1
|
Zhai X, Guo Y, Shang M, Guo Z, Ren D, Abd El-Aty AM. Preparation, characterization and antibacterial investigation of water-soluble curcumin-chitooligosaccharide complexes. Carbohydr Polym 2025; 351:123083. [PMID: 39779006 DOI: 10.1016/j.carbpol.2024.123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
Curcumin has a wide range of application prospects, with various bioactivities in the food industry and in the biomedical field. However, curcumin has poor water solubility and is sensitive to pH, light and temperature. In this study, curcumin-chitooligosaccharide (CUR-COS) complexes were prepared via mechanochemical methods, and the CUR-COS complex was more soluble after freeze-drying (up to 862-fold greater than that of curcumin). The complex was characterized by SEM, XRD, FT-IR and thermal analysis, and its stability against pH, light and thermal treatment was evaluated. COSs could serve as carriers for curcumin delivery. Additionally, the antibacterial activity of the formed complex was determined. As a result, CUR-COS exhibited significantly better water solubility, enhanced stability, and stronger antibacterial properties than did pure CUR, offering a promising pathway for the extensive application of lipophilic natural products in foods, especially water-based products.
Collapse
Affiliation(s)
- Xingchen Zhai
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| | - Yu Guo
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Man Shang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Ziyan Guo
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Difeng Ren
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey.
| |
Collapse
|
2
|
Mosbahi S, Bensalem A, Chiheb H, Mokrane H. Use of pennisetin-casein complex microparticles for Curcuma longa L. extract microencapsulation: Improvement of antioxidant and alpha-amylase inhibitory activities. Int J Biol Macromol 2025; 296:139588. [PMID: 39788272 DOI: 10.1016/j.ijbiomac.2025.139588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
This study aimed to use a new protein complex of Pennisetin (Pen) a non gluten protein of pearl millet and casein (Cas), for curcumin (Cur) extract encapsulation using simple or complex coacervation. The potential improvement of Cur antioxidant activities and α-amylase inhibition after encapsulation was explored. Complex microparticles of Pen and Cas with various ratios exhibited average diameters ranging from 1.95 ± 0.32 to 4.66 ± 0.99 μm, whereas the Cur loaded microparticles had average diameters ranging from 2.50 ± 0.89 to 5.27 ± 1.17 μm. FTIR analysis of Cur loaded microparticles showed the presence of specific peaks at 3757, 1754, 1157 and 856 cm-1 related to characteristic functional groups of Cur. This confirms the successful encapsulation of Cur. The major forces involved in microparticles formation were hydrophobic interaction and hydrogen bonding. The best encapsulation efficiency 68 % and loading capacity 17 % were obtained for the complex microparticles Pen:Cas (ratio 1:1.5). Encapsulating Cur within microparticles of Pen, Cas or their complexes significantly (p˂0.05) enhances their DPPH and ABTS.+ antioxidant activities and their pancreatic α-amylase inhibition percentage. These findings shed light on the potential use of Pen a non gluten protein, in its native form or complexed with Cas, as wall material for hydrophobic or hydrophilic bioactive compounds encapsulation.
Collapse
Affiliation(s)
- Salem Mosbahi
- Laboratoire de recherche sur les produits bioactifs et valorisation de la biomasse, Ecole Normale Supérieure de Kouba cheikh Mohamed elbachir ElIbrahimi, B.P. 92, 16308 Vieux-Kouba, Algiers, Algeria
| | - Ahmed Bensalem
- Laboratoire de recherche sur les produits bioactifs et valorisation de la biomasse, Ecole Normale Supérieure de Kouba cheikh Mohamed elbachir ElIbrahimi, B.P. 92, 16308 Vieux-Kouba, Algiers, Algeria
| | - Houda Chiheb
- Laboratoire de recherche sur les produits bioactifs et valorisation de la biomasse, Ecole Normale Supérieure de Kouba cheikh Mohamed elbachir ElIbrahimi, B.P. 92, 16308 Vieux-Kouba, Algiers, Algeria
| | - Hind Mokrane
- Laboratoire de recherche sur les produits bioactifs et valorisation de la biomasse, Ecole Normale Supérieure de Kouba cheikh Mohamed elbachir ElIbrahimi, B.P. 92, 16308 Vieux-Kouba, Algiers, Algeria.
| |
Collapse
|
3
|
Bortolami FP, Zuma AA, de Souza W, Motta MCM. Plant-derived compounds that target histone acetyltransferases inhibit Trypanosoma cruzi proliferation and viability and affect parasite ultrastructure. Micron 2025; 188:103729. [PMID: 39432977 DOI: 10.1016/j.micron.2024.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, exhibits a chromatin structure and organization similar to that of other eukaryotes, undergoing certain epigenetic modifications, such as histone acetylation and deacetylation. Histone acetyltransferase inhibitors have been frequently applied as therapy agents against tumor cells, but their effects on protozoa have not yet been adequately explored. In this study, the effects of three acetyltransferase inhibitors, curcumin, triptolide and anacardic acid, were investigated on T. cruzi. Curcumin was able to inhibit epimastigote and amastigote proliferation and was the most effective compound. Triptolide also impaired T. cruzi proliferation and, along with curcumin, promoted the unpacking of nuclear heterochromatin and nucleolus disorganization. Anacardic acid did not alter parasite growth or viability, but caused ultrastructural changes, such as mitochondrial swelling and cristae enlargement. None of these compounds affected the microtubule cytoskeleton. These findings indicate that histone acetyltransferase inhibitors, especially curcumin, display the potential to be applied in chemotherapeutic studies against T. cruzi. Our results reinforce the necessity of developing new compounds that can be used successfully in therapy against neglected diseases.
Collapse
Affiliation(s)
- Fernanda Pereira Bortolami
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21491-590, Brazil
| | - Aline Araujo Zuma
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21491-590, Brazil.
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21491-590, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, RJ, Brazil
| | - Maria Cristina Machado Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21491-590, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, RJ, Brazil
| |
Collapse
|
4
|
Sahin K, Orhan C, Tuzcu M, Sahin N, Ozercan IH, Kabil N, Kucuk O, Ozpolat B. The Role of Curcumin in Preventing Naturally Occurring Leiomyoma in the Galline Model. Pharmaceuticals (Basel) 2024; 17:1732. [PMID: 39770574 PMCID: PMC11677480 DOI: 10.3390/ph17121732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Leiomyoma (LM) is the most commonly identified tumor in the genital tract, occurring in 70-80% of women. The only treatment option is surgery, which significantly influences healthcare costs and negatively influences women's survival and reproductive capacity. Therefore, identifying safe and effective chemopreventive and treatment modalities is needed. METHODS We investigated the effects of 12 months of daily curcumin (0, 25.8, and 53 mg/kg) diet on the incidence and growth of spontaneously developing LM tumors in a galline (hen) model. RESULTS LM tumors were detected in 58.9% (53/90) of the control hens as spontaneous occurrences, while they were observed in 37.7% (34/90) and 24.5% (22/90) of hens treated with daily doses of 25.8 mg or 53.0 mg, respectively, over 12 months. This reduced LM development by 35% and 58.5%, respectively (p = 0.004). We also observed a dose-dependent inhibition of LM-tumor growth and NF-κB, mTOR, p70S6K1, and 4E-BP1 signaling while inducing Nrf2/HO1 pathway induction LM tumors collected from hens fed with curcumin (p < 0.05). Curcumin intake notably reduced levels of TGF-β1, α-SMA, and collagen type 1, with dose-dependent effects (p < 0.001). CONCLUSIONS The findings suggest that daily curcumin consumption significantly reduces the incidence of naturally occurring LMs and suppresses tumor growth. This indicates that regular curcumin intake may be an effective preventive measure against LMs.
Collapse
Affiliation(s)
- Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119 Elazig, Turkey; (C.O.); (N.S.)
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119 Elazig, Turkey; (C.O.); (N.S.)
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, 23119 Elazig, Turkey;
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119 Elazig, Turkey; (C.O.); (N.S.)
| | - Ibrahim H. Ozercan
- Department of Pathology, Faculty of Medicine, Firat University, 23119 Elazig, Turkey;
| | - Nashwa Kabil
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.K.); (B.O.)
| | - Omer Kucuk
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA;
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.K.); (B.O.)
- Houston Methodist Research Institute and Methodist Neal Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Zhong SJ, Xing YD, Dong LY, Chen Y, Liu N, Wang ZM, Zhang H, Zheng AP. Progress in the study of curcumin metabolism in vivo. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-19. [PMID: 39692630 DOI: 10.1080/10286020.2024.2420619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 12/19/2024]
Abstract
Curcumin has diverse biological functions, especially antioxidant and anti-inflammatory properties, but clinical trials have been hindered by its low bioavailability and pharmacokinetic properties. To achieve therapeutic efficacy, understanding curcumin's in vivo metabolism is crucial. We reviewed current research on curcumin metabolism in PubMed, Google Scholar, and CNKI. This article outlines curcumin's metabolic processes in the body via oral and intravenous injection. It suggests that upon entering the human body, curcumin may undergo oxidation, reduction, binding, and microbial community influence.
Collapse
Affiliation(s)
- Shi-Jie Zhong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110000, China
| | - Ya-Dong Xing
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| | - Lu-Yao Dong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110000, China
| | - Yi Chen
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| | - Nan Liu
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| | - Zeng-Ming Wang
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| | - Hui Zhang
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| | - Ai-Ping Zheng
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| |
Collapse
|
6
|
Gonçalves S, Fernandes L, Caramelo A, Martins M, Rodrigues T, Matos RS. Soothing the Itch: The Role of Medicinal Plants in Alleviating Pruritus in Palliative Care. PLANTS (BASEL, SWITZERLAND) 2024; 13:3515. [PMID: 39771213 PMCID: PMC11677410 DOI: 10.3390/plants13243515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/05/2025]
Abstract
Chronic pruritus, or persistent itching, is a debilitating condition that severely impacts quality of life, especially in palliative care settings. Traditional treatments often fail to provide adequate relief or are associated with significant side effects, prompting interest in alternative therapies. This review investigates the antipruritic potential of eight medicinal plants: chamomile (Matricaria chamomilla), aloe vera (Aloe barbadensis), calendula (Calendula officinalis), curcumin (Curcuma longa), lavender (Lavandula angustifolia), licorice (Glycyrrhiza glabra), peppermint (Mentha piperita), and evening primrose (Oenothera biennis). These plants are analyzed for their traditional applications, active bioactive compounds, mechanisms of action, clinical evidence, usage, dosage, and safety profiles. Comprehensive searches were conducted in databases including PubMed, Web of Science, Scopus, and b-on, focusing on in vitro, animal, and clinical studies using keywords like "plant", "extract", and "pruritus". Studies were included regardless of publication date and limited to English-language articles. Findings indicate that active compounds such as polysaccharides in aloe vera, curcuminoids in turmeric, and menthol in peppermint exhibit significant anti-inflammatory, antioxidant, and immune-modulating properties. Chamomile and calendula alleviate itching through anti-inflammatory and skin-soothing effects, while lavender and licorice offer antimicrobial benefits alongside antipruritic relief. Evening primrose, rich in gamma-linolenic acid, is effective in atopic dermatitis-related itching. Despite promising preclinical and clinical results, challenges remain in standardizing dosages and formulations. The review highlights the necessity of further clinical trials to ensure efficacy and safety, advocating for integrating these botanical therapies into complementary palliative care practices. Such approaches emphasize holistic treatment, addressing chronic pruritus's physical and emotional burden, thereby enhancing patient well-being.
