1
|
Sidhu JS, Kaur G, Chavan AR, Chahal MK, Taliyan R. Phenoxy-1,2-dioxetane-based activatable chemiluminescent probes: tuning of photophysical properties for tracing enzymatic activities in living cells. Analyst 2024; 149:5739-5761. [PMID: 39569538 DOI: 10.1039/d4an01082e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The use of chemiluminophores for tracing enzymatic activities in live-cell imaging has gained significant attention, making them valuable tools for diagnostic applications. Among various chemiluminophores, the phenoxy-1,2-dioxetane scaffold exhibits significant structural versatility and its activation is governed by the chemically initiated electron exchange luminescence (CIEEL) mechanism. This mechanism can be initiated by enzymatic activity, changes in pH, or other chemical stimuli. The photophysical properties of phenoxy-1,2-dioxetanes can be fine-tuned through the incorporation of different substituents on the phenolic ring and by anchoring them with specific triggers. This review discusses the variations in physicochemical properties, including emission maxima, quantum yield, aqueous solubility, and pKa, as influenced by structural modifications, thereby establishing a comprehensive structure-activity relationship. Furthermore, it categorises the probes based on different enzyme classes, such as hydrolase-sensitive probes, oxidoreductase-responsive probes, and transferase-activatable phenoxy-1,2-dioxetanes, offering a promising platform technology for the early diagnosis of diseases and disorders. The summary section highlights key opportunities and limitations associated with applying phenoxy-1,2-dioxetanes in achieving precise and effective enzyme assays.
Collapse
Affiliation(s)
- Jagpreet Singh Sidhu
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Gurjot Kaur
- Khalsa College Amritsar, Punjab, 143002, India
| | - Atharva Rajesh Chavan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Mandeep K Chahal
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
2
|
Zhang T, Yao C, Zhou X, Liu S, Qi L, Zhu S, Zhao C, Hu D, Shen W. Glutathione‑degrading enzymes in the complex landscape of tumors (Review). Int J Oncol 2024; 65:72. [PMID: 38847236 PMCID: PMC11173371 DOI: 10.3892/ijo.2024.5660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/24/2024] [Indexed: 06/12/2024] Open
Abstract
Glutathione (GSH)‑degrading enzymes are essential for starting the first stages of GSH degradation. These enzymes include extracellular γ‑glutamyl transpeptidase (GGT) and intracellular GSH‑specific γ‑glutamylcyclotransferase 1 (ChaC1) and 2. These enzymes are essential for cellular activities, such as immune response, differentiation, proliferation, homeostasis regulation and programmed cell death. Tumor tissue frequently exhibits abnormal expression of GSH‑degrading enzymes, which has a key impact on the development and spread of malignancies. The present review summarizes gene and protein structure, catalytic activity and regulation of GSH‑degrading enzymes, their vital roles in tumor development (including regulation of oxidative and endoplasmic reticulum stress, control of programmed cell death, promotion of inflammation and tumorigenesis and modulation of drug resistance in tumor cells) and potential role as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Chongjie Yao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Department of Rehabilitation, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xu Zhou
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Shimin Liu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, P.R. China
| | - Li Qi
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Shiguo Zhu
- School of Basic Medical Sciences, Center for Traditional Chinese Medicine and Immunology Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Chen Zhao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Dan Hu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Weidong Shen
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
3
|
Zhang W, Blank A, Kremenetskaia I, Nitzsche A, Acker G, Vajkoczy P, Brandenburg S. CD13 expression affects glioma patient survival and influences key functions of human glioblastoma cell lines in vitro. BMC Cancer 2024; 24:369. [PMID: 38519889 PMCID: PMC10960415 DOI: 10.1186/s12885-024-12113-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
CD13 (APN) is an Alanyl-Aminopeptidase with diverse functions. The role of CD13 for gliomas is still unknown. In this study, data of glioma patients obtained by TCGA and CGGA databases were used to evaluate the survival rate and prognostic value of CD13 expression level. Protein expression of CD13 was confirmed by immunofluorescence staining of fresh patient tissues. Eight human glioblastoma cell lines were studied by RT-PCR, Western Blot, immunofluorescence staining and flow cytometry to define CD13 expression. Cell lines with different CD13 expression status were treated with a CD13 inhibitor, bestatin, and examined by MTT, scratch and colony formation assaysas well as by apoptosis assay and Western Blots. Bioinformatics analysis indicated that patients with high expression of CD13 had poor survival and prognosis. Additionally, CD13 protein expression was positively associated with clinical malignant characteristics. Investigated glioblastoma cell lines showed distinct expression levels and subcellular localization of CD13 with intracellular enrichment. Bestatin treatment reduced proliferation, migration and colony formation of glioma cells in a CD13-dependent manner while apoptosis was increased. In summary, CD13 has an impact on glioma patient survival and is important for the main function of specific glioma cells.
Collapse
Affiliation(s)
- Wenying Zhang
- Department of Experimental Neurosurgery, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Anne Blank
- Department of Experimental Neurosurgery, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Irina Kremenetskaia
- Department of Experimental Neurosurgery, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Anja Nitzsche
- Department of Experimental Neurosurgery, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Güliz Acker
- Department of Experimental Neurosurgery, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurosurgery, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Peter Vajkoczy
- Department of Experimental Neurosurgery, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Neurosurgery, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Susan Brandenburg
- Department of Experimental Neurosurgery, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
4
|
Amin BH, Ayyat NM, Mohamed El-Sharkawy R, Hafez AM. Investigation of Antifungal Action of Fractions C 17H 31NO 15 Isolated from Artemisia herba-alba extract versus Isolated Aspergillus niger from Zee maize. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2024; 19:159-172. [PMID: 37366361 DOI: 10.2174/2772434418666230627141639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Plants are harmed by parasitic organisms, and toxic poisons are created. Phytopathogenic fungi create toxins that can severely harm plants' basic physiological functioning. OBJECTIVE Investigation of antifungal impact of various fractions of methanol extract of Artemisia herba-alba to Aspergillus niger as a plant pathogen. METHODS Artemisia herba-alba extract was purified using column chromatography, giving various antifungal fractions tested versus A. niger. RESULTS The 6th fraction give the highest inhibition zone with a diameter of 5.4 cm and MIC 125.02 ± 4.9 μg/ml, which was identified using Mass spectroscopy, 1HNMR, Elemental analysis as well as IR testing, revealing the chemical formula of the purified fraction. Ultrastructure alteration of treated A. niger was examined versus control using the transmission electron microscope. Purified fraction has tested versus normal cell line with minimal cytotoxicity. CONCLUSION These results revealed the possibility of using Artemisia herba-alba methanol extract as a promising antifungal versus phytopathogenic fungi, especially A. niger after more verification of results.
