1
|
Marcantonio E, Guazzetti D, Coppa C, Battistini L, Sartori A, Bugatti K, Provinciael B, Curti C, Contini A, Vermeire K, Zanardi F. The chiral 5,6-cyclohexane-fused uracil ring-system: A molecular platform with promising activity against SARS-CoV-2. Eur J Med Chem 2025; 286:117302. [PMID: 39884099 DOI: 10.1016/j.ejmech.2025.117302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
The recurrent global exposure to highly challenging viral epidemics, and the still limited spectrum of effective pharmacological options step on the accelerator towards the development of new antiviral medicines. In this work we explored the anti-SARS-CoV-2 potential of a recently launched chiral ring system based on the uracil scaffold fused to carbocycle rings. The asymmetric synthesis of two generations of chiral uracil-based compounds (overall 31 different products), and their in vitro cytotoxicity and antiviral screening against wild-type SARS-CoV-2 in U87.ACE cells allowed us to identify seven non-cytotoxic enantioenriched derivatives exhibiting in vitro EC50 in the 6-37 μM range. Among these compounds, bicyclic uracil 10 showed the best antiviral potency against SARS-CoV-2 (EC50 20A.EU2 = 7.41 μM and EC50 Omicron = 19.4 μM), combined with a favourable selectivity index. Additionally, it exhibited single-digit micromolar inhibition of the isolated SARS-CoV-2 RNA-dependent RNA polymerase (IC50 = 2.1 μM). Starting from a reported cryo-EM structure of RdRp, docking and molecular dynamics simulations were performed to rationalize possible binding modes of the active compounds. Interestingly, no inhibition of viral replication in cells was observed against a wide spectrum of human viruses, while some derivatives, and especially hit compound 10, exhibited specific low micromolar antiviral effect against β-coronavirus OC43. Collectively, these data indicate that this novel uracil-based ring system represents a valid starting point for further development of a new class of RdRp inhibitors to treat SARS-CoV-2 and, potentially, other β-coronavirus infections.
Collapse
Affiliation(s)
- Enrico Marcantonio
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy
| | - Debora Guazzetti
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy
| | - Crescenzo Coppa
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133, Milano, Italy
| | - Lucia Battistini
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy
| | - Andrea Sartori
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy
| | - Kelly Bugatti
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy
| | - Becky Provinciael
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular, Structural and Translational Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Claudio Curti
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy.
| | - Alessandro Contini
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133, Milano, Italy.
| | - Kurt Vermeire
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular, Structural and Translational Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Franca Zanardi
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy.
| |
Collapse
|
2
|
Bartholomew GL, Karas LJ, Eason RM, Yeung CS, Sigman MS, Sarpong R. Cheminformatic Analysis of Core-Atom Transformations in Pharmaceutically Relevant Heteroaromatics. J Med Chem 2025. [PMID: 40053676 DOI: 10.1021/acs.jmedchem.4c02839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Heteroaromatics are the basis for many pharmaceuticals. The ability to modify these structures through selective core-atom transformations, or "skeletal edits", can dramatically expand the landscape for drug discovery and development. However, despite the importance of core-atom modifications, the quantitative impact of such transformations on accessible chemical space remains undefined. Here, we report a cheminformatic platform to analyze which skeletal edits would most increase access to novel chemical space. This study underscores the significance of emerging single and multiple core-atom transformations of heteroaromatics in enhancing chemical diversity, for example, at a late-stage of a drug discovery campaign. Our findings provide a quantitative framework for prioritizing core-atom modifications in heteroaromatic structural motifs, calling for the development of new methods to achieve these types of transformations.
Collapse
Affiliation(s)
- G Logan Bartholomew
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Lucas J Karas
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Reilly M Eason
- Modeling & Informatics, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Charles S Yeung
- Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Feng MH, Chen DQ, Gao SJ, Ge D, Chen X, Ma M, Shen ZL, Chu XQ. Defluorinative Diazolation-Cyclization Relay for Synthesis of Furan-Bridged Triheterocycles and Colorimetric Sensor Application. Chemistry 2025; 31:e202404324. [PMID: 39688877 DOI: 10.1002/chem.202404324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Polyaromatics, as the assembly of diverse cyclic π-systems, exhibit unique physicochemical properties when compared to their individual constituents. In this study, we developed a strategic connection of two azacycles via a furan bridge through a defluorinative diazolation-cyclization reaction of trifluoromethyl enones and N-heterocycles. A range of modular 2,4-furan-bridged triheterocycles (FBTHs), featuring a C3-trifluoromethyl group, was synthesized with broad substrate scope and good regioselectivity under transition metal-free conditions. This three-component protocol was achieved through successive C(sp3)-F bond functionalization of one trifluoromethyl group, which is recognized for its stability and durability. Moreover, the synthetically useful functionalities such as bromide and formyl group could be easily installed on the resulting products, and the imidazole-containing FBTH could serve as a valuable ligand in the preparation of an advanced colorimetric sensor, thereby underscoring their potential applications.
Collapse
Affiliation(s)
- Man-Hang Feng
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Da-Qing Chen
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Shu-Ji Gao
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Danhua Ge
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaojun Chen
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
4
|
Mohammadi S, Mortazavi M, Poustforoosh A, Moosavi F, Saso L, Edraki N, Firuzi O. Novel spiroisatin-pyranopyrazole hybrids as anticancer agents with TrkC inhibitory potential. J Biomol Struct Dyn 2025:1-14. [PMID: 40025803 DOI: 10.1080/07391102.2025.2472404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/06/2024] [Indexed: 03/04/2025]
Abstract
Cancer still represents a global health concern due to its high mortality and morbidity rates. Isatin-and pyrazole-based compounds have recently garnered interest as novel anticancer agents. A series of 15 novel spiroisatin pyranopyrazole derivatives were synthesized. Anticancer potential of synthesized agents against EBC-1, HT-29, A549, and AsPC-1 cell lines, representing cancers of the lung, colon, and pancreas, were evaluated using the MTT assay. The possible molecular mechanism contributing to antiproliferative activities of the most potent compounds was further investigated in silico by using SuperPred web server, a ligand-based tool. Docking and molecular dynamics (MD) simulation studies were carried out to investigate the binding affinity and key interactions of the agents with their predicted target. Among the tested compounds, four cyanide-containing derivatives 6c, 6d, 6f, and 6g with bromobenzyl, chlorobenzyl, p-tButyl benzyl and methylbenzyl moieties on the isatin ring, respectively, displayed the highest antiproliferative effects against all four cell lines. These compounds were particularly effective against EBC-1, and HT-29 cells with IC50 values of 3.3-7.1 and 7.3-10.2 μΜ, respectively, while relatively sparing non-cancer cells. The obtained target prediction results suggested that the growth inhibitory activity of the analyzed analogues could be related to tropomyosin receptor kinase C (TrkC) inhibition. The outcomes of molecular docking and MD simulation demonstrated that the most active agents may interact closely with the active site of the suggested target, further confirming target prediction findings. The findings of this study suggest the potential of spiroisatin pyranopyrazole analogues for further exploration as novel targeted anticancer agents.
Collapse
Affiliation(s)
- Somayeh Mohammadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Erchinger JE, Lenz M, Mukherjee P, Li YB, Suresh A, Daniliuc CG, Gutierrez O, Glorius F. Mechanistic insights into the regiodivergent insertion of bicyclo[1.1.0]butanes towards carbocycle-tethered N-heteroarenes. Chem Sci 2025; 16:4006-4013. [PMID: 39906383 PMCID: PMC11789309 DOI: 10.1039/d4sc08637f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Ring scaffolds constitute important sub-structures in nature and across the chemical industries. However, their straight-forward introduction into a target molecule or cross-linkage between cyclic motifs of choice comprise major challenges for methodology development. Herein, the interconnection of two prominent representatives of the 2D and 3D cyclic chemical space-namely N-heteroarenes and unsaturated carbocycles-in the form of hybrid cyclobutane-tethered N-heteroarenes is targeted. The diastereoselective introduction of decorated cyclobutanes is promoted by the insertion of strained bicyclo[1.1.0]butanes (BCBs) into the C-S bond of C2-thioether aza-arenes. In-depth density functional theory (DFT) studies provide insights on the key factors governing the unexpected regiodivergent insertion outcomes. A broad scope of mono- and bicyclic aza-arenes along with mono- and disubstituted BCBs are shown to be competent. Detailed mechanistic studies support an oxidative activation of the N-heteroarenes.
Collapse
Affiliation(s)
- Johannes E Erchinger
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Madina Lenz
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Poulami Mukherjee
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Yan-Bo Li
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Adhya Suresh
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
6
|
Demirel N, Moths P, Xie X, Ivlev SI, Meggers E. Development of Chiral-At-Ruthenium Mesoionic Carbene Catalysts. Chemistry 2025; 31:e202403792. [PMID: 39905895 DOI: 10.1002/chem.202403792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Indexed: 02/06/2025]
Abstract
Building on our previously established chiral-at-metal approach, in which the overall chirality of the transition metal catalyst is solely determined by a stereogenic metal center, we here present a new addition to the family of C2-symmetric chiral-at-ruthenium catalysts. These are C2-symmetric chiral ruthenium complexes featuring strongly σ-donating 1,2,3-triazol-5-ylidene mesoionic carbene (MIC) ligands. The complexes demonstrate excellent catalytic activity and enantioselectivity in a nitrene-mediated ring-closing C(sp3)-H amination of an aliphatic azide, leading to the formation of an N-Boc-protected chiral pyrrolidine. This study highlights the potential of this new class of chiral mesoionic carbene ruthenium complexes to further enhance or modify the reactivity of ruthenium-based chiral-at-metal catalysts.
Collapse
Affiliation(s)
- Nemrud Demirel
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Paul Moths
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Sergei I Ivlev
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| |
Collapse
|
7
|
Shaydullin RR, Galushko AS, Ilyushenkova VV, Vlasova YS, Ananikov VP. Are activation barriers of 50-70 kcal mol -1 accessible for transformations in organic synthesis in solution? Chem Sci 2025:d4sc08243e. [PMID: 40007660 PMCID: PMC11848743 DOI: 10.1039/d4sc08243e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
High-temperature organic chemistry represents a transformative approach for accessing reaction pathways previously considered unattainable under conventional conditions. This study focuses on a high-temperature synthesis as a powerful method for performing solution-phase organic reactions at temperatures up to 500 °C. Using the isomerization of N-substituted pyrazoles as a model reaction, we demonstrate the ability to overcome activation energy barriers of 50-70 kcal mol-1, achieving product yields up to 50% within reaction times as short as five minutes. The methodology is environmentally friendly, leveraging standard glass capillaries and p-xylene as a solvent. The significance of high-temperature synthesis lies in its simplicity, efficiency, and ability to address the limitations of traditional methods in solution chemistry. Kinetic studies and DFT calculations validate the experimental findings and provide insights into the reaction mechanism. The method holds broad appeal due to its potential to access diverse compounds relevant to pharmaceuticals, agrochemicals, and materials science. By expanding the scope of accessible reactions, this exploration of experimental possibilities opens a new frontier in synthetic chemistry, enabling the exploration of previously inaccessible transformations. This study establishes a new direction for further innovations in organic synthesis, fostering advancements in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Ruslan R Shaydullin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Moscow 119991 Russia https://AnanikovLab.ru
| | - Alexey S Galushko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Moscow 119991 Russia https://AnanikovLab.ru
| | - Valentina V Ilyushenkova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Moscow 119991 Russia https://AnanikovLab.ru
| | - Yulia S Vlasova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Moscow 119991 Russia https://AnanikovLab.ru
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Moscow 119991 Russia https://AnanikovLab.ru
| |
Collapse
|
8
|
Yu T, Zhao X, Nie Z, Qin L, Ding Z, Xu L, Li P. Diverse Synthesis of Arene-Fused [n.1.1]-Bridged Molecules via Catalytic Cycloaddition and Rearrangement Reactions. Angew Chem Int Ed Engl 2025; 64:e202420831. [PMID: 39714393 DOI: 10.1002/anie.202420831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Although great advancement has been made in synthesis of 3D bridged bicyclic[n.1.1]-bioisosteres, facile construction of 2D/3D merged molecules incorporating bridged rings, as novel chemical space in drug discovery, remains a significant challenge. Herein a collective, selective, and diversity-oriented approach for up to 6 types of 2D/3D polycyclic scaffolds featuring bicyclo[n.1.1] substructure is reported. A boronyl radical-catalyzed [2σ+2π] cycloaddition between bicyclo[1.1.0]butanes and ortho-quinone methides afforded spirocyclic compounds containing a bicyclo[2.1.1]hexanes unit, which were used as intermediates for synthesis of three types of 2D/3D scaffolds via judiciously controlled Lewis acid-catalyzed rearrangements. The reaction and rearrangement of para-quinone methides worked analogously and provided another two polycyclic scaffolds.
