling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jin Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinhua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
48
|
Drius G, Tarroni R, Birchmeier M, Parolin C, Boga C, Monari M, Bordoni S. Unpredictable Dynamic Behaviour of Ruthenium Chelate Pyrrole Derivatives. Molecules 2024; 29:3068. [PMID: 38999019 PMCID: PMC11242957 DOI: 10.3390/molecules29133068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Reaction of [Ru(H)2(CO)(PPh3)3] 1 with an equimolar amount of pyrrole-2-carboxylic acid (H2L1) leads to the homoleptic chelate derivative k2(O,O)-[RuH(CO)(HL1)(PPh3)2] 2. Prolonged acetonitrile refluxing promotes an unusual k2(O,O)- → k2(N,O)- dynamic chelate conversion, forming a neutral, stable, air- and moisture- insensitive, solvento-species k2(N,O)-[Ru(MeCN)(CO)(L1)(PPh3)2] 3. Analogously, reaction of 1 with the pyrrole-2-carboxyaldehyde (HL2) affords k2(N,O)-[RuH(CO)(HL2)(PPh3)2] 4, 5, as a couple of functional isomers. Optimized reaction conditions such as temperature and solvent polarity allow the isolation of dominant configurations. Structure 5 is a pyrrolide Ru-carbaldehyde, obtained from cyclization of the pendant CHO function, whereas species 4 can be viewed as an ethanoyl-conjugated Ru-pyrrole. Derivatives 3-5 were characterized by single crystal X-ray diffraction, ESI-Ms, IR, and NMR spectroscopy, indicating distinct features for the Ru-bonded pyrrolyl groups. DFT computational results, coplanarity, bond equalization, and electron delocalization along the fused five-membered rings support aromatic features. In accordance with the antisymbiotic trans-influence, both the isolated isomers 4 and 5 disclose CO ligands opposite to N- or O-anionic groups. The quantitative Mayer bond order evidences a stabilizing backbonding effect. Antibacterial and antifungal trials on Gram-positive (Staphylococcus aureus), Gram-negative (Escherichia coli), and Candida albicans were further carried out.
Collapse
Affiliation(s)
- Giacomo Drius
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Via Piero Gobetti, 85, 40129 Bologna, Italy
| | - Riccardo Tarroni
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Via Piero Gobetti, 85, 40129 Bologna, Italy
| | - Matteo Birchmeier
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Via Piero Gobetti, 85, 40129 Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Carla Boga
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Via Piero Gobetti, 85, 40129 Bologna, Italy
| | - Magda Monari
- Department of Chemistry 'Giacomo Ciamician', Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Silvia Bordoni
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Via Piero Gobetti, 85, 40129 Bologna, Italy
- Health Sciences and Technologies Interdepartmental Centre for Industrial Research (CIRI SDV), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
49
|
Fang X, Zeng Y, Huang Y, Zhu Z, Lin S, Xu W, Zheng C, Hu X, Qiu Y, Ruan Z. Electrochemical synthesis of peptide aldehydes via C‒N bond cleavage of cyclic amines. Nat Commun 2024; 15:5181. [PMID: 38890290 PMCID: PMC11189564 DOI: 10.1038/s41467-024-49223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Peptide aldehydes are crucial biomolecules essential to various biological systems, driving a continuous demand for efficient synthesis methods. Herein, we develop a metal-free, facile, and biocompatible strategy for direct electrochemical synthesis of unnatural peptide aldehydes. This electro-oxidative approach enabled a step- and atom-economical ring-opening via C‒N bond cleavage, allowing for homoproline-specific peptide diversification and expansion of substrate scope to include amides, esters, and cyclic amines of various sizes. The remarkable efficacy of the electro-synthetic protocol set the stage for the efficient modification and assembly of linear and macrocyclic peptides using a concise synthetic sequence with racemization-free conditions. Moreover, the combination of experiments and density functional theory (DFT) calculations indicates that different N-acyl groups play a decisive role in the reaction activity.
Collapse
Affiliation(s)
- Xinyue Fang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yong Zeng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yawen Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Zile Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, PR China
| | - Shengsheng Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Wenyan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Chengwei Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xinwei Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, PR China.
| | - Zhixiong Ruan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
50
|
Conboy A, Goodfellow AS, Kasten K, Dunne J, Cordes DB, Bühl M, Smith AD. De-epimerizing DyKAT of β-lactones generated by isothiourea-catalysed enantioselective [2 + 2] cycloaddition. Chem Sci 2024; 15:8896-8904. [PMID: 38873072 PMCID: PMC11168096 DOI: 10.1039/d4sc01410c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 06/15/2024] Open
Abstract
An enantioselective isothiourea-catalysed [2 + 2] cycloaddition of C(1)-ammonium enolates with pyrazol-4,5-diones is used to construct spirocyclic β-lactones in good yields, excellent enantioselectivity (99 : 1 er) but with modest diastereocontrol (typically 70 : 30 dr). Upon ring-opening with morpholine or alternative nucleophilic amines and alcohols β-hydroxyamide and β-hydroxyester products are generated with enhanced diastereocontrol (up to >95 : 5 dr). Control experiments show that stereoconvergence is observed in the ring-opening of diastereoisomeric β-lactones, leading to a single product (>95 : 5 dr, >99 : 1 er). Mechanistic studies and DFT analysis indicate a substrate controlled Dynamic Kinetic Asymmetric Transformation (DyKAT) involving epimerisation at C(3) of the β-lactone under the reaction conditions, coupled with a hydrogen bond-assisted nucleophilic addition to the Si-face of the β-lactone and stereodetermining ring-opening. The scope and limitations of a one-pot protocol consisting of isothiourea-catalysed enantio-determining [2 + 2] cycloaddition followed by diastereo-determining ring-opening are subsequently developed. Variation within the anhydride ammonium enolate precursor, as well as N(1) and C(3) within the pyrazol-4,5-dione scaffold is demonstrated, giving a range of functionalised β-hydroxyamides with high diastereo- and enantiocontrol (>20 examples, up to >95 : 5 dr and >99 : 1 er) via this DyKAT.
Collapse
Affiliation(s)
- Aífe Conboy
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Alister S Goodfellow
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Kevin Kasten
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Joanne Dunne
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Michael Bühl
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|