1
|
Huang Y, Li B, Wu Z, Liu K, Min J. Inhibitors targeting the PWWP domain-containing proteins. Eur J Med Chem 2024; 280:116965. [PMID: 39413441 DOI: 10.1016/j.ejmech.2024.116965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
PWWP domain-containing proteins play a pivotal role in chromatin-mediated biological processes, and their aberrant regulation is linked to various human diseases. Recent years have witnessed remarkable strides in unraveling the structural and functional features of PWWP domain-containing proteins, propelling significant advances in targeting the PWWP domain-containing proteins for drug discovery purposes. Several drugs have already been approved, while others are currently in clinical trials. This review offers a comprehensive overview of the latest developments on PWWP domain-containing proteins, including their structural characteristics and biological significance. It also provides detailed insights into the drug discovery process targeting these proteins, including screening, design, and structural optimization.
Collapse
Affiliation(s)
- Yunyuan Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Boyi Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Zhibin Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Barbachowska M, Harivel T, Nicchi S, Danckaert A, Ghazarian M, Chiaravalli J, Buchrieser C, Rolando M, Arimondo PB. High Content Screening Assay of Inhibitors of the Legionella Pneumophila Histone Methyltransferase RomA in Infected Cells. Chembiochem 2024:e202400293. [PMID: 39252664 DOI: 10.1002/cbic.202400293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
Resistance to anti-microbial agents is a world-wide health threat. Thus, there is an urgent need for new treatments. An alternative approach to disarm pathogens consists in developing drugs targeting epigenetic modifiers. Bacterial pathogens can manipulate epigenetic regulatory systems of the host to bypass defences to proliferate and survive. One example is Legionella pneumophila, a Gram-negative intracellular pathogen that targets host chromatin with a specific, secreted bacterial SET-domain methyltransferase named RomA. This histone methyltransferase specifically methylates H3 K14 during infection and is responsible for changing the host epigenetic landscape upon L. pneumophila infection. To inhibit RomA activity during infection, we developed a reliable high-content imaging screening assay, which we used to screen an in-house chemical library developed to inhibit DNA and histone methyltransferases. This assay was optimised using monocytic leukemic THP-1 cells differentiated into macrophages infected with L. pneumophila in a 96- or 384-well plate format using the Opera Phenix (Perkin Elmer) confocal microscope, combined with Columbus software for automated image acquisition and analysis. H3 K14 methylation was followed in infected, single cells and cytotoxicity was assessed in parallel. A first pilot screening of 477 compounds identified a potential starting point for inhibitors of H3 K14 methylation.
Collapse
Affiliation(s)
- Magdalena Barbachowska
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR n°3523 Chem4Life, F-75015, Paris, France
- Université Paris Cité, Ecole Doctorale MTCI, Paris, 75006, France
- Pasteur-Paris University (PPU), Oxford International Doctoral program, Institut Pasteur, F-75015, Paris, France
| | - Thomas Harivel
- Biology of Intracellular Bacteria, Department of Microbiology, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Sonia Nicchi
- Biology of Intracellular Bacteria, Department of Microbiology, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Anne Danckaert
- UtechS PBI - C2RT, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Marine Ghazarian
- Chemogenomic and Biological Screening Core Facility - C2RT, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Jeanne Chiaravalli
- Chemogenomic and Biological Screening Core Facility - C2RT, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Carmen Buchrieser
- Biology of Intracellular Bacteria, Department of Microbiology, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Monica Rolando
- Biology of Intracellular Bacteria, Department of Microbiology, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR n°3523 Chem4Life, F-75015, Paris, France
| |
Collapse
|
3
|
Chen T, Mahdadi S, Vidal M, Desbène-Finck S. Non-nucleoside inhibitors of DNMT1 and DNMT3 for targeted cancer therapy. Pharmacol Res 2024; 207:107328. [PMID: 39079576 DOI: 10.1016/j.phrs.2024.107328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
DNA methylation can deactivate tumor suppressor genes thus causing cancers. Two DNA methylation inhibitors have been approved by the Food and Drug Administration (FDA) and have entered clinical use. However, these inhibitors are nucleoside analogues that can be incorporated into DNA or RNA and induce significant side effects. DNMT1 and DNMT3 are key enzymes involved in DNA methylation. In the acute myeloid leukemia model, a non-nucleoside DNMT1-specific inhibitor has shown lower toxicity and improved pharmacokinetics compared to traditional nucleoside drugs. DNMT3 is also implicated in certain specific cancers. Thus, developing non-nucleoside inhibitors for DNMT1 or DNMT3 can help in understanding their roles in carcinogenesis and provide targeted treatment options in certain cancers. Although no non-nucleoside inhibitors have yet entered clinical trials, in this review, we focus on DNMT1 or DNMT3 selective inhibitors. For DNMT1 selective inhibitors, we have compiled information on the repurposed drugs, derivative compounds and selective inhibitors identified through virtual screening. Additionally, we have outlined potential targets for DNMT1, including protein-protein complex, RNA mimics and aptamers. Compared to DNMT1, research on DNMT3-specific inhibitors has been less extensive. In this context, our exploration has identified a limited number of molecular inhibitors, and we have proposed specific long non-coding RNAs (lncRNAs) as potential contributors to the selective inhibition of DNMT3. This collective effort aims to offer valuable insights into the development of non-nucleoside inhibitors that selectively target DNMT1 or DNMT3.
Collapse
Affiliation(s)
- Ting Chen
- UMR 8038 CNRS, U1268 INSERM, UFR de pharmacie, Université Paris cité, 75270, France
| | - Syrine Mahdadi
- UMR 8038 CNRS, U1268 INSERM, UFR de pharmacie, Université Paris cité, 75270, France
| | - Michel Vidal
- UMR 8038 CNRS, U1268 INSERM, UFR de pharmacie, Université Paris cité, 75270, France; Toxicology, Cochin Hospital, HUPC, APHP, Paris 75014, France
| | | |
Collapse
|
4
|
Kudo G, Hirao T, Harada R, Hirokawa T, Shigeta Y, Yoshino R. Prediction of the binding mechanism of a selective DNA methyltransferase 3A inhibitor by molecular simulation. Sci Rep 2024; 14:13508. [PMID: 38866895 PMCID: PMC11169543 DOI: 10.1038/s41598-024-64236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
DNA methylation is an epigenetic mechanism that introduces a methyl group at the C5 position of cytosine. This reaction is catalyzed by DNA methyltransferases (DNMTs) and is essential for the regulation of gene transcription. The DNMT1 and DNMT3A or -3B family proteins are known targets for the inhibition of DNA hypermethylation in cancer cells. A selective non-nucleoside DNMT3A inhibitor was developed that mimics S-adenosyl-l-methionine and deoxycytidine; however, the mechanism of selectivity is unclear because the inhibitor-protein complex structure determination is absent. Therefore, we performed docking and molecular dynamics simulations to predict the structure of the complex formed by the association between DNMT3A and the selective inhibitor. Our simulations, binding free energy decomposition analysis, structural isoform comparison, and residue scanning showed that Arg688 of DNMT3A is involved in the interaction with this inhibitor, as evidenced by its significant contribution to the binding free energy. The presence of Asn1192 at the corresponding residues in DNMT1 results in a loss of affinity for the inhibitor, suggesting that the interactions mediated by Arg688 in DNMT3A are essential for selectivity. Our findings can be applied in the design of DNMT-selective inhibitors and methylation-specific drug optimization procedures.