Collapse
Affiliation(s)
- Sara Gonçalves
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- School of Health, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associação Internacional de Aromaterapeutas Profissionais (IAAP-Portugal), 4445-088 Alfena, Portugal;
| | - Lisete Fernandes
- Centro de Química-Vila Real (CQ-VR), UME-CIDE Unidade de Microscopia Eletrónica-Centro de Investigação e Desenvolvimento, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Caramelo
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- School of Health, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- RISE-Health Research Network, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Maria Martins
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Palliative Medicine, Local Health Unit of Trás-os-Montes and Alto Douro EPE, 5400-261 Chaves, Portugal
| | - Tânia Rodrigues
- Associação Internacional de Aromaterapeutas Profissionais (IAAP-Portugal), 4445-088 Alfena, Portugal;
| | - Rita S. Matos
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Local Health Unit of Trás-os-Montes and Alto Douro (ULSTMAD), 5050-275 Peso da Régua, Portugal
- Palliative Medicine, Local Health Unit of Nordeste, 5370-210 Mirandela, Portugal
| |
Collapse
|
7
|
Xiong L, Wei Y, Si H, Li Z, Wen J, Liu F, Wang X, Yang H, Chen L, Pi C, Han Y, Zhao L. Development of the Curcumin Analog CA7 Liposome and Its Evaluation for Efficacy Against Cervical Cancer in vitro and in vivo. Int J Nanomedicine 2024; 19:13411-13428. [PMID: 39691454 PMCID: PMC11651071 DOI: 10.2147/ijn.s493074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Objective The objective of this study was to develop liposomes (LP) containing a curcumin (CU) analog CA7 to enhance its pharmacokinetic profile and anti-cervical cancer (CC) effects. Methods Single-factor and Box-Behnken experiments were conducted to optimize the formulation of CA7-loaded liposomes (CA7-LP). The in vitro release, stability, biocompatibility, and pharmacokinetic of CA7-LP were evaluated. The biological effects of CA7-LP on Hela cells were assessed using MTT assays, colony formation assays, wound healing assays, and flow cytometry. Additionally, the anti-CC efficacy of CA7-LP was tested in mouse models of transplanted tumors. Results The optimal formulation of CA7-LP exhibited a particle size of 92.43 ± 1.52 nm, a polydispersity index of 0.27 ± 0.01, an encapsulation efficiency of 97.79 ± 1.49%, a drug loading of 3.23 ± 0.20%, and a zeta potential of -6.69 ± 0.77 mV. Transmission electron microscopy confirmed that a spherical morphology was exhibited by CA7-LP. The cumulative in vitro release of CA7-LP was found to be 2.84 times greater than that of CA7, and stability at room temperature was maintained for at least 90 d. Furthermore, a significantly higher uptake of CA7-LP by Hela cells was observed compared to curcumin and CA7, leading to enhanced inhibition of cell proliferation, migration and cell cycle, as well as increased apoptosis (p < 0.05). In vivo studies revealed that CA7-LP exhibited superior pharmacokinetic properties compared to CA7 (AUC: 3.58-fold, Cmax: 5.65-fold, t1/2z: 1.2-fold). The anti-CC effects of CA7-LP were found to be comparable to those of Cisplatin injection, with a better safety profile. Conclusion The newly developed CA7-LP is considered a promising candidate for the treatment of CC, demonstrating high potential for clinical application.
Collapse
Affiliation(s)
- Linjin Xiong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Hui Si
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Zheng Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Jie Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Furong Liu
- Department of Oncology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Xiaodong Wang
- Department of Hepatobiliary Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Hongru Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Ling Zhao
- Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| |
Collapse
|
8
|
Cade S, Prestidge C, Zhou X, Bobrovskaya L. The effects of a bioavailable curcumin formulation on Alzheimer's disease pathologies: A potential risk for neuroinflammation. IBRAIN 2024; 10:500-518. [PMID: 39691427 PMCID: PMC11649387 DOI: 10.1002/ibra.12187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024]
Abstract
Alzheimer's disease (AD) is a common cause of dementia characterized by the presence of two proteinaceous deposits in the brain. These pathologies may be a consequence of complex interactions between neurons and glia before the onset of cognitive impairments. Curcumin, a bioactive compound found in turmeric, is a promising candidate for AD because it alleviates neuropathologies in mouse models of the disease. Although its clinical efficacy has been hindered by low oral bioavailability, the development of new formulations may overcome this limitation. The purpose of this study was to determine the effects of a bioavailable curcumin formulation in a mouse model of AD. The formulation was administered to mice in drinking water after encapsulation into micelles using a previously validated method. A neuropathological assessment was performed to determine if it slows or alters the course of the disease. Cognitive performance was not included because it had already been assessed by a previous study. The bioavailable curcumin formulation was unable to alter the size or number of amyloid plaques in a transgenic mouse model. In addition, mechanisms that regulate amyloid beta production were unchanged, suggesting that the disease had not been altered. The number of reactive astrocytes in the hippocampus and dentate gyrus was not altered by curcumin. However, protein levels of glial fibrillary acidic protein were increased overall in the brain, suggesting that it may have aggravated neuroinflammation. Therefore, a higher dosage, despite its enhanced oral bioavailability, may have a potential risk for neuroinflammation.
Collapse
Affiliation(s)
- Shaun Cade
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Clive Prestidge
- Center for Pharmaceutical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Xin‐Fu Zhou
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
9
|
Loo CY, Traini D, Young PM, Yeung S, Leong CR, Lee WH. Evaluation of curcumin nanoparticles of various sizes for targeting multidrug-resistant lung cancer cells via inhalation. Nanomedicine (Lond) 2024:1-13. [PMID: 39660666 DOI: 10.1080/17435889.2024.2439241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024] Open
Abstract
INTRODUCTION Inhalation drug delivery can deliver high doses of chemotherapeutic drugs to the lung tumor. This study evaluates the efficacy and the mechanistic pathways of nebulized Cur NPs at various sizes to treat multidrug resistant lung cancer. METHODS AND RESULTS Cur-NPs (30 nm and 200 nm) were nebulized separately onto the multidrug-resistant lung cancer cells (H69AR). Smaller NPs induced significantly higher cell death owing to a higher rate of particle internalization via dynamin-dependent clathrin-mediated endocytosis. Owing to the higher lysosome trafficking of Cur-NP30 nm compared to Cur-NP200 nm, oxidation of lysosome was higher (0.47 ± 0.08 vs 0.38 ± 0.08), contributing to significantly higher mitochondrial membrane potential loss (1.57 ± 0.17 vs 1.30 ± 0.11). MRP1 level in H69AR cells was reduced from 352 ± 12.3 ng/µg of protein (untreated cells) to 287 ± 12 ng/µg of protein (Cur-NP30 nm) and 303 ± 13.4 ng/µg of protein (Cur-NP200 nm). NF-κB, and various cytokine expressions were reduced after treatment with nebulized Cur-NPs. CONCLUSIONS Nebulized Cur-NPs formulations could be internalized into the H69AR cells. The Cur-NPs toxicity toward the H69AR was size and time-dependent. Cur-NP30 nm was more effective than Cur-NP200 nm to retain within the cells to exert higher oxidative stresss-induced cell death.
Collapse
Affiliation(s)
- Ching-Yee Loo
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), Ipoh, Malaysia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
- Department of Marketing, Macquarie Business School, Macquarie University, Sydney, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Chean Ring Leong
- Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, Melaka, Malaysia
| | - Wing-Hin Lee
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), Ipoh, Malaysia
| |
Collapse
|
10
|
Jahanban-Esfahlan A, Amarowicz R. Optical sensing of albumin in human serum and urine-A historical review of the transition from classical dye-binding assays to advanced technologies. Int J Biol Macromol 2024; 287:138593. [PMID: 39662564 DOI: 10.1016/j.ijbiomac.2024.138593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/23/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Human serum albumin (HSA) is the most abundant protein in human plasma playing essential roles in transporting various biomolecules, metal ions, therapeutic agents, and metabolites. Additionally, it is crucial for maintaining oncotic pressure, scavenging free radicals, and preventing protein aggregation. Accurate quantification of HSA is vital for diagnosing various conditions, including hypertension, diabetes mellitus (DM), liver disorders, and renal diseases. While prevalent in clinical laboratories, traditional dye-binding methods have notable limitations: they can be time-consuming, lack sensitivity, and may suffer from interference from other serum components. These methods often require complex sample preparation and do not readily lend themselves to rapid or point-of-care testing (POCT). Consequently, there is a pressing need for innovative techniques that are rapid, cost-effective, and user-friendly. This review explores various dyes utilized for HSA determination, categorized into groups such as sulfonphthaleins, phenolphthaleins, azo dyes, etc., and provides a historical overview of the limitations of these methods. We critically assess the pros and cons of traditional dye-binding assays and emphasize the potential of emerging technologies, including microfluidic systems, smartphone-based detection, and nanopaper sensors, to address these gaps and enhance the efficiency and accessibility of HSA quantification in clinical settings.
Collapse
Affiliation(s)
- Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran.
| | - Ryszard Amarowicz
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Street Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
11
|
Lai Y, Jiang J, Zhang H, Gong K. Bibliometric Analysis of Curcumin Based on CiteSpace: Landscapes, Hotspots, and Frontiers. Drug Des Devel Ther 2024; 18:5743-5758. [PMID: 39659947 PMCID: PMC11630724 DOI: 10.2147/dddt.s494758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
Curcumin, the main active compound in turmeric, has garnered significant interest for its wide range of pharmacological properties. In this study, CiteSpace was used to visually analyze curcumin-related publications to elucidate the current landscape and explore emerging frontiers in curcumin research. In total, 23,184 publications on curcumin from January 1, 2014, to December 31, 2023, were scrutinized. The analysis revealed that publication volume consistently increased over time. The top 10 countries contributed 90.87% of the publications, highlighting the global significance of curcumin research. China generated 31.34% of the total corpus due to its strong research capabilities and traditional medicine culture. The top 10 institutions contributed 11.21% of the articles, revealing notable collaborations. Among the prolific authors, Amirhossein Sahebkar produced 246 publications, whereas Preetha Anand garnered the most citations. Keyword analysis revealed prevalent trends such as "fabrication", "combination", "extract", "natural products", "colorectal cancer", and "resveratrol". Reference analysis emphasized research on therapeutic and modulatory effects, anticancer potential, and interdisciplinary topics, such as molecular biology, chemistry, and nutrition. More importantly, we simplified cluster relationships by selecting the top 30% of cluster dependency paths. For instance, the references within the #1 polymeric micelle cite literature from the #2 anticancer potential, #3 modulatory effect, and #4 therapeutic effect, indicating that clusters 2, 3, and 4 serve as knowledge foundations for cluster 1. This interconnectedness highlights how the information in these clusters can contribute to the knowledge of curcumin in various studies. This study provides an overview of the research trends and critical themes related to curcumin, offering insights for future research directions and emphasizing the interdisciplinary and global scope of curcumin research.
Collapse
Affiliation(s)
- Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Jialing Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Huize Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Kang Gong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
12
|
Lee SO, Chu KB, Yoon KW, Heo SI, Song JH, Li J, Hong SJ, Quan FS. Combinatorial Treatment with Praziquantel and Curcumin Reduces Clonorchis sinensis Parasite Burden and Clonorchiasis-Associated Pathologies in Rats. Pharmaceutics 2024; 16:1550. [PMID: 39771529 PMCID: PMC11678916 DOI: 10.3390/pharmaceutics16121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Clonorchiasis is a foodborne parasitic disease that can lead to severe biliary fibrosis and cholangiocarcinoma. While praziquantel (PZQ) is available for clonorchiasis treatment, it cannot revert the histopathological damage incurred through parasite-induced fibrosis. Curcumin (CUR) is an emerging experimental drug possessing anti-inflammatory and fibrosis-alleviating effects, thus signifying its potential as an anthelmintic drug. Here, we evaluated the effect of CUR+PZQ combinatorial drug treatment on C. sinensis infection as well as its effect on ameliorating fibrotic tissue damage in rats. Methods: Worm viabilities following CUR and PZQ treatments were confirmed through microscopy and tetrazolium salt absorption. Anthelminthic effect and hepatobiliary damage mitigation in rats were determined by quantifying worm recovery, histopathological staining, and enzyme-linked immunosorbent assay. Results: CUR+PZQ at LD50 doses demonstrated a time- and dose-dependent antiparasitic effect in vitro, which was markedly greater than either drug alone. Rats were infected with C. sinensis, and drugs were administered at 1 and 4 weeks post-infection (wpi) to assess drug-induced changes in worm burden. Significant reductions in worm burden recoveries were observed following CUR+PZQ treatment at both time points, accompanied by markedly reduced serum and mucosal IgG responses. ALT and AST levels were also substantially lower in combinatorial drug treatment groups than controls. Histopathological examinations confirmed that parasite-induced bile duct lumen widening and liver fibrosis were suppressed at 1 wpi, implying that CUR+PZQ co-treatment can alleviate clonorchiasis-associated pathologies. Conclusions: Our findings indicate that CUR+PZQ co-treatment improved parasite clearance and promoted the resolution of hepatobiliary tissue damage resulting from chronic clonorchiasis.
Collapse
Affiliation(s)
- Soon-Ok Lee
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki Back Chu
- Department of Parasitology, College of Medicine, Inje University, Busan 47392, Republic of Korea;
- Department of Infectious Disease and Malaria, Paik Institute of Clinical Research, Inje University, Busan 47392, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (K.-W.Y.); (S.I.H.)
| | - Su In Heo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (K.-W.Y.); (S.I.H.)
| | - Jin-Ho Song
- Department Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea;
| | - Jianhua Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Sung-Jong Hong
- Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea;
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
13
|
Duan Z, Zhou W, He S, Wang W, Huang H, Yi L, Zhang R, Chen J, Zan X, You C, Gao X. Intranasal Delivery of Curcumin Nanoparticles Improves Neuroinflammation and Neurological Deficits in Mice with Intracerebral Hemorrhage. SMALL METHODS 2024; 8:e2400304. [PMID: 38577823 DOI: 10.1002/smtd.202400304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Intracerebral hemorrhage (ICH) represents one of the most severe subtypes of stroke. Due to the complexity of the brain injury mechanisms following ICH, there are currently no effective treatments to significantly improve patient functional outcomes. Curcumin, as a potential therapeutic agent for ICH, is limited by its poor water solubility and oral bioavailability. In this study, mPEG-PCL is used to encapsulate curcumin, forming curcumin nanoparticles, and utilized the intranasal administration route to directly deliver curcumin nanoparticles from the nasal cavity to the brain. By inhibiting pro-inflammatory neuroinflammation of microglia following ICH in mice, reprogramming pro-inflammatory microglia toward an anti-inflammatory function, and consequently reducing neuronal inflammatory death and hematoma volume, this approach improved blood-brain barrier damage in ICH mice and promoted the recovery of neurological function post-stroke. This study offers a promising therapeutic strategy for ICH to mediate neuroinflammatory microenvironments.
Collapse
Affiliation(s)
- Zhongxin Duan
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Wenjie Zhou
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Shi He
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Wanyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Hongyi Huang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Linbin Yi
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Rui Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Junli Chen
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xin Zan
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Chao You
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
14
|
Sulaiman M, Ebehairy L, Nissapatorn V, Rahmatullah M, Villegas J, Dupa HJ, Verzosa RC, Dolma KG, Shabaz M, Lanting S, Rusdi NA, Abdullah NH, Bin Break MK, Khoo T, Wang W, Wiart C. Antibacterial phenolic compounds from the flowering plants of Asia and the Pacific: coming to the light. PHARMACEUTICAL BIOLOGY 2024; 62:713-766. [PMID: 39392281 PMCID: PMC11486068 DOI: 10.1080/13880209.2024.2407530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
CONTEXT The emergence of pan-resistant bacteria requires the development of new antibiotics and antibiotic potentiators. OBJECTIVE This review identifies antibacterial phenolic compounds that have been identified in Asian and Pacific Angiosperms from 1945 to 2023 and analyzes their strengths and spectra of activity, distributions, molecular masses, solubilities, modes of action, structures-activities, as well as their synergistic effects with antibiotics, toxicities, and clinical potential. METHODS All data in this review was compiled from Google Scholar, PubMed, Science Direct, Web of Science, and library search; other sources were excluded. We used the following combination of keywords: 'Phenolic compound', 'Plants', and 'Antibacterial'. This produced 736 results. Each result was examined and articles that did not contain information relevant to the topic or coming from non-peer-reviewed journals were excluded. Each of the remaining 467 selected articles was read critically for the information that it contained. RESULTS Out of ∼350 antibacterial phenolic compounds identified, 44 were very strongly active, mainly targeting the cytoplasmic membrane of Gram-positive bacteria, and with a molecular mass between 200 and 400 g/mol. 2-Methoxy-7-methyljuglone, [6]-gingerol, anacardic acid, baicalin, vitexin, and malabaricone A and B have the potential to be developed as antibacterial leads. CONCLUSIONS Angiosperms from Asia and the Pacific provide a rich source of natural products with the potential to be developed as leads for treating bacterial infections.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Layane Ebehairy
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology, University of Development Alternative, Dhaka, Bangladesh
| | - Jhonnel Villegas
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Helina Jean Dupa
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Ricksterlie C. Verzosa
- Faculty of Agriculture and Life Science, Davao Oriental State University, Mati, Philippines
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal University, Gangtok, India
| | - Muhamad Shabaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Scholastica Lanting
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Azizun Rusdi
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Hayati Abdullah
- Natural Product Division, Forest Research Institute of Malaysia, Kepong, Malaysia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| | - Teng Jin Khoo
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
15
|
Sendani AA, Farmani M, Kazemifard N, Ghavami SB, Sadeghi A. Molecular mechanisms and therapeutic effects of natural products in inflammatory bowel disease. CLINICAL NUTRITION OPEN SCIENCE 2024; 58:21-42. [DOI: 10.1016/j.nutos.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
16
|
Luo M, Han Y, Chen Y, Du H, Chen B, Gao Z, Wang Q, Cao Y, Xiao H. Unveiling the role of gut microbiota in curcumin metabolism using antibiotic-treated mice. Food Chem 2024; 460:140706. [PMID: 39096800 DOI: 10.1016/j.foodchem.2024.140706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Curcumin might exert its therapeutic effects by interacting with gut microbiota. However, the role of gut microbiota in curcumin metabolism in vivo remains poorly understood. To address this, we used antibiotics to deplete gut microbiota and compared curcumin metabolism in control and antibiotic-treated mice. Using Q-TOF and triple quadrupole mass spectrometry, we identified and quantified curcumin metabolites, revealing distinct metabolic pathways in these two mice groups. The novel metabolites, hexahydro-dimethyl-curcumin and hexahydro-didemethyl-curcumin were exclusively derived from gut microbiota. Additionally, gut bacteria deconjugated curcumin metabolites back into their bioactive forms. Moreover, control mice exhibited significantly lower curcumin degradation, suggesting a protective role of gut microbiota against degradation. In conclusion, our results indicated that gut microbiota might enhance the effectiveness of curcumin by deconjugation, production of active metabolites, and protection against degradation in the large intestine. This study enhances our understanding of the interactions between curcumin and gut microbiota.
Collapse
Affiliation(s)
- Minna Luo
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yilu Chen
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Bin Chen
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Zili Gao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
17
|
Lin Z, Wang S, Cao Y, Lin J, Sun A, Huang W, Zhou J, Hong Q. Bioinformatics and validation reveal the potential target of curcumin in the treatment of diabetic peripheral neuropathy. Neuropharmacology 2024; 260:110131. [PMID: 39179172 DOI: 10.1016/j.neuropharm.2024.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a common nerve-damaging complication of diabetes mellitus. Effective treatments are needed to alleviate and reverse diabetes-associated damage to the peripheral nerves. Curcumin is an effective neuroprotectant that plays a protective role in DPN promoted by Schwann cells (SCs) lesions. However, the potential molecular mechanism of curcumin remains unclear. Therefore, our aim is to study the detailed molecular mechanism of curcumin-mediated SCs repair in order to improve the efficacy of curcumin in the clinical treatment of DPN. First, candidate target genes of curcumin in rat SC line RSC96 cells stimulated by high glucose were identified by RNA sequencing and bioinformatic analyses. Enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was carried out by Metascape, followed by 8 algorithms on Cytoscape to determine 4 hub genes, namly Hmox1, Pten, Vegfa and Myc. Next, gene set enrichment analysis (GSEA) and Pearson function showed that Hmox1 was significantly correlated with apoptosis. Subsequently, qRT-PCR, MTT assay, flow cytometry, caspase-3 activity detection and westernblot showed that curcumin treatment increased RSC96 cell viability, reduced cell apoptosis, increased Hmox1, Pten, Vegfa and Myc expression, and up-regulated Akt phosphorylation level under high glucose environment. Finally, molecular docking predicted the binding site of curcumin to Hmox1. These results suggest that curcumin can reduce the apoptosis of SCs induced by high glucose, and Hmox1 is a potential target for curcumin. Our findings provide new insights about the mechanism of action of curcumin on SC as a potential treatment in DPN.
Collapse
Affiliation(s)
- Ziqiang Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, Guangdong, 510000, China; Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, No. 183 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong, 510000, China
| | - Suo Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, Guangdong, 510000, China
| | - Yu Cao
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, No. 183 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong, 510000, China
| | - Jialing Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, Guangdong, 510000, China
| | - Ailing Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, Guangdong, 510000, China
| | - Wei Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, Guangdong, 510000, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, No. 183 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong, 510000, China.
| | - Qingxiong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
18
|
Jafari A, Abbastabar M, Alaghi A, Heshmati J, Crowe FL, Sepidarkish M. Curcumin on Human Health: A Comprehensive Systematic Review and Meta-Analysis of 103 Randomized Controlled Trials. Phytother Res 2024; 38:6048-6061. [PMID: 39478418 DOI: 10.1002/ptr.8340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/10/2024] [Accepted: 09/01/2024] [Indexed: 12/13/2024]
Abstract
The aim of this meta-analysis was to determine the effect of curcumin on a range of health outcomes. PubMed, EMBASE, Scopus, and Web of Science were searched from inception until September 2023. Randomized clinical trials (RCTs) that compared the effect of Curcuma longa L. with placebo were considered eligible. The risk of bias and overall certainty of evidence were assessed using the Newcastle-Ottawa Scale and Grading of Recommendations Assessment, Development, and Evaluation (GRADE), respectively. We meta-analyzed the effect sizes across eligible studies using the random-effects model. In total, 103 RCTs on 42 outcomes were included, incorporating a total population of 7216 participants. Overall, 23 out of 42 (55%) outcomes reported statistically significant effect sizes. The credibility of the evidence was rated as high for fasting blood sugar (FBS), C-reactive protein (CRP), high-density lipoprotein (HDL), and weight. The remaining outcomes presented moderate (waist circumference [WC], hip circumference [HC], body mass index [BMI], insulin, Homeostatic Model Assessment for Insulin Resistance [HOMA-IR], quantitative insulin-sensitivity check index [QUICKI], leptin, gamma-glutamyl transferase [GGT], glutathione [GSH], and superoxide dismutase [SOD]), low (14 outcomes), or very low (14 outcomes) evidence. In conclusion, curcumin supplementation can modify FBS and some glycemic indices, lipid parameters, as well as inflammatory and oxidative parameters. This updated summary of the accumulated evidence may help inform clinicians and future guidelines regarding medical and scientific interest in curcumin. However, due to limitations in the methodological quality of the included studies, well-designed and long-term RCTs with large sample sizes are needed. Trial registration: PROSPERO: CRD42021251969.
Collapse
Affiliation(s)
- Ali Jafari
- Student Research Committee, Department of Community Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Abbastabar
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Alireza Alaghi
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Javad Heshmati
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, Canada
| | - Francesca L Crowe
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Mahdi Sepidarkish
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
- Department of Biostatistics and Epidemiology, School of Public Health, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
19
|
Morasso C, Truffi M, Tinelli V, Stivaktakis P, Di Gerlando R, Francesca D, Perini G, Faisal M, Aid J, Noridov B, Lee B, Barbieri L, Negri S, Nikitovic D, Thrapsanioti LN, Tsatsakis A, Cereda C, Bonizzi A, Mazzucchelli S, Prosperi D, Hickey MA, Corsi F, Gagliardi S. Exploring the anti-inflammatory effects of curcumin encapsulated within ferritin nanocages: a comprehensive in vivo and in vitro study in Alzheimer's disease. J Nanobiotechnology 2024; 22:718. [PMID: 39551771 PMCID: PMC11571668 DOI: 10.1186/s12951-024-02897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/02/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND The global demographic shift towards an aging population is generating a rise in neurodegenerative conditions, with Alzheimer's disease (AD) as the most prominent problem. In this landscape, the use of natural supplements has garnered attention for their potential in dementia prevention. Curcumin (Cur), derived from Curcuma longa, has demonstrated promising pharmacological effects against AD by reducing the levels of inflammatory mediators. However, its clinical efficacy is hindered by poor solubility and bioavailability. Our study introduces the use of H-Ferritin nanocages (HFn) as a nanoformulation vehicle for Cur, aiming to enhance its therapeutic potential for AD. In this work, we characterized a nanoformulation of Cur in HFn (HFn-CUR) by evaluating its safety, stability, and its transport across the blood-brain barrier (BBB) in vitro. Moreover, we evaluated the efficacy of HFn-CUR by transcriptomic analysis of peripheral blood mononuclear cells (PBMCs) from both AD patients and healthy controls (HC), and by using the well-established 5xFAD mouse model of AD. RESULTS Our data show that HFn-CUR exhibits improved water dispersibility, is non-toxic, and can traverse the BBB. Regarding its activity on PBMCs from AD patients, HFn-CUR enhances cellular responses to inflammation and reduces RAGE-mediated stress. Studies on an AD mouse model demonstrate that HFn-CUR exhibits mild beneficial effects on cognitive performance. Moreover, it effectively reduces microgliosis and astrogliosis and in vivo in mouse, suggesting potential neuroprotective benefits. CONCLUSIONS Our data suggest that HFn-CUR is safe and effective in reducing inflammation in both in vitro and in vivo models of AD, supporting the need for further experiments to define its optimal use.
Collapse
Affiliation(s)
- Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, 27100, Italy
| | - Marta Truffi
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, 27100, Italy
| | - Veronica Tinelli
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | - Polychronis Stivaktakis
- Department of Toxicology & Forensic Sciences, Faculty Medicine, University of Crete, Heraklion, Greece
| | - Rosalinda Di Gerlando
- Department of Biology and Biotechnology "L. Spallanzani" , University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, 27100, Italy
| | | | | | - Mahvish Faisal
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Jana Aid
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Bekzod Noridov
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Benjamin Lee
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Linda Barbieri
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | - Sara Negri
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, 27100, Italy
| | - Dragana Nikitovic
- Department of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Lydia-Nefeli Thrapsanioti
- Department of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Aristides Tsatsakis
- Department of Toxicology & Forensic Sciences, Faculty Medicine, University of Crete, Heraklion, Greece
| | - Cristina Cereda
- Department of Biomedical and Clinical Sciences, Università di Milano, Milan, 20157, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, 20154, Italy
| | - Arianna Bonizzi
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, 27100, Italy
- Department of Biomedical and Clinical Sciences, Università di Milano, Milan, 20157, Italy
| | - Serena Mazzucchelli
- Department of Biomedical and Clinical Sciences, Università di Milano, Milan, 20157, Italy
| | - Davide Prosperi
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | - Miriam A Hickey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| | - Fabio Corsi
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, 27100, Italy.
- Department of Biomedical and Clinical Sciences, Università di Milano, Milan, 20157, Italy.
| | | |
Collapse
|
20
|
Peng Z, Li D, Wu N, Wang XY, Sun GX, Gao HB, Li HX. Safety and efficacy of curcumin in the treatment of ulcerative colitis: An updated systematic review and meta-analysis of randomized controlled trials. Explore (NY) 2024; 21:103083. [PMID: 39612780 DOI: 10.1016/j.explore.2024.103083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVE This study aims to systematically evaluate the safety and efficacy of curcumin as an adjunctive treatment for patients with ulcerative colitis (UC) and to assess the methodological quality of the published studies. METHODS A comprehensive search was conducted in PubMed, Embase, and CENTRAL databases for randomized controlled trials published up to August 18, 2023. Two independent reviewers screened studies based on predefined criteria. Meta-analysis was performed using a random-effects model with RevMan 5.4. Heterogeneity was assessed using Cochran's Q test and I² statistic. RESULTS Eight randomized controlled trials involving 482 patients were included. Seven studies reported clinical remission, and three reported endoscopic remission. Compared to the placebo group, adjunctive curcumin therapy significantly improved clinical remission (RR=2.33, 95 % CI: 1.25 to 4.34; P = 0.008; I²=80 %). Although endoscopic remission showed an increasing trend, it was not statistically significant (RR=4.17, 95 % CI: 0.63 to 27.71; P = 0.14; I²=80 %). Significant improvements were also observed in clinical improvement (RR=1.93, 95 % CI: 1.10 to 3.36; P = 0.02; I²=56 %) and endoscopic improvement (RR=1.76, 95 % CI: 1.12 to 2.77; P = 0.01; I²=62 %) in the curcumin group. No serious adverse events were reported. Subgroup analysis indicated a positive correlation between treatment efficacy and dosage, with no significant impact of administration method or follow-up duration on the pooled results or heterogeneity. CONCLUSION Curcumin as an adjunctive treatment shows promise in improving clinical and endoscopic outcomes in UC patients without significant adverse effects. However, due to the limited number of studies and substantial heterogeneity, further large-scale randomized controlled trials are necessary to confirm these findings.
Collapse
Affiliation(s)
- Zhao Peng
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, China.
| | - Duo Li
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Na Wu
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Xiao-Yuan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Gai-Xia Sun
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Hui-Bin Gao
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Hai-Xia Li
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, China
| |
Collapse
|
21
|
Wen J, Zhao L, Li Z, Pi C, Feng X, Shi P, Yang H, Chen L, Wang X, Liu F, Wei Y, Zhao L. Preparation and anti-colon cancer effect of a novel curcumin analogue (CA8): in vivo and in vitro evaluation. Front Pharmacol 2024; 15:1464626. [PMID: 39600365 PMCID: PMC11589483 DOI: 10.3389/fphar.2024.1464626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Chemotherapy remains the first choice of treatment for colon cancer despite the inevitable adverse effects. Curcumin (CU) possesses antitumor activity but has poor aqueous solubility, low bioavailability, and weak activity. To address this, nine novel monocarbonyl CU analogues were designed, synthesized, and evaluated in the present study. Among them, CA8 exhibited the highest water solubility, which was approximately 2.37 × 106 times that of CU. In addition, compared with CU, its cytotoxicity on Caco-2 cells (19.2 times/48 h) was stronger. Of note, CA8 arrestedthe cell cycle of Caco-2 cells at the G2/M phase and induced apoptosis. Meanwhile, acute toxicity experiments indicated that KM mice tolerated CA8 for up to 300 mg/kg CA8 (oral administration) and 50 mg/kg CA8 (intraperitoneal injection). The oral administration of CA8 to Sprague Dawley rats exhibited higher AUC (0-t) (6.23-fold) and longer MRT (0-t) (3.35-fold) than that of CU. CA8 also inhibited the proliferation and angiogenesis of tumor cells more than CU and tegafur. Finally, CA8 may exert anti-tumor effects through the activation of JNK pathway and inhibition of AKT pathway. These results suggest that CA8 is a safe and highly effective new drug for colon cancer treatment.
Collapse
Affiliation(s)
- Jie Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lingmao Zhao
- Luzhou Longmatan District People’s Hospital, Luzhou Third People’s Hospital, Luzhou, Sichuan, China
| | - Zhuohan Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xianhu Feng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Peng Shi
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Hongru Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaodong Wang
- Department of Hepatobiliary Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Furong Liu
- Department of Oncology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
22
|
Gamberi C, Leverette CL, Davis AC, Ismail M, Piccialli I, Borbone N, Oliviero G, Vicidomini C, Palumbo R, Roviello GN. Oceanic Breakthroughs: Marine-Derived Innovations in Vaccination, Therapy, and Immune Health. Vaccines (Basel) 2024; 12:1263. [PMID: 39591167 PMCID: PMC11598900 DOI: 10.3390/vaccines12111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
The vast, untapped potential of the world's oceans is revealing groundbreaking advancements in human health and vaccination. Microalgae such as Nannochloropsis spp. and Dunaliella salina are emerging as resources for recombinant vaccine development with specific and heterologous genetic tools used to boost production of functional recombinant antigens in Dunaliella salina and Nannochloropsis spp. to induce immunoprotection. In humans, several antigens produced in microalgae have shown potential in combating diseases caused by the human papillomavirus, human immunodeficiency virus, hepatitis B virus, influenza virus, Zika virus, Zaire Ebola virus, Plasmodium falciparum, and Staphylococcus aureus. For animals, microalgae-derived vaccine prototypes have been developed to fight against the foot-and-mouth disease virus, classical swine fever virus, vibriosis, white spot syndrome virus, and Histophilus somni. Marine organisms offer unique advantages, including the ability to express complex antigens and sustainable production. Additionally, the oceans provide an array of bioactive compounds that serve as therapeutics, potent adjuvants, delivery systems, and immunomodulatory agents. These innovations from the sea not only enhance vaccine efficacy but also contribute to broader immunological and general health. This review explores the transformative role of marine-derived substances in modern medicine, emphasizing their importance in the ongoing battle against infectious diseases.
Collapse
Affiliation(s)
- Chiara Gamberi
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA; (C.G.); (C.L.L.); (A.C.D.)
| | - Chad L. Leverette
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA; (C.G.); (C.L.L.); (A.C.D.)
| | - Alexis C. Davis
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA; (C.G.); (C.L.L.); (A.C.D.)
| | - Moayad Ismail
- Faculty of Medicine, European University, 76 Guramishvili Ave., 0141 Tbilisi, Georgia;
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Research Council (IBB-CNR), Via P. Castellino 111, 80131 Naples, Italy; (C.V.); (R.P.)
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, Italian National Research Council (IBB-CNR), Via P. Castellino 111, 80131 Naples, Italy; (C.V.); (R.P.)
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Research Council (IBB-CNR), Via P. Castellino 111, 80131 Naples, Italy; (C.V.); (R.P.)
| |
Collapse
|
23
|
Liu J, Yang C, Merlin D, Xiao B. Hyaluronic acid-functionalized nanoparticles for ulcerative colitis-targeted therapy: a comparative study of oral administration and intravenous injection. Biomater Sci 2024; 12:5834-5844. [PMID: 39415593 DOI: 10.1039/d4bm00898g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Targeted delivery of anti-inflammatory drugs to macrophages has attracted great attention for selectively alleviating the symptoms of ulcerative colitis (UC), while minimizing adverse effects. Herein, we aimed to compare the in vivo pharmacokinetics and therapeutic outcomes of macrophage-targeted nanoparticles (NPs) via oral administration and intravenous injection. Polymeric NPs were employed to load an anti-inflammatory drug (curcumin, CUR), followed by surface functionalization with hyaluronic acid (HA). The resulting HA-CUR-NPs had an average diameter of 281 nm and a negatively charged surface. These NPs showed excellent biocompatibility and a significantly higher cell internalization efficiency in RAW 264.7 macrophages compared with their counterparts (carboxymethyl cellulose-functionalized CUR-encapsulated NPs, CUL-CUR-NPs). Moreover, HA-CUR-NPs exhibited a dramatically stronger capacity to inhibit the mRNA expression levels of the typical pro-inflammatory cytokines from lipopolysaccharide-stimulated macrophages compared with CUL-CUR-NPs. In vivo experiments revealed that HA-CUR-NPs after i.v. injection could improve the pharmacokinetics of CUR, and that it showed much better UC therapeutic outcomes compared with the oral administration way. Collectively, in comparison with HA-CUR-NPs (oral), HA-CUR-NPs (i.v.) possess a higher CUR delivery efficiency to the colitis mucosa, which can be developed as an efficient platform for UC treatment.
Collapse
Affiliation(s)
- Jinhua Liu
- Department of Biotechnology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Chunhua Yang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Georgia State University, Atlanta 30302, Georgia, USA
- Atlanta Veterans Affairs Medical Center, Decatur 30033, Georgia, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Georgia State University, Atlanta 30302, Georgia, USA
- Atlanta Veterans Affairs Medical Center, Decatur 30033, Georgia, USA
| | - Bo Xiao
- Department of Biotechnology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
24
|
Mari M, Boniburini M, Tosato M, Zanni F, Bonini F, Faglioni F, Cuoghi L, Belluti S, Imbriano C, Asti M, Ferrari E. Bridging pyrimidine hemicurcumin and Cisplatin: Synthesis, coordination chemistry, and in vitro activity assessment of a novel Pt(II) complex. J Inorg Biochem 2024; 260:112702. [PMID: 39163714 DOI: 10.1016/j.jinorgbio.2024.112702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
In the upcoming decades, the incidence and mortality rates of cancer are expected to rise globally, with colorectal and prostate cancers among the most prevalent types. Despite advancements in molecular targeted therapy, platinum-based chemotherapies remain the cornerstone of treatment, especially for colorectal and prostate cancer, with oxaliplatin and cisplatin being extremely effective due to their DNA-targeting capabilities. In our pursuit of new platinum-based chemotherapeutics that are potentially less toxic and more effective, we have explored the combination of the Pt-binding groups of the diaminocyclohexane ring used in oxaliplatin, with the stable amino-pyrimidine hemicurcumin moiety. This new derivative exhibit improved stability in physiological conditions and increased solubility in aqueous media, demonstrating promising effects on cell proliferation of both colorectal and prostate cells. We report herein the complete synthesis and chemical characterization in solution of the new derivative [(1R,2R)-N1-(3-(4-((E)-2-(2-Amino-6-methylpyrimidin-4-yl)vinyl)-2-methoxyphenoxy) propyl) cyclohexane-1,2-diamine] (MPYD). Our analysis includes an examination of its acid-base equilibria, speciation and stability in physiological conditions. The synthesis and in situ formation of Pt(II) complexes were investigated by nuclear magnetic resonance spectroscopy, while density functional theory calculations were employed to elucidate the chemical structure in solution. Results on the biological activity were obtained through cell viability assays on different colorectal and prostate cell lines (HCT116, HT29, PC3 and LNCaP).
Collapse
Affiliation(s)
- Matteo Mari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi, 103, 41125 Modena, Italy
| | - Matteo Boniburini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi, 103, 41125 Modena, Italy
| | - Marianna Tosato
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi, 103, 41125 Modena, Italy; Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, Azienda USL-IRCCS Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Francesca Zanni
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi, 103, 41125 Modena, Italy
| | - Filippo Bonini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi, 103, 41125 Modena, Italy
| | - Francesco Faglioni
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi, 103, 41125 Modena, Italy
| | - Laura Cuoghi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/d, 41125 Modena, Italy.
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/d, 41125 Modena, Italy.
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/d, 41125 Modena, Italy.
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, Azienda USL-IRCCS Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy.
| | - Erika Ferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi, 103, 41125 Modena, Italy.
| |
Collapse
|
25
|
Wei Y, Li H, Li Y, Zeng Y, Quan T, Leng Y, Chang E, Bai Y, Bian Y, Hou Y. Advances of curcumin in nervous system diseases: the effect of regulating oxidative stress and clinical studies. Front Pharmacol 2024; 15:1496661. [PMID: 39555102 PMCID: PMC11563972 DOI: 10.3389/fphar.2024.1496661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024] Open
Abstract
In recent years, researchers have highly observed that neurological disorders (NSDs) with the aging of the population are a global health burden whose prevalence is increasing every year. Previous evidence suggested that the occurrence of neurological disorders is correlated with predisposing factors such as inflammation, aging, and injury. Particularly, the neuronal cells are susceptible to oxidative stress, leading to lesions caused by high oxygen-consuming properties. Oxidative stress (OS) is a state of peroxidation, which occurs as a result of the disruption of the balance between oxidizing and antioxidizing substances. The oxidative intermediates such as free radicals, hydrogen peroxide (H2O2), and superoxide anion (O2-) produced by OS promote disease progression. Curcumin, a natural diketone derived from turmeric, is a natural antioxidant with a wide range of neuroprotective, anti-inflammatory, anti-tumor, anti-aging, and antioxidant effects. Fortunately, curcumin is recognized for its potent antioxidant properties and is considered a promising candidate for the prevention and treatment of neurological diseases. Consequently, this review elucidates the mechanisms by which curcumin mitigates oxidative stress and emphasizes the potential in treating nervous system disorders, including depression, Alzheimer's disease, Parkinson's disease, epilepsy, subarachnoid hemorrhage, and glioblastoma. We aim to provide a new therapeutic option for the management of neurological diseases.
Collapse
Affiliation(s)
- Yuxun Wei
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - Hong Li
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yue Li
- Molecular Urooncology, Department of Urology, Klinikum Rechts der Isar, Technical University of Munich, München, Germany
| | - Yue Zeng
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - Tian Quan
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - Yanen Leng
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - En Chang
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - Yingtao Bai
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - Yuan Bian
- Department of Oncology, 363 Hospital, Chengdu, China
| | - Yi Hou
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| |
Collapse
|
26
|
Zhou Y, Gong J, Deng X, Shen L, Wu S, Fan H, Liu L. Curcumin and nanodelivery systems: New directions for targeted therapy and diagnosis of breast cancer. Biomed Pharmacother 2024; 180:117404. [PMID: 39307117 DOI: 10.1016/j.biopha.2024.117404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 11/14/2024] Open
Abstract
As the global incidence of breast cancer continues to surge, the pursuit of novel, low-toxicity, and highly efficacious therapeutic strategies has emerged as a pivotal research focus. Curcumin (CUR), an active constituent of traditional Chinese medicine (TCM) renowned for its antimicrobial, anti-inflammatory, antioxidant, and antitumor properties, exhibits immense potential in breast cancer therapy. Nevertheless, CUR's poor water solubility, chemical instability, and unfavorable pharmacokinetics have impeded its clinical utilization. To address these challenges, nano-delivery systems have been extensively exploited for CUR administration, enhancing its in vivo stability and bioavailability, and facilitating precise targeting of breast cancer lesions. Therefore, we elaborate on CUR's chemical foundations, drug metabolism, and safety profile, and elucidate its potential mechanisms in breast cancer therapy, encompassing inducing apoptosis and autophagy, blocking cell cycle, inhibiting breast cancer metastasis, regulating tumor microenvironment and reversing chemotherapy resistance. The review primarily emphasizes recent advancements in CUR-based nano-delivery systems for the treatment and diagnosis of breast cancer. Liposomes, nanoparticles (encompassing polymer nanoparticles, solid lipid nanoparticles, mesoporous silica particles, metal/metal oxide nanoparticles, graphene nanomaterials, albumin nanoparticles, etc.), nanogels, and nanomicelles can serve as delivery carriers for CUR, exhibiting promising anti-breast cancer effects in both in vivo and in vitro experiments. Furthermore, nano-CUR can be integrated with fluorescence imaging, magnetic resonance imaging, computed tomography imaging, ultrasound, and other techniques to achieve precise localization and diagnosis of breast cancer masses. While this article has summarized the clinical studies of nano-curcumin, it is noteworthy that the research literature on nano-CUR applied to breast cancer diagnosis and the translation of nano-CUR clinical studies in BC patients remain limited. Therefore, future research should intensify exploration in this direction.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Jie Gong
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Xianguang Deng
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Lele Shen
- Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Shiting Wu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China
| | - Hongqiao Fan
- Department of Aesthetic Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China.
| | - Lifang Liu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China.
| |
Collapse
|
27
|
Nie C, Liu B, Niu Y, Wu P, Song Z, Wei X, Wang J. Enhancement of Pickering effect of ovalbumin with bacterial cellulose nanofibers prepared by electron beam irradiation and encapsulation of curcumin. Int J Biol Macromol 2024; 279:135145. [PMID: 39216578 DOI: 10.1016/j.ijbiomac.2024.135145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In this study, the enhancement of Pickering effect of ovalbumin (OVA) with bacterial cellulose nanofibers (BCNFs) prepared by electron beam irradiation was investigated and the environmental stability of oil-in-water Pickering emulsions stabilized by OVA/BCNFs complexes was explored by varying ratios of OVA/BCNFS (1:0.2, 1:0.4, 1:0.6, 1:0.8, 1:1) and oil phase concentrations (10 %, 20 %, 30 %, 40 %, 50 %, 60 %). Droplet sizes of Pickering emulsions were decreased with the increase of the proportion of BCNFs, while the viscosity and storage modulus (G') of Pickering emulsions were increased. The gel strength of Pickering emulsions was positively correlated with the oil phase content. Pickering emulsions stabilized by OVA/BCNFs complexes were endowed excellent environmental stability under varying pH, ionic strength, and thermal conditions. Moreover, after encapsulating curcumin in Pickering emulsions, the retention rates of curcumin were improved significantly during room temperature, UV light, and thermal treatment. The present study would contribute to the advancement of novel protein/polysaccharide stabilizers and offer novel insight for investigating the stability of Pickering emulsions and delivering lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Chunling Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bingqian Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yefan Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pengrui Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhihong Song
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xindi Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianguo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Hunan Nobel Life Science Research Institute Co., LTD, 229 Guyuan Road, Changsha, Hunan 410221, China.
| |
Collapse
|
28
|
Karagianni A, Timotheatou S, Manakou V, Moutselos A, Athanasopoulos A, Politopoulos K, Matiadis D, Sagnou M, Alexandratou E. Monocarbonyl curcuminoids as potential photosensitizers in photodynamic therapy against skin cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113025. [PMID: 39243747 DOI: 10.1016/j.jphotobiol.2024.113025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Two monocarbonyl dimethylamino curcuminoids, one derived from acetone (C3) and the second one from cyclohexane (C6), were synthesized aiming to study their photophysical properties and anticancer photodynamic potential. Compound C6 exhibited lower absorbance and fluorescence than C3. Photobleaching studies showed that C3 and C6 photostability behavior in DMSO differ significantly. C3 was completely photoconverted into a new species absorbing at lower wavelength than the parent compound, whereas, C6, upon a 30 min irradiation at λ = 440 nm with 15 mW/cm2 reached a photostationary phase where a smaller amount of the initial compound coexists with some photoproducts of higher and lower absorbance. Both compounds were able to generate significant amounts of ROS upon irradiation in an aqueous environment and exhibited successful intracellular localization in skin cancer cells (A431 cells). After dark cytotoxicity studies the concentrations of 5 μM and 1 μM for C3 and C6, respectively, were selected for the PDT assessment. C3 presented light dose-dependent photodynamic activity against A431 cells, resulting in 40 % cell viability after 12 min of light irradiation (440 nm, 15 mW/cm2). On the other side, C6 showed a biphasic light dose PDT effect with cell viability gradually decreasing up to 50 % after 5 min of light exposure, and then increasing again after 8 and 12 min of light exposure. The photodynamic performance of C6 may provide a new insight into the development of PSs with reduced prolonged photosensitivity.
Collapse
Affiliation(s)
- Alexandra Karagianni
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Styliani Timotheatou
- Institute of Biosciences and Applications, NCSR "Demokritos", Ag. Paraskevi, 153 10 Athens, Greece
| | - Vasiliki Manakou
- Institute of Biosciences and Applications, NCSR "Demokritos", Ag. Paraskevi, 153 10 Athens, Greece
| | - Andreas Moutselos
- Institute of Biosciences and Applications, NCSR "Demokritos", Ag. Paraskevi, 153 10 Athens, Greece
| | | | - Konstantinos Politopoulos
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Dimitris Matiadis
- Institute of Biosciences and Applications, NCSR "Demokritos", Ag. Paraskevi, 153 10 Athens, Greece
| | - Marina Sagnou
- Institute of Biosciences and Applications, NCSR "Demokritos", Ag. Paraskevi, 153 10 Athens, Greece
| | - Eleni Alexandratou
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| |
Collapse
|
29
|
He L, Su Z, Wang S. The anti-obesity effects of polyphenols: a comprehensive review of molecular mechanisms and signal pathways in regulating adipocytes. Front Nutr 2024; 11:1393575. [PMID: 39539361 PMCID: PMC11557335 DOI: 10.3389/fnut.2024.1393575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Excess weight gain is a growing concern worldwide, fueled by increased consumption of calorie-dense foods and more sedentary lifestyles. Obesity in China is also becoming increasingly problematic, developing into a major public health concern. Obesity not only increases the risk of associated disease but also imposes a burden on health care systems, and it is thus imperative that an effective intervention approach be identified. Recent studies have demonstrated that the polyphenol-rich Mediterranean diet has considerable potential in this regard. Polyphenols can inhibit the production of adipocytes and reduce adverse reactions, such as inflammation, insulin resistance, and gut microflora imbalance. In this review, we examine four polyphenols (curcumin, ellagic acid, ferulic acid, and quercetin) in terms of their potential as interventions targeting obesity. The mechanisms that help promote adipocyte browning, increase thermogenic factors, increase thermogenesis, and regulate adipocyte differentiation are summarized, and key signaling pathways, including PPARγ, C/EBP-, and others, are reviewed.
Collapse
Affiliation(s)
- Lan He
- Department of Cardiology, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhan Su
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Shuangshuang Wang
- Department of Cardiology, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
30
|
Wadowski P, Juszczak M, Woźniak K. NRF2 Modulators of Plant Origin and Their Ability to Overcome Multidrug Resistance in Cancers. Int J Mol Sci 2024; 25:11500. [PMID: 39519053 PMCID: PMC11547051 DOI: 10.3390/ijms252111500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer is one of the most common causes of death in the world. Despite the fact that there are many types of therapies available, cancer treatment remains a major challenge. The main reason for the ineffectiveness of chemotherapy is the acquisition of multidrug resistance (MDR) by cancer cells. One of the factors responsible for the acquisition of MDR is the NRF2 transcription factor, which regulates the expression of proteins such as HO-1, NQO1, MRP1, MRP2, and GST. In normal cells, NRF2 is the first line of defense against oxidative stress, thereby preventing carcinogenesis. Still, its hyperactivation in cancer cells causes them to acquire MDR, which significantly reduces or eliminates the effectiveness of chemotherapy. Considering the important role NRF2 plays in the acquisition of MDR, its modulators and, above all, inhibitors are being sought after, including among compounds of plant origin. NRF2 inhibition may prove to be a key element of anticancer therapy. This review summarizes the current state of knowledge about plant NRF2 inhibitors and presents the effects of their use in overcoming MDR in cancer.
Collapse
Affiliation(s)
- Piotr Wadowski
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Michał Juszczak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
31
|
Pucci G, Savoca G, Iacoviello G, Russo G, Forte GI, Cavalieri V. Curcumin's Radioprotective Effects on Zebrafish Embryos. Antioxidants (Basel) 2024; 13:1281. [PMID: 39594423 PMCID: PMC11590968 DOI: 10.3390/antiox13111281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Radiation modifiers are largely studied for their contribution to enlarging the treatment window. Curcumin is already known for its antioxidant properties; however, its role as a radioprotector in preclinical studies is affected by the well-known low absorption and bioavailability of curcumin. In this study, curcumin's radioprotection ability has been evaluated in zebrafish larvae, by taking advantage of quantifying curcumin absorption and evaluating its fluorescence in transparent embryos. A curcumin range of 1-10 μM was tested to select the non-toxic concentrations to be used for a pre-treatment of photon beam irradiation using a 2-15 Gy range of doses. The post-treatment analysis within 120 h post-fertilization (hpf) included an assessment of mortality and malformation rates and behavioral and gene expression analysis. A total of 2.5 and 5 μM of curcumin pre-treatment showed a radioprotective role, significantly reducing the frequency of embryo malformations and damaged entities. This sparing effect disappeared using 15 Gy, showing the radiation effect's prevalence. Gene expression analysis reconducted this radioprotective ability for antioxidant gene network activation. The curcumin-induced activation of the antioxidant gene network promoted radioprotection in zebrafish.
Collapse
Affiliation(s)
- Gaia Pucci
- Institute of Bioimaging and Complex Biological Systems (IBSBC)—National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.R.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale delle Scienze Bld. 16, 90128 Palermo, Italy
| | - Gaetano Savoca
- Radiation Oncology Unit, ARNAS-Civico Hospital, 90100 Palermo, Italy; (G.S.); (G.I.)
| | - Giuseppina Iacoviello
- Radiation Oncology Unit, ARNAS-Civico Hospital, 90100 Palermo, Italy; (G.S.); (G.I.)
| | - Giorgio Russo
- Institute of Bioimaging and Complex Biological Systems (IBSBC)—National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.R.)
| | - Giusi I. Forte
- Institute of Bioimaging and Complex Biological Systems (IBSBC)—National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.R.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale delle Scienze Bld. 16, 90128 Palermo, Italy
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale delle Scienze Bld. 16, 90128 Palermo, Italy
- Zebrafish Laboratory, Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze Bld. 16, 90128 Palermo, Italy
| |
Collapse
|
32
|
Atoum MF, Padma KR, Don KR. Curcumin is a potential therapeutic agent that ameliorates diabetes among non-alcoholic fatty liver disease coexist with type 2 diabetes. NUTRITION AND HEALTHY AGING 2024; 9:77-90. [DOI: 10.3233/nha-231504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD) harmonize and act synergistically in clinical practices. About 70–80% of diabetic patients develop NAFLD. At the same time, NAFLD existence increases T2DM development. Meanwhile, the presence of T2DM increases the progression to liver disease such as NAFLD, and to non-alcoholic steatohepatitis (NASH). The most prevalent chronic liver disease worldwide is a NAFLD. NAFLD and (T2DM) have a two-way pathophysiologic relationship, with the latter driving the development of the former into NASH. Nonetheless, NASH enhances the threat of cirrhosis as well as hepatocellular carcinoma (HCC), both cases in turn need transplantation of the liver. The only treatment for NAFLD is still lifestyle management because there are no FDA-approved drugs for the condition. In the current study, we review how curcumin (a naturally occurring phytopolyphenol pigment) treats NAFLD. Also we showed broad insights on curcumin-based therapy, by severe reduction of hepatic inflammation. Thus, our review showed that curcumin ingestion considerably decreased glycemic parameters (fasting blood glucose, glycosylated hemoglobin, insulin resistance index (HOMA-IR), and free fatty acids) and adipocyte-fatty acid binding protein (A-FABP), and adipokine released from adipocytes. Clinical trials are needed to evaluate the effects of curcumin and its specific dosage on liver enzymes, glycemic consequences, among NAFLD coexist with T2DM patients.
Collapse
Affiliation(s)
- Manar Fayiz Atoum
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, Zarqa, Jordan
| | - Kanchi Ravi Padma
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam (Women’s) University, Tirupati, AP, India
| | - Kanchi Ravi Don
- Department of Oral Pathology and Microbiology, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education and Research (BIHER) Bharath University, Chennai, Tamil Nadu, India
| |
Collapse
|
33
|
Mo L, Wan S, Zékány-Nagy T, Luo X, Yang X. The Effect of Curcumin on Glucolipid Metabolic Disorders: A Review. FOOD REVIEWS INTERNATIONAL 2024:1-35. [DOI: 10.1080/87559129.2024.2405654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Lifen Mo
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Siyu Wan
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Tekla Zékány-Nagy
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Xiaoyi Luo
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Xingfen Yang
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
34
|
Del Duca G, Parisi E, Artusio F, Calì E, Fraterrigo Garofalo S, Rosso C, Cauda V, Chierotti MR, Simone E. A crystal engineering approach for rational design of curcumin crystals for Pickering stabilization of emulsions. Food Res Int 2024; 194:114871. [PMID: 39232509 DOI: 10.1016/j.foodres.2024.114871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Emulsions stabilized via Pickering particles are becoming more and more popular due to their high stability and biocompatibility. Hence, developing new ways to produce effective Pickering particles is essential. In this work, we present a crystal engineering approach to obtain precise control over particle properties such as size, shape, and crystal structure, which may affect wettability and surface chemistry. A highly reproducible synthesis method via anti-solvent crystallization was developed to produce sub-micron sized curcumin crystals of the metastable form III, to be used as Pickering stabilizers. The produced crystals presented a clear hydrophobic nature, which was demonstrated by their preference to stabilize water-in-oil (W/O) emulsions. A comprehensive experimental and computational characterization of curcumin crystals was performed to rationalize their hydrophobic nature. Analytical techniques including Raman spectroscopy, powder X-ray diffraction (PXRD), Solid-State Nuclear Magnetic Resonance (SSNMR), scanning electron microscopy (SEM), Differential Scanning Calorimetry (DSC), confocal fluorescence microscopy and contact angle measurements were used to characterize curcumin particles in terms of shape, size and interfacial activity. The attachment energy model was instead applied to study relevant surface features of curcumin crystals, such as topology and facet-specific surface chemistry. This work contributes to the understanding of the effect of crystal properties on the mechanism of Pickering stabilization, and paves the way for the formulation of innovative products in fields ranging from pharmaceuticals to food science.
Collapse
Affiliation(s)
- Giulia Del Duca
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy
| | - Emmanuele Parisi
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy
| | - Fiora Artusio
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy
| | - Eleonora Calì
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy
| | | | - Chiara Rosso
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy
| | - Michele R Chierotti
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy
| | - Elena Simone
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy.
| |
Collapse
|
35
|
Syed RU, Alshammari MD, Banu H, Khojali WMA, Jafar M, Nagaraju P, Alshammari A. Targeting the autophagy-miRNA axis in prostate cancer: toward novel diagnostic and therapeutic strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7421-7437. [PMID: 38761210 DOI: 10.1007/s00210-024-03153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
Since prostate cancer is one of the leading causes of cancer-related death, a better understanding of the molecular pathways guiding its development is imperative. A key factor in prostate cancer is autophagy, a cellular mechanism that affects both cell survival and death. Autophagy is essential in maintaining cellular homeostasis. Autophagy is a physiological mechanism wherein redundant or malfunctioning cellular constituents are broken down and recycled. It is essential for preserving cellular homeostasis and is implicated in several physiological and pathological conditions, including cancer. Autophagy has been linked to metastasis, tumor development, and treatment resistance in prostate cancer. The deregulation of miRNAs related to autophagy appears to be a crucial element in the etiology of prostate cancer. These miRNAs influence the destiny of cancer cells by finely regulating autophagic mechanisms. Numerous investigations have emphasized the dual function of specific miRNAs in prostate cancer, which alter autophagy-related pathways to function as either tumor suppressors or oncogenes. Notably, miRNAs have been linked to the control of autophagy and the proliferation, apoptosis, and migration of prostate cancer cells. To create customized therapy approaches, it is imperative to comprehend the dynamic interplay between autophagy and miRNAs in prostate cancer. The identification of key miRNAs provides potential diagnostic and prognostic markers. Unraveling the complex network of lncRNAs, like PCA3, also expands the repertoire of molecular targets for therapeutic interventions. This review explores the intricate interplay between autophagy and miRNAs in prostate cancer, focusing on their regulatory roles in cellular processes ranging from survival to programmed cell death.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia.
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
| | - Humera Banu
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Weam M A Khojali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman, 14415, Sudan
| | - Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 34212, Saudi Arabia.
| | - Potnuri Nagaraju
- Department of Pharmaceutics, Mandesh Institute of Pharmaceutical Science and Research Center, Mhaswad, Maharashtra, India
| | - Alia Alshammari
- Department of Pharmaceutics, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
| |
Collapse
|
36
|
Paula S, Floruta S, Pajazetovic K, Sobota S, Almahmodi D. The molecular determinants of calcium ATPase inhibition by curcuminoids. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184367. [PMID: 38969202 DOI: 10.1016/j.bbamem.2024.184367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The natural product curcumin and some of its analogs are known inhibitors of the transmembrane enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA). Despite their widespread use, the curcuminoids' binding site in SERCA and their relevant interactions with the enzyme remain elusive. This lack of knowledge has prevented the development of curcuminoids into valuable experimental tools or into agents of therapeutic value. We used the crystal structures of SERCA in its E1 conformation in conjunction with computational tools such as docking and surface screens to determine the most likely curcumin binding site, along with key enzyme/inhibitor interactions. Additionally, we determined the inhibitory potencies and binding affinities for a small set of curcumin analogs. The predicted curcumin binding site is a narrow cleft in the transmembrane section of SERCA, close to the transmembrane/cytosol interface. In addition to pronounced complementarity in shape and hydrophobicity profiles between curcumin and the binding pocket, several hydrogen bonds were observed that were spread over the entire curcumin scaffold, involving residues on several transmembrane helices. Docking-predicted interactions were compatible with experimental observations for inhibitory potencies and binding affinities. Based on these findings, we propose an inhibition mechanism that assumes that the presence of a curcuminoid in the binding site arrests the catalytic cycle of SERCA by preventing it from converting from the E1 to the E2 conformation. This blockage of conformational change is accomplished by a combination of steric hinderance and hydrogen-bond-based cross-linking of transmembrane helices that require flexibility throughout the catalytic cycle.
Collapse
Affiliation(s)
- Stefan Paula
- Department of Chemistry, California State University Sacramento, 6000 J Street, Sacramento, CA 95819, USA.
| | - Sergiu Floruta
- Department of Chemistry, California State University Sacramento, 6000 J Street, Sacramento, CA 95819, USA
| | - Karim Pajazetovic
- Department of Chemistry, California State University Sacramento, 6000 J Street, Sacramento, CA 95819, USA
| | - Sydni Sobota
- Department of Chemistry, California State University Sacramento, 6000 J Street, Sacramento, CA 95819, USA
| | - Dina Almahmodi
- Department of Chemistry, California State University Sacramento, 6000 J Street, Sacramento, CA 95819, USA
| |
Collapse
|
37
|
Liu C, Du W, Zhang L, Wang J. Natural synergy: Oleanolic acid-curcumin co-assembled nanoparticles combat osteoarthritis. Colloids Surf B Biointerfaces 2024; 245:114286. [PMID: 39378706 DOI: 10.1016/j.colsurfb.2024.114286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Curcumin (Cur) is a natural polyphenol that is one of the most valuable natural products. However, its use as a functional food is limited by low water solubility, chemical instability and poor bioavailability. In this study, a supramolecular co-assembly strategy was used to construct an oleanolic acid-curcumin (OLA-Cur) co-assembly composite nano-slow-release treatment system. As a co-assembled compound, OLA is a widely present pentacyclic triterpenoid compound with multiple biological activities in the plant kingdom, which is expected to jointly alleviate the damaging effects of papain-induced mouse osteoarthritis model. The OLA-Cur NPs shows the solid core-shell structure, which can effectively improve the water solubility of Cur and OLA, and has good stability and sustained release characteristics. The analysis results show that the two compounds are mainly assembled through hydrogen bonding interactions, hydrophobic interactions, and π - π stacking interactions. The OLA-Cur NPs can inhibit the release of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β induced by LPS in RAW264.7 mouse macrophages, promote the secretion of anti-inflammatory cytokine IL-10, and improve the oxidative stress index of hydrogen peroxide induced human rheumatoid arthritis synovial fibroblasts. In addition, it has a certain improvement effect on cartilage and subchondral bone damage in mouse osteoarthritis models. These findings suggest that constructing co-assembled composite nanoparticles based on pure natural compounds may break through the limitations of a variety of important nutritional ingredients in functional foods.
Collapse
Affiliation(s)
- Chen Liu
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou 225001, China
| | - Wanchun Du
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou 225001, China
| | - Liang Zhang
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou 225001, China.
| | - Jiacheng Wang
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
38
|
Bischoff P, Bou-Gharios J, Noël G, Burckel H. Role of autophagy in modulating tumor cell radiosensitivity: Exploring pharmacological interventions for glioblastoma multiforme treatment. Cancer Radiother 2024; 28:416-423. [PMID: 39327199 DOI: 10.1016/j.canrad.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 09/28/2024]
Abstract
Autophagy is an innate cellular process characterized by self-digestion, wherein cells degrade or recycle aged proteins, misfolded proteins, and damaged organelles via lysosomal pathways. Its crucial role in maintaining cellular homeostasis, ensuring development and survival is well established. In the context of cancer therapy, autophagy's importance is firmly recognized, given its critical impact on treatment efficacy. Following radiotherapy, several factors can modulate autophagy including parameters related to radiation type and delivery methods. The concomitant use of chemotherapy with radiotherapy further influences autophagy, potentially either enhancing radiosensitivity or promoting radioresistance. This review article discusses some pharmacological agents and drugs capable of modulating autophagy levels in conjunction with radiation in tumor cells, with a focus on those identified as potential radiosensitizers in glioblastoma multiforme treatment.
Collapse
Affiliation(s)
- Pierre Bischoff
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France
| | - Jolie Bou-Gharios
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France
| | - Georges Noël
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France; Department of Radiation Oncology, Institut de cancérologie Strasbourg Europe (ICANS), Unicancer, 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - Hélène Burckel
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France.
| |
Collapse
|
39
|
DePasquale JA. Visible light potentiates rapid cell destruction and death by curcumin in vitro. Photochem Photobiol Sci 2024; 23:1893-1914. [PMID: 39333349 DOI: 10.1007/s43630-024-00639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Curcumin, a small molecule derived from the plant Curcuma longa, is a pleiotropic agent with widely varying pharmacological activities attributed to it. In addition to its anti-cancer activity curcumin is also known to be cytotoxic upon photoactivation. Time-lapse DIC and correlative fluorescence microscopy were used to evaluate the effects of curcumin, combined with continuous exposure to visible light, on cellular components of RTG-2 cells. Curcumin combined with visible light resulted in rapid and dramatic destruction of cells. F-actin and microtubule cytoskeletons were drastically altered, both showing fragmentation and overall loss from cells. Nuclei exhibited granulated nucleoplasm, condensed DNA, and physical shrinkage. Mitochondria rapidly fragmented along their length and disappeared from cells. Plasma membrane was breached based on lipophilic dye staining and the entrance of otherwise impermeant small molecules into the cell. Grossly distorted morphology hallmarked by significant swelling and coarse granulation of the cytoplasm was consistently observed. All of these effects were dependent on visible light as the same cellular targets in curcumin-treated cells outside the illuminated area were always unperturbed. The combination of curcumin and continuous exposure to visible light enables rapid and irreversible cellular destruction which can be monitored in real-time. Real-time monitoring of this structural disintegration suggests a new approach to applying curcumin in photodynamic treatments, where the progression of cell and tissue destruction might be simultaneously evaluated through optical means.
Collapse
|
40
|
Raouf N, Darwish ZE, Ramadan O, Barakat HS, Elbanna SA, Essawy MM. The anticancer potential of tetrahydrocurcumin-phytosomes against oral carcinoma progression. BMC Oral Health 2024; 24:1126. [PMID: 39327561 PMCID: PMC11430579 DOI: 10.1186/s12903-024-04856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Herbal medicine combined with nanotechnology offers an alternative to the increasing burden of surgery and/or chemotherapy, the main therapeutics of oral carcinoma. Phytosomes are nano-vesicular systems formed by the interaction between phospholipids and phyto-active components via hydrogen bonding, exhibiting superior efficacy over pure phytocomponents in drug delivery. METHODS Tetrahydrocurcumin (THC)-phytosomes were prepared by thin film hydration method. After characterization, in vitro cytotoxicity, antiproliferative capacity, antioxidant potential and full apoptotic workup were paneled on oral squamous cell carcinoma (SCC4) in comparison with native THC-solution and cisplatin (3.58 µg/mL intravenous injection), as positive controls. In addition, we tested the three medications on normal oral keratinocytes and gingival fibroblasts to attest to their tissue-selectivity. RESULTS Successful preparation of THC-phytosomes using 1:1 molar ratio of THC to phospholipid exhibited significantly increased aqueous solubility, good colloidal properties, and complete drug release after one hour. On SCC4 cells, THC-phytosomes, at their dose-/time-dependency at ~ 60.06 µg/mL escalated cell percentages in the S-phase with 32.5 ± 6.22% increase, as well as a startling 29.69 ± 2.3% increase in apoptotic population. Depletion of the cell colonies survival to 0.29 ± 0.1% together with restraining the migratory rate by -6.4 ± 6.8% validated THC-phytosomes' antiproliferative capacity. Comparatively, the corresponding results of THC-solution and cisplatin revealed 12.9 ± 0.9% and 25.8 ± 1.1% for apoptosis and 0.9 ± 0.1% and 0.7 ± 0.08% for colony survival fraction, respectively. Furthermore, the nanoformulation exhibited the strongest immuno-positivity to caspase-3, which positively correlated with intense mitochondrial fluorescence by Mitotracker Red, suggesting its implication in the mitochondrial pathway of apoptosis, a finding further explained by the enormously high Bax and caspase-8 expression by RT-qPCR. Finally, the THC groups showed the lowest oxidative stress index, marking their highest free radical-scavenging potential among the test groups. CONCLUSIONS THC-phytosomes are depicted to be an efficient nanoformulation that enhanced the anticancer efficacy over the free drug counterpart and the conventional chemotherapeutic. Additionally, being selective to cancer cells and less cytotoxic to normal cells makes THC-phytosomes a potential candidate for tissue-targeted therapy.
Collapse
Affiliation(s)
- Nehal Raouf
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Champollion Street, Elazarita, Alexandria, 21563, Egypt.
| | - Zeinab Elsayed Darwish
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Champollion Street, Elazarita, Alexandria, 21563, Egypt
| | - Omneya Ramadan
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Champollion Street, Elazarita, Alexandria, 21563, Egypt
| | - Hebatallah S Barakat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Shimaa A Elbanna
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Champollion Street, Elazarita, Alexandria, 21563, Egypt.
- Center of Excellence for Research in Regenerative Medicine and its Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
41
|
Kessler L, Koo C, Richter CP, Tan X. Hearing loss during chemotherapy: prevalence, mechanisms, and protection. Am J Cancer Res 2024; 14:4597-4632. [PMID: 39417180 PMCID: PMC11477841 DOI: 10.62347/okgq4382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Ototoxicity is an often-underestimated sequela for cancer patients undergoing chemotherapy, with an incidence rate exceeding 50%, affecting approximately 4 million individuals worldwide each year. Despite the nearly 2,000 publications on chemotherapy-related ototoxicity in the past decade, the understanding of its prevalence, mechanisms, and preventative or therapeutic measures remains ambiguous and subject to debate. To date, only one drug, sodium thiosulfate, has gained FDA approval for treating ototoxicity in chemotherapy. However, its utilization is restricted. This review aims to offer clinicians and researchers a comprehensive perspective by thoroughly and carefully reviewing available data and current evidence. Chemotherapy-induced ototoxicity is characterized by four primary symptoms: hearing loss, tinnitus, vertigo, and dizziness, originating from both auditory and vestibular systems. Hearing loss is the predominant symptom. Amongst over 700 chemotherapeutic agents documented in various databases, only seven are reported to induce hearing loss. While the molecular mechanisms of the hearing loss caused by the two platinum-based drugs are extensively explored, the pathways behind the action of the other five drugs are primarily speculative, rooted in their therapeutic properties and side effects. Cisplatin attracts the majority of attention among these drugs, encompassing around two-thirds of the literature regarding ototoxicity in chemotherapy. Cisplatin ototoxicity chiefly manifests through the loss of outer hair cells, possibly resulting from damages directly by cisplatin uptake or secondary effects on the stria vascularis. Both direct and indirect influences contribute to cisplatin ototoxicity, while it is still debated which path is dominant or where the primary target of cisplatin is located. Candidates for hearing protection against cisplatin ototoxicity are also discussed, with novel strategies and methods showing promise on the horizon.
Collapse
Affiliation(s)
- Lexie Kessler
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Chail Koo
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Communication Sciences and Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| | - Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| |
Collapse
|
42
|
Luo M, Wong S, Thanuphol P, Du H, Han Y, Lin M, Guo X, Bechtel TD, Gibbons JG, Xiao H. Isolation and Identification of Human Gut Bacteria Capable of Converting Curcumin to Its Hydrogenated Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20410-20418. [PMID: 39240774 DOI: 10.1021/acs.jafc.4c03828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Curcumin is widely recognized for its health benefits, though the role of gut microbiota in its metabolic transformation was not well studied. In this study, bacterial strains capable of metabolizing curcumin were isolated from human stool samples. Using 16S rRNA and whole-genome sequencing, two novel strains (Clostridium butyricum UMA_cur1 and Escherichia coli UMA_cur2) were identified. In addition, the metabolic products were analyzed using liquid chromatography-mass spectrometry. These strains efficiently converted curcumin into dihydro-curcumin (DHC) and tetrahydro-curcumin (THC). Notably, E. coli UMA_cur2 also produced hexahydro-curcumin (HHC) and octahydro-curcumin (OHC), marking the first identification of a strain capable of such transformations. The absence of the YncB gene (typically involved in curcumin conversion) in C. butyricum UMA_cur1 suggests an alternative metabolic pathway. Curcumin metabolism begins during the stationary growth phase, indicating that it is not crucial for primary growth functions. Furthermore, E. coli UMA_cur2 produced these metabolites sequentially, starting with DHC and THC and progressing to HHC and OHC. These findings identified two novel strains that can metabolize curcumin to hydrogenated metabolites, which enhance our understanding of the interaction between curcumin and gut microbiota.
Collapse
Affiliation(s)
- Minna Luo
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Siu Wong
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Pongpol Thanuphol
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Margaret Lin
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Xiaojing Guo
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Tyler D Bechtel
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - John G Gibbons
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
43
|
Lianou AD, Lianos GD, Schizas D, Machairas N, Mitsis M, Alexiou GA. Natural Compounds and Cancer: Current Evidences. MAEDICA 2024; 19:621-628. [PMID: 39553354 PMCID: PMC11565147 DOI: 10.26574/maedica.2024.19.3.621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Natural compounds are constantly gaining ground in the treatment of various chronic diseases and in cancer research. Recent efforts have been focusing on them due to their special features consisting of low toxicity and high bioavailability. These compounds have already demonstrated important antitumor activity against several cancers in vitro through several mechanisms, including cell viability reduction, suppression of cell proliferation, cell death induction and cell cycle arrest. Herewith, we reviewed natural compounds that can be potentially used for head and neck cancer, glioblastoma and gastrointestinal cancers.
Collapse
Affiliation(s)
| | - Georgios D Lianos
- Department of Surgery, University Hospital of Ioannina, Ioannina, Greece
| | - Dimitrios Schizas
- 1nd Department of Propaedeutic Surgery, General Hospital Laiko, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Machairas
- 2nd Department of Propaedeutic Surgery, General Hospital Laiko, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Mitsis
- Department of Surgery, University Hospital of Ioannina, Ioannina, Greece
| | - George A Alexiou
- Department of Neurosurgery, University Hospital of Ioannina, Ioannina, Greece
| |
Collapse
|
44
|
An J, Zhang Z, Zhang J, Zhang L, Liang G. Research progress in tumor therapy of carrier-free nanodrug. Biomed Pharmacother 2024; 178:117258. [PMID: 39111083 DOI: 10.1016/j.biopha.2024.117258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/25/2024] Open
Abstract
Carrier-free nanodrugs are a novel type of drug constructed by the self-assembly of drug molecules without carrier involvement. They have the characteristics of small particle size, easy penetration of various barriers, targeting tumors, and efficient release. In recent years, carrier-free nanodrugs have become a hot topic in tumor therapy as they solve the problems of low drug loading, poor biocompatibility, and low uptake efficiency of carrier nanodrugs. A series of recent studies have shown that carrier-free nanodrugs play a vital role in the treatment of various tumors, with similar or better effects than carrier nanodrugs. Based on the literature published in the past decades, this paper first summarizes the recent progress in the assembly modes of carrier-free nanodrugs, then describes common therapeutic modalities of carrier-free nanodrugs in tumor therapy, and finally depicts the existing challenges along with future trends of carrier-free nanodrugs. We hope that this review can guide the design and application of carrier-free nanodrugs in the future.
Collapse
Affiliation(s)
- Junling An
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Zequn Zhang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Jinrui Zhang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Lingyang Zhang
- Institute of Biomedical Research, Henan Academy of Sciences, Zhengzhou, Henan, People's Republic of China.
| | - Gaofeng Liang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China; Institute of Biomedical Research, Henan Academy of Sciences, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
45
|
Jha CB, Singh C, Randhawa JK, Kaul A, Varshney R, Singh S, Kaushik A, Manna K, Mathur R. Synthesis and evaluation of curcumin reduced and capped gold nanoparticles as a green diagnostic probe with therapeutic potential. Colloids Surf B Biointerfaces 2024; 241:114050. [PMID: 38936032 DOI: 10.1016/j.colsurfb.2024.114050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Curcumin, a compound in turmeric, shows promise for its anti-cancer properties. In this study, we successfully synthesised curcumin-reduced and capped gold nanoparticles. Most evaluations have been limited to in-vitro studies for these nanoparticles; our study takes a step further by highlighting the in-vivo assessment of these curcumin-reduced and capped gold nanoparticles (GNPCs) using non-invasive imaging (SPECT and optical) and possible therapeutic potential. The GNPCs showed an average hydrodynamic diameter of 58 nm and a PDI of 0.336. The synthesised and fully characterised GNPCs showed ex-vivo hemolysis value of ≤ 1.74 % and serum stability of ≥ 95 % over 24 h. Using in-vivo non-invasive (SPECT and optical Imaging), prolonged circulation and enhanced bioavailability of GNPCs were seen. The biodistribution studies after radiolabelling GNPCs with 99 mTc complemented the optical imaging. The SPECT images showed higher uptake of the GNPCs at the tumour site, viz the contralateral muscle and the native Curcumin, resulting in a high target-to-non-target ratio that differentiated the tumour sufficiently and enhanced the diagnostics. Other organs also accumulate radiolabeled GNPCs in systemic circulation; bio dosimetry is performed. It was found that the dose received by the different organs was safe for use, and the in-vivo toxicity studies in rats indicated negligible toxicity over 30 days. The tumour growth was also reduced in mice models treated with GNPCs compared to the control. These significant findings demonstrate that GNPC shows synergistic activity in vivo, indicating its ability as a green diagnostic probe that has the potential for therapy.
Collapse
Affiliation(s)
- Chandan Bhogendra Jha
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India; Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Chitrangda Singh
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | | | - Ankur Kaul
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | - Raunak Varshney
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | - Sweta Singh
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | - Aruna Kaushik
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Rashi Mathur
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India.
| |
Collapse
|
46
|
Judith PJ, Maureen B, Mélanie P, Fabrice K, Isabelle VD, Pascale DL, Catherine A, Jean-Marc N, Hervé C, Valérie D, Philippe C, Marie-Ange MR. Curcumin's effect in advanced and metastatic breast cancer patients treated with first or second-line docetaxel: A randomized trial. Health Sci Rep 2024; 7:e70052. [PMID: 39286738 PMCID: PMC11403303 DOI: 10.1002/hsr2.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Background In this study, we investigated whether the association of curcumin and docetaxel among advanced and metastatic breast cancer patients in first or second-line treatment potentiated the objective response rate. Patients/Methods A multicentre, randomized, open label, phase-II study was conducted and included 42 patients from July 2009 to January 2017. The primary endpoint was the objective response rate of the docetaxel-curcumin combination in comparison with docetaxel alone. The secondary endpoints were the assessment of clinical benefit, overall survival, time-to-progression, progression-free survival, compliance, and safety. An interim analysis was planned to evaluate safety and efficacy. Results In this interim analysis conducted on 37 patients (19 in the control group vs. 18 in the experimental group), no difference was observed for the objective response rate (p = 0.25, control 73.7% vs. experimental 55.6%). Concerning clinical benefit, overall survival and time-to-progression, we also failed to show any difference between the two arms. A slight tendency towards longer progression-free survival at 12 months after randomization was observed in the curcumin group (65.5% vs. 41.4%) but this difference did not reach significance (p = 0.14). Conclusion In this study, we showed for the first time that adding oral curcumin for advanced and metastatic breast cancer patients treated with first or second-line docetaxel was not efficacious, although safe. Consequently, this study was stopped for reasons of futility. Further studies with a larger number of patients, a different curcumin preparation, a longer treatment period and a pharmacokinetic evaluation of curcumin are needed to explore the real efficacy of this compound.
Collapse
Affiliation(s)
- Passildas Jahanmohan Judith
- Service d'Oncologie médicale Centre Jean Perrin Clermont-Ferrand France
- IMoST Centre Jean Perrin, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne Clermont-Ferrand France
- Division de Recherche Clinique Délégation Recherche Clinique et Innovation, Centre Jean Perrin Clermont-Ferrand France
- CIC Centre d'Investigation Clinique, UMR501 Clermont-Ferrand France
| | - Bernadach Maureen
- Service d'Oncologie médicale Centre Jean Perrin Clermont-Ferrand France
| | - Pouget Mélanie
- Division de Recherche Clinique Délégation Recherche Clinique et Innovation, Centre Jean Perrin Clermont-Ferrand France
| | - Kwiatkowski Fabrice
- Service d'Oncologie médicale Centre Jean Perrin Clermont-Ferrand France
- IMoST Centre Jean Perrin, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne Clermont-Ferrand France
- Division de Recherche Clinique Délégation Recherche Clinique et Innovation, Centre Jean Perrin Clermont-Ferrand France
- CIC Centre d'Investigation Clinique, UMR501 Clermont-Ferrand France
| | | | | | - Abrial Catherine
- Service d'Oncologie médicale Centre Jean Perrin Clermont-Ferrand France
- IMoST Centre Jean Perrin, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne Clermont-Ferrand France
- Division de Recherche Clinique Délégation Recherche Clinique et Innovation, Centre Jean Perrin Clermont-Ferrand France
- CIC Centre d'Investigation Clinique, UMR501 Clermont-Ferrand France
| | | | - Curé Hervé
- Medical Oncology Department Institut Jean Godinot Reims France
| | - Delecroix Valérie
- Cancérologie Clinique Mutualiste de l'Estuaire, Groupe HGO Saint-Nazaire France
| | - Chollet Philippe
- Service d'Oncologie médicale Centre Jean Perrin Clermont-Ferrand France
| | | |
Collapse
|
47
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J, Wang Y. Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403388. [PMID: 39033533 PMCID: PMC11425287 DOI: 10.1002/advs.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 07/23/2024]
Abstract
Novel biomaterials are becoming more crucial in treating human diseases. However, many materials require complex artificial modifications and synthesis, leading to potential difficulties in preparation, side effects, and clinical translation. Recently, significant progress has been achieved in terms of direct self-assembly of natural products from herbal medicine (NPHM), an important source for novel medications, resulting in a wide range of bioactive supramolecular materials including gels, and nanoparticles. The NPHM-based supramolecular bioactive materials are produced from renewable resources, are simple to prepare, and have demonstrated multi-functionality including slow-release, smart-responsive release, and especially possess powerful biological effects to treat various diseases. In this review, NPHM-based supramolecular bioactive materials have been revealed as an emerging, revolutionary, and promising strategy. The development, advantages, and limitations of NPHM, as well as the advantageous position of NPHM-based materials, are first reviewed. Subsequently, a systematic and comprehensive analysis of the self-assembly strategies specific to seven major classes of NPHM is highlighted. Insights into the influence of NPHM structural features on the formation of supramolecular materials are also provided. Finally, the drivers and preparations are summarized, emphasizing the biomedical applications, future scientific challenges, and opportunities, with the hope of igniting inspiration for future research and applications.
Collapse
Affiliation(s)
- Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lingyu Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxuan Chen
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haigang Li
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yawei Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
48
|
Etemadi A, Koochak Hosseini SK, Neshandar M, Chiniforush N. In Vitro Effect of Photodynamic Therapy With Curcumin in Combination With Photobiomodulation Therapy by 660 nm on the Viability of Human Gingival Fibroblasts. J Lasers Med Sci 2024; 15:e42. [PMID: 39381784 PMCID: PMC11459247 DOI: 10.34172/jlms.2024.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/28/2024] [Indexed: 10/10/2024]
Abstract
Introduction: This study aimed to assess the effect of repeated irradiations of 660 nm photobiomodulation therapy (PBMT) after photodynamic therapy (PDT) with curcumin on the viability of human gingival fibroblasts (HGFs). Methods: In this in vitro, experimental study, HGFs were cultured and assigned to five groups: One control group with no intervention and four experimental groups of PDT with curcumin, PBMT (660 nm laser irradiation) immediately after PDT, PBMT immediately and 24 hours after PDT and PBMT immediately and 24 hours and 48 hours after PDT. Cell viability was assessed after 1, 4, and 7 days using the methyl thiazolyl tetrazolium (MTT) assay. Data were analyzed by one-way ANOVA. Results: On day 1, the control group had no significant difference with one-time (P=1.00), two-time (P=1.00), and three-time (P=0.88) laser irradiation groups. On day 4, the difference between the control and one-time (P<0.001), two-time (P<0.001) and three-time (P=0.02) laser irradiation groups was statistically significant, suggesting more cell viability in test groups. On day 7, the three-time laser irradiation group showed significant cell viability compared to the other two test groups but not with the control group (P=0.98). Conclusion: PBMT with 660 nm laser irradiation after PDT with curcumin would increase the viability of HGFs by increasing the frequency of irradiation.
Collapse
Affiliation(s)
- Ardavan Etemadi
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Morteza Neshandar
- Dental school, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nasim Chiniforush
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
49
|
Xu Y, Liu Y, Wu Y, Sun J, Lu X, Dai K, Zhang Y, Luo C, Zhang J. Curcumin Alleviates Microglia-Mediated Neuroinflammation and Neuronal Ferroptosis Following Experimental Subarachnoid Hemorrhage by Modulating the Nrf2/HO-1 Signaling Pathway. Mol Neurobiol 2024:10.1007/s12035-024-04443-7. [PMID: 39207623 DOI: 10.1007/s12035-024-04443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Early brain injury caused by subarachnoid hemorrhage (SAH) is associated with inflammatory response and ferroptosis. Curcumin alleviates neuroinflammation and oxidative stress by as yet unknown neuroprotective mechanisms. The objective of this study was to investigate the impact of curcumin on neuronal ferroptosis and microglia-induced neuroinflammation following SAH. By examining Nrf2/HO-1 expression levels and ferroptosis biomarkers expression both in vitro and in vivo, it was demonstrated that curcumin effectively suppressed ferroptosis in neurons after SAH through modulation of the Nrf2/HO-1 signaling pathway. Furthermore, by analyzing the expression levels of Nrf2, HO-1, p-p65, and inflammation-related genes, it was confirmed that curcumin could prevent the upregulation of pro-inflammatory factors following SAH by regulating the Nrf2/HO-1/NF-κB signaling pathway in microglia. The ability of curcumin to reduce neuronal damage and cerebral edemas after SAH in mice was validated using TUNEL staining, Nissl staining, and measurement of brain tissue water content. Additionally, through implementation of the modified Garcia test, open field test, and Y-maze test, it was established that curcumin ameliorated neurobehavioral impairments in mice post-SAH. Taken together, these data suggest that curcumin may offer a promising therapeutic approach for improving outcomes following SAH by concurrently attenuating neuronal ferroptosis and reducing neuroinflammation.
Collapse
Affiliation(s)
- Yao Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- National Regional Center for Trauma Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongsheng Liu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Wu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingshan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaocheng Lu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Dai
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiting Zhang
- Department of Rheumatology, Suzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| | - Chengliang Luo
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China.
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
50
|
Soleimani Z, Mohammadi M, Halimi M, Safapoor S, Dastyafteh N, Safaie E, Mojtabavi S, Faramarzi MA, Bozorgi-Koushalshahi M, Larijani B, Mohammadi-Khanaposhtani M, Mahdavi M. Design of new α-glucosidase inhibitors based on the bis-4-hydroxycoumarin skeleton: Synthesis, evaluation, and in silico studies. Sci Rep 2024; 14:18693. [PMID: 39134641 PMCID: PMC11319329 DOI: 10.1038/s41598-024-69592-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
In this work, we have reported the design, synthesis, in vitro, and in silico enzymatic evaluation of new bis-4-hydroxycoumarin-based phenoxy-1,2,3-triazole-N-phenylacetamide derivatives 5a-m as potent α-glucosidase inhibitors. All the synthesized analogues showed high inhibition effects against α-glucosidase (IC50 values ranging between 6.0 ± 0.2 and 85.4 ± 2.3 µM) as compared to the positive control acarbose (IC50 = 750.0 ± 0.6 µM). Among the newly synthesized compounds 5a-m, 2,4-dichloro-N-phenylacetamide derivative 5i with inhibition effect around 125-folds more than the acarbose was identified as the most potent entry. A structure-activity relationship (SAR) study about the title compounds 5a-m demonstrated that the inhibition effects of these compounds depend on the pattern of substitution on the N-phenylacetamide ring. The interaction modes and binding energies in the active site of enzyme of the important analogues (in term of SAR study) were evaluated through molecular docking study. Molecular dynamics and prediction of pharmacokinetic properties and toxicity of the most potent compound 5i also evaluated and the obtained data was compared with the acarbose.
Collapse
Affiliation(s)
- Zahra Soleimani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mohammadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Halimi
- Department of Biology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Sajedeh Safapoor
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Dastyafteh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Safaie
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Bozorgi-Koushalshahi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|