Collapse
Affiliation(s)
- Tao Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xue Zhao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Zaicheng Nie
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Lulu Qin
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhengwei Ding
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
9
|
Wang Y, Sun J, Zhou L, Wu G, Gong S, Gao Z, Wu J, Ma C, Zou Y, Liu X, Ma R, Zhang X, Zhang Z, Li Y. Highly Sensitive and Interference-Free Detection of Multiple Drug Molecules in Serum Using Dual-Modified SERS Substrates Combined with AI Algorithm Analysis. Anal Chem 2025; 97:3739-3747. [PMID: 39901357 DOI: 10.1021/acs.analchem.4c06724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Surface-enhanced Raman spectroscopy (SERS) technology has shown broad potential in drug concentration detection, but its application in blood drug monitoring faces significant challenges. The primary difficulty lies in overcoming the interference caused by various biomolecules present in serum, which can severely obscure the SERS signals of target drug molecules. Traditional enhancement substrates are often limited to detecting single drugs and are prone to interference, making the label-free detection of multiple drugs particularly challenging. To address these issues, we developed a novel SERS substrate based on Au@AgNRs, which undergoes a two-step modification to produce Au@AgDBCNRs. This innovative substrate provides exceptional signal amplification, simultaneously allowing the sensitive detection of multiple drug molecules. Moreover, our method eliminates the need for serum deproteinization, enabling the direct detection of drugs in serum while effectively mitigating interference from blood components. The cetyltrimethylammonium bromide coating on Au@AgDBCNRs is an internal standard for drug quantification without additional standards. The platform significantly improves detection accuracy and efficiency by automatically integrating artificial intelligence to recognize and analyze Raman spectral features. This novel SERS platform provides a new idea for therapeutic drug monitoring and is expected to provide rapid, accurate, and cost-effective drug detection in the clinical environment, which has great potential in improving patient care and optimizing drug dosage strategies.
Collapse
Affiliation(s)
- Yingji Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jin Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Liping Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Guangrun Wu
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Siqi Gong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zibo Gao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jing Wu
- College of Physical Science and Technology, Nantong University, Nantong 226019, China
| | - Chaochao Ma
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yun Zou
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China
| | - Xiaoyu Liu
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China
| | - Rongheng Ma
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China
| | - Xin Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zhaoying Zhang
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China
| | - Yang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Oulu 90014, Finland
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
10
|
Melnykov KP, Liashuk OS, Holovach S, Shatnia V, Horbenko A, Lesyk D, Melnyk V, Skrypnik D, Beshtynarska A, Borysko P, Viniichuk O, Grygorenko OO. Physicochemical and Biological Evaluation of gem-Difluorinated Saturated Oxygen Heterocycles as Bioisosteres for Drug Discovery. Chemistry 2025; 31:e202404390. [PMID: 39660537 DOI: 10.1002/chem.202404390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/12/2024]
Abstract
A comprehensive study on the physicochemical properties of gem-fluorinated O-heterocyclic substituents is reported. Systematic additive effects of introducing O- and gem-CF2 group introduction on acidic properties (pKa) of the corresponding carboxylic acids/protonated primary amines were demonstrated. The impact of the O/CF2 moieties on lipophilicity (LogP) was found to be complex; significant mutual influence of the corresponding polar moieties governed the compound's overall properties in this case. Biological evaluation of MAPK kinase inhibitors incorporating the title substituents demonstrated their utility as promising fragments for bioisosteric replacements in drug discovery campaigns.
Collapse
Affiliation(s)
- Kostiantyn P Melnykov
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Oleksandr S Liashuk
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Serhii Holovach
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyїv, 02660, Ukraine
| | - Valeriia Shatnia
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Beresteiskyi Avenue 37, Kyїv, 03056, Ukraine
| | - Artur Horbenko
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- V. I. Vernadsky Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine, Akademik Palladin Street 32/34, Kyїv, 03142, Ukraine
| | - Dmytro Lesyk
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Varvara Melnyk
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Daniil Skrypnik
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Anna Beshtynarska
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Petro Borysko
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Oleksandr Viniichuk
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| |
Collapse
|
11
|
Kirichok AA, Tkachuk H, Levchenko K, Granat D, Yegorova T, Lesyk D, Anisiforova A, Holota Y, Zomchak V, Bodenchuk I, Kosach V, Borysko P, Korzh RA, Al-Maali G, Kubyshkin V, Rzepa HS, Mykhailiuk PK. "Angular" Spirocyclic Azetidines: Synthesis, Characterization, and Evaluation in Drug Discovery. Angew Chem Int Ed Engl 2025; 64:e202418850. [PMID: 39621438 DOI: 10.1002/anie.202418850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Indexed: 12/14/2024]
Abstract
The previously neglected "angular" spirocyclic azetidines have been synthesized, characterized, and validated in drug discovery. We have shown that these compounds could act as bioisosteres for common saturated six-membered heterocycles. Their incorporation into the structure of the anticancer drug Sonidegib (instead of morpholine), and Danofloxacine (instead of piperazine) provided novel patent-free analogs with similar physicochemical properties and high activity.
Collapse
Affiliation(s)
- Alexander A Kirichok
- Enamine Ltd, Winston Churchill st. 78, 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Volodymyrska 60, 01601, Kyiv, Ukraine
| | | | - Kostiantyn Levchenko
- Enamine Ltd, Winston Churchill st. 78, 02094, Kyiv, Ukraine
- Ivan Franko National University of Lviv, Department of Organic Chemistry, Kyryla i Mefodia St. 6, 79005, Lviv, Ukraine
| | - Dmitry Granat
- Enamine Ltd, Winston Churchill st. 78, 02094, Kyiv, Ukraine
| | - Tetyana Yegorova
- Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Volodymyrska 60, 01601, Kyiv, Ukraine
| | - Dmytro Lesyk
- Bienta, Winston Churchill st. 78, 02094, Kyiv, Ukraine
| | | | - Yuliia Holota
- Bienta, Winston Churchill st. 78, 02094, Kyiv, Ukraine
| | | | | | | | - Petro Borysko
- Bienta, Winston Churchill st. 78, 02094, Kyiv, Ukraine
| | - Rodion A Korzh
- Enamine Ltd, Winston Churchill st. 78, 02094, Kyiv, Ukraine
| | - Galeb Al-Maali
- Enamine Ltd, Winston Churchill st. 78, 02094, Kyiv, Ukraine
- M. G. Kholodny. Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | - Henry S Rzepa
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | - Pavel K Mykhailiuk
- Enamine Ltd, Winston Churchill st. 78, 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Volodymyrska 60, 01601, Kyiv, Ukraine
| |
Collapse
|
12
|
Zheng T, Wang A, Han X, Xia Y, Xu X, Zhan J, Liu Y, Chen Y, Wang Z, Wu X, Gong S, Yan W. Data-driven parametrization of molecular mechanics force fields for expansive chemical space coverage. Chem Sci 2025; 16:2730-2740. [PMID: 39802691 PMCID: PMC11721737 DOI: 10.1039/d4sc06640e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
A force field is a critical component in molecular dynamics simulations for computational drug discovery. It must achieve high accuracy within the constraints of molecular mechanics' (MM) limited functional forms, which offers high computational efficiency. With the rapid expansion of synthetically accessible chemical space, traditional look-up table approaches face significant challenges. In this study, we address this issue using a modern data-driven approach, developing ByteFF, an Amber-compatible force field for drug-like molecules. To create ByteFF, we generated an expansive and highly diverse molecular dataset at the B3LYP-D3(BJ)/DZVP level of theory. This dataset includes 2.4 million optimized molecular fragment geometries with analytical Hessian matrices, along with 3.2 million torsion profiles. We then trained an edge-augmented, symmetry-preserving molecular graph neural network (GNN) on this dataset, employing a carefully optimized training strategy. Our model predicts all bonded and non-bonded MM force field parameters for drug-like molecules simultaneously across a broad chemical space. ByteFF demonstrates state-of-the-art performance on various benchmark datasets, excelling in predicting relaxed geometries, torsional energy profiles, and conformational energies and forces. Its exceptional accuracy and expansive chemical space coverage make ByteFF a valuable tool for multiple stages of computational drug discovery.
Collapse
Affiliation(s)
- Tianze Zheng
- ByteDance Research, Beijing Beijing 100098 China
| | - Ailun Wang
- ByteDance Research Bellevue Washington 98004 USA
| | - Xu Han
- ByteDance Research, Beijing Beijing 100098 China
| | - Yu Xia
- ByteDance Research, Beijing Beijing 100098 China
| | - Xingyuan Xu
- ByteDance Research, Beijing Beijing 100098 China
| | - Jiawei Zhan
- ByteDance Research Bellevue Washington 98004 USA
| | - Yu Liu
- ByteDance Research Bellevue Washington 98004 USA
| | - Yang Chen
- ByteDance Research, Beijing Beijing 100098 China
| | - Zhi Wang
- ByteDance Research Bellevue Washington 98004 USA
| | - Xiaojie Wu
- ByteDance Research Bellevue Washington 98004 USA
| | - Sheng Gong
- ByteDance Research Bellevue Washington 98004 USA
| | - Wen Yan
- ByteDance Research Bellevue Washington 98004 USA
| |
Collapse
|
13
|
Alsehli M, Sheikh Ali AA, Nafie MS, Bardaweel S, Aljuhani A, Darwish KM, Alraqa SY, Rezki N, Aouad MR. Discovery of novel tris-1,2,3-triazole-based hybrids as VEGFR2 inhibitors with potent anti-proliferative and cytotoxicity through apoptosis induction. Bioorg Chem 2025; 155:108131. [PMID: 39798451 DOI: 10.1016/j.bioorg.2025.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
The discovery of novel anti-cancer drugs motivated us to synthesize a new series of triple 1,2,3-triazole-based arm scaffolds featuring distinct un functionalized alkyl and/or aryl side chains with possible anti-cancer action using the click chemistry approach under both conventional and green microwave irradiation (MWI) methods. The Cu(I) catalyzed cycloaddition reaction of targeted tris-alkyne with un functionalized aliphatic and aromatic azides has been adopted as an efficient approach for synthesizing the desired click adducts. Microwave irradiation improved the synthetic processes, resulting in higher yields and faster reaction times. Spectroscopic techniques (FT-IR, 1H, 13C NMR andCHN analysis) were used for the elucidation of the resulting click structures. The newly synthesized tris-1,2,3-triazoles exhibited promising cytotoxicity, particularly compounds 26 and 28, with IC50 values of 22.18 µM and 20.3 µM against A549 and CaCo-2 cells, respectively. While they had IC50 values of 23.06 µM and 21.91 µM against T-47D and CaCo-2 cells, respectively. Both compounds exhibited promising anti-proliferative activity through the wound healing assay. Additionally, both compounds induced total apoptotic cell death by 68.3 % and 58.5 %, respectively, compared to untreated cells (7.7 %). Furthermore, they induced necrotic cell death by 1.4 % and 10.5 %, respectively, compared to 0.1 % in the untreated cells. For the molecular target, compounds 26 and 28 exhibited potent VEGFR2 inhibition with IC50 values of 35.5 nM and 27.8 nM, respectively, and this was highlighted through the molecular docking findings. Tris-1,2,3-triazoles (26 and 28) exhibited promising cytotoxicity and anti-proliferative against T-47D breast cancer cells through apoptosis and VEGFR2 inhibition using both enzyme kit and western blotting protein expression assays. Molecular docking study highlighted the binding affinity of tested compounds towards the VEGFR2 protein. Accordingly, tris-1,2,3-triazoles (26 and 28) can be further developed as more potent anti-cancer agents.