Collapse
Affiliation(s)
- Genki Kudo
- Physics Department, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Takumi Hirao
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Takatsugu Hirokawa
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yasuteru Shigeta
- Physics Department, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Ryunosuke Yoshino
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
5
|
Kudo G, Hirao T, Yoshino R, Shigeta Y, Hirokawa T. Site Identification and Next Choice Protocol for Hit-to-Lead Optimization. J Chem Inf Model 2024; 64:4475-4484. [PMID: 38768949 PMCID: PMC11167593 DOI: 10.1021/acs.jcim.3c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Time efficiency and cost savings are major challenges in drug discovery and development. In this process, the hit-to-lead stage is expected to improve efficiency because it primarily exploits the trial-and-error approach of medicinal chemists. This study proposes a site identification and next choice (SINCHO) protocol to improve the hit-to-lead efficiency. This protocol selects an anchor atom and growth site pair, which is desirable for a hit-to-lead strategy starting from a 3D complex structure. We developed and fine-tuned the protocol using a training data set and assessed it using a test data set of the preceding hit-to-lead strategy. The protocol was tested for experimentally determined structures and molecular dynamics (MD) ensembles. The protocol had a high prediction accuracy for applying MD ensembles, owing to the consideration of protein flexibility. The SINCHO protocol enables medicinal chemists to visualize and modify functional groups in a hit-to-lead manner.
Collapse
Affiliation(s)
- Genki Kudo
- Physics
Department, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takumi Hirao
- Doctoral
Program in Medical Sciences, Graduate School of Comprehensive Human
Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Division
of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ryunosuke Yoshino
- Division
of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Transborder
Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuteru Shigeta
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Takatsugu Hirokawa
- Division
of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Transborder
Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
6
|
Feng Q, Duan H, Zhou X, Wang Y, Zhang J, Zhang H, Chen G, Bao X. DNA Methyltransferase 3A: A Significant Target for the Discovery of Inhibitors as Potent Anticancer Drugs. Mini Rev Med Chem 2024; 24:507-520. [PMID: 37642180 DOI: 10.2174/1389557523666230825100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
DNA methyltransferase (DNMT) is a conserved family of Cytosine methylases, which plays a crucial role in the regulation of Epigenetics. They have been considered promising therapeutic targets for cancer. Among the DNMT family, mutations in the DNMT3A subtype are particularly important in hematologic malignancies. The development of specific DNMT3A subtype inhibitors to validate the therapeutic potential of DNMT3A in certain diseases is a significant task. In this review, we summarized the small molecule inhibitors of DNMT3A discovered in recent years and their inhibitory activities, and classified them based on their inhibitory mechanisms.
Collapse
Affiliation(s)
- Qixun Feng
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Honggao Duan
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinglong Zhou
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuning Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinda Zhang
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Haoge Zhang
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xuefei Bao
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
7
|
Dobrescu I, Hammam E, Dziekan JM, Claës A, Halby L, Preiser P, Bozdech Z, Arimondo PB, Scherf A, Nardella F. Plasmodium falciparum Eukaryotic Translation Initiation Factor 3 is Stabilized by Quinazoline-Quinoline Bisubstrate Inhibitors. ACS Infect Dis 2023; 9:1257-1266. [PMID: 37216290 PMCID: PMC10262199 DOI: 10.1021/acsinfecdis.3c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 05/24/2023]
Abstract
Malaria drug resistance is hampering the fight against the deadliest parasitic disease affecting over 200 million people worldwide. We recently developed quinoline-quinazoline-based inhibitors (as compound 70) as promising new antimalarials. Here, we aimed to investigate their mode of action by using thermal proteome profiling (TPP). The eukaryotic translation initiation factor 3 (EIF3i) subunit I was identified as the main target protein stabilized by compound 70 in Plasmodium falciparum. This protein has never been characterized in malaria parasites. P. falciparum parasite lines were generated expressing either a HA tag or an inducible knockdown of the PfEIF3i gene to further characterize the target protein. PfEIF3i was stabilized in the presence of compound 70 in a cellular thermal shift Western blot assay, pointing that PfEIF3i indeed interacts with quinoline-quinazoline-based inhibitors. In addition, PfEIF3i-inducible knockdown blocks intra-erythrocytic development in the trophozoite stage, indicating that it has a vital function. We show that PfEIF3i is mostly expressed in late intra-erythrocytic stages and localizes in the cytoplasm. Previous mass spectrometry reports show that PfEIF3i is expressed in all parasite life cycle stages. Further studies will explore the potential of PfEIF3i as a target for the design of new antimalarial drugs active all along the life cycle of the parasite.
Collapse
Affiliation(s)
- Irina Dobrescu
- Unité
Biology of Host-Parasite Interactions, Department of Parasites and
Insect Vectors, Institut Pasteur, Université
de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue Du Dr Roux, Paris 75015, France
| | - Elie Hammam
- Unité
Biology of Host-Parasite Interactions, Department of Parasites and
Insect Vectors, Institut Pasteur, Université
de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue Du Dr Roux, Paris 75015, France
| | - Jerzy M. Dziekan
- School
of Biological Sciences, Nanyang Technological
University, Singapore 639798, Singapore
| | - Aurélie Claës
- Unité
Biology of Host-Parasite Interactions, Department of Parasites and
Insect Vectors, Institut Pasteur, Université
de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue Du Dr Roux, Paris 75015, France
| | - Ludovic Halby
- Epigenetic
Chemical Biology, Department of Structural Biology and Chemistry,
Institut Pasteur, Université de Paris-Cité,
UMR n3523 Chem4Life, CNRS, 28 Rue Du Dr Roux, Paris 75015, France
| | - Peter Preiser
- School
of Biological Sciences, Nanyang Technological
University, Singapore 639798, Singapore
| | - Zbynek Bozdech
- School
of Biological Sciences, Nanyang Technological
University, Singapore 639798, Singapore
| | - Paola B. Arimondo
- Epigenetic
Chemical Biology, Department of Structural Biology and Chemistry,
Institut Pasteur, Université de Paris-Cité,
UMR n3523 Chem4Life, CNRS, 28 Rue Du Dr Roux, Paris 75015, France
| | - Artur Scherf
- Unité
Biology of Host-Parasite Interactions, Department of Parasites and
Insect Vectors, Institut Pasteur, Université
de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue Du Dr Roux, Paris 75015, France
| | - Flore Nardella
- Unité
Biology of Host-Parasite Interactions, Department of Parasites and
Insect Vectors, Institut Pasteur, Université
de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue Du Dr Roux, Paris 75015, France
| |
Collapse
|
8
|
Chen Q, Liu B, Zeng Y, Hwang JW, Dai N, Corrêa I, Estecio M, Zhang X, Santos MA, Chen T, Cheng X. GSK-3484862 targets DNMT1 for degradation in cells. NAR Cancer 2023; 5:zcad022. [PMID: 37206360 PMCID: PMC10189803 DOI: 10.1093/narcan/zcad022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
Maintenance of genomic methylation patterns at DNA replication forks by DNMT1 is the key to faithful mitotic inheritance. DNMT1 is often overexpressed in cancer cells and the DNA hypomethylating agents azacytidine and decitabine are currently used in the treatment of hematologic malignancies. However, the toxicity of these cytidine analogs and their ineffectiveness in treating solid tumors have limited wider clinical use. GSK-3484862 is a newly-developed, dicyanopyridine containing, non-nucleoside DNMT1-selective inhibitor with low cellular toxicity. Here, we show that GSK-3484862 targets DNMT1 for protein degradation in both cancer cell lines and murine embryonic stem cells (mESCs). DNMT1 depletion was rapid, taking effect within hours following GSK-3484862 treatment, leading to global hypomethylation. Inhibitor-induced DNMT1 degradation was proteasome-dependent, with no discernible loss of DNMT1 mRNA. In mESCs, GSK-3484862-induced Dnmt1 degradation requires the Dnmt1 accessory factor Uhrf1 and its E3 ubiquitin ligase activity. We also show that Dnmt1 depletion and DNA hypomethylation induced by the compound are reversible after its removal. Together, these results indicate that this DNMT1-selective degrader/inhibitor will be a valuable tool for dissecting coordinated events linking DNA methylation to gene expression and identifying downstream effectors that ultimately regulate cellular response to altered DNA methylation patterns in a tissue/cell-specific manner.