Collapse
Affiliation(s)
- Basma Hamdy Amin
- Department of Microbiology, The Regional Center for Mycology and Biotechnology, Al-Azhar University, 11787, Nasr City, Cairo, Egypt
| | - Nahed Mohammed Ayyat
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | | | - Asmaa Mohamed Hafez
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
5
|
Barnieh FM, Galuska SP, Loadman PM, Ward S, Falconer RA, El-Khamisy SF. Cancer-specific glycosylation of CD13 impacts its detection and activity in preclinical cancer tissues. iScience 2023; 26:108219. [PMID: 37942010 PMCID: PMC10628746 DOI: 10.1016/j.isci.2023.108219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/14/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Harnessing the differences between cancer and non-cancer tissues presents new opportunities for selective targeting by anti-cancer drugs. CD13, a heavily glycosylated protein, is one example with significant unmet clinical potential in cancer drug discovery. Despite its high expression and activity in cancers, CD13 is also expressed in many normal tissues. Here, we report differential tissue glycosylation of CD13 across tissues and demonstrate for the first time that the nature and pattern of glycosylation of CD13 in preclinical cancer tissues are distinct compared to normal tissues. We identify cancer-specific O-glycosylation of CD13, which selectively blocks its detection in cancer models but not in normal tissues. In addition, the metabolism activity of cancer-expressed CD13 was observed to be critically dependent on its unique glycosylation. Thus, our data demonstrate the existence of discrete cancer-specific CD13 glycoforms and propose cancer-specific CD13 glycoforms as a clinically useful target for effective cancer-targeted therapy.
Collapse
Affiliation(s)
- Francis M. Barnieh
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Sebastian P. Galuska
- Institute for Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, Dummerstorf, Germany
| | - Paul M. Loadman
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | | | - Robert A. Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Sherif F. El-Khamisy
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| |
Collapse
|
6
|
Zhang J, Sun S, Liu J, Zhang L, Guo D, Zhang N, Zhao J, Kong D, Xu T, Wang X, Xu W, Li X, Jiang Y. Discovery of a Novel Ubenimex Derivative as a First-in-Class Dual CD13/Proteasome Inhibitor for the Treatment of Cancer. Molecules 2023; 28:6343. [PMID: 37687169 PMCID: PMC10489073 DOI: 10.3390/molecules28176343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The CD13 inhibitor ubenimex is used as an adjuvant drug with chemotherapy for the treatment of cancer due to its function as an immunoenhancer, but it has limitations in its cytotoxic efficacy. The proteasome inhibitor ixazomib is a landmark drug in the treatment of multiple myeloma with a high anti-cancer activity. Herein, we conjugated the pharmacophore of ubenimex and the boric acid of ixazomib to obtain a dual CD13 and proteasome inhibitor 7 (BC-05). BC-05 exhibited potent inhibitory activity on both human CD13 (IC50 = 0.13 μM) and the 20S proteasome (IC50 = 1.39 μM). Although BC-05 displayed lower anti-proliferative activity than that of ixazomib in vitro, an advantage was established in the in vivo anti-cancer efficacy and prolongation of survival time, which may be due to its anti-metastatic and immune-stimulating activity. A pharmacokinetic study revealed that BC-05 is a potentially orally active agent with an F% value of 24.9%. Moreover, BC-05 showed more favorable safety profiles than those of ixazomib in preliminary toxicity studies. Overall, the results indicate that BC-05 is a promising drug candidate for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Jian Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China; (J.Z.)
| | - Simin Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China (X.L.)
| | - Jinyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China (X.L.)
| | - Liang Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China (X.L.)
| | - Di Guo
- College of Pharmacy, Weifang Medical University, Weifang 261053, China; (J.Z.)
| | - Naixin Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jun Zhao
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Tongqiang Xu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Xuejian Wang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China; (J.Z.)
| | - Wenfang Xu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China (X.L.)
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China (X.L.)
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| |
Collapse
|
7
|
Yang YJ, Dai M, Ahn KH. Cell-Membrane-Localizing Fluorescence Probes for Aminopeptidase N. ACS Sens 2023; 8:2791-2798. [PMID: 37405930 DOI: 10.1021/acssensors.3c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Aminopeptidase N (APN), a transmembrane ectoenzyme, plays multifunctional roles in cell survival and migration, angiogenesis, blood pressure regulation, and viral uptake. Abnormally high levels of the enzyme can be found in some tumors and injured liver and kidney. Therefore, noninvasive detection methods for APN are in demand for diagnosing and studying the associated diseases, leading to two dozen activatable small-molecule probes reported up to date. All of the known probes, however, analyze the enzyme activity by monitoring fluorescent molecules inside cells, despite the enzymatic reaction taking place on the outer cell membrane. In this case, different cell permeability and enzyme kinetics can cause false signal data. To address this critical issue, we have developed two cell-membrane-localizing APN probes whose enzymatic products also localize the outer cell membrane. The probes selectively respond to APN with ratiometric fluorescence signal changes. A selected probe, which has two-photon imaging capability, allowed us to determine the relative APN levels in various organ tissues for the first time: 4.3 (intestine), 2.1 (kidney), 2.7 (liver), 3.2 (lung), and 1.0 (stomach). Also, a higher APN level was observed from a HepG2-xenograft mouse tissue in comparison with the normal tissue. Furthermore, we observed a significant APN level increase in the mouse liver of a drug (acetaminophen)-induced liver injury model. The probe thus offers a reliable means for studying APN-associated biology including drug-induced hepatotoxicity simply by ratiometric imaging.
Collapse
Affiliation(s)
- Yun Jae Yang
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Mingchong Dai
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, Oregon 97201, United States
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| |
Collapse
|
8
|
Zhu Y, Shmidov Y, Harris EA, Theus MH, Bitton R, Matson JB. Activating hidden signals by mimicking cryptic sites in a synthetic extracellular matrix. Nat Commun 2023; 14:3635. [PMID: 37336876 DOI: 10.1038/s41467-023-39349-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
Cryptic sites are short signaling peptides buried within the native extracellular matrix (ECM). Enzymatic cleavage of an ECM protein reveals these hidden peptide sequences, which interact with surface receptors to control cell behavior. Materials that mimic this dynamic interplay between cells and their surroundings via cryptic sites could enable application of this endogenous signaling phenomenon in synthetic ECM hydrogels. We demonstrate that depsipeptides ("switch peptides") can undergo enzyme-triggered changes in their primary sequence, with proof-of-principle studies showing how trypsin-triggered primary sequence rearrangement forms the bioadhesive pentapeptide YIGSR. We then engineered cryptic site-mimetic synthetic ECM hydrogels that experienced a cell-initiated gain of bioactivity. Responding to the endothelial cell surface enzyme aminopeptidase N, the inert matrix transformed into an adhesive synthetic ECM capable of supporting endothelial cell growth. This modular system enables dynamic reciprocity in synthetic ECMs, reproducing the natural symbiosis between cells and their matrix through inclusion of tunable hidden signals.
Collapse
Affiliation(s)
- Yumeng Zhu
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, USA
| | - Yulia Shmidov
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Elizabeth A Harris
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
- Center for Engineered Health, Virginia Tech, Blacksburg, VA, USA
| | - Ronit Bitton
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, USA.
- Center for Engineered Health, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
9
|
Pascual Alonso I, Almeida García F, Valdés Tresanco ME, Arrebola Sánchez Y, Ojeda Del Sol D, Sánchez Ramírez B, Florent I, Schmitt M, Avilés FX. Marine Invertebrates: A Promissory Still Unexplored Source of Inhibitors of Biomedically Relevant Metallo Aminopeptidases Belonging to the M1 and M17 Families. Mar Drugs 2023; 21:md21050279. [PMID: 37233473 DOI: 10.3390/md21050279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Proteolytic enzymes, also known as peptidases, are critical in all living organisms. Peptidases control the cleavage, activation, turnover, and synthesis of proteins and regulate many biochemical and physiological processes. They are also involved in several pathophysiological processes. Among peptidases, aminopeptidases catalyze the cleavage of the N-terminal amino acids of proteins or peptide substrates. They are distributed in many phyla and play critical roles in physiology and pathophysiology. Many of them are metallopeptidases belonging to the M1 and M17 families, among others. Some, such as M1 aminopeptidases N and A, thyrotropin-releasing hormone-degrading ectoenzyme, and M17 leucyl aminopeptidase, are targets for the development of therapeutic agents for human diseases, including cancer, hypertension, central nervous system disorders, inflammation, immune system disorders, skin pathologies, and infectious diseases, such as malaria. The relevance of aminopeptidases has driven the search and identification of potent and selective inhibitors as major tools to control proteolysis with an impact in biochemistry, biotechnology, and biomedicine. The present contribution focuses on marine invertebrate biodiversity as an important and promising source of inhibitors of metalloaminopeptidases from M1 and M17 families, with foreseen biomedical applications in human diseases. The results reviewed in the present contribution support and encourage further studies with inhibitors isolated from marine invertebrates in different biomedical models associated with the activity of these families of exopeptidases.