Collapse
Affiliation(s)
- Mosa Alsehli
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002 Saudi Arabia
| | - Adeeb Al Sheikh Ali
- Chemistry Department, Kuwait University, Sabah Al Salem University City, Kuwait.
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah (P.O. 27272) United Arab Emirates; Chemistry Department, Faculty of Science, Suez Canal University, Ismailia (P.O. 41522) Egypt.
| | - Sanaa Bardaweel
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman 11942 Jordan.
| | - Ateyatallah Aljuhani
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002 Saudi Arabia
| | - Khaled M Darwish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713 Egypt.
| | - Shaya Yahya Alraqa
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002 Saudi Arabia
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002 Saudi Arabia.
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002 Saudi Arabia.
| |
Collapse
|
14
|
Masand VH, Patil MK, Al-Hussain SA, Samad A, Rastija V, Jawarkar RD, Masand GS, Gawali RG, Zaki MEA. Analyzing Oxygen Atom Distribution in FDA-Approved Drugs to Enhance Drug Discovery Strategies. Chem Biol Drug Des 2025; 105:e70060. [PMID: 39912316 DOI: 10.1111/cbdd.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/26/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
Despite advancements in molecular design rules and understanding biochemical processes, the field of drug design and discovery seeks to minimize the number and duration of synthesis-testing cycles to convert lead compounds into drug candidates. A promising strategy involves gaining insightful understanding of key heteroatoms such as oxygen and nitrogen. This work presents a comprehensive analysis of oxygen atoms in approved drugs, aiming to streamline drug design and discovery efforts. The study examines the frequency, distribution, prevalence, and diversity of oxygen atoms in a dataset of 2049 small molecules approved by the FDA and other agencies. The analysis focuses on various types of oxygen atoms, including sp3, sp2-hybridized, ring, and nonring. In general, existence of sp3-O slightly outperforms sp2-O, which is associated with balancing various factors such as flexibility, solubility, stability, and pharmacokinetics, in addition to activity and selectivity. In approved drugs, majority of oxygen atoms are present within 4 Å from the COM of the molecule. This analysis offers valuable understanding of oxygen distribution, which could be used during the multiparameter optimization process, facilitating the transformation of a hit/lead compound into a potential drug candidate.
Collapse
Affiliation(s)
- Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati, Maharashtra, India
| | - Meghshyam K Patil
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Sub-Campus, Dharashiv, Maharashtra, India
| | - Sami A Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdul Samad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Vesna Rastija
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry, Dr. Rajendra Gode Institute of Pharmacy, Amravati, Maharashtra, India
| | - Gaurav S Masand
- Dr. D. Y. Patil Unitech Society's Dr. D. Y. Patil Institute of Technology, Pune, Maharashtra, India
| | - Rakhi G Gawali
- Department of Chemistry, D.B.F. Dayanand College of Arts & Science, Solapur, India
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Wen SY, Chen JJ, Zheng Y, Han JX, Huang HM. Energy-Transfer Enabled 1,4-Aryl Migration. Angew Chem Int Ed Engl 2025; 64:e202415495. [PMID: 39498962 DOI: 10.1002/anie.202415495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/07/2024]
Abstract
Functional group translocation is undoubtedly a pivotal synthetic transformation in organic chemistry. Numerous types of reactions involving radical 1,2-aryl or 1,4-aryl migration via electron transfer mechanism have been extensively investigated. Nevertheless, energy-transfer enabled 1,4-arylation remains unknown. Herein we disclose that an unprecedented di-π-ethane rearrangement featuring 1,4-aryl migration facilitated by energy transfer catalysis under visible light conditions. The newly developed mild protocol exhibits tolerance towards diverse functional groups and enables the migration of a multitude of aromatic rings, encompassing both electron-withdrawing and electron-rich functional groups. The open-shell strategy has also found successful application in the modification of several drugs. Large-scale experiments, continuous-flow experiment, and versatile manipulation of products have demonstrated the robustness and potential utility of this synthetic method. Preliminary mechanistic studies have supported the involvement of radical species in this di-π-ethane rearrangement and have also provided evidence for the energy transfer mechanism.
Collapse
Affiliation(s)
- Shu-Ya Wen
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210 Shanghai, China
| | - Jun-Jie Chen
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210 Shanghai, China
| | - Yu Zheng
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210 Shanghai, China
| | - Jia-Xun Han
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210 Shanghai, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210 Shanghai, China
| |
Collapse
|
16
|
Li Y, Liu XB, Sham V, Logvinenko I, Xue JH, Wu JY, Fu JL, Lin S, Liu Y, Li Q, Mykhailiuk PK, Wang H. Saturated F 2-Rings from Alkenes. Angew Chem Int Ed Engl 2025:e202422899. [PMID: 39809698 DOI: 10.1002/anie.202422899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
A general method to convert simple exocyclic alkenes into saturated F2-rings has been developed. The reaction involves reagent C6F5I(OAc)2. The reaction efficiently works on the mg-, g-, and even multigram scale.
Collapse
Affiliation(s)
- Yin Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiao-Bin Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Vadym Sham
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, 5 Akademik Kukhar Street, 02094, Kyiv, Ukraine
| | - Ivan Logvinenko
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, 02094, Kyiv, Ukraine
| | - Jiang-Hao Xue
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jun-Yunzi Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jia-Luo Fu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuang Lin
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuan Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qingjiang Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Pavel K Mykhailiuk
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- Chemistry Department, Taras Shevchenko National University of Kyiv Volodymyrska 64, 01601, Kyiv, Ukraine
| | - Honggen Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
17
|
Elfawal MA, Goetz E, Kim Y, Chen P, Savinov SN, Barasa L, Thompson PR, Aroian RV. High-Throughput Screening of More Than 30,000 Compounds for Anthelmintics against Gastrointestinal Nematode Parasites. ACS Infect Dis 2025; 11:104-120. [PMID: 39653369 PMCID: PMC11731298 DOI: 10.1021/acsinfecdis.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 12/18/2024]
Abstract
Gastrointestinal nematodes (GINs) are among the most common parasites of humans, livestock, and companion animals. GIN parasites infect 1-2 billion people worldwide, significantly impacting hundreds of millions of children, pregnant women, and adult workers, thereby perpetuating poverty. Two benzimidazoles with suboptimal efficacy are currently used to treat GINs in humans as part of mass drug administrations, with many instances of lower-than-expected or poor efficacy and possible resistance. Thus, new anthelmintics are urgently needed. However, screening methods for new anthelmintics using human GINs typically have low throughput. Here, using our novel screening pipeline that starts with human hookworms, we screened 30,238 unique small molecules from a wide range of compound libraries, including ones with generic diversity, repurposed drugs, natural derivatives, known mechanisms of action, as well as multiple target-focused libraries (e.g., targeting kinases, GPCRs, and neuronal proteins). We identified 55 compounds with broad-spectrum activity against adult stages of two evolutionary divergent GINs, hookworms (Ancylostoma ceylanicum) and whipworms (Trichuris muris). Based on known databases, the targets of these 55 compounds were predicted in nematode parasites. One novel scaffold from the diversity set library, F0317-0202, showed good activity (high motility inhibition) against both GINs. To better understand this novel scaffold's structure-activity relationships (SAR), we screened 28 analogs and created SAR models highlighting chemical and functional groups required for broad-spectrum activity. These studies validate our new and efficient screening pipeline at the level of tens of thousands of compounds and provide an important set of new GIN-active compounds for developing novel and broadly active anthelmintics.
Collapse
Affiliation(s)
- Mostafa A. Elfawal
- Program
in Molecular Medicine, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Emily Goetz
- Program
in Molecular Medicine, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Youmie Kim
- Program
in Molecular Medicine, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Paulina Chen
- Program
in Molecular Medicine, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Sergey N. Savinov
- Department
of Science, Rivier University, Nashua, New Hampshire 03060, United States
| | - Leonard Barasa
- Department
of Chemical Biology, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Paul R. Thompson
- Department
of Chemical Biology, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Raffi V. Aroian
- Program
in Molecular Medicine, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
18
|
Tandi M, Sharma V, Gopal B, Sundriyal S. Multicomponent reactions (MCRs) yielding medicinally relevant rings: a recent update and chemical space analysis of the scaffolds. RSC Adv 2025; 15:1447-1489. [PMID: 39822567 PMCID: PMC11736855 DOI: 10.1039/d4ra06681b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025] Open
Abstract
In this review we have compiled multicomponent reactions (MCRs) that produce cyclic structures. We have covered articles reported since 2019 to showcase the recent advances in this area. In contrast to other available reviews on this topic, we focus specifically on MCRs with strong prospects in medicinal chemistry. Consequently, the reactions operating in a single-pot and yielding novel rings or new substitution patterns under mild conditions are highlighted. Moreover, MCRs that do not require special reagents or catalysts and yield diverse products from commercially available building blocks are reviewed. The synthetic schemes, substrate scope, and other key aspects such as regio- and stereoselectivity are discussed for each MCR. Using cheminformatic tools, we have also attempted to characterize the chemical space of the scaffolds obtained from these MCRs. We show that the MCR scaffolds are novel, more complex, and globular in shape compared to the approved drugs and clinical candidates. Thus, our review represents a step towards identifying and characterizing the novel ring space that can be accessed efficiently through MCRs in a short timeframe.