Collapse
Affiliation(s)
- Qin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Yang Zeng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030, USA
| | - Jee Won Hwang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Nan Dai
- New England Biolabs, Inc, Ipswich, MA 01938, USA
| | | | - Marcos R Estecio
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Margarida A Santos
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030, USA
| |
Collapse
|
9
|
Stillson NJ, Anderson KE, Reich NO. In silico study of selective inhibition mechanism of S-adenosyl-L-methionine analogs for human DNA methyltransferase 3A. Comput Biol Chem 2023; 102:107796. [PMID: 36495748 DOI: 10.1016/j.compbiolchem.2022.107796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Epigenetic mechanisms leading to transcriptional regulation, including DNA methylation, are frequently dysregulated in diverse cancers. Interfering with aberrant DNA methylation performed by DNA cytosine methyltransferases (DNMTs) is a clinically validated approach. In particular, the selective inhibition of the de novo DNMT3A and DNMT3B enzymes, whose expression is limited to early embryogenesis, adult stem cells, and in cancers, is particularly attractive; such selectivity is likely to attenuate the dose limiting toxicity shown by current, non-selective DNMT inhibitors. We use molecular dynamics (MD) based computational analysis to study known small molecule binders of DNMT3A, then propose reversible, tight binding, and selective inhibitors that exploit the Asn1192/Arg688 difference between the maintenance DNMT1 and DNMT3A near the active site. A similar strategy exploiting the presence of a unique active site cysteine Cys666 is used to propose DNMT3A-selective irreversible inhibitors. We report our results of relative binding energies of the known and proposed compounds estimated using MM/GBSA and umbrella sampling (US) techniques, and our evaluation of other end-point binding free energy calculation methods for these receptors. These calculations offer insight into the potential for small molecules to selectively target the active site of DNMT3A.
Collapse
Affiliation(s)
- Nathaniel J Stillson
- The Department of Chemistry and Biochemistry University of California, Santa Barbara 93106-9510, USA
| | - Kyle E Anderson
- The Department of Chemistry and Biochemistry University of California, Santa Barbara 93106-9510, USA
| | - Norbert O Reich
- The Department of Chemistry and Biochemistry University of California, Santa Barbara 93106-9510, USA.
| |
Collapse
|
10
|
Feehley T, O’Donnell CW, Mendlein J, Karande M, McCauley T. Drugging the epigenome in the age of precision medicine. Clin Epigenetics 2023; 15:6. [PMID: 36631803 PMCID: PMC9832256 DOI: 10.1186/s13148-022-01419-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Modulating the epigenome has long been considered a potential opportunity for therapeutic intervention in numerous disease areas with several approved therapies marketed, primarily for cancer. Despite the overall promise of early approaches, however, these drugs have been plagued by poor pharmacokinetic and safety/tolerability profiles due in large part to off-target effects and a lack of specificity. RESULTS Recently, there has been marked progress in the field on a new generation of epigenomic therapies which address these challenges directly by targeting defined loci with highly precise, durable, and tunable approaches. Here, we review the promise and pitfalls of epigenetic drug development to date and provide an outlook on recent advances and their promise for future therapeutic applications. CONCLUSIONS Novel therapeutic modalities leveraging epigenetics and epigenomics with increased precision are well positioned to advance the field and treat patients across disease areas in the coming years.
Collapse
Affiliation(s)
- Taylor Feehley
- Omega Therapeutics, 20 Acorn Park Drive, Suite 400, Cambridge, MA 02140 USA
| | | | - John Mendlein
- grid.510906.b0000 0004 6487 6319Flagship Pioneering, 55 Cambridge Parkway Suite 800E, Cambridge, MA 02142 USA
| | - Mahesh Karande
- Omega Therapeutics, 20 Acorn Park Drive, Suite 400, Cambridge, MA 02140 USA
| | - Thomas McCauley
- Omega Therapeutics, 20 Acorn Park Drive, Suite 400, Cambridge, MA 02140 USA
| |
Collapse
|
11
|
Anestopoulos I, Kyriakou S, Tragkola V, Paraskevaidis I, Tzika E, Mitsiogianni M, Deligiorgi MV, Petrakis G, Trafalis DT, Botaitis S, Giatromanolaki A, Koukourakis MI, Franco R, Pappa A, Panayiotidis MI. Targeting the epigenome in malignant melanoma: Facts, challenges and therapeutic promises. Pharmacol Ther 2022; 240:108301. [PMID: 36283453 DOI: 10.1016/j.pharmthera.2022.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Malignant melanoma is the most lethal type of skin cancer with high rates of mortality. Although current treatment options provide a short-clinical benefit, acquired-drug resistance highlights the low 5-year survival rate among patients with advanced stage of the disease. In parallel, the involvement of an aberrant epigenetic landscape, (e.g., alterations in DNA methylation patterns, histone modifications marks and expression of non-coding RNAs), in addition to the genetic background, has been also associated with the onset and progression of melanoma. In this review article, we report on current therapeutic options in melanoma treatment with a focus on distinct epigenetic alterations and how their reversal, by specific drug compounds, can restore a normal phenotype. In particular, we concentrate on how single and/or combinatorial therapeutic approaches have utilized epigenetic drug compounds in being effective against malignant melanoma. Finally, the role of deregulated epigenetic mechanisms in promoting drug resistance to targeted therapies and immune checkpoint inhibitors is presented leading to the development of newly synthesized and/or improved drug compounds capable of targeting the epigenome of malignant melanoma.
Collapse
Affiliation(s)
- I Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - S Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - V Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - I Paraskevaidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - E Tzika
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | | | - M V Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - G Petrakis
- Saint George Hospital, Chania, Crete, Greece
| | - D T Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - S Botaitis
- Department of Surgery, Alexandroupolis University Hospital, Democritus University of Thrace School of Medicine, Alexandroupolis, Greece
| | - A Giatromanolaki
- Department of Pathology, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - M I Koukourakis
- Radiotherapy / Oncology, Radiobiology & Radiopathology Unit, Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - R Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - A Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - M I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.
| |
Collapse
|
12
|
Discovery of novel non-nucleoside inhibitors with high potency and selectivity for DNA methyltransferase 3A. Eur J Med Chem 2022; 242:114646. [PMID: 36029561 DOI: 10.1016/j.ejmech.2022.114646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022]
Abstract
DNA methyltransferases (DNMTs) are important epigenetic regulatory enzymes involved in gene expression corresponding to many diseases including cancer. As one of the major enzymatically active mammalian DNMTs, DNMT3A has been regarded as an attractive target for the treatment of cancer particularly in hematological malignancy. Discovery of promising inhibitors toward this target with low toxicity, adequate activity and target selectivity is therefore pivotal in the development of novel cancer therapy and the inhibitory mechanism investigation. In this study, a multistep structure-based virtual screening and in vitro bioassays were conducted to search for potent novel DNMT3A inhibitors. Compound DY-46 was then identified as a promising new scaffold candidate (IC50 = 1.3 ± 0.22 μM) that can occupy both the SAM-cofactor pocket and the cytosine pocket of DNMT3A. Further similarity searching led to the discovery of compound DY-46-2 with IC50 of 0.39 ± 0.23 μM, which showed excellent selectivity against DNMT1 (33.3-fold), DNMT3B (269-fold) and G9a (over 1000-fold). These potent compounds significantly inhibited cancer cell proliferation and showed low cytotoxicity in peripheral blood mononuclear cells. This study provides a promising scaffold for the further development of DNMT3A inhibitors, and the possibility to design proper analogs with broad or specific selectivity.
Collapse
|
13
|
Horton JR, Pathuri S, Wong K, Ren R, Rueda L, Fosbenner DT, Heerding DA, McCabe MT, Pappalardi MB, Zhang X, King BW, Cheng X. Structural characterization of dicyanopyridine containing DNMT1-selective, non-nucleoside inhibitors. Structure 2022; 30:793-802.e5. [PMID: 35395178 PMCID: PMC9177618 DOI: 10.1016/j.str.2022.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 12/21/2022]
Abstract
DNMT1 maintains the parental DNA methylation pattern on newly replicated hemimethylated DNA. The failure of this maintenance process causes aberrant DNA methylation that affects transcription and contributes to the development and progression of cancers such as acute myeloid leukemia. Here, we structurally characterized a set of newly discovered DNMT1-selective, reversible, non-nucleoside inhibitors that bear a core 3,5-dicyanopyridine moiety, as exemplified by GSK3735967, to better understand their mechanism of inhibition. All of the dicyanopydridine-containing inhibitors examined intercalate into the hemimethylated DNA between two CpG base pairs through the DNA minor groove, resulting in conformational movement of the DNMT1 active-site loop. In addition, GSK3735967 introduces two new binding sites, where it interacts with and stabilizes the displaced DNMT1 active-site loop and it occupies an open aromatic cage in which trimethylated histone H4 lysine 20 is expected to bind. Our work represents a substantial step in generating potent, selective, and non-nucleoside inhibitors of DNMT1.