Collapse
Affiliation(s)
- Isel Pascual Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Fabiola Almeida García
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Mario Ernesto Valdés Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Daniel Ojeda Del Sol
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | | | - Isabelle Florent
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Muséum National d'Histoire Naturelle, CNRS, CP52, 57 Rue Cuvier, 75005 Paris, France
| | - Marjorie Schmitt
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA UMR 7042, 68000 Mulhouse, France
| | - Francesc Xavier Avilés
- Institute for Biotechnology and Biomedicine and Department of Biochemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
10
|
Guo X, Jiang Q, Li Z, Cheng C, Feng Y, He Y, Zuo L, Ding W, Zhang D, Feng L. Crystal structural analysis and characterization for MlrC enzyme of Sphingomonas sp. ACM-3962 involved in linearized microcystin degradation. CHEMOSPHERE 2023; 317:137866. [PMID: 36642149 DOI: 10.1016/j.chemosphere.2023.137866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Microcystinase C (MlrC), one key hydrolase of the microcystinase family, plays an important role in linearized microsystin (L-MC) degradation. However, the three-dimensional structure and structural features of MlrC are still unclear. This study obtained high specific activity and high purity of MlrC by heterologous expression, and revealed that MlrC derived from Sphingomonas sp. ACM-3962 (ACM-MlrC) can degrade linearized products of MC-LR, MC-RR and MC-YR to product 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid (Adda), indicating the degradation function and significance in MC-detoxification. More importantly, this study reported the crystal structure of ACM-MlrC at 2.6 Å resolution for the first time, which provides a basis for further understanding the structural characteristics and functions of MlrC. MlrC had a dual-domain feature, namely N and C terminal domain respectively. The N-terminal domain contained a Glutamate-Aspartate-Histidine-Histidine catalytic quadruplex coordinated with zinc ion in each monomer. The importance of zinc ions and their coordinated residues was analyzed by dialysis and site-directed mutagenesis methods. Moreover, the important influence of the N/C-terminal flexible regions of ACM-MlrC was also analyzed by sequence truncation, and then the higher yield and total activity of variants were obtained, which was beneficial to study the better function and application of MlrC.
Collapse
Affiliation(s)
- Xiaoliang Guo
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Qinqin Jiang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zengru Li
- The Institute of Physics, Chinese Academy of Sciences, P.O.Box 603, Beijing, 100190, China
| | - Cai Cheng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yu Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yanlin He
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Lingzi Zuo
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Wei Ding
- The Institute of Physics, Chinese Academy of Sciences, P.O.Box 603, Beijing, 100190, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lingling Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
11
|
Pascual Alonso I, Rivera Méndez L, Almeida García F, Valdés-Tresanco ME, Alonso Bosch R, Perera WH, Arrebola Sánchez Y, Bergado G, Sánchez Ramírez B, Charli JL. Bufadienolides preferentially inhibit aminopeptidase N among mammalian metallo-aminopeptidases; relationship with effects on human melanoma MeWo cells. Int J Biol Macromol 2023; 229:825-837. [PMID: 36592847 DOI: 10.1016/j.ijbiomac.2022.12.280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/07/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Bufadienolides are steroids that inhibit Na+/K+-ATPase; recent evidence shows that bufalin inhibits the activity of porcine aminopeptidase N (pAPN). We evaluated the selectivity of some bufadienolides on metallo-aminopeptidases. Among the enzymes of the M1 and M17 families, pAPN and porcine aminopeptidase A (pAPA) were the only targets of some bufadienolides. ѱ-bufarenogin, telocinobufagin, marinobufagin, bufalin, cinobufagin, and bufogenin inhibited the activity of pAPN in a dose-dependent manner in the range of 10-7-10-6 M. The inhibition mechanism was classical reversible noncompetitive for telocinobufagin, bufalin and cinobufagin. Bufogenin had the lowest Ki value and a non-competitive behavior. pAPA activity was inhibited by ѱ-bufarenogin, cinobufagin, and bufogenin, with a classical competitive type of inhibition. The models of enzyme-inhibitor complexes agreed with the non-competitive type of inhibition of pAPN by telocinobufagin, bufalin, cinobufagin, and bufogenin. Since APN is a target in cancer therapy, we tested the effect of bufadienolides on the MeWo APN+ human melanoma cell line; they induced cell death, but we obtained scant evidence that inhibition of APN contributed to their effect. Thus, APN is a selective target of some bufadienolides, and we suggest that inhibition of APN activity by bufadienolides is not a major contributor to their antiproliferative properties in MeWo cells.
Collapse
Affiliation(s)
| | | | | | - Mario Ernesto Valdés-Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba; Department of Biological Sciences, University of Calgary, Canada
| | - Roberto Alonso Bosch
- Museo de Historia Natural Felipe Poey, Faculty of Biology, University of Havana, Cuba
| | - Wilmer H Perera
- CAMAG Scientific, Inc., 515 Cornelius Harnett Dr, Wilmington, NC 28401d, United States of America
| | | | | | | | - Jean-Louis Charli
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| |
Collapse
|
12
|
Sun R, Zhang Y, Lin X, Piao Y, Xie T, He Y, Xiang J, Shao S, Zhou Q, Zhou Z, Tang J, Shen Y. Aminopeptidase N-Responsive Conjugates with Tunable Charge-Reversal Properties for Highly Efficient Tumor Accumulation and Penetration. Angew Chem Int Ed Engl 2023; 62:e202217408. [PMID: 36594796 DOI: 10.1002/anie.202217408] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Tumor enzyme-responsive charge-reversal carriers can induce efficient transcytosis and lead to efficient tumor infiltration and potent anticancer efficacy. However, the correlations of molecular structure with charge-reversal property, tumor penetration, and drug delivery efficiency are unknown. Herein, aminopeptidase N (APN)-responsive conjugates were synthesized to investigate these correlations. We found that the monomeric unit structure and the polymer chain structure determined the enzymatic hydrolysis and charge-reversal rates, and accordingly, the transcytosis and tumor accumulation and penetration of the APN-responsive conjugates. The conjugate with moderate APN responsiveness balanced the in vitro transcytosis and in vivo overall drug delivery process and achieved the best tumor delivery efficiency, giving potent antitumor efficacy. This work provides new insight into the design of tumor enzyme-responsive charge-reversal nanomedicines for efficient cancer drug delivery.