Collapse
Affiliation(s)
- Mukesh Tandi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| | - Vaibhav Sharma
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| | | | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| |
Collapse
|
19
|
Sheikhaleslami S, Sperry J. Mechanochemical Radical Transformations in Organic Synthesis. Chemistry 2025; 31:e202403833. [PMID: 39434622 DOI: 10.1002/chem.202403833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/23/2024]
Abstract
Organic synthesis has historically relied on solution-phase, polar transformations to forge new bonds. However, this paradigm is evolving, propelled by the rapid evolution of radical chemistry. Additionally, organic synthesis is witnessing a simultaneous resurgence in mechanochemistry, the formation of new bonds in the solid-state, further contributing to this shift in the status quo. The aforementioned advances in radical chemistry have predominantly occurred in the solution phase, while the majority of mechanochemical synthesis advances feature polar transformations. Herein, we discuss a rapidly advancing area of organic synthesis: mechanochemical radical reactions. Solid-state radical reactions offer improved green chemistry metrics, better reaction outcomes, and access to intermediates and products that are difficult or impossible to reach in solution. This review explores these reactions in the context of small molecule synthesis, from early findings to the current state-of-the-art, underscoring the pivotal role solid-state radical reactions are likely to play in advancing sustainable chemical synthesis.
Collapse
Affiliation(s)
- Sahra Sheikhaleslami
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, New Zealand
| | - Jonathan Sperry
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, New Zealand
| |
Collapse
|
20
|
Roure B, Alonso M, Lonardi G, Yildiz DB, Buettner CS, Dos Santos T, Xu Y, Bossart M, Derdau V, Méndez M, Llaveria J, Ruffoni A, Leonori D. Photochemical permutation of thiazoles, isothiazoles and other azoles. Nature 2025; 637:860-867. [PMID: 39536795 PMCID: PMC11754090 DOI: 10.1038/s41586-024-08342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Thiazoles and isothiazoles are privileged motifs in drug and agrochemical discovery1,2. The synthesis of these derivatives is generally approached, designed and developed on a case-by-case basis. Sometimes, the lack of robust synthesis methods to a given target can pose considerable difficulties or even thwart the preparation of specific derivatives for further study3,4. Here we report a conceptually different approach in which photochemical irradiation can be used to alter the structure of thiazoles and isothiazoles in a selective and predictable manner. On photoexcitation, these derivatives populate their π,π* singlet excited states that undergo a series of structural rearrangements, leading to an overall permutation of the cyclic system and its substituents. This means that once the initial heteroaromatic scaffold has been prepared, it can then function as an entry point to access other molecules by selective structural permutation. This approach operates under mild photochemical conditions that tolerate many chemically distinct functionalities. Preliminary findings also show the potential for extending this method to other azole systems, including benzo[d]isothiazole, indazole, pyrazole and isoxazole. This strategy establishes photochemical permutation as a powerful and convenient method for the preparation of complex and difficult-to-access derivatives from more available structural isomers.
Collapse
Affiliation(s)
- Baptiste Roure
- Department of Chemistry, University of Manchester, Manchester, UK
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Maialen Alonso
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Giovanni Lonardi
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Dilara Berna Yildiz
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
- Department of Chemistry, Faculty of Science, Gazi University, Teknikokullar, Turkey
| | | | - Thiago Dos Santos
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Yan Xu
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
- College of Chemistry and Environmental Engineering, Shenzen University, Shenzhen, China
| | - Martin Bossart
- Integrated Drug Discovery, R&D, Sanofi Germany, Frankfurt am Main, Germany
| | - Volker Derdau
- Integrated Drug Discovery, R&D, Sanofi Germany, Frankfurt am Main, Germany
| | - María Méndez
- Integrated Drug Discovery, R&D, Sanofi Germany, Frankfurt am Main, Germany
| | - Josep Llaveria
- Global Discovery Chemistry, Therapeutics Discovery, Janssen-Cilag, Johnson & Johnson Innovative Medicine, Toledo, Spain
| | - Alessandro Ruffoni
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany.
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
21
|
Liashuk OS, Fedinchyk A, Melnykov KP, Herasymchuk M, Alieksieieva D, Lesyk D, Bas YP, Keda TY, Yatsymyrskiy AV, Holota Y, Borysko P, Yarmolchuk VS, Grygorenko OO. 3,3-Difluorooxetane-A Versatile Functional Group for Bioisosteric Replacements in Drug Discovery. Chemistry 2024; 30:e202403277. [PMID: 39300786 DOI: 10.1002/chem.202403277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
Functional group (FG) is one of the cornerstone concepts in organic chemistry and related areas. The wide spread of bioisosterism ideas in medicinal chemistry and beyond caused a striking rise in demand for novel FGs with a defined impact on the developed compound properties. In this work, the evaluation of the 3,3-difluorooxetane unit (3,3-diFox) as a functional group for bioisosteric replacements is disclosed. A comprehensive experimental study (including multigram building block synthesis, quantification of steric and electronic properties, measurements of pKa, LogP, chemical stability, and biological evaluation of the 3,3-diFox-derived bioisostere of a drug candidate) revealed a prominent behavior of the 3,3-diFox fragment as a versatile substituent for early drug discovery programs.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Anastasiya Fedinchyk
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Kostiantyn P Melnykov
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Maksym Herasymchuk
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | | | - Dmytro Lesyk
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Yuliia P Bas
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Tetiana Ye Keda
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Andriy V Yatsymyrskiy
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Yuliia Holota
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Petro Borysko
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Volodymyr S Yarmolchuk
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| |
Collapse
|
22
|
Wu S, Yang Y, Lian X, Zhang F, Hu C, Tsien J, Chen Z, Sun Y, Vaidya A, Kim M, Sung YC, Xiao Y, Bian X, Wang X, Tian Z, Guerrero E, Robinson J, Basak P, Qin T, Siegwart DJ. Isosteric 3D Bicyclo[1.1.1]Pentane (BCP) Core-Based Lipids for mRNA Delivery and CRISPR/Cas Gene Editing. J Am Chem Soc 2024; 146:34733-34742. [PMID: 39655603 PMCID: PMC11717372 DOI: 10.1021/jacs.4c13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Lipid nanoparticles (LNPs) are an essential component of messenger RNA (mRNA) vaccines and genome editing therapeutics. Ionizable amino lipids, which play the most crucial role in enabling mRNA to overcome delivery barriers, have, to date, been restricted to two-dimensional (2D) architectures. Inspired by improved physicochemical properties resulting from the incorporation of three-dimensionality (3D) into small-molecule drugs, we report the creation of 3D ionizable lipid designs through the introduction of bicyclo[1.1.1]pentane (BCP) core motifs. BCP-based lipids enabled efficient in vivo mRNA delivery to the liver and spleen with significantly greater performance over 2D benzene- and cyclohexane-based analogues. Notably, lead BCP-NC2-C12 LNPs mediated ∼90% reduction in the PCSK9 serum protein level via CRISPR/Cas9 gene knockout, outperforming 2D controls and clinically used DLin-MC3-DMA LNPs at the same dose. Here, we introduce BCP-based designs with superior in vivo activity, thereby expanding the chemical scope of ionizable amino lipids from 2D to 3D and offering a promising avenue to improve mRNA and gene editing efficiency for the continued development of genetic medicines.
Collapse
Affiliation(s)
- Shiying Wu
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Yangyang Yang
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Xizhen Lian
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Fangyu Zhang
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Zexiang Chen
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Yehui Sun
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Amogh Vaidya
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Minjeong Kim
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Yun-Chieh Sung
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Yufen Xiao
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Xiaoyan Bian
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Xu Wang
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Zeru Tian
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Erick Guerrero
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Joshua Robinson
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Pratima Basak
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Daniel J Siegwart
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| |
Collapse
|
23
|
Uthumange SS, Liew AJH, Chee XW, Yeong KY. Ringing medicinal chemistry: The importance of 3-membered rings in drug discovery. Bioorg Med Chem 2024; 116:117980. [PMID: 39536361 DOI: 10.1016/j.bmc.2024.117980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Scaffold-based drug design has become increasingly prominent in the pharmaceutical field due to the systematic and effective approach through which it facilitates the development of novel drugs. The identification of key scaffolds provides medicinal chemists with a fundamental framework for subsequent research. With mounting evidence suggesting that increased aromaticity could impede the chances of developmental success for oral drug candidates, there is an imperative need for a more thorough exploration of alternative ring systems to mitigate attrition risks. The unique characteristics exhibited by three-membered rings have led to their application in medicinal chemistry. This review explores the use of cyclopropane-, aziridine-, thiirane-, and epoxide-containing compounds in drug discovery, focusing on their roles in approved medicines and drug candidates. Specifically, the importance of the three-membered ring systems in rending biological activity for each drug molecule was highlighted. The undeniable therapeutic value and intriguing features presented by these compounds suggest significant pharmacological potential, providing justification for their incorporation into the design of novel drug candidates.
Collapse
Affiliation(s)
- Sahani Sandalima Uthumange
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Angie Jun Hui Liew
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Xavier Wezen Chee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Keng Yoon Yeong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia.
| |
Collapse
|
24
|
Uribe L, Di Grande S, Mendolicchio M, Tasinato N, Barone V. Accurate Structure and Spectroscopic Properties of Azulene and Its Derivatives by Means of Pisa Composite Schemes and Vibrational Perturbation Theory to Second Order. J Phys Chem A 2024; 128:10474-10488. [PMID: 39588903 DOI: 10.1021/acs.jpca.4c05138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The structural and spectroscopic properties in the gas phase of azulene and some of its N-bearing derivatives have been analyzed by a general computational strategy based on the recent Pisa composite schemes (PCSs). First of all, an accurate semiexperimental equilibrium structure has been derived for azulene and employed to validate the geometrical parameters delivered by different quantum chemical methods. Next, different isomerization energies (azulene to naphthalene, 1-aza-azulene to quinoline and to other isomers) have been computed by an explicitly correlated PCS version employing frozen natural orbitals. Accurate geometries have been obtained by a cheaper PCS variant based on a double-hybrid functional improved by one-parameter bond corrections, with the same functional providing also remarkable harmonic frequencies. The corresponding equilibrium rotational constants show average deviations within 0.1% from experimental results when taking into account anharmonic vibrational corrections obtained by a global hybrid functional. Therefore, reliable computational estimates have been produced for the rotational constants of several nitrogen derivatives (isomeric aza-azulenes and guaiazulene), whose non-negligible dipole moments could allow experimental microwave characterizations. An analogous approach delivers infrared spectra in remarkable agreement with their experimental counterparts for naphthalene, quinoline, and azulene, together with reliable predictions for the still-unknown spectrum of 1-aza-azulene. In addition to their intrinsic interest, the results of this paper further confirm that a very accurate yet robust and user-friendly tool is now available for aiding high-resolution spectroscopic studies of quite large systems of current technological and/or biological interest.