Collapse
Affiliation(s)
- John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sarath Pathuri
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kristen Wong
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lourdes Rueda
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - David T Fosbenner
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Dirk A Heerding
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Michael T McCabe
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Melissa B Pappalardi
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bryan W King
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Meynier V, Iannazzo L, Catala M, Oerum S, Braud E, Atdjian C, Barraud P, Fonvielle M, Tisné C, Ethève-Quelquejeu M. Synthesis of RNA-cofactor conjugates and structural exploration of RNA recognition by an m6A RNA methyltransferase. Nucleic Acids Res 2022; 50:5793-5806. [PMID: 35580049 PMCID: PMC9178011 DOI: 10.1093/nar/gkac354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 11/14/2022] Open
Abstract
Chemical synthesis of RNA conjugates has opened new strategies to study enzymatic mechanisms in RNA biology. To gain insights into poorly understood RNA nucleotide methylation processes, we developed a new method to synthesize RNA-conjugates for the study of RNA recognition and methyl-transfer mechanisms of SAM-dependent m6A RNA methyltransferases. These RNA conjugates contain a SAM cofactor analogue connected at the N6-atom of an adenosine within dinucleotides, a trinucleotide or a 13mer RNA. Our chemical route is chemo- and regio-selective and allows flexible modification of the RNA length and sequence. These compounds were used in crystallization assays with RlmJ, a bacterial m6A rRNA methyltransferase. Two crystal structures of RlmJ in complex with RNA–SAM conjugates were solved and revealed the RNA-specific recognition elements used by RlmJ to clamp the RNA substrate in its active site. From these structures, a model of a trinucleotide bound in the RlmJ active site could be built and validated by methyltransferase assays on RlmJ mutants. The methyl transfer by RlmJ could also be deduced. This study therefore shows that RNA-cofactor conjugates are potent molecular tools to explore the active site of RNA modification enzymes.
Collapse
Affiliation(s)
- Vincent Meynier
- Expression Génétique Microbienne, UMR 8261, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Laura Iannazzo
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, Université Paris Cité, 75006, Paris, France
| | - Marjorie Catala
- Expression Génétique Microbienne, UMR 8261, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Stephanie Oerum
- Expression Génétique Microbienne, UMR 8261, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Emmanuelle Braud
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, Université Paris Cité, 75006, Paris, France
| | - Colette Atdjian
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, Université Paris Cité, 75006, Paris, France
| | - Pierre Barraud
- Expression Génétique Microbienne, UMR 8261, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Matthieu Fonvielle
- Sorbonne Université, Université Paris Cité, Centre de recherche des Cordeliers, 75006, Paris, France
| | - Carine Tisné
- Expression Génétique Microbienne, UMR 8261, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Mélanie Ethève-Quelquejeu
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, Université Paris Cité, 75006, Paris, France
| |
Collapse
|
15
|
Menna M, Fiorentino F, Marrocco B, Lucidi A, Tomassi S, Cilli D, Romanenghi M, Cassandri M, Pomella S, Pezzella M, Del Bufalo D, Zeya Ansari MS, Tomašević N, Mladenović M, Viviano M, Sbardella G, Rota R, Trisciuoglio D, Minucci S, Mattevi A, Rotili D, Mai A. Novel non-covalent LSD1 inhibitors endowed with anticancer effects in leukemia and solid tumor cellular models. Eur J Med Chem 2022; 237:114410. [DOI: 10.1016/j.ejmech.2022.114410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
|
16
|
Ahmed‐Belkacem R, Debart F, Vasseur J. Bisubstrate Strategies to Target Methyltransferases. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Inhibitors of DNA Methylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:471-513. [DOI: 10.1007/978-3-031-11454-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Luviano N, Lopez M, Gawehns F, Chaparro C, Arimondo PB, Ivanovic S, David P, Verhoeven K, Cosseau C, Grunau C. The methylome of Biomphalaria glabrata and other mollusks: enduring modification of epigenetic landscape and phenotypic traits by a new DNA methylation inhibitor. Epigenetics Chromatin 2021; 14:48. [PMID: 34702322 PMCID: PMC8549274 DOI: 10.1186/s13072-021-00422-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND 5-Methylcytosine (5mC) is an important epigenetic mark in eukaryotes. Little information about its role exists for invertebrates. To investigate the contribution of 5mC to phenotypic variation in invertebrates, alteration of methylation patterns needs to be produced. Here, we apply new non-nucleoside DNA methyltransferase inhibitors (DNMTi) to introduce aleatory changes into the methylome of mollusk species. RESULTS Flavanone inhibitor Flv1 was efficient in reducing 5mC in the freshwater snails Biomphalaria glabrata and Physa acuta, and to a lesser degree, probably due to lower stability in sea water, in the oyster Crassostrea gigas. Flv1 has no toxic effects and significantly decreased the 5mC level in the treated B. glabrata and in its offspring. Drug treatment triggers significant variation in the shell height in both generations. A reduced representation bisulfite-sequencing method called epiGBS corroborates hypomethylation effect of Flv1 in both B. glabrata generations and identifies seven Differential Methylated Regions (DMR) out of 32 found both in Flv1-exposed snails and its progeny, from which 5 were hypomethylated, demonstrating a multigenerational effect. By targeted bisulfite sequencing, we confirmed hypomethylation in a locus and show that it is associated with reduced gene expression. CONCLUSIONS Flv1 is a new and efficient DNMTi that can be used to induce transient and heritable modifications of the epigenetic landscape and phenotypic traits in mollusks, a phylum of the invertebrates in which epigenetics is understudied.
Collapse
Affiliation(s)
- Nelia Luviano
- IHPE, Univ Perpignan Via Domitia, CNRC, Ifremer, Univ Montpellier, Perpignan, France
| | - Marie Lopez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Univ Montpellier, ENSCM, Montpellier, France
- Epigenetic Targeting of Cancer (ETaC), CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
| | - Fleur Gawehns
- Bioinformatics Unit, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Cristian Chaparro
- IHPE, Univ Perpignan Via Domitia, CNRC, Ifremer, Univ Montpellier, Perpignan, France
| | - Paola B Arimondo
- Epigenetic Targeting of Cancer (ETaC), CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
- Epigenetic Chemical Biology (EpiChBio), Department Structural Biology and Chemistry, UMR 3523, CNRS, Institute Pasteur, 75015, Paris, France
| | - Slavica Ivanovic
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Patrice David
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Univ. Montpellier, CNRS - Université Paul Valéry Montpellier - EPHE, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Koen Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Céline Cosseau
- IHPE, Univ Perpignan Via Domitia, CNRC, Ifremer, Univ Montpellier, Perpignan, France
| | - Christoph Grunau
- IHPE, Univ Perpignan Via Domitia, CNRC, Ifremer, Univ Montpellier, Perpignan, France.
| |
Collapse
|
19
|
Koumpoura CL, Robert A, Athanassopoulos CM, Baltas M. Antimalarial Inhibitors Targeting Epigenetics or Mitochondria in Plasmodium falciparum: Recent Survey upon Synthesis and Biological Evaluation of Potential Drugs against Malaria. Molecules 2021; 26:molecules26185711. [PMID: 34577183 PMCID: PMC8467436 DOI: 10.3390/molecules26185711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022] Open
Abstract
Despite many efforts, malaria remains among the most problematic infectious diseases worldwide, mainly due to the development of drug resistance by P. falciparum. Over the past decade, new essential pathways have been emerged to fight against malaria. Among them, epigenetic processes and mitochondrial metabolism appear to be important targets. This review will focus on recent evolutions concerning worldwide efforts to conceive, synthesize and evaluate new drug candidates interfering selectively and efficiently with these two targets and pathways. The focus will be on compounds/scaffolds that possess biological/pharmacophoric properties on DNA methyltransferases and HDAC’s for epigenetics, and on cytochrome bc1 and dihydroorotate dehydrogenase for mitochondrion.
Collapse
Affiliation(s)
- Christina L. Koumpoura
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (C.L.K.); (A.R.)
| | - Anne Robert
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (C.L.K.); (A.R.)
| | | | - Michel Baltas
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (C.L.K.); (A.R.)
- Correspondence:
| |
Collapse
|
20
|
Zhang Y, Rong D, Li B, Wang Y. Targeting Epigenetic Regulators with Covalent Small-Molecule Inhibitors. J Med Chem 2021; 64:7900-7925. [PMID: 33599482 DOI: 10.1021/acs.jmedchem.0c02055] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic regulation of gene expression plays a critical role in various physiological processes, and epigenetic dysregulation is implicated in a number of diseases, prominently including cancer. Epigenetic regulators have been validated as potential therapeutic targets, and significant progress has been made in the discovery and development of epigenetic-based inhibitors. However, successful epigenetic drug discovery is still facing challenges, including moderate selectivity, limited efficacy, and acquired drug resistance. Inspired by the advantages of covalent small-molecule inhibitors, targeted covalent inhibition has attracted increasing interest in epigenetic drug discovery. In this review, we comprehensively summarize the structure-based design and characterization of covalent inhibitors targeting epigenetic writers, readers, and erasers and highlight their potential benefits in enhancing selectivity across the enzyme family and improving in vivo efficacy. We also discuss the challenges and opportunities of covalent small-molecule inhibitors and hope to shed light on future epigenetic drug discovery.
Collapse
Affiliation(s)
- Yi Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Deqin Rong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bingbing Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanxiang Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
21
|
Tojo T, Kubo Y, Kondo T, Yuasa M. Inverted Positioning of DNMT1 Inhibitor in the Active Site of DNMT1 Caused by Hydrophobicity/Hydrophilicity of the Terminal Structure. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Zhang S, Gong Y, Li C, Yang W, Li L. Beyond regulations at DNA levels: A review of epigenetic therapeutics targeting cancer stem cells. Cell Prolif 2020; 54:e12963. [PMID: 33314500 PMCID: PMC7848960 DOI: 10.1111/cpr.12963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/05/2023] Open
Abstract
In the past few years, the paramount role of cancer stem cells (CSCs), in terms of cancer initiation, proliferation, metastasis, invasion and chemoresistance, has been revealed by accumulating studies. However, this level of cellular plasticity cannot be entirely explained by genetic mutations. Research on epigenetic modifications as a complementary explanation for the properties of CSCs has been increasing over the past several years. Notably, therapeutic strategies are currently being developed in an effort to reverse aberrant epigenetic alterations using specific chemical inhibitors. In this review, we summarize the current understanding of CSCs and their role in cancer progression, and provide an overview of epigenetic alterations seen in CSCs. Importantly, we focus on primary cancer therapies that target the epigenetic modification of CSCs by the use of specific chemical inhibitors, such as histone deacetylase (HDAC) inhibitors, DNA methyltransferase (DNMT) inhibitors and microRNA‐based (miRNA‐based) therapeutics.
Collapse
Affiliation(s)
- Shunhao Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Sichuan Province, Chengdu, China
| | - Yanji Gong
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China.,State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Chunjie Li
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Wenbin Yang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Sichuan Province, Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
23
|
Bon C, Halby L, Arimondo PB. Bisubstrate inhibitors: the promise of a selective and potent chemical inhibition of epigenetic 'writers'. Epigenomics 2020; 12:1479-1482. [PMID: 32938211 DOI: 10.2217/epi-2020-0203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Corentin Bon
- Department of Structural Biology & Chemistry, EpiCBio, Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR n°3523, 28 rue du Dr Roux, 75015 Paris, France
| | - Ludovic Halby
- Department of Structural Biology & Chemistry, EpiCBio, Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR n°3523, 28 rue du Dr Roux, 75015 Paris, France
| | - Paola Barbara Arimondo
- Department of Structural Biology & Chemistry, EpiCBio, Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR n°3523, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
24
|
Pechalrieu D, Assemat F, Halby L, Marcellin M, Yan P, Chaoui K, Sharma S, Chiosis G, Burlet-Schiltz O, Arimondo PB, Lopez M. Bisubstrate-Type Chemical Probes Identify GRP94 as a Potential Target of Cytosine-Containing Adenosine Analogs. ACS Chem Biol 2020; 15:952-961. [PMID: 32191434 DOI: 10.1021/acschembio.9b00965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We synthesized affinity-based chemical probes of cytosine-adenosine bisubstrate analogs and identified several potential targets by proteomic analysis. The validation of the proteomic analysis identified the chemical probe as a specific inhibitor of glucose-regulated protein 94 (GRP94), a potential drug target for several types of cancers. Therefore, as a result of the use of bisubstrate-type chemical probes and a chemical-biology methodology, this work opens the way to the development of a new family of GRP94 inhibitors that could potentially be of therapeutic interest.
Collapse
Affiliation(s)
- Dany Pechalrieu
- ETaC, CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
| | - Fanny Assemat
- ETaC, CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
| | - Ludovic Halby
- ETaC, CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
- EpiCBio, Epigenetic Chemical Biology, Department Structural Biology and Chemistry, Institut Pasteur, CNRS UMR no. 3523, 28 rue du Dr Roux, 75015 Paris, France
| | - Marlene Marcellin
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pengrong Yan
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Karima Chaoui
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sahil Sharma
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Gabriela Chiosis
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Paola B. Arimondo
- ETaC, CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
- EpiCBio, Epigenetic Chemical Biology, Department Structural Biology and Chemistry, Institut Pasteur, CNRS UMR no. 3523, 28 rue du Dr Roux, 75015 Paris, France
| | - Marie Lopez
- ETaC, CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM UMR 5247, 240 Avenue du Prof. E. Jeanbrau, 34296 Montpellier Cedex 5, France
| |
Collapse
|
25
|
Zwergel C, Fioravanti R, Stazi G, Sarno F, Battistelli C, Romanelli A, Nebbioso A, Mendes E, Paulo A, Strippoli R, Tripodi M, Pechalrieu D, Arimondo PB, De Luca T, Del Bufalo D, Trisciuoglio D, Altucci L, Valente S, Mai A. Novel Quinoline Compounds Active in Cancer Cells through Coupled DNA Methyltransferase Inhibition and Degradation. Cancers (Basel) 2020; 12:E447. [PMID: 32075099 PMCID: PMC7073229 DOI: 10.3390/cancers12020447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 01/20/2023] Open
Abstract
DNA methyltransferases (DNMTs) play a relevant role in epigenetic control of cancer cell survival and proliferation. Since only two DNMT inhibitors (azacitidine and decitabine) have been approved to date for the treatment of hematological malignancies, the development of novel potent and specific inhibitors is urgent. Here we describe the design, synthesis, and biological evaluation of a new series of compounds acting at the same time as DNMTs (mainly DNMT3A) inhibitors and degraders. Tested against leukemic and solid cancer cell lines, 2a-c and 4a-c (the last only for leukemias) displayed up to submicromolar antiproliferative activities. In HCT116 cells, such compounds induced EGFP gene expression in a promoter demethylation assay, confirming their demethylating activity in cells. In the same cell line, 2b and 4c chosen as representative samples induced DNMT1 and -3A protein degradation, suggesting for these compounds a double mechanism of DNMT3A inhibition and DNMT protein degradation.
Collapse
Affiliation(s)
- Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
- Department of Precision Medicine, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138 Naples, Italy; (F.S.); (A.N.); (L.A.)
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
| | - Giulia Stazi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
| | - Federica Sarno
- Department of Precision Medicine, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138 Naples, Italy; (F.S.); (A.N.); (L.A.)
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy (R.S.); (M.T.)
| | - Annalisa Romanelli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
| | - Angela Nebbioso
- Department of Precision Medicine, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138 Naples, Italy; (F.S.); (A.N.); (L.A.)
| | - Eduarda Mendes
- Research Institute for Medicines, Medicinal Chemistry Group, Faculty of Pharmacy, Universidade de Lisboa, 1649 003 Lisbon, Portugal; (E.M.); (A.P.)
| | - Alexandra Paulo
- Research Institute for Medicines, Medicinal Chemistry Group, Faculty of Pharmacy, Universidade de Lisboa, 1649 003 Lisbon, Portugal; (E.M.); (A.P.)
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy (R.S.); (M.T.)
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy (R.S.); (M.T.)
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
- Istituto Pasteur- Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza Università di Roma, 00185 Rome, Italy
| | - Dany Pechalrieu
- ETaC CNRS FRE3600, LMBE, 118 route de Narbonne, 31062 Toulouse, France; (D.P.); (P.B.A.)
| | - Paola B. Arimondo
- ETaC CNRS FRE3600, LMBE, 118 route de Narbonne, 31062 Toulouse, France; (D.P.); (P.B.A.)
- Epigenetic Chemical Biology, Institute Pasteur, CNRS UMR3523, 28 rue du Docteur Roux, 75724 Paris, France
| | - Teresa De Luca
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy; (T.D.L.); (D.D.B.)
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy; (T.D.L.); (D.D.B.)
| | - Daniela Trisciuoglio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy; (T.D.L.); (D.D.B.)
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Via Degli Apuli 4, 00185 Rome, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138 Naples, Italy; (F.S.); (A.N.); (L.A.)
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
| |
Collapse
|
26
|
Nardella F, Halby L, Hammam E, Erdmann D, Cadet-Daniel V, Peronet R, Ménard D, Witkowski B, Mecheri S, Scherf A, Arimondo PB. DNA Methylation Bisubstrate Inhibitors Are Fast-Acting Drugs Active against Artemisinin-Resistant Plasmodium falciparum Parasites. ACS CENTRAL SCIENCE 2020; 6:16-21. [PMID: 31989022 PMCID: PMC6978834 DOI: 10.1021/acscentsci.9b00874] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 05/05/2023]
Abstract
Malaria is the deadliest parasitic disease affecting over 200 million people worldwide. The increasing number of treatment failures due to multi-drug-resistant parasites in South-East Asia hinders the efforts for elimination. It is thus urgent to develop new antimalarials to contain these resistant parasites. Based on a previous report showing the presence of DNA methylation in Plasmodium, we generated new types of DNA methylation inhibitors against malaria parasites. The quinoline-quinazoline-based inhibitors kill parasites, including artemisinin-resistant field isolates adapted to culture, in the low nanomolar range. The compounds target all stages of the asexual cycle, including early rings, during a 6 h treatment period; they reduce DNA methylation in the parasite and show in vivo activity at 10 mg/kg. These potent inhibitors are a new starting point to develop fast-acting antimalarials that could be used in combination with artemisinins.
Collapse
Affiliation(s)
- Flore Nardella
- Unité
Biologie des Interactions Hôte-Parasite, Département
de Parasites et Insectes Vecteurs, Institut
Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Ludovic Halby
- Epigenetic
Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| | - Elie Hammam
- Unité
Biologie des Interactions Hôte-Parasite, Département
de Parasites et Insectes Vecteurs, Institut
Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
- Ecole
Doctorale Complexité du Vivant ED515, Sorbonne Universités, Paris 6, Paris 75005, France
| | - Diane Erdmann
- Epigenetic
Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
- Ecole
Doctorale MTCI ED563, Université
de Paris, Sorbonne Paris Cité, Paris 75006, France
| | - Véronique Cadet-Daniel
- Epigenetic
Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| | - Roger Peronet
- Unité
Biologie des Interactions Hôte-Parasite, Département
de Parasites et Insectes Vecteurs, Institut
Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Didier Ménard
- Unité
Biologie des Interactions Hôte-Parasite, Département
de Parasites et Insectes Vecteurs, Institut
Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
- Malaria
Molecular Epidemiology Unit, Pasteur Institute
in Cambodia, Phnom Penh, Cambodia
| | - Benoit Witkowski
- Malaria
Molecular Epidemiology Unit, Pasteur Institute
in Cambodia, Phnom Penh, Cambodia
| | - Salah Mecheri
- Unité
Biologie des Interactions Hôte-Parasite, Département
de Parasites et Insectes Vecteurs, Institut
Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Artur Scherf
- Unité
Biologie des Interactions Hôte-Parasite, Département
de Parasites et Insectes Vecteurs, Institut
Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
- E-mail:
| | - Paola B. Arimondo
- Epigenetic
Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
- E-mail:
| |
Collapse
|
27
|
Ganesan A, Arimondo PB, Rots MG, Jeronimo C, Berdasco M. The timeline of epigenetic drug discovery: from reality to dreams. Clin Epigenetics 2019; 11:174. [PMID: 31791394 PMCID: PMC6888921 DOI: 10.1186/s13148-019-0776-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
The flexibility of the epigenome has generated an enticing argument to explore its reversion through pharmacological treatments as a strategy to ameliorate disease phenotypes. All three families of epigenetic proteins—readers, writers, and erasers—are druggable targets that can be addressed through small-molecule inhibitors. At present, a few drugs targeting epigenetic enzymes as well as analogues of epigenetic modifications have been introduced into the clinic use (e.g. to treat haematological malignancies), and a wide range of epigenetic-based drugs are undergoing clinical trials. Here, we describe the timeline of epigenetic drug discovery and development beginning with the early design based solely on phenotypic observations to the state-of-the-art rational epigenetic drug discovery using validated targets. Finally, we will highlight some of the major aspects that need further research and discuss the challenges that need to be overcome to implement epigenetic drug discovery into clinical management of human disorders. To turn into reality, researchers from various disciplines (chemists, biologists, clinicians) need to work together to optimise the drug engineering, read-out assays, and clinical trial design.
Collapse
Affiliation(s)
- A Ganesan
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR3523, 28 rue du Docteur Roux, 75724, Paris, France
| | - Marianne G Rots
- Epigenetic Editing, Dept. Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands
| | - Carmen Jeronimo
- Cancer Biology & Epigenetics Group, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - María Berdasco
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain. .,Epigenetic Therapies, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Campus ICO-Germans Trias i Pujol, Ctra de Can Ruti, Camí de les Escoles s/n 08916 Badalona, Barcelona, Catalonia, Spain.
| |
Collapse
|
28
|
Ahmed-Belkacem R, Sutto-Ortiz P, Decroly E, Vasseur JJ, Debart F. Synthesis of Adenine Dinucleosides 2′,5′-Bridged by Sulfur-Containing Linkers as Bisubstrate SAM Analogues for Viral RNA 2′- O
-Methyltransferases. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Priscila Sutto-Ortiz
- AFMB, CNRS; Aix-Marseille University; UMR 7257; 163 avenue de Luminy Marseille France
| | - Etienne Decroly
- AFMB, CNRS; Aix-Marseille University; UMR 7257; 163 avenue de Luminy Marseille France
| | | | - Françoise Debart
- IBMM; UMR 5247, CNRS; University of Montpellier; ENSCM; Montpellier France
| |
Collapse
|
29
|
Yu J, Xie T, Wang Z, Wang X, Zeng S, Kang Y, Hou T. DNA methyltransferases: emerging targets for the discovery of inhibitors as potent anticancer drugs. Drug Discov Today 2019; 24:2323-2331. [PMID: 31494187 DOI: 10.1016/j.drudis.2019.08.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/18/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022]
Abstract
DNA methyltransferases (DNMTs) are a conserved family of cytosine methylases with crucial roles in epigenetic regulation. They have been considered as promising therapeutic targets for the epigenetic treatment of cancer. Therefore, DNMT inhibitors (DNMTis) have attracted considerable interest in recent years for the modulation of the aberrant DNA methylation pattern in a reversible way. In this review, we provide a structure-based overview of the therapeutic importance of DNMTs against different cancer types, and then summarize recently investigated DNMTis as well as their inhibitory mechanisms, focusing on recent advances in the development of DNMTis with specificity and/or selectivity using computational approaches.
Collapse
Affiliation(s)
- Jie Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tianli Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhe Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuwen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
30
|
Wu G, Zhao T, Kang D, Zhang J, Song Y, Namasivayam V, Kongsted J, Pannecouque C, De Clercq E, Poongavanam V, Liu X, Zhan P. Overview of Recent Strategic Advances in Medicinal Chemistry. J Med Chem 2019; 62:9375-9414. [PMID: 31050421 DOI: 10.1021/acs.jmedchem.9b00359] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introducing novel strategies, concepts, and technologies that speed up drug discovery and the drug development cycle is of great importance both in the highly competitive pharmaceutical industry as well as in academia. This Perspective aims to present a "big-picture" overview of recent strategic innovations in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Yuning Song
- Department of Clinical Pharmacy , Qilu Hospital of Shandong University , 250012 Ji'nan , China
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| |
Collapse
|
31
|
Zwergel C, Schnekenburger M, Sarno F, Battistelli C, Manara MC, Stazi G, Mazzone R, Fioravanti R, Gros C, Ausseil F, Florean C, Nebbioso A, Strippoli R, Ushijima T, Scotlandi K, Tripodi M, Arimondo PB, Altucci L, Diederich M, Mai A, Valente S. Identification of a novel quinoline-based DNA demethylating compound highly potent in cancer cells. Clin Epigenetics 2019; 11:68. [PMID: 31060628 PMCID: PMC6501426 DOI: 10.1186/s13148-019-0663-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/09/2019] [Indexed: 12/16/2022] Open
Abstract
Background DNA methyltransferases (DNMTs) are epigenetic enzymes involved in embryonic development, cell differentiation, epithelial to mesenchymal transition, and control of gene expression, whose overexpression or enhanced catalytic activity has been widely reported in cancer initiation and progression. To date, two DNMT inhibitors (DNMTi), 5-azacytidine (5-AZA) and 5-aza-2′-deoxycytidine (DAC), are approved for the treatment of myelodysplastic syndromes and acute myeloid leukemia. Nevertheless, they are chemically instable and quite toxic for healthy cells; thus, the discovery of novel DNMTi is urgent. Results Here, we report the identification of a new quinoline-based molecule, MC3353, as a non-nucleoside inhibitor and downregulator of DNMT. This compound was able, in promoter demethylating assays, to induce enhanced green fluorescence protein (EGFP) gene expression in HCT116 cells and transcription in a cytomegalovirus (CMV) promoter-driven luciferase reporter system in KG-1 cells. Moreover, MC3353 displayed a strong antiproliferative activity when tested on HCT116 colon cancer cells after 48 h of treatment at 0.5 μM. At higher doses, this compound provided a cytotoxic effect in double DNMT knockout HCT116 cells. MC3353 was also screened on a different panel of cancer cells (KG-1 and U-937 acute myeloid leukemia, RAJI Burkitt’s lymphoma, PC-3 prostate cancer, and MDA-MB-231 breast cancer), where it arrested cell proliferation and reduced viability after 48 h of treatment with IC50 values ranging from 0.3 to 0.9 μM. Compared to healthy cell models, MC3353 induced apoptosis (e.g., U-937 and KG-1 cells) or necrosis (e.g., RAJI cells) at lower concentrations. Importantly, together with the main DNMT3A enzyme inhibition, MC3353 was also able to downregulate the DNMT3A protein level in selected HCT116 and PC-3 cell lines. Additionally, this compound provided impairment of the epithelial-to-mesenchymal transition (EMT) by inducing E-cadherin while reducing matrix metalloproteinase (MMP2) mRNA and protein levels in PC-3 and HCT116 cells. Last, tested on a panel of primary osteosarcoma cell lines, MC3353 markedly inhibited cell growth with low single-digit micromolar IC50 ranging from 1.1 to 2.4 μM. Interestingly, in Saos-2 osteosarcoma cells, MC3353 induced both expression of genes and mineralized the matrix as evidence of osteosarcoma to osteoblast differentiation. Conclusions The present work describes MC3353 as a novel DNMTi displaying a stronger in cell demethylating ability than both 5-AZA and DAC, providing re-activation of the silenced ubiquitin C-terminal hydrolase L1 (UCHL1) gene. MC3353 displayed dose- and time-dependent antiproliferative activity in several cancer cell types, inducing cell death and affecting EMT through E-cadherin and MMP2 modulation. In addition, this compound proved efficacy even in primary osteosarcoma cell models, through the modulation of genes involved in osteoblast differentiation. Electronic supplementary material The online version of this article (10.1186/s13148-019-0663-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clemens Zwergel
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9 rue Edward Steichen, L-2540, Luxembourg City, Luxembourg
| | - Federica Sarno
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Maria Cristina Manara
- Laboratory of Experimental Oncology, IRCCS - Istituto Ortopedico Rizzoli, via di Barbiano, 1/10, Bologna, 40136, Italy
| | - Giulia Stazi
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Roberta Mazzone
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Rossella Fioravanti
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Christina Gros
- Center for High-Throughput Chemical Biology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Frédéric Ausseil
- Pierre Fabre Laboratories, 3 Avenue Hubert Curien, Toulouse, 31100, France
| | - Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9 rue Edward Steichen, L-2540, Luxembourg City, Luxembourg
| | - Angela Nebbioso
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, Rome, 00149, Italy
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS - Istituto Ortopedico Rizzoli, via di Barbiano, 1/10, Bologna, 40136, Italy
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, Rome, 00149, Italy.,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR3523, 28 rue du Docteur Roux, Paris, 75724, France
| | - Lucia Altucci
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Korea
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy. .,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Sergio Valente
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
32
|
Ianniello Z, Paiardini A, Fatica A. N 6-Methyladenosine (m 6A): A Promising New Molecular Target in Acute Myeloid Leukemia. Front Oncol 2019; 9:251. [PMID: 31024852 PMCID: PMC6465620 DOI: 10.3389/fonc.2019.00251] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022] Open
Abstract
Recent studies have uncovered an important role for RNA modifications in gene expression regulation, which led to the birth of the epitranscriptomics field. It is now acknowledged that RNA modifiers play a crucial role in the control of differentiation of stem and progenitor cells and that changes in their levels are a relevant feature of different types of cancer. To date, among more than 160 different RNA chemical modifications, the more relevant in cancer biology is the reversible and dynamic N6-methylation of adenosine, yielding N6-methyladenosine (m6A). m6A is the more abundant internal modification in mRNA, regulating the expression of the latter at different levels, from maturation to translation. Here, we will describe the emerging role of m6A modification in acute myeloid leukemia (AML), which, among first, has demonstrated how mis-regulation of the m6A modifying system can contribute to the development and progression of cancer. Moreover, we will discuss how AML is paving the way to the development of new therapeutic options based on the inhibition of m6A deposition.
Collapse
Affiliation(s)
- Zaira Ianniello
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences "A. Rossi Fanelli," Sapienza University of Rome, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| |
Collapse
|
33
|
Leroy M, Mélin L, LaPlante SR, Medina-Franco JL, Gagnon A. Synthesis of NSC 106084 and NSC 14778 and evaluation of their DNMT inhibitory activity. Bioorg Med Chem Lett 2019; 29:826-831. [PMID: 30704813 DOI: 10.1016/j.bmcl.2019.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 01/01/2023]
Abstract
DNA methylation is an epigenetic modification that is performed by DNA methyltransferases (DNMTs) and that leads to the transfer of a methyl group from S-adenosylmethionine (SAM) to the C5 position of cytosine. This transformation results in hypermethylation and silencing of genes such as tumor suppressor genes. Aberrant DNA methylation has been associated with the development of many diseases, including cancer. Inhibition of DNMTs promotes the demethylation and reactivation of epigenetically silenced genes. NSC 106084 and 14778 have been reported to inhibit DNMTs in the micromolar range. We report herein the synthesis of NSC 106084 and 14778 and the evaluation of their DNMT inhibitory activity. Our results indicate that while commercial NSC 14778 is moderately active against DNMT1, 3A/3L and 3B/3L, resynthesized NSC 14778 is inactive under our assay conditions. Resynthesized 106084 was also found to be inactive.
Collapse
Affiliation(s)
- Maxime Leroy
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Léa Mélin
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Steven R LaPlante
- Centre INRS-Armand Frappier, 531 boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - José L Medina-Franco
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - Alexandre Gagnon
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
34
|
Atdjian C, Iannazzo L, Braud E, Ethève-Quelquejeu M. Synthesis of SAM-Adenosine Conjugates for the Study of m 6
A-RNA Methyltransferases. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Colette Atdjian
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Team “Chemistry of RNAs, nucleosides, peptides and heterocycles”; Université Paris Descartes; UMR 8601; 75005 Paris France
| | - Laura Iannazzo
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Team “Chemistry of RNAs, nucleosides, peptides and heterocycles”; Université Paris Descartes; UMR 8601; 75005 Paris France
| | - Emmanuelle Braud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Team “Chemistry of RNAs, nucleosides, peptides and heterocycles”; Université Paris Descartes; UMR 8601; 75005 Paris France
| | - Mélanie Ethève-Quelquejeu
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Team “Chemistry of RNAs, nucleosides, peptides and heterocycles”; Université Paris Descartes; UMR 8601; 75005 Paris France
| |
Collapse
|
35
|
Rufener R, Ritler D, Zielinski J, Dick L, da Silva ET, da Silva Araujo A, Joekel DE, Czock D, Goepfert C, Moraes AM, de Souza MVN, Müller J, Mevissen M, Hemphill A, Lundström-Stadelmann B. Activity of mefloquine and mefloquine derivatives against Echinococcus multilocularis. Int J Parasitol Drugs Drug Resist 2018; 8:331-340. [PMID: 29933218 PMCID: PMC6020078 DOI: 10.1016/j.ijpddr.2018.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/27/2022]
Abstract
The cestode E. multilocularis causes the disease alveolar echinococcosis (AE) in humans. The continuously proliferating metacestode (larval stage) of the parasite infects mostly the liver and exhibits tumor-like growth. Current chemotherapeutical treatment options rely on benzimidazoles, which are rarely curative and have to be applied daily and life-long. This can result in considerable hepatotoxicity and thus treatment discontinuation. Therefore, novel drugs against AE are urgently needed. The anti-malarial mefloquine was previously shown to be active against E. multilocularis metacestodes in vitro, and in mice infected by intraperitoneal inoculation of metacestodes when administered at 100 mg/kg by oral gavage twice a week for 12 weeks. In the present study, the same dosage regime was applied in mice infected via oral uptake of eggs representing the natural route of infection. After 12 weeks of treatment, the presence of parasite lesions was assessed in a liver squeeze chamber and by PCR, and a significantly reduced parasite load was found in mefloquine-treated animals. Assessment of mefloquine plasma concentrations by HPLC and modeling using a two-compartment pharmacokinetic model with first-order absorption showed that >90% of the expected steady-state levels (Cmin 1.15 mg/L, Cmax 2.63 mg/L) were reached. These levels are close to concentrations achieved in humans during long-term weekly dosage of 250 mg (dose applied for malaria prophylaxis). In vitro structure-activity relationship analysis of mefloquine and ten derivatives revealed that none of the derivatives exhibited stronger activities than mefloquine. Activity was only observed, when the 2-piperidylmethanol group of mefloquine was replaced by an amino group-containing residue and when the trifluoromethyl residue on position 8 of the quinoline structure was present. This is in line with the anti-malarial activity of mefloquine and it implies that the mode of action in E. multilocularis might be similar to the one against malaria.
Collapse
Affiliation(s)
- Reto Rufener
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Dominic Ritler
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Jana Zielinski
- Division of Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012, Bern, Switzerland
| | - Luca Dick
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Emerson Teixeira da Silva
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos - Far Manguinhos, 21041-250, Rio de Janeiro, Brazil
| | - Adriele da Silva Araujo
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos - Far Manguinhos, 21041-250, Rio de Janeiro, Brazil
| | - Deborah Elisabeth Joekel
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland
| | - David Czock
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Christine Goepfert
- Institute of Animal Pathology COMPATH, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Switzerland
| | - Adriana Marques Moraes
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos - Far Manguinhos, 21041-250, Rio de Janeiro, Brazil
| | | | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Meike Mevissen
- Division of Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Britta Lundström-Stadelmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland.
| |
Collapse
|
36
|
Wang X, Yan J, Wang M, Liu M, Zhang J, Chen L, Xue W. Synthesis and three-dimensional quantitative structure-activity relationship study of quinazoline derivatives containing a 1,3,4-oxadiazole moiety as efficient inhibitors against Xanthomonas axonopodis pv. citri. Mol Divers 2018; 22:791-802. [PMID: 29808346 DOI: 10.1007/s11030-018-9837-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/14/2018] [Indexed: 10/14/2022]
Abstract
A series of quinazoline derivatives containing a 1,3,4-oxadiazole moiety were synthesized and evaluated for their antibacterial activities against Xanthomonas axonopodis pv. citri (Xac) and Ralstonia solanacearum (Rs). Antibacterial bioassays indicated that most of target compounds exhibited significant antibacterial activities against Xac and Rs in vitro. Strikingly, compounds 6d-6i, 6m-6r and 6u-6x showed antibacterial activity against Xac, with [Formula: see text] values ranging from 14.42 to 38.91 [Formula: see text]g/mL, which are better than that of bismerthiazol (39.86 [Formula: see text]g/mL). Based on the antibacterial activity against Xac, comparative molecular filed analysis and comparative molecular similarity index analysis models were generated to investigate the structure-activity relationship of title compounds against Xac. The analytical results indicated that the above models exhibited good predictive accuracy and could be used as practical tools for guiding the design and synthesis of more potent quinazoline derivatives containing a 1,3,4-oxadiazole moiety.
Collapse
Affiliation(s)
- Xiaobin Wang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jinghua Yan
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengqi Wang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Menghan Liu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juping Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Lijuan Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
37
|
Hassanzadeh M, Kasymov R, Mahernia S, Adib M, Emperle M, Dukatz M, Bashtrykov P, Jeltsch A, Amanlou M. Discovery of Novel and Selective DNA Methyltransferase 1 Inhibitors by Pharmacophore and Docking-Based Virtual Screening. ChemistrySelect 2017. [DOI: 10.1002/slct.201701734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Malihe Hassanzadeh
- Department of Medicinal Chemistry & Drug Design and Development Research Center; Faculty of Pharmacy; Tehran University of Medical Sciences; 16 Azar Ave. Tehran Iran
| | - Rustem Kasymov
- Department of Biochemistry; Institute of Biochemistry and Technical Biochemistry; University Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Shabnam Mahernia
- Department of Medicinal Chemistry & Drug Design and Development Research Center; Faculty of Pharmacy; Tehran University of Medical Sciences; 16 Azar Ave. Tehran Iran
| | - Mehdi Adib
- School of Chemistry; College of Science; University of Tehran; Tehran Iran
| | - Max Emperle
- Department of Biochemistry; Institute of Biochemistry and Technical Biochemistry; University Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Michael Dukatz
- Department of Biochemistry; Institute of Biochemistry and Technical Biochemistry; University Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Pavel Bashtrykov
- Department of Biochemistry; Institute of Biochemistry and Technical Biochemistry; University Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Albert Jeltsch
- Department of Biochemistry; Institute of Biochemistry and Technical Biochemistry; University Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Massoud Amanlou
- Department of Medicinal Chemistry & Drug Design and Development Research Center; Faculty of Pharmacy; Tehran University of Medical Sciences; 16 Azar Ave. Tehran Iran
| |
Collapse
|