Collapse
Affiliation(s)
- Rui Sun
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.,Biomaterials and Drug Delivery Laboratory, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Yifan Zhang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaowei Lin
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tao Xie
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yi He
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
13
|
Wątroba K, Pawełczak M, Kaźmierczak M. Dipeptide analogues of fluorinated aminophosphonic acid sodium salts as moderate competitive inhibitors of cathepsin C. Beilstein J Org Chem 2023; 19:434-439. [PMID: 37091732 PMCID: PMC10113521 DOI: 10.3762/bjoc.19.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
In this paper, we present the solvolysis reaction of dipeptide analogues of fluorinated aminophosphonates with simultaneous quantitative deprotection of the amino group. To the best of our knowledge, this work is the first reported example of the application of fluorinated aminophosphonates in cathepsin C inhibition studies. The new molecules show moderate inhibition of the cathepsin C enzyme, which opens the door to consider them as potential therapeutic agents. Overall, our findings provide a new avenue for the development of fluorinated aminophosphonate-based inhibitors.
Collapse
Affiliation(s)
- Karolina Wątroba
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | | | - Marcin Kaźmierczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| |
Collapse
|
14
|
Georgiadis D, Skoulikas N, Papakyriakou A, Stratikos E. Phosphinic Peptides as Tool Compounds for the Study of Pharmacologically Relevant Zn-Metalloproteases. ACS Pharmacol Transl Sci 2022; 5:1228-1253. [PMID: 36524013 PMCID: PMC9745897 DOI: 10.1021/acsptsci.2c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Phosphinic peptides constitute an important class of bioactive compounds that have found a wide range of applications in the field of biology and pharmacology of Zn-metalloproteases, the largest family of proteases in humans. They are designed to mimic the structure of natural substrates during their proteolysis, thus acting as mechanism-based, transition state analogue inhibitors. A combination of electrostatic interactions between the phosphinic acid group and the Zn cation as well as optimal noncovalent enzyme-ligand interactions can result in both high binding affinity for the desired target and selectivity against other proteases. Due to these unique properties, phosphinic peptides have been mainly employed as tool compounds for (a) the purposes of rational drug design by serving as ligands in X-ray crystal structures of target enzymes and allowing the identification of crucial interactions that govern optimal molecular recognition, and (b) the delineation of biological pathways where Zn-metalloproteases are key regulators. For the latter objective, inhibitors of the phosphinopeptidic type have been used either unmodified or after being transformed to probes of various types, thus expanding the arsenal of functional tools available to researchers. The aim of this review is to summarize all recent research achievements in which phosphinic peptides have played a central role as tool compounds in the understanding of the mechanism and biological functions of Zn-metalloproteases in both health and disease.
Collapse
Affiliation(s)
- Dimitris Georgiadis
- Department
of Chemistry, National and Kapodistrian
University of Athens, GR-15784 Athens, Greece
| | - Nikolaos Skoulikas
- Department
of Chemistry, National and Kapodistrian
University of Athens, GR-15784 Athens, Greece
| | - Athanasios Papakyriakou
- National
Centre for Scientific Research “Demokritos”, Agia Paraskevi GR-15341 Athens, Greece
| | - Efstratios Stratikos
- Department
of Chemistry, National and Kapodistrian
University of Athens, GR-15784 Athens, Greece
- National
Centre for Scientific Research “Demokritos”, Agia Paraskevi GR-15341 Athens, Greece
| |
Collapse
|
15
|
Zhou J, Lei N, Tian W, Guo R, Chen M, Qiu L, Wu F, Li Y, Chang L. Recent progress of the tumor microenvironmental metabolism in cervical cancer radioresistance. Front Oncol 2022; 12:999643. [PMID: 36313645 PMCID: PMC9597614 DOI: 10.3389/fonc.2022.999643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/27/2022] [Indexed: 08/01/2023] Open
Abstract
Radiotherapy is widely used as an indispensable treatment option for cervical cancer patients. However, radioresistance always occurs and has become a big obstacle to treatment efficacy. The reason for radioresistance is mainly attributed to the high repair ability of tumor cells that overcome the DNA damage caused by radiotherapy, and the increased self-healing ability of cancer stem cells (CSCs). Accumulating findings have demonstrated that the tumor microenvironment (TME) is closely related to cervical cancer radioresistance in many aspects, especially in the metabolic processes. In this review, we discuss radiotherapy in cervical cancer radioresistance, and focus on recent research progress of the TME metabolism that affects radioresistance in cervical cancer. Understanding the mechanism of metabolism in cervical cancer radioresistance may help identify useful therapeutic targets for developing novel therapy, overcome radioresistance and improve the efficacy of radiotherapy in clinics and quality of life of patients.
Collapse
Affiliation(s)
- Junying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wanjia Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixia Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengyu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luojie Qiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengling Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Lei Chang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Nguyen VT, Huynh TKC, Ho GTT, Nguyen THA, Le Anh Nguyen T, Dao DQ, Mai TVT, Huynh LK, Hoang TKD. Metal complexes of benzimidazole-derived as potential anti-cancer agents: synthesis, characterization, combined experimental and computational studies. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220659. [PMID: 36147940 PMCID: PMC9490329 DOI: 10.1098/rsos.220659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/26/2022] [Indexed: 05/10/2023]
Abstract
In this study, a series of 14 Cu (II), Zn (II), Ni (II) and Ag (I) complexes containing bis-benzimidazole derivatives were successfully designed and synthesized from 2-(1H-benzimidazole-2-yl)-phenol derivatives and corresponding metal salt solutions. The compound structures were identified by FT-IR, 1H-NMR, powder X-ray diffraction and ESI-MS analyses, and the presence of the metal in the complexes was confirmed by ultraviolet-visible spectroscopy and ICP optical emission spectrometry. Electronic structure calculations were also carried out to describe the detailed structures in addition to the electronic absorption spectra of the ligands. The cytotoxic activity of the complexes was evaluated against three human cancer cell lines: lung (A549), breast (MDA-MB-231) and prostate (PC3) cancer cells. All complexes inhibited anti-proliferative cancer cells better than free ligands, especially Zn (II) and Ag (I) complexes, which are most sensitive to MDA-MB-231 cells. In addition, showing the growth inhibition of three cancer cell lines with IC50 < 10.4 µM, complexes C1 , C3 and C14 could be considered potential multi-targeted anti-cancer agents.
Collapse
Affiliation(s)
- Van-Thanh Nguyen
- Institute of Chemical Technology – VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Thi-Kim-Chi Huynh
- Institute of Chemical Technology – VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology – VAST, 18 Hoang Quoc Viet Street, Nghia Do Ward, Cau Giay District, Hanoi 100000, Vietnam
| | - Gia-Thien-Thanh Ho
- Institute of Chemical Technology – VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City 700000, Vietnam
| | - Thi-Hong-An Nguyen
- Institute of Chemical Technology – VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 50000, Vietnam
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang 50000, Vietnam
| | - Tam V. T. Mai
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- University of Science, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Lam K. Huynh
- University of Science, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
- International University, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Thi-Kim-Dung Hoang
- Institute of Chemical Technology – VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology – VAST, 18 Hoang Quoc Viet Street, Nghia Do Ward, Cau Giay District, Hanoi 100000, Vietnam
| |
Collapse
|
17
|
Nguyen VT, Huynh TKC, Ho GTT, Nguyen THA, Le Anh Nguyen T, Dao DQ, Mai TVT, Huynh LK, Hoang TKD. Metal complexes of benzimidazole-derived as potential anti-cancer agents: synthesis, characterization, combined experimental and computational studies. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220659. [PMID: 36147940 DOI: 10.6084/m9.figshare.c.6197452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/26/2022] [Indexed: 05/25/2023]
Abstract
In this study, a series of 14 Cu (II), Zn (II), Ni (II) and Ag (I) complexes containing bis-benzimidazole derivatives were successfully designed and synthesized from 2-(1H-benzimidazole-2-yl)-phenol derivatives and corresponding metal salt solutions. The compound structures were identified by FT-IR, 1H-NMR, powder X-ray diffraction and ESI-MS analyses, and the presence of the metal in the complexes was confirmed by ultraviolet-visible spectroscopy and ICP optical emission spectrometry. Electronic structure calculations were also carried out to describe the detailed structures in addition to the electronic absorption spectra of the ligands. The cytotoxic activity of the complexes was evaluated against three human cancer cell lines: lung (A549), breast (MDA-MB-231) and prostate (PC3) cancer cells. All complexes inhibited anti-proliferative cancer cells better than free ligands, especially Zn (II) and Ag (I) complexes, which are most sensitive to MDA-MB-231 cells. In addition, showing the growth inhibition of three cancer cell lines with IC50 < 10.4 µM, complexes C1 , C3 and C14 could be considered potential multi-targeted anti-cancer agents.