Collapse
Affiliation(s)
- Lina Uribe
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Silvia Di Grande
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Marco Mendolicchio
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Nicola Tasinato
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | | |
Collapse
|
25
|
Amankrah SA, Salpadoru T, Cotton K, Patrauchan MA, Wozniak KL, Gerasimchuk N. Synthesis, Characterization and Antimicrobial Activity of Trimethylantimony(V) Biscyanoximates, a New Family of Antimicrobials. Molecules 2024; 29:5779. [PMID: 39683936 DOI: 10.3390/molecules29235779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/23/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Antimicrobial compounds play a critical role in combating microbial infections. However, the emergence of antibiotic and antifungal resistance and the scarcity of new antibiotic developments pose a significant threat and demand the discovery of new antimicrobials for both bacterial and fungal pathogens. Our previous work described the first generation (G1) of organoantimony-based compounds that showed antimicrobial activity against several bacterial and fungal pathogens. Here, we present our efforts in modifying these compounds by replacing the tetraphenyl backbone in G1 compounds with a trimethyl group, thereby generating a new series of compounds we refer to as "generation 2", G2. In addition to the novel backbone structure, we introduced three new anionic chloro-cyanoxime ligand groups, namely 2,4-diCl-PhCO-, 2,6-diCl-PhCO- and 2Cl-PhCO-, which were found to be biologically active in the past. Nine new compounds of SbMe3L2 composition were obtained in high yields and characterized by NMR, IR spectroscopies, thermogravimetric TG/DSC and X-ray single crystal analyses. The antibacterial activity of the cyanoximates was tested against three bacterial (Pseudomonas aeruginosa PAO1, Escherichia coli S17 and methicillin-resistant Staphylococcus aureus (MRSA) NRS70) and two fungal (Candida albicans strain SC5314 and Cryptococcus neoformans strain H99) pathogens. Two compounds, SbMe3(MCO)2 and SbMe3(2,4-diClPhCO)2, were active against bacterial strains and inhibited the growth of PAO1 and MRSA with MICs of 50 and 100 µg/mL, respectively. Three compounds, SbMe3(MCO)2, SbMe3(ECO)2 and SbMe3(TCO)2, were active against fungal strains and inhibited either one of or both C. albicans and C. neoformans at MICs of 2.6-66.67 μg/mL. In addition, SbMe3(TCO)2 and SbMe3(MCO)2 were fungicidal at MFC 33.33-66.67 μg/mL. Ultra-thin-layer TEM imaging suggested that SbMe3(MCO)2 targets the integrity of bacterial membranes. Overall, four of the studied G2 series compounds possess antimicrobial activity against a broad range of microbial pathogens, with particular potential against fungal pathogens, which will be explored in further studies.
Collapse
Affiliation(s)
- Seth A Amankrah
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, MO 65897, USA
| | - Tarosha Salpadoru
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kaitlyn Cotton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Karen L Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Nikolay Gerasimchuk
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, MO 65897, USA
| |
Collapse
|
26
|
Zhang O, Lin H, Zhang H, Zhao H, Huang Y, Hsieh CY, Pan P, Hou T. Deep Lead Optimization: Leveraging Generative AI for Structural Modification. J Am Chem Soc 2024; 146:31357-31370. [PMID: 39499822 DOI: 10.1021/jacs.4c11686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The integration of deep learning-based molecular generation models into drug discovery has garnered significant attention for its potential to expedite the development process. Central to this is lead optimization, a critical phase where existing molecules are refined into viable drug candidates. As various methods for deep lead optimization continue to emerge, it is essential to classify these approaches more clearly. We categorize lead optimization methods into two main types: goal-directed and structure-directed. Our focus is on structure-directed optimization, which, while highly relevant to practical applications, is less explored compared to goal-directed methods. Through a systematic review of conventional computational approaches, we identify four tasks specific to structure-directed optimization: fragment replacement, linker design, scaffold hopping, and side-chain decoration. We discuss the motivations, training data construction, and current developments for each of these tasks. Additionally, we use classical optimization taxonomy to classify both goal-directed and structure-directed methods, highlighting their challenges and future development prospects. Finally, we propose a reference protocol for experimental chemists to effectively utilize Generative AI (GenAI)-based tools in structural modification tasks, bridging the gap between methodological advancements and practical applications.
Collapse
Affiliation(s)
- Odin Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Haitao Lin
- AI Lab, Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Hui Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Huifeng Zhao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yufei Huang
- AI Lab, Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Chang-Yu Hsieh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Peichen Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
27
|
Yoo J, Choi Y, Kim H, Park SB. Revisiting Pyrimidine-Embedded Molecular Frameworks to Probe the Unexplored Chemical Space for Protein-Protein Interactions. Acc Chem Res 2024; 57:3254-3265. [PMID: 39480992 PMCID: PMC11580176 DOI: 10.1021/acs.accounts.4c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
ConspectusProtein-protein interactions (PPIs) are essential in numerous biological processes and diseases, making them attractive yet challenging drug targets. While many advances have been made in traditional drug discovery, targeting PPIs has been difficult due to a lack of specialized chemical libraries designed to modulate these interactions. Current libraries mainly focus on conventional target proteins like enzymes or receptors as substrate analogs rather than small-molecule modulators targeting PPIs. These traditional drug targets behave differently from PPIs. Conventional druggable targets have relatively small surfaces and binding pockets that have allowed them to be targeted with current libraries, but PPIs behave differently than these traditional drug targets. As a result, there is an urgent need for an innovative approach to expand the druggable space.To address this, we developed a privileged substructure-based diversity-oriented synthesis (pDOS) strategy, aimed at creating maximal skeletal diversity to explore broader biochemical space. Pyrimidine serves as the privileged substructure in our approach, which employs several strategies: (i) silver-catalyzed or iodine-mediated tandem cyclizations to generate pyrimidine-embedded polyheterocycles; (ii) diverse pairing strategies to produce pyrimidodiazepine-containing polyheterocyclic skeletons with enhanced scaffold saturation; (iii) skeletal transformation to develop pyrimidine-fused medium-sized azacycles via chemoselective cleavages or migrations of N-N or C-N bond; (iv) design of small-molecule peptidomimetics that systematically mimic three pivotal protein secondary structures using pyrimidodiazepine-based scaffolds; and (v) identification of pyrimidodiazepine-based small-molecules that allosterically inhibits the interaction between human ACE2 and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to block viral entry into host cells.Through these approaches, we generated 39 distinct pyrimidine-embedded frameworks, demonstrating significant molecular diversity validated by chemoinformatic analyses such as Tanimoto similarity and principal moment of inertia (PMI) analysis. This molecular diversity extends pyrimidine structures beyond traditional linear or bicyclic forms, creating polyheterocycles with enhanced 3D structural diversity. These novel frameworks overcome the limitation of simpler privileged scaffolds, offering promising tools for modulating PPIs.Our pDOS approach highlights how privileged structure-embedded polyheterocycles, particularly those based on pyrimidine, can effectively target previously undruggable PPIs. This strategy provides a new direction for drug discovery, allowing for the development of small molecules that operate beyond traditional drug-like rules. In addition to expanding the chemical space for PPI modulation, our pDOS strategy enables the creation of scaffolds that are particularly suited for targeting complex and dynamic protein interfaces. This innovation could significantly impact therapeutic development, offering solutions for previously intractable drug targets. By expanding the scope of pyrimidine-based scaffolds, we have opened up new possibilities for targeting PPIs and advancing chemical biology.This perspective demonstrates the potential outlines of our pDOS strategy in creating structurally diverse frameworks, offering a platform for the discovery of PPI modulators and facilitating the exploration of untapped biochemical spaces in drug development, potentially transforming the way we approach these complex biological interactions.
Collapse
Affiliation(s)
- Jeong
Yeon Yoo
- Department of Chemistry, Seoul
National University, Seoul 08826, Korea (South)
| | - Yoona Choi
- Department of Chemistry, Seoul
National University, Seoul 08826, Korea (South)
| | - Heejun Kim
- Department of Chemistry, Seoul
National University, Seoul 08826, Korea (South)
| | - Seung Bum Park
- Department of Chemistry, Seoul
National University, Seoul 08826, Korea (South)
| |
Collapse
|
28
|
Lux DM, Lee DJ, Sapkota RR, Giri R. Iron-Mediated Dialkylation of Alkenylarenes with Benzyl Bromides. J Org Chem 2024; 89:16292-16299. [PMID: 38572911 PMCID: PMC11450104 DOI: 10.1021/acs.joc.3c02548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
We disclose a method for the dibenzylation of alkenylarenes with benzyl bromides using iron powder. This reaction generates branched alkyl scaffolds adorned with functionalized aryl rings through the formation of two new C(sp3)-C(sp3) bonds at the vicinal carbons of alkenes. This protocol tolerates electron-rich, electron-neutral, and electron-poor benzyl bromides and alkenylarenes. Mechanistic studies suggest the formation of benzylic radical intermediates as a result of single-electron transfer from the iron, which is intercepted by alkenylarenes.
Collapse
Affiliation(s)
- Daniel M Lux
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Daniel J Lee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rishi R Sapkota
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
29
|
Fan W, Huang X, Yu S, Bian Q, Wang B. Synthesis and Fungicidal Activity Evaluation of Novel Triazole Thione/Thioether Derivatives Containing a Pyridylpyrazole Moiety. Chem Biodivers 2024:e202402388. [PMID: 39536334 DOI: 10.1002/cbdv.202402388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Compounds containing N-pyridylpyrazole motif have aroused interest and brought about research hotspots due to their highly-efficient insecticidal activity. The fungicidal potential of N-pyridylpyrazole derivatives has gradually been disclosed in recent years. To discover new agrochemicals with poly-heterocyclic features, a series of novel triazole thione/thioether derivatives containing pyridylpyrazole motif (8-11) was synthesized. The new compounds were identified by melting point, 1H-NMR, 13C NMR, 19F NMR, HRMS, and elemental analysis. The bioassays showed that most of the pyridylpyrazole-containing triazole thione Mannich bases possessed favorable in vitro fungicidal activity toward pathogenic fungi, such as Magnaporthe oryzae, Sclerotinia sclerotiorum, Botrytis cinerea and Fusarium verticillioides, and were comparable with those of the contrast compounds A and triadimefon. Some of them exhibited moderate to good in vivo fungicidal activity against S. sclerotiorum at 0.2 mg/mL (e. g. 8f control efficacy: 60.9±3.2 %). The SEM observation displayed that 8f might cause disruption of cell membrane and wall of S. sclerotiorum. Compounds 8a, 8c, 8f-8h, 8p and 9b can serve as promising new fungicidal agents to make further structural optimization. The findings in this article provide useful clue and guidance for the design and development of new poly-heterocyclic agrochemicals.
Collapse
Affiliation(s)
- Wenqi Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaobing Huang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shujing Yu
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Baolei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
30
|
Zhang SR, Yue JP, Wang LF, Gui YY, Zhang W, Yu DG, Ye JH. Dearomative hydroamination of heteroarenes catalyzed by the phenolate photocatalyst. Chem Commun (Camb) 2024; 60:13083-13086. [PMID: 39440373 DOI: 10.1039/d4cc03879g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Dearomative functionalization of heteroarenes offers an attractive and sustainable approach for the rapid construction of complex 3D heterocyclic scaffolds from planar structures. Despite progress in this field, dearomative amination of heteroarenes via a radical anion intermediate remains a challenge. Here, we report a photoredox-catalyzed dearomative hydroamination of heteroarenes with hydrazodiformates under mild and transition-metal-free reaction conditions. Various benzofurans and benzothiophenes can efficiently participate in this transformation. A series of mechanistic experiments revealed that heteroaryl radical anions are the crucial intermediates, generated through photo-induced electron transfer between the excited phenolate photocatalyst and heteroarenes.