Collapse
Affiliation(s)
- Van-Thanh Nguyen
- Institute of Chemical Technology - VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Thi-Kim-Chi Huynh
- Institute of Chemical Technology - VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology - VAST, 18 Hoang Quoc Viet Street, Nghia Do Ward, Cau Giay District, Hanoi 100000, Vietnam
| | - Gia-Thien-Thanh Ho
- Institute of Chemical Technology - VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City 700000, Vietnam
| | - Thi-Hong-An Nguyen
- Institute of Chemical Technology - VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 50000, Vietnam
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang 50000, Vietnam
| | - Tam V T Mai
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- University of Science, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Lam K Huynh
- University of Science, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
- International University, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Thi-Kim-Dung Hoang
- Institute of Chemical Technology - VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology - VAST, 18 Hoang Quoc Viet Street, Nghia Do Ward, Cau Giay District, Hanoi 100000, Vietnam
| |
Collapse
|
18
|
Aminopeptidase N Inhibitors as Pointers for Overcoming Antitumor Treatment Resistance. Int J Mol Sci 2022; 23:ijms23179813. [PMID: 36077208 PMCID: PMC9456425 DOI: 10.3390/ijms23179813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 12/05/2022] Open
Abstract
Aminopeptidase N (APN), also known as CD13 antigen or membrane alanyl aminopeptidase, belongs to the M1 family of the MA clan of zinc metallopeptidases. In cancer cells, the inhibition of aminopeptidases including APN causes the phenomenon termed the amino acid deprivation response (AADR), a stress response characterized by the upregulation of amino acid transporters and synthetic enzymes and activation of stress-related pathways such as nuclear factor kB (NFkB) and other pro-apoptotic regulators, which leads to cancer cell death by apoptosis. Recently, APN inhibition has been shown to augment DR4-induced tumor cell death and thus overcome resistance to cancer treatment with DR4-ligand TRAIL, which is available as a recombinant soluble form dulanermin. This implies that APN inhibitors could serve as potential weapons for overcoming cancer treatment resistance. In this study, a series of basically substituted acetamidophenones and the semicarbazones and thiosemicarbazones derived from them were prepared, for which APN inhibitory activity was determined. In addition, a selective anti-proliferative activity against cancer cells expressing APN was demonstrated. Our semicarbazones and thiosemicarbazones are the first compounds of these structural types of Schiff bases that were reported to inhibit not only a zinc-dependent aminopeptidase of the M1 family but also a metalloenzyme.
Collapse
|
19
|
Vourloumis D, Mavridis I, Athanasoulis A, Temponeras I, Koumantou D, Giastas P, Mpakali A, Magrioti V, Leib J, van Endert P, Stratikos E, Papakyriakou A. Discovery of Selective Nanomolar Inhibitors for Insulin-Regulated Aminopeptidase Based on α-Hydroxy-β-amino Acid Derivatives of Bestatin. J Med Chem 2022; 65:10098-10117. [PMID: 35833347 DOI: 10.1021/acs.jmedchem.2c00904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxytocinase subfamily of M1 zinc aminopeptidases comprises emerging drug targets, including the ER-resident aminopeptidases 1 and 2 (ERAP1 and ERAP2) and insulin-regulated aminopeptidase (IRAP); however, reports on clinically relevant inhibitors are limited. Here we report a new synthetic approach of high diastereo- and regioselectivity for functionalization of the α-hydroxy-β-amino acid scaffold of bestatin. Stereochemistry and mechanism of inhibition were investigated by a high-resolution X-ray crystal structure of ERAP1 in complex with a micromolar inhibitor. By exploring the P1 side-chain functionalities, we achieve significant potency and selectivity, and we report a cell-active, low-nanomolar inhibitor of IRAP with >120-fold selectivity over homologous enzymes. X-ray crystallographic analysis of IRAP in complex with this inhibitor suggest that interactions with the GAMEN loop is an unappreciated key determinant for potency and selectivity. Overall, our results suggest that α-hydroxy-β-amino acid derivatives may constitute useful chemical tools and drug leads for this group of aminopeptidases.
Collapse
Affiliation(s)
- Dionisios Vourloumis
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Ioannis Mavridis
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Alexandros Athanasoulis
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Ioannis Temponeras
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece.,Department of Pharmacy, University of Patras, 26504 Patra, Greece
| | - Despoina Koumantou
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Petros Giastas
- Department of Biotechnology, Agricultural University of Athens, GR-11855 Athens, Greece
| | - Anastasia Mpakali
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece.,Department of Chemistry, National and Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Victoria Magrioti
- Department of Chemistry, National and Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Jacqueline Leib
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France.,Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France
| | - Efstratios Stratikos
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece.,Department of Chemistry, National and Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Athanasios Papakyriakou
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| |
Collapse
|
20
|
Chen J, Chen L, Zeng F, Wu S. Aminopeptidase N Activatable Nanoprobe for Tracking Lymphatic Metastasis and Guiding Tumor Resection Surgery via Optoacoustic/NIR-II Fluorescence Dual-Mode Imaging. Anal Chem 2022; 94:8449-8457. [DOI: 10.1021/acs.analchem.2c01241] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Junjie Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Longqi Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| |
Collapse
|
21
|
Tong S, Zhao W, Zhao D, Zhang W, Zhang Z. Biomaterials-Mediated Tumor Infarction Therapy. Front Bioeng Biotechnol 2022; 10:916926. [PMID: 35757801 PMCID: PMC9218593 DOI: 10.3389/fbioe.2022.916926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Agents for tumor vascular infarction are recently developed therapeutic agents for the vascular destruction of tumors. They can suppress the progression of the tumor by preventing the flow of nutrition and oxygen to its tissues. Agents of tumor vascular infarction can be divided into three categories according to the differences in their pathways of action: those that use the thrombin-activating pathway, fibrin-activating pathway, and platelet-activating pathway. However, poor targeting ability, low permeation, and potential side-effects restrict the development of the corresponding drugs. Biomaterials can subtly avoid these drawbacks to suppress the tumor. In this article, the authors summarize currently used biomaterials for tumor infarction therapy with the goal of identifying its mechanism, and discuss outstanding deficiencies in methods of this kind.