Collapse
Affiliation(s)
- Shu-Rong Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Long-Fu Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Yong-Yuan Gui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
31
|
Brisson J, Balasa R, Bowra A, Hill DC, Doshi AS, Tan DHS, Perez-Brumer A. Motivations for enrollment in a COVID-19 ring-based post-exposure prophylaxis trial: qualitative examination of participant experiences. BMC Med Res Methodol 2024; 24:267. [PMID: 39501157 PMCID: PMC11536907 DOI: 10.1186/s12874-024-02394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/29/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Ring-based studies are a novel research design commonly used for research involving infectious diseases: contacts of newly infected individuals form a ring that is targeted for interventions (e.g., vaccine, post-exposure prophylaxis). Given the novelty of the research design, it is critical to obtain feedback from participants on their experiences with ring-based studies to help with the development of future trials. METHODS In 2021, we conducted 26 semi-structured interviews with adult participants of a COVID-19 ring-based post-exposure prophylaxis trial based in Canada. We applied a purposive sampling approach and electronically recruited participants who tested positive for COVID-19 (Index Cases) and either agreed or declined for the study team to contact their potentially exposed contacts. We also included individuals who participated in the trial after being potentially exposed to an Index Case (known as Ring Members), and those who declined to participate after potential exposure. The methodological design of semi-structured interviews allowed participants to share their opinions and experiences in the trial (e.g., elements they enjoyed and disliked regarding their participation in the study). RESULTS The majority of participants in our study were women (62%) and the average age was 37.3 years (SD = 13.2). Overall, participants reported being highly satisfied with partaking in the ring-based trial. Notably, no substantial complaints were voiced about the trial's design involving contact after exposure. The most common reason of satisfaction was the knowledge of potentially helping others by advancing knowledge for a greater cause (e.g., development of potential treatment to prevent SARS-CoV-2 infection). Other reasons were curiosity about participating in a trial, and an activity to fill free time during the pandemic. A central element of dislike was confusion about instructions with the trial (e.g., independent at home SARS-CoV-2 testing). Additionally, maintaining confidentiality was a crucial concern for participants, who sought assurance that their data would not be shared beyond the scope of the study. CONCLUSIONS Our results have the potential to inform future research, including clinical trials such as ring-based studies, by incorporating insights from participants' experiences into the development of study protocols. Despite some protocol-related challenges, participants expressed high satisfaction, driven by the desire to advance science and potentially aid others.
Collapse
Affiliation(s)
- Julien Brisson
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, 5th Floor, Room 554, Toronto, ON, M5T 3M7, Canada.
| | - Rebecca Balasa
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, 5th Floor, Room 554, Toronto, ON, M5T 3M7, Canada
| | - Andrea Bowra
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, 5th Floor, Room 554, Toronto, ON, M5T 3M7, Canada
| | - David C Hill
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, 5th Floor, Room 554, Toronto, ON, M5T 3M7, Canada
| | - Aarti S Doshi
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, 5th Floor, Room 554, Toronto, ON, M5T 3M7, Canada
| | - Darrell H S Tan
- Division of Infectious Diseases, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- MAP Centre for Urban Health Solutions, St. Michael's Hospital, Toronto, ON, Canada
| | - Amaya Perez-Brumer
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, 5th Floor, Room 554, Toronto, ON, M5T 3M7, Canada
| |
Collapse
|
32
|
Lee YC, Chen YC, Wu CF, Yoo WJ. Synthesis of 1-Substituted Bicyclo[2.1.1]hexan-2-ones via a Sequential SmI 2-Mediated Pinacol Coupling and Acid-Catalyzed Pinacol Rearrangement Reaction. Org Lett 2024; 26:9352-9356. [PMID: 39436356 PMCID: PMC11536404 DOI: 10.1021/acs.orglett.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
A two-step procedure, combining a SmI2-mediated transannular pinacol coupling reaction with an acid-catalyzed pinacol rearrangement process, was employed to prepare a diverse range of 1-substituted bicyclo[2.1.1]hexan-5-ones from cyclobutanedione derivatives. To underscore the significance of these bicyclic ketones in drug synthesis, an sp3-rich analog of nitazoxanide, a well-known antiparasitic and antiviral agent, was synthesized.
Collapse
Affiliation(s)
- Yung-Chi Lee
- Department
of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yi-Chen Chen
- Department
of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chun-Fu Wu
- Department
of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Woo-Jin Yoo
- Department
of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Center
for Emerging Materials and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
33
|
Saejong P, Zhong J, Rojas JJ, White AJP, Choi C, Bull JA. Synthesis of 3,3-Disubstituted Thietane Dioxides. J Org Chem 2024; 89:15718-15732. [PMID: 39392182 PMCID: PMC11536365 DOI: 10.1021/acs.joc.4c01843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
4-Membered heterocycles have been increasingly exploited in medicinal chemistry and, as small polar motifs, often show important influence on activity and physicochemical properties. Thietane dioxides similarly offer potential in both agricultural and pharmaceutical applications but are notably understudied. Here we report a divergent approach to 3,3-disubstituted thietane dioxide derivatives by forming carbocations on the 4-membered ring with catalytic Lewis or Brønsted acids. Benzylic tertiary alcohols of the thietane dioxides are coupled directly with arenes, thiols, and alcohols.
Collapse
Affiliation(s)
- Peerawat Saejong
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K.
| | - Jianing Zhong
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K.
| | - Juan J. Rojas
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K.
| | - Andrew J. P. White
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K.
| | - Chulho Choi
- Medicine
Design, Pfizer Research and Development, Groton, Connecticut 06340, United States
| | - James A. Bull
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K.
| |
Collapse
|
34
|
Guo S, Guan J, Zhou S. Diffusing on Two Levels and Optimizing for Multiple Properties: A Novel Approach to Generating Molecules With Desirable Properties. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2050-2063. [PMID: 39058606 DOI: 10.1109/tcbb.2024.3434461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In the past decade, Artificial Intelligence (AI) driven drug design and discovery has been a hot research topic in the AI area, where an important branch is molecule generation by generative models, from GAN-based models and VAE-based models to the latest diffusion-based models. However, most existing models pursue mainly the basic properties like validity and uniqueness of the generated molecules, a few go further to explicitly optimize one single important molecular property (e.g. QED or PlogP), which makes most generated molecules little usefulness in practice. In this paper, we present a novel approach to generating molecules with desirable properties, which expands the diffusion model framework with multiple innovative designs. The novelty is two-fold. On the one hand, considering that the structures of molecules are complex and diverse, and molecular properties are usually determined by some substructures (e.g. pharmacophores), we propose to perform diffusion on two structural levels: molecules and molecular fragments respectively, with which a mixed Gaussian distribution is obtained for the reverse diffusion process. To get desirable molecular fragments, we develop a novel electronic effect based fragmentation method. On the other hand, we introduce two ways to explicitly optimize multiple molecular properties under the diffusion model framework. First, as potential drug molecules must be chemically valid, we optimize molecular validity by an energy-guidance function. Second, since potential drug molecules should be desirable in various properties, we employ a multi-objective mechanism to optimize multiple molecular properties simultaneously. Extensive experiments with two benchmark datasets QM9 and ZINC250 k show that the molecules generated by our proposed method have better validity, uniqueness, novelty, Fréchet ChemNet Distance (FCD), QED, and PlogP than those generated by current SOTA models.
Collapse
|
35
|
Elfawal MA, Goetz E, Kim YM, Chen P, Savinov SN, Barasa L, Thompson PR, Aroian RV. High-throughput screening of more than 30,000 compounds for anthelmintics against gastrointestinal nematode parasites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594481. [PMID: 39554023 PMCID: PMC11565780 DOI: 10.1101/2024.05.16.594481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Gastrointestinal nematodes (GINs) are amongst the most common parasites of humans, livestock, and companion animals. GIN parasites infect 1-2 billion people worldwide, significantly impacting hundreds of millions of children, pregnant women, and adult workers, thereby perpetuating poverty. Two benzimidazoles with suboptimal efficacy are currently used to treat GINs in humans as part of mass drug administrations, with many instances of lower-than-expected or poor efficacy and possible resistance. Thus, new anthelmintics are urgently needed. However, screening methods for new anthelmintics using human GINs typically have low throughput. Here, using our novel screening pipeline that starts with human hookworms, we screened 30,238 unique small molecules from a wide range of compound libraries, including ones with generic diversity, repurposed drugs, natural derivatives, known mechanisms of action, as well as multiple target-focused libraries (e.g., targeting kinases, GPCRs, and neuronal proteins). We identified 55 compounds with broad-spectrum activity against adult stages of two evolutionary divergent GINs, hookworms ( Ancylostoma ceylanicum ) and whipworms ( Trichuris muris ). Based on known databases, the targets of these 55 compounds were predicted in nematode parasites. One novel scaffold from the diversity set library, F0317-0202, showed good activity (high motility inhibition) against both GINs. To better understand this novel scaffold's structure-activity relationships (SAR), we screened 28 analogs and created SAR models highlighting chemical and functional groups required for broad-spectrum activity. These studies validate our new and efficient screening pipeline at the level of tens of thousands of compounds and provide an important set of new GIN-active compounds for developing novel and broadly-active anthelmintics.
Collapse
|
36
|
Lee AL, Mooney DT, McKee H. Direct C-H functionalisation of azoles via Minisci reactions. Org Biomol Chem 2024. [PMID: 39479918 DOI: 10.1039/d4ob01526f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Azoles have widespread applications in medicinal chemistry; for example, thiazoles, imidazoles, benzimidazoles, isoxazoles, tetrazoles and triazoles appear in the top 25 most frequently used N-heterocycles in FDA-approved drugs. Efficient routes for the late-stage C-H functionalisation of azole cores would therefore be highly desirable. The Minisci reaction, a nucleophilic radical addition reaction onto N-heterocyclic bases, is a direct C-H functionalisation reaction that has the potential to be a powerful method for C-H functionalisations of azole scaffolds. However, azoles have not been as widely studied as substrates for modern Minisci-type reactions as they are often more electron-rich and thus more challenging substrates compared to electron-poor 6-membered N-heterocycles such as quinolines, pyrazines and pyridines typically used in Minisci reactions. Nevertheless, with the prevalence of azole scaffolds in drug design, the Minisci reaction has the potential to be a transformative tool for late-stage C-H functionalisations to efficiently access decorated azole motifs. This review thus aims to give an overview of the C-H functionalisation of azoles via Minisci-type reactions, highlighting recent progress, existing limitations and potential areas for growth.
Collapse
Affiliation(s)
- Ai-Lan Lee
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - David T Mooney
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Heather McKee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
37
|
Verma DP, Tripathi AK, Thakur AK. Innovative Strategies and Methodologies in Antimicrobial Peptide Design. J Funct Biomater 2024; 15:320. [PMID: 39590524 PMCID: PMC11595219 DOI: 10.3390/jfb15110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple lines of research have led to the hypothesis that antimicrobial peptides (AMPs) are an important component of the innate immune response, playing a vital role in the defense against a wide range of infectious diseases. In this review, we explore the occurrence and availability of antimicrobial proteins and peptides across various species, highlighting their natural abundance and evolutionary significance. The design of AMPs has been driven by the identification of key structural and functional features, which are essential for optimizing their antimicrobial activity and reducing toxicity to host cells. We discuss various approaches, including rational design, high-throughput screening, and computational modeling, that have been employed to develop novel AMPs with enhanced efficacy. A particular focus is given to the identification and characterization of peptide fragments derived from naturally occurring host defense proteins, which offer a promising avenue for the discovery of new AMPs. The incorporation of artificial intelligence (AI) and machine learning (ML) tools into AMP research has further accelerated the identification, optimization, and application of these peptides. This review also discusses the current status and therapeutic potential of AMPs, emphasizing their role in addressing the growing issue of antibiotic resistance. The conclusion highlights the importance of continued research and innovation in AMP development to fully harness their potential as next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Devesh Pratap Verma
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Amit Kumar Tripathi
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ashwani Kumar Thakur
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
38
|
Greco FA, Krämer A, Wahl L, Elson L, Ehret TAL, Gerninghaus J, Möckel J, Müller S, Hanke T, Knapp S. Synthesis and evaluation of chemical linchpins for highly selective CK2α targeting. Eur J Med Chem 2024; 276:116672. [PMID: 39067440 DOI: 10.1016/j.ejmech.2024.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Casein kinase-2 (CK2) are serine/threonine kinases with dual co-factor (ATP and GTP) specificity, that are involved in the regulation of a wide variety of cellular functions. Small molecules targeting CK2 have been described in the literature targeting different binding pockets of the kinase with a focus on type I inhibitors such as the recently published chemical probe SGC-CK2-1. In this study, we investigated whether known allosteric inhibitors binding to a pocket adjacent to helix αD could be combined with ATP mimetic moieties defining a novel class of ATP competitive compounds with a unique binding mode. Linking both binding sites requires a chemical linking moiety that would introduce a 90-degree angle between the ATP mimetic ring system and the αD targeting moiety, which was realized using a sulfonamide. The synthesized inhibitors were highly selective for CK2 with binding constants in the nM range and low micromolar activity. While these inhibitors need to be further improved, the present work provides a structure-based design strategy for highly selective CK2 inhibitors.
Collapse
Affiliation(s)
- Francesco A Greco
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt Am Main, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt Am Main, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt Am Main, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt Am Main, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DKTK Site Frankfurt-Mainz, 69120 Heidelberg, Germany
| | - Laurenz Wahl
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt Am Main, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt Am Main, Germany
| | - Lewis Elson
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt Am Main, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt Am Main, Germany
| | - Theresa A L Ehret
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt Am Main, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt Am Main, Germany
| | - Joshua Gerninghaus
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt Am Main, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt Am Main, Germany
| | - Janina Möckel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt Am Main, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt Am Main, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt Am Main, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt Am Main, Germany
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt Am Main, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt Am Main, Germany.
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt Am Main, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt Am Main, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DKTK Site Frankfurt-Mainz, 69120 Heidelberg, Germany.
| |
Collapse
|
39
|
Charron O, Kosiuha M, Phansavath P, Ratovelomanana-Vidal V, Gontard G, Meyer C. Asymmetric Transfer Hydrogenation of gem-Difluorocyclopropenyl Ketones: The Synthesis and Functionalization of Enantioenriched cis gem-Difluorocyclopropyl Ketones. J Org Chem 2024; 89:14073-14080. [PMID: 39284014 DOI: 10.1021/acs.joc.4c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The asymmetric transfer hydrogenation of gem-difluorocyclopropenyl ketones, catalyzed by a Noyori-Ikariya ruthenium complex, was developed to access substituted optically enriched cis-disubstituted gem-difluorocyclopropyl ketones, and the value of these latter building blocks was illustrated by the synthesis of heterocycles fused to the difluorocyclopropyl moiety.
Collapse
Affiliation(s)
- Olivier Charron
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris-PSL, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | - Marharyta Kosiuha
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, PSL University, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phannarath Phansavath
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, PSL University, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Virginie Ratovelomanana-Vidal
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, PSL University, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Geoffrey Gontard
- CNRS, Institut Parisien de Chimie Moléculaire, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Christophe Meyer
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris-PSL, CNRS, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
40
|
Konaklieva MI, Plotkin BJ. Activity of Organoboron Compounds against Biofilm-Forming Pathogens. Antibiotics (Basel) 2024; 13:929. [PMID: 39452196 PMCID: PMC11504661 DOI: 10.3390/antibiotics13100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Bacteria have evolved and continue to change in response to environmental stressors including antibiotics. Antibiotic resistance and the ability to form biofilms are inextricably linked, requiring the continuous search for alternative compounds to antibiotics that affect biofilm formation. One of the latest drug classes is boron-containing compounds. Over the last several decades, boron has emerged as a prominent element in the field of medicinal chemistry, which has led to an increasing number of boron-containing compounds being considered as potential drugs. The focus of this review is on the developments in boron-containing organic compounds (BOCs) as antimicrobial/anti-biofilm probes and agents.
Collapse
Affiliation(s)
- Monika I. Konaklieva
- Department of Chemistry, American University, 4400 Massachusetts Ave. NW, Washington, DC 20016, USA
| | - Balbina J. Plotkin
- Department of Microbiology and Immunology, Midwestern University, 555 31st St., Downers Grove, IL 60515, USA;
| |
Collapse
|
41
|
Avellaneda-Tamayo JF, Agudo-Muñoz NA, Sánchez-Galán JE, López-Pérez JL, Medina-Franco JL. Chemoinformatic Characterization of NAPROC-13: A Database for Natural Product 13C NMR Dereplication. JOURNAL OF NATURAL PRODUCTS 2024; 87:2216-2229. [PMID: 39269718 PMCID: PMC11443490 DOI: 10.1021/acs.jnatprod.4c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Natural products (NPs) are secondary metabolites of natural origin with broad applications across various human activities, particularly the discovery of bioactive compounds. Structural elucidation of new NPs entails significant cost and effort. On the other hand, the dereplication of known compounds is crucial for the early exclusion of irrelevant compounds in contemporary pharmaceutical research. NAPROC-13 stands out as a publicly accessible database, providing structural and 13C NMR spectroscopic information for over 25 000 compounds, rendering it a pivotal resource in natural product (NP) research, favoring open science. This study seeks to quantitatively analyze the chemical content, structural diversity, and chemical space coverage of NPs within NAPROC-13, compared to FDA-approved drugs and a very diverse subset of NPs, UNPD-A. Findings indicated that NPs in NAPROC-13 exhibit properties comparable to those in UNPD-A, albeit showcasing a notably diverse array of structural content, scaffolds, ring systems of pharmaceutical interest, and molecular fragments. NAPROC-13 covers a specific region of the chemical multiverse (a generalization of the chemical space from different chemical representations) regarding physicochemical properties and a region as broad as UNPD-A in terms of the structural features represented by fingerprints.
Collapse
Affiliation(s)
- Juan F. Avellaneda-Tamayo
- DIFACQUIM
Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - Naicolette A. Agudo-Muñoz
- Science
and Technology Faculty, Universidad Tecnológica de Panamá,
Campus Metropolitano Víctor Levi Sasso, Avenida Universidad Tecnológica, Vía Puente Centenario, Panama City 0819-07289, Panama
- Grupo
de Investigación en Biotecnología, Bioinformática
y Biología de Sistemas (GIBBS), Universidad Tecnológica
de Panama, Panama City, Panama
| | - Javier E. Sánchez-Galán
- Facultad
de Ingeniería de Sistemas Computacionales, Universidad Tecnológica
de Panamá, Campus Metropolitano Víctor Levi Sasso, Avenida Universidad Tecnológica, Vía
Puente Centenario, Panama City 0819-07289, Panama
- Grupo
de Investigación en Biotecnología, Bioinformática
y Biología de Sistemas (GIBBS), Universidad Tecnológica
de Panama, Panama City, Panama
| | - José L. López-Pérez
- Departamento
de Ciencias Farmacéuticas, Área de Química Farmacéutica,
Facultad de Farmacia, CIETUS, IBSAL, Campus Miguel de Unamuno, University of Salamanca, 37007, Salamanca, Spain
- Departamento
de Farmacología, Facultad de Medicina, CIPFAR, Universidad de Panamá, Panama City, Panama
| | - José L. Medina-Franco
- DIFACQUIM
Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| |
Collapse
|
42
|
Chen S, Zhong F. GPCRSPACE: A New GPCR Real Expanded Library Based on Large Language Models Architecture and Positive Sample Machine Learning Strategies. J Med Chem 2024; 67:16912-16922. [PMID: 39288965 DOI: 10.1021/acs.jmedchem.4c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The quest for novel therapeutics targeting G protein-coupled receptors (GPCRs), essential in numerous physiological processes, is crucial in drug discovery. Despite the abundance of GPCR-targeting drugs, many receptors lack selective modulators, indicating a significant untapped therapeutic potential. To bridge this gap, we introduce GPCRSPACE, a novel GPCR-focused purchasable real chemical library developed using the G protein-coupled receptors large language models (GPCR LLM) architecture. Different from traditional machine learning models, GPCR LLM uses a positive sample machine learning strategy for training and does not need to construct any negative samples. This not only reduces false negatives but also reduces the time to label negative samples. GPCR LLM accelerates the identification and screening of potential GPCR-interactive compounds by learning the chemical space of GPCR-targeting molecules. GPCRSPACE, built on GPCR LLM, outperforms existing chemical data sets in synthesizability, structural diversity, and GPCR-likeness, making it a valuable tool for GPCR drug discovery.
Collapse
Affiliation(s)
- Shiming Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Feisheng Zhong
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
43
|
Itoh K, Nakahara H, Takashino A, Hara A, Katsuno A, Abe Y, Mizuguchi T, Karaki F, Hirayama S, Nagai K, Seki R, Sato N, Okuyama K, Hashimoto M, Tokunaga K, Ishida H, Mikami F, Kwofie KD, Kawada H, Lin B, Nunomura K, Kanai T, Hatta T, Tsuji N, Haruta J, Fujii H. Anti-Schistosomal activity and ADMET properties of 1,2,5-oxadiazinane-containing compound synthesized by visible-light photoredox catalysis. RSC Med Chem 2024; 15:d4md00599f. [PMID: 39399310 PMCID: PMC11467761 DOI: 10.1039/d4md00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/24/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024] Open
Abstract
The incorporation of saturated nitrogen-containing heterocycle 1,2,5-oxadiazinane into small molecules represents a compelling avenue in drug discovery due to its unexplored behavior within biological systems and incomplete protocols for synthesis. In this study, we present 1,2,5-oxadiazinane, an innovative heterocyclic bioisostere of piperizin-2-one and novel chemotype of the anti-schistosomal drug praziquantel (PZQ), which has been the only clinical drug available for three decades. PZQ is associated with significant drawbacks, including poor solubility, a bitter taste, and low metabolic stability. Therefore, the discovery of a new class of anti-schistosomal agents is imperative. To address this challenge, we introduce a pioneering method for the synthesis of 1,2,5-oxadiazinane derivatives through the cycloaddition of nitrones with N,N,N',N'-tetraalkyldiaminomethane in the presence of an IrIII complex photosensitizer. This transformative reaction offers a streamlined route to various kinds of 1,2,5-oxadiazinanes that is characterized by mild reaction conditions and broad substrate scope. Mechanistic investigations suggest that the photoredox pathway underlies the [3 + 3] photocycloaddition process. Thus, based on bioisosteric replacement, we identified a remarkable molecule as a new chemotype of a potent anti-schistosomal compound that not only exhibits superior solubility, but also retains the potent biological activity inherent to PZQ.
Collapse
Affiliation(s)
- Kennosuke Itoh
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Hiroki Nakahara
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Atsushi Takashino
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Aya Hara
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Akiho Katsuno
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Yuriko Abe
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Takaaki Mizuguchi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Fumika Karaki
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Shigeto Hirayama
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Kenichiro Nagai
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Reiko Seki
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Noriko Sato
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Kazuki Okuyama
- Department of Material Science, Graduate School of Science, Josai University 1-1 Keyakidai Sakado Saitama 350-0295 Japan
| | - Masashi Hashimoto
- Department of Material Science, Graduate School of Science, Josai University 1-1 Keyakidai Sakado Saitama 350-0295 Japan
| | - Ken Tokunaga
- Division of Liberal Arts, Center for Promotion of Higher Education, Kogakuin University 2665-1 Nakano-machi Hachioji Tokyo 192-0015 Japan
| | - Hitoshi Ishida
- Graduate School of Science and Engineering, Department of Chemistry, Materials and Bioengineering, Kansai University 3-3-35 Yamate-cho Suita Osaka 564-8680 Japan
| | - Fusako Mikami
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0374 Japan
| | - Kofi Dadzie Kwofie
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0374 Japan
| | - Hayato Kawada
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0374 Japan
| | - Bangzhong Lin
- Drug Innovation Center Lead Exploration Unit, Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadagaoka Suita Osaka 565-0871 Japan
| | - Kazuto Nunomura
- Drug Innovation Center Lead Exploration Unit, Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadagaoka Suita Osaka 565-0871 Japan
| | - Toshio Kanai
- Drug Innovation Center Lead Exploration Unit, Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadagaoka Suita Osaka 565-0871 Japan
| | - Takeshi Hatta
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0374 Japan
| | - Naotoshi Tsuji
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0374 Japan
| | - Junichi Haruta
- Drug Innovation Center Lead Exploration Unit, Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadagaoka Suita Osaka 565-0871 Japan
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| |
Collapse
|
44
|
Mooney DT, McKee H, Batch TS, Drane S, Moore PR, Lee AL. Direct C-H amidation of 1,3-azoles: light-mediated, photosensitiser-free vs. thermal. Chem Commun (Camb) 2024; 60:10752-10755. [PMID: 39248036 DOI: 10.1039/d4cc02742f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
We have developed one thermal and one light-mediated method for direct Minisci-type C-H amidation of 1,3-azoles, which are applicable to thiazoles, benzothiazoles, benzimidazoles, and for the first time, imidazoles. The new visible light-mediated approach can be rendered photosensitiser/photocatalyst-free and likely proceeds via an electron donor-acceptor (EDA) complex, the first direct Minisci-type amidation to do so.
Collapse
Affiliation(s)
- David T Mooney
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Heather McKee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Tabea S Batch
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Samuel Drane
- Early Chemical Development, Pharmaceutical Sciences, R&D BioPharmaceuticals, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Peter R Moore
- Early Chemical Development, Pharmaceutical Sciences, R&D BioPharmaceuticals, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Ai-Lan Lee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
45
|
Ding Z, Wang Z, Wang Y, Wang X, Xue Y, Xu M, Zhang H, Xu L, Li P. Regio- and Diastereoselective Synthesis of Polysubstituted Piperidines Enabled by Boronyl Radical-Catalyzed (4+2) Cycloaddition. Angew Chem Int Ed Engl 2024; 63:e202406612. [PMID: 38924325 DOI: 10.1002/anie.202406612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Piperidines are widely present in small molecule drugs and natural products. Despite many methods have been developed for their synthesis, new approaches to polysubstituted piperidines are highly desirable. This work presents a radical (4+2) cycloaddition reaction for synthesis of piperidines featuring dense substituents at 3,4,5-positions that are not readily accessible by known methods. Using commercially available diboron(4) compounds and 4-phenylpyridine as the catalyst precursors, the boronyl radical-catalyzed cycloaddition between 3-aroyl azetidines and various alkenes, including previously unreactive 1,2-di-, tri-, and tetrasubstituted alkenes, has delivered the polysubstituted piperidines in generally high yield and diastereoselectivity. The reaction also features high modularity, atom economy, broad substrate scope, metal-free conditions, simple catalysts and operation. The utilization of the products has been demonstrated by selective transformations. A plausible mechanism, with the ring-opening of azetidine as the rate-limiting step, has been proposed based on the experimental and computational results.
Collapse
Affiliation(s)
- Zhengwei Ding
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhijun Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Yingying Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Xicheng Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yuanji Xue
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Ming Xu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Hailong Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
46
|
Wu WB, Xu B, Yang XC, Wu F, He HX, Zhang X, Feng JJ. Enantioselective formal (3 + 3) cycloaddition of bicyclobutanes with nitrones enabled by asymmetric Lewis acid catalysis. Nat Commun 2024; 15:8005. [PMID: 39266575 PMCID: PMC11393060 DOI: 10.1038/s41467-024-52419-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
The absence of catalytic asymmetric methods for synthesizing chiral (hetero)bicyclo[n.1.1]alkanes has hindered their application in new drug discovery. Here we demonstrate the achievability of an asymmetric polar cycloaddition of bicyclo[1.1.0]butane using a chiral Lewis acid catalyst and a bidentate chelating bicyclo[1.1.0]butane substrate, as exemplified by the current enantioselective formal (3 + 3) cycloaddition of bicyclo[1.1.0]butanes with nitrones. In addition to the diverse bicyclo[1.1.0]butanes incorporating an acyl imidazole group or an acyl pyrazole moiety, a wide array of nitrones are compatible with this Lewis acid catalysis, successfully assembling two congested quaternary carbon centers and a chiral aza-trisubstituted carbon center in the pharmaceutically important hetero-bicyclo[3.1.1]heptane product with up to 99% yield and >99% ee.
Collapse
Affiliation(s)
- Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, P. R. China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, P. R. China
| | - Bing Xu
- Department of Chemistry, Fudan University, Shanghai, P.R. China
| | - Xue-Chun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Heng-Xian He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Xu Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China.
| |
Collapse
|
47
|
Zhu H, Manchado A, Omar Farah A, McKay AP, Cordes DB, Cheong PHY, Kasten K, Smith AD. Isothiourea-Catalysed Acylative Dynamic Kinetic Resolution of Tetra-substituted Morpholinone and Benzoxazinone Lactols. Angew Chem Int Ed Engl 2024; 63:e202402908. [PMID: 38713293 DOI: 10.1002/anie.202402908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
The development of methods to allow the selective acylative dynamic kinetic resolution (DKR) of tetra-substituted lactols is a recognised synthetic challenge. In this manuscript, a highly enantioselective isothiourea-catalysed acylative DKR of tetra-substituted morpholinone and benzoxazinone-derived lactols is reported. The scope and limitations of this methodology have been developed, with high enantioselectivity and good to excellent yields (up to 89 %, 99 : 1 er) observed across a broad range of substrate derivatives incorporating substitution at N(4) and C(2), di- and spirocyclic substitution at C(5) and C(6), as well as benzannulation (>35 examples in total). The DKR process is amenable to scale-up on a 1 g laboratory scale. The factors leading to high selectivity in this DKR process have been probed through computation, with an N-C=O⋅⋅⋅isothiouronium interaction identified as key to producing ester products in highly enantioenriched form.
Collapse
Affiliation(s)
- Haoxiang Zhu
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Alejandro Manchado
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos 1-5, 37008, Salamanca, Spain
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA
| | - Aidan P McKay
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA
| | - Kevin Kasten
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
48
|
Ripenko V, Sham V, Levchenko V, Holovchuk S, Vysochyn D, Klymov I, Kyslyi D, Veselovych S, Zhersh S, Dmytriv Y, Tolmachev A, Sadkova I, Pishel I, Horbatok K, Kosach V, Nikandrova Y, Mykhailiuk PK. Light-enabled scalable synthesis of bicyclo[1.1.1]pentane halides and their functionalizations. NATURE SYNTHESIS 2024; 3:1538-1549. [PMID: 39664797 PMCID: PMC11628397 DOI: 10.1038/s44160-024-00637-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 08/02/2024] [Indexed: 12/13/2024]
Abstract
In 2012, bicyclo[1.1.1]pentanes were demonstrated to be bioisosteres of the benzene ring. Here, we report a general scalable reaction between alkyl iodides and propellane that provides bicyclo[1.1.1]pentane iodides in milligram, gram and even kilogram quantities. The reaction is performed in flow and requires just light; no catalysts, initiators or additives are needed. The reaction is clean enough that, in many cases, evaporation of the reaction mixture provides products in around 90% purity that can be directly used in further transformations without any purification. Combined with the subsequent functionalization, >300 bicyclo[1.1.1]pentanes for medicinal chemistry have been prepared. So far, this is the most general and scalable approach towards functionalized bicyclo[1.1.1]pentanes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yurii Dmytriv
- Enamine Ltd., Kyiv, Ukraine
- National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ngo DT, Garwood JJA, Nagib DA. Cyclopropanation with Non-Stabilized Carbenes via Ketyl Radicals. J Am Chem Soc 2024; 146:24009-24015. [PMID: 39049431 DOI: 10.1021/jacs.4c07388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A radical mechanism enables simple and robust access to nonstabilized, alkyl iron carbenes for novel (2 + 1) cycloadditions. This Fe-catalyzed strategy employs simple, aliphatic aldehydes as carbene precursors in a practical, efficient, and stereoselective cyclopropanation. This air- and water-tolerant method permits convenient generation of iron carbenes and coupling to an exceptionally wide range of sterically and electronically diverse alkenes (nucleophilic, electrophilic, and neutral). A transient ketyl radical intermediate is key to accessing and harnessing this rare, alkyl iron carbene reactivity. Mechanistic experiments confirm the (a) intermediacy of ketyl radicals, (b) iron carbene formation by radical capture, and (c) nonconcerted nature of the (2 + 1) cycloaddition.
Collapse
Affiliation(s)
- Duong T Ngo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jacob J A Garwood
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
50
|
Ives RA, Maturi W, Gill MT, Rankine C, McGonigal PR. A guide to bullvalene stereodynamics. Chem Sci 2024; 15:d4sc03700f. [PMID: 39220163 PMCID: PMC11358867 DOI: 10.1039/d4sc03700f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Here, we analyze the stereodynamic properties of bullvalenes using principal moments of inertia and exit vector plots to draw comparisons with commonly used ring systems in medicinal chemistry. To aid analyses, we first classify (i) the four elementary rearrangement steps available to substituted bullvalenes, which (ii) can be described by applying positional descriptors (α, β, γ, and δ) to the substituents. We also (iii) derive an intuitive equation to calculate the number of isomers for a given bullvalene system. Using DFT-modelled structures for di-, tri-, and tetrasubstituted bullvalenes, generated using a newly developed computational tool (bullviso), we show that their 3D shapes and the exit vectors available from the bullvalene scaffold make them comparable to other bioisosteres currently used to replace planar aromatic ring systems in drug discovery. Unlike conventional ring systems, the shapeshifting valence isomerism of bullvalenes gives rise to numerous shapes and substituent relationships attainable as a concentration-independent dynamic covalent library from a single compound. We visualize this property by applying population weightings to the principal moments of inertia and exit vector analyses to reflect the relative thermodynamic stabilities of the available isomers.
Collapse
Affiliation(s)
- Robert A Ives
- Department of Chemistry, University of York Heslington York YO10 5DD UK
- Department of Chemistry, Durham University Lower Mountjoy, Stockton Road Durham DH1 3LE UK
| | - William Maturi
- Department of Chemistry, University of York Heslington York YO10 5DD UK
- Department of Chemistry, Durham University Lower Mountjoy, Stockton Road Durham DH1 3LE UK
| | - Matthew T Gill
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Conor Rankine
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Paul R McGonigal
- Department of Chemistry, University of York Heslington York YO10 5DD UK
- Department of Chemistry, Durham University Lower Mountjoy, Stockton Road Durham DH1 3LE UK
| |
Collapse
|