Collapse
Affiliation(s)
| | | | | | | | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Xing X, Li F, Hu Y, Zhang L, Hui Q, Qin H, Jiang Q, Jiang W, Fang C, Zhang L. Discovery of Novel Tetrahydro-β-carboline Containing Aminopeptidase N Inhibitors as Cancer Chemosensitizers. Front Oncol 2022; 12:894842. [PMID: 35677165 PMCID: PMC9168271 DOI: 10.3389/fonc.2022.894842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/25/2022] [Indexed: 12/30/2022] Open
Abstract
Aminopeptidase N (APN, CD13) is closely associated with the development and progression of cancer. Previous studies suggested APN as a biomarker for cancer stem cells. APN inhibitors have been intensively evaluated as chemosensitizers for cancer treatments. In the present study, tetrahydro-β-carboline scaffold was introduced to the structure of APN inhibitors. The synthesized compounds showed potent enzyme inhibitory activities compared with Bestatin, an approved APN inhibitor, in cell-based enzymatic assay. In combination with chemotherapeutic drugs, representative APN inhibitor molecules D12, D14 and D16 significantly improved the antiproliferative potency of anticancer drugs in the in vitro tests. Further mechanistic studies revealed that the anticancer effects of these drug combinations are correlated with decreased APN expression, increased ROS level, and induction of cell apoptosis. The spheroid-formation assay and colony-formation assay results showed effectiveness of Paclitaxel-APN inhibitor combination against breast cancer stem cell growth. The combined drug treatment led to reduced mRNA expression of OCT-4, SOX-2 and Nanog in the cancer stem cells tested, suggesting the reduced stemness of the cells. In the in vivo study, the selected APN inhibitors, especially D12, exhibited improved anticancer activity in combination with Paclitaxel compared with Bestatin. Collectively, potent APN inhibitors were discovered, which could be used as lead compounds for tumor chemo-sensitization and cancer stem cell-based therapies.
Collapse
Affiliation(s)
- Xiaoyan Xing
- Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Fahui Li
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yajie Hu
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lin Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Qian Hui
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Hongyu Qin
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Wenyan Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Chunyan Fang
- Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
23
|
Saito Y, Yatabe H, Tamura I, Kondo Y, Ishida R, Seki T, Hiraga K, Eguchi A, Takakusagi Y, Saito K, Oshima N, Ishikita H, Yamamoto K, Krishna MC, Sando S. Structure-guided design enables development of a hyperpolarized molecular probe for the detection of aminopeptidase N activity in vivo. SCIENCE ADVANCES 2022; 8:eabj2667. [PMID: 35353577 PMCID: PMC8967239 DOI: 10.1126/sciadv.abj2667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dynamic nuclear polarization (DNP) is a cutting-edge technique that markedly enhances the detection sensitivity of molecules using nuclear magnetic resonance (NMR)/magnetic resonance imaging (MRI). This methodology enables real-time imaging of dynamic metabolic status in vivo using MRI. To expand the targetable metabolic reactions, there is a demand for developing exogenous, i.e., artificially designed, DNP-NMR molecular probes; however, complying with the requirements of practical DNP-NMR molecular probes is challenging because of the lack of established design guidelines. Here, we report Ala-[1-13C]Gly-d2-NMe2 as a DNP-NMR molecular probe for in vivo detection of aminopeptidase N activity. We developed this probe rationally through precise structural investigation, calculation, biochemical assessment, and advanced molecular design to achieve rapid and detectable responses to enzyme activity in vivo. With the fabricated probe, we successfully detected enzymatic activity in vivo. This report presents a comprehensive approach for the development of artificially derived, practical DNP-NMR molecular probes through structure-guided molecular design.
Collapse
Affiliation(s)
- Yutaro Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Yatabe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Iori Tamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yohei Kondo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryo Ishida
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomohiro Seki
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keita Hiraga
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akihiro Eguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoichi Takakusagi
- Quantum Hyperpolarized MRI Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), Anagawa 4-9-1, Inage, Chiba-city 263-8555, Japan
- Institute for Quantum Medical Science (iQMS), National Institutes for Quantum and Radiological Science and Technology (QST), Anagawa 4-9-1, Inage, Chiba-city 263-8555, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Nobu Oshima
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hiroshi Ishikita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Kazutoshi Yamamoto
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Murali C. Krishna
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author. (M.C.K.); (S.S.)
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Corresponding author. (M.C.K.); (S.S.)
| |
Collapse
|
24
|
Pascual Alonso I, Valiente PA, Valdés-Tresanco ME, Arrebola Y, Almeida García F, Díaz L, García G, Guirola O, Pastor D, Bergado G, Sánchez B, Charli JL. Discovery of tight-binding competitive inhibitors of dipeptidyl peptidase IV. Int J Biol Macromol 2022; 196:120-130. [PMID: 34920066 DOI: 10.1016/j.ijbiomac.2021.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022]
Abstract
Dipeptidyl peptidase IV (DPP-IV, EC 3.4.14.5) is an abundant serine aminopeptidase that preferentially cleaves N-terminal Xaa-Pro or Xaa-Ala dipeptides from oligopeptides. Inhibitors of DPP-IV activity are used for treating type 2 diabetes mellitus and other diseases. DPP-IV is also involved in tumor progression. We identified four new non-peptide tight-binding competitive inhibitors of porcine DPP-IV by virtual screening and enzymatic assays. Molecular docking simulations supported the competitive behavior, and the selectivity of one of the compounds in the DPP-IV family. Since three of these inhibitors are also aminopeptidase N (APN) inhibitors, we tested their impact on APN+/DPP-IV+ and DPP-IV+ human tumor cells' viability. Using kinetic assays, we determined that HL-60 tumor cells express both APN and DPP-IV activities and that MDA-MB-231 tumor cells express DPP-IV activity. The inhibitors had a slight inhibitory effect on human HEK-293 cell viability but reduced the viability of APN+/DPP-IV+ and DPP-IV+ human tumor cells more potently. Remarkably, the intraperitoneal injection of these compounds inhibited DPP-IV activity in rat brain, liver, and pancreas. In silico studies suggested inhibitors binding to serum albumin contribute to blood-brain barrier crossing. The spectrum of action of some of these compounds may be useful for niche applications.
Collapse
Affiliation(s)
| | - Pedro A Valiente
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Canada.
| | - Mario E Valdés-Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba; Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Yarini Arrebola
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba
| | | | - Lisset Díaz
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba
| | - Gabriela García
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba
| | - Osmany Guirola
- Centro de Ingeniería Genética y Biotecnología, BioCubafarma, Cuba
| | - Daniel Pastor
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba
| | | | | | - Jean-Louis Charli
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| |
Collapse
|
25
|
Verhulst E, Garnier D, De Meester I, Bauvois B. Validating Cell Surface Proteases as Drug Targets for Cancer Therapy: What Do We Know, and Where Do We Go? Cancers (Basel) 2022; 14:624. [PMID: 35158891 PMCID: PMC8833564 DOI: 10.3390/cancers14030624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cell surface proteases (also known as ectoproteases) are transmembrane and membrane-bound enzymes involved in various physiological and pathological processes. Several members, most notably dipeptidyl peptidase 4 (DPP4/CD26) and its related family member fibroblast activation protein (FAP), aminopeptidase N (APN/CD13), a disintegrin and metalloprotease 17 (ADAM17/TACE), and matrix metalloproteinases (MMPs) MMP2 and MMP9, are often overexpressed in cancers and have been associated with tumour dysfunction. With multifaceted actions, these ectoproteases have been validated as therapeutic targets for cancer. Numerous inhibitors have been developed to target these enzymes, attempting to control their enzymatic activity. Even though clinical trials with these compounds did not show the expected results in most cases, the field of ectoprotease inhibitors is growing. This review summarizes the current knowledge on this subject and highlights the recent development of more effective and selective drugs targeting ectoproteases among which small molecular weight inhibitors, peptide conjugates, prodrugs, or monoclonal antibodies (mAbs) and derivatives. These promising avenues have the potential to deliver novel therapeutic strategies in the treatment of cancers.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| |
Collapse
|
26
|
Tamai K, Fujimori H, Mochizuki M, Satoh K. Cancer Stem Cells in Intrahepatic Cholangiocarcinoma; Their Molecular Basis, and Therapeutic Implications. Front Physiol 2022; 12:824261. [PMID: 35111082 PMCID: PMC8801575 DOI: 10.3389/fphys.2021.824261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer tissue consists of heterogenous cell types, and cancer stem cells (CSCs) are a subpopulation of the tissue which possess therapy resistance, tumor reconstruction capability, and are responsible for metastasis. Intrahepatic cholangiocarcinoma (iCCA) is one of the most common type of liver cancer that is highly aggressive with poor prognosis. Since no target therapy is efficient in improving patient outcomes, new therapeutic approaches need to be developed. CSC is thought to be a promising therapeutic target because of its resistance to therapy. Accumulating evidences suggests that there are many factors (surface marker, stemness-related genes, etc.) and mechanisms (epithelial-mesenchymal transition, mitochondria activity, etc.) which are linked to CSC-like phenotypes. Nevertheless, limited studies are reported about the application of therapy using these mechanisms, suggesting that more precise understandings are still needed. In this review, we overview the molecular mechanisms which modulate CSC-like phenotypes, and discuss the future perspective for targeting CSC in iCCA.
Collapse
Affiliation(s)
- Keiichi Tamai
- Division of Cancer Stem Cells, Miyagi Cancer Center Research Institute, Natori, Japan
- *Correspondence: Keiichi Tamai,
| | - Haruna Fujimori
- Division of Cancer Stem Cells, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Mai Mochizuki
- Division of Cancer Stem Cells, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kennichi Satoh
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
27
|
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers that is threatening women's life. Current clinical treatment regimens for breast cancer often involve neoadjuvant and adjuvant systemic therapies, which somewhat are associated with unfavorable features. Also, the heterogeneous nature of breast cancers requires precision medicine that cannot be fulfilled by a single type of systemically administered drug. Taking advantage of the nanocarriers, nanomedicines emerge as promising therapeutic agents for breast cancer that could resolve the defects of drugs and achieve precise drug delivery to almost all sites of primary and metastatic breast tumors (e.g. tumor vasculature, tumor stroma components, breast cancer cells, and some immune cells). Seven nanomedicines as represented by Doxil® have been approved for breast cancer clinical treatment so far. More nanomedicines including both non-targeting and active targeting nanomedicines are being evaluated in the clinical trials. However, we have to realize that the translation of nanomedicines, particularly the active targeting nanomedicines is not as successful as people have expected. This review provides a comprehensive landscape of the nanomedicines for breast cancer treatment, from laboratory investigations to clinical applications. We also highlight the key advances in the understanding of the biological fate and the targeting strategies of breast cancer nanomedicine and the implications to clinical translation.
Collapse
|
28
|
Liu Q, Dong H, Zhao W, Zhang G, Li S, Xu Q, Zhang Y. Design, Synthesis, and Biological Evaluation of APN and AKT Dual-Target Inhibitors. ACS Med Chem Lett 2021; 12:1932-1941. [PMID: 34917257 DOI: 10.1021/acsmedchemlett.1c00504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
Herein a novel series of APN and AKT dual inhibitors were derived from the clinical AKT inhibitor AZD5363. It was demonstrated that most compounds exhibited remarkable APN inhibitory activities with the most potent compound 8b (IC50 = 0.05 ± 0.01 μM) being over 70-fold more potent than the approved APN inhibitor bestatin (IC50 = 3.64 ± 0.56 μM). The moderate AKT inhibitory potencies of target compounds were also confirmed, with 5f and 5h possessing AKT1 IC50 values of 0.12 and 0.27 μM, respectively. More importantly, the APN IC50 values of 5f and 5h were 0.96 and 0.21 μM, respectively, indicating their balanced APN and AKT dual inhibition. HUVEC tube formation assays confirmed the superior APN inhibitory activities of 5f and 5h relative to bestatin at the cellular level. Western blot analysis demonstrated that 5h could effectively inhibit the phosphorylation of GSK3β, the intracellular substrate of AKT.
Collapse
Affiliation(s)
- Qian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Ji’nan, Shandong 250012, P.R. China
| | - Hang Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Ji’nan, Shandong 250012, P.R. China
| | - Wei Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Ji’nan, Shandong 250012, P.R. China
| | - Guozhen Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Ji’nan, Shandong 250012, P.R. China
| | - Shunda Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Ji’nan, Shandong 250012, P.R. China
| | - Qifu Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Ji’nan, Shandong 250012, P.R. China
| | - Yingjie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Ji’nan, Shandong 250012, P.R. China
| |
Collapse
|
29
|
Tagde P, Tagde P, Islam F, Tagde S, Shah M, Hussain ZD, Rahman MH, Najda A, Alanazi IS, Germoush MO, Mohamed HRH, Algandaby MM, Nasrullah MZ, Kot N, Abdel-Daim MM. The Multifaceted Role of Curcumin in Advanced Nanocurcumin Form in the Treatment and Management of Chronic Disorders. Molecules 2021; 26:7109. [PMID: 34885693 PMCID: PMC8659038 DOI: 10.3390/molecules26237109] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Curcumin is the primary polyphenol in turmeric's curcuminoid class. It has a wide range of therapeutic applications, such as anti-inflammatory, antioxidant, antidiabetic, hepatoprotective, antibacterial, and anticancer effects against various cancers, but has poor solubility and low bioavailability. Objective: To improve curcumin's bioavailability, plasma concentration, and cellular permeability processes. The nanocurcumin approach over curcumin has been proven appropriate for encapsulating or loading curcumin (nanocurcumin) to increase its therapeutic potential. Conclusion: Though incorporating curcumin into nanocurcumin form may be a viable method for overcoming its intrinsic limitations, and there are reasonable concerns regarding its toxicological safety once it enters biological pathways. This review article mainly highlights the therapeutic benefits of nanocurcumin over curcumin.
Collapse
Affiliation(s)
- Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201303, India
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopa l462026, India;
| | - Pooja Tagde
- Practice of Medicine Department, Government Homeopathy College, Bhopa l462016, India;
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Sandeep Tagde
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopa l462026, India;
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Department of Global Medical Science, Graduate School, Yonsei University, Wonju 26426, Korea
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland;
| | - Ibtesam S. Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia;
| | - Mousa O. Germoush
- Biology Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia;
| | - Hanan R. H. Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Mardi M. Algandaby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammed Z. Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Natalia Kot
- Department of Landscape Architecture, University of Life Science in Lublin, 28 Gleboka Street, 20-612 Lublin, Poland;
| | - Mohamed M. Abdel-Daim
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
30
|
Is tumour-expressed aminopeptidase N (APN/CD13) structurally and functionally unique? Biochim Biophys Acta Rev Cancer 2021; 1876:188641. [PMID: 34695533 DOI: 10.1016/j.bbcan.2021.188641] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Aminopeptidase N (APN/CD13) is a multifunctional glycoprotein that acts as a peptidase, receptor, and signalling molecule in a tissue-dependent manner. The activities of APN have been implicated in the progression of many cancers, pointing toward significant therapeutic potential for cancer treatment. However, despite the tumour-specific functions of this protein that have been uncovered, the ubiquitous nature of its expression in normal tissues as generally reported remains a limitation to the potential utility of APN as a target for cancer therapeutics and drug discovery. With this in mind, we have extensively explored the literature, and present a comprehensive review that for the first-time provides evidence to support the suggestion that tumour-expressed APN may in fact be unique in structure, function, substrate specificity and activity, contrary to its nature in normal tissues. The review also focuses on the biology of APN, and its "moonlighting" functional roles in both normal physiology and cancer development. Several APN-targeting approaches that have been explored over recent decades as therapeutic strategies in cancer treatment, including APN-targeting agents reported both in preclinical and clinical studies, are also extensively discussed. This review concludes by posing critical questions about APN that remain unanswered and unexplored, hence providing opportunities for further research.
Collapse
|
31
|
Aminopeptidase N Is an Entry Co-factor Triggering Porcine Deltacoronavirus Entry via an Endocytotic Pathway. J Virol 2021; 95:e0094421. [PMID: 34406863 DOI: 10.1128/jvi.00944-21] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a recently discovered coronavirus that poses a potential threat to the global swine industry. Although we know that aminopeptidase N (APN) is important for PDCoV replication, it is unclear whether it is the primary functional receptor, and the mechanism by which it promotes viral replication is not fully understood. Here, we systematically investigated the roles of porcine APN (pAPN) during PDCoV infection of nonsusceptible cells, including in viral attachment and internalization. Using a viral entry assay, we found that PDCoV can enter nonsusceptible cells but then fails to initiate efficient replication. pAPN and PDCoV virions clearly colocalized with the endocytotic markers RAB5, RAB7, and LAMP1, suggesting that pAPN mediates PDCoV entry by an endocytotic pathway. Most importantly, our study shows that regardless of which receptor PDCoV engages, only entry by an endocytotic route ultimately leads to efficient viral replication. This knowledge should contribute to the development of efficient antiviral treatments, which are especially useful in preventing cross-species transmission. IMPORTANCE PDCoV is a pathogen with the potential for transmission across diverse species, although the mechanism of such host-switching events (from swine to other species) is poorly understood. Here, we show that PDCoV enters nonsusceptible cells but without efficient replication. We also investigated the key role played by aminopeptidase N in mediating PDCoV entry via an endocytotic pathway. Our results demonstrate that viral entry via endocytosis is a major determinant of efficient PDCoV replication. This knowledge provides a basis for future studies of the cross-species transmissibility of PDCoV and the development of appropriate antiviral drugs.
Collapse
|
32
|
Lindberg J, Nilvebrant J, Nygren PÅ, Lehmann F. Progress and Future Directions with Peptide-Drug Conjugates for Targeted Cancer Therapy. Molecules 2021; 26:molecules26196042. [PMID: 34641586 PMCID: PMC8512983 DOI: 10.3390/molecules26196042] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
We review drug conjugates combining a tumor-selective moiety with a cytotoxic agent as cancer treatments. Currently, antibody-drug conjugates (ADCs) are the most common drug conjugates used clinically as cancer treatments. While providing both efficacy and favorable tolerability, ADCs have limitations due to their size and complexity. Peptides as tumor-targeting carriers in peptide-drug conjugates (PDCs) offer a number of benefits. Melphalan flufenamide (melflufen) is a highly lipophilic PDC that takes a novel approach by utilizing increased aminopeptidase activity to selectively increase the release and concentration of cytotoxic alkylating agents inside tumor cells. The only other PDC approved currently for clinical use is 177Lu-dotatate, a targeted form of radiotherapy combining a somatostatin analog with a radionuclide. It is approved as a treatment for gastroenteropancreatic neuroendocrine tumors. Results with other PDCs combining synthetic analogs of natural peptide ligands with cytotoxic agents have been mixed. The field of drug conjugates as drug delivery systems for the treatment of cancer continues to advance with the application of new technologies. Melflufen provides a paradigm for rational PDC design, with a targeted mechanism of action and the potential for deepening responses to treatment, maintaining remissions, and eradicating therapy-resistant stem cells.
Collapse
Affiliation(s)
- Jakob Lindberg
- Oncopeptides AB, Västra Trädgårdsgatan 15, SE-111 53 Stockholm, Sweden;
| | - Johan Nilvebrant
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden; (J.N.); (P.-Å.N.)
- SciLifeLab, SE-171 65 Solna, Sweden
| | - Per-Åke Nygren
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden; (J.N.); (P.-Å.N.)
- SciLifeLab, SE-171 65 Solna, Sweden
| | - Fredrik Lehmann
- Oncopeptides AB, Västra Trädgårdsgatan 15, SE-111 53 Stockholm, Sweden;
- Correspondence: ; Tel.: +46-(0)861-520-40
| |
Collapse
|
33
|
Pascual Alonso I, García G, Díaz L, Arrebola Y, Rivera Méndez L, Almeida García F, Chappé Pacheco M, Sánchez B, Charli JL. Effect of non-competitive inhibitors of aminopeptidase N on viability of human and murine tumor cells. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2020-1010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Cancer is the second leading cause of death worldwide. Peptidases participate in tumor development and growth. Mammalian neutral aminopeptidase (APN, EC 3.4.11.2, M1 family) catalyzes the cleavage of neutral and basic amino acids from the N-terminus of substrates. APN expression is dysregulated in several types of cancer, being a target for the development of new anticancer agents. Recently, we identified three new non-competitive inhibitors of soluble porcine APN (pAPN) by virtual screening (BTB11079, JFD00064, BTB07018, from Maybridge). In the present contribution we assayed their effect on the activity of APN in a microsomal preparation of porcine kidney cortex, a model of the physicochemical environment of the enzyme. These classical inhibitors had an IC50 value of 3–5 µM. Additionally, using a kinetic approach and a specific substrate, we quantified APN activity on the cell surface of human and murine lung, colon, prostate, and skin tumor cells. APN inhibitors reduced tumor cells viability, more efficiently in the higher APN activity tumor cell lines, but not in non-tumoral cells. BTB11079, JFD00064, BTB07018 effects on cell viability were stronger than that of bestatin, a positive control. Thus, these non-competitive APN inhibitors may be useful tools for cancer treatment.
Collapse
Affiliation(s)
- Isel Pascual Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana , Havana , Cuba
| | - Gabriela García
- Center for Protein Studies, Faculty of Biology, University of Havana , Havana , Cuba
| | - Lisset Díaz
- Center for Protein Studies, Faculty of Biology, University of Havana , Havana , Cuba
| | - Yarini Arrebola
- Center for Protein Studies, Faculty of Biology, University of Havana , Havana , Cuba
| | - Laura Rivera Méndez
- Center for Protein Studies, Faculty of Biology, University of Havana , Havana , Cuba
| | | | | | - Belinda Sánchez
- Centro de Inmunología Molecular, BioCubafarma , Havana , Cuba
| | - Jean-Louis Charli
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM) , Cuernavaca , México
| |
Collapse
|
34
|
Yue K, Hou X, Jia G, Zhang L, Zhang J, Tan L, Wang X, Zhang Z, Li P, Xu W, Li X, Jiang Y. Design, synthesis and biological evaluation of hybrid of ubenimex-fluorouracil for hepatocellular carcinoma therapy. Bioorg Chem 2021; 116:105343. [PMID: 34544027 DOI: 10.1016/j.bioorg.2021.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
In our previous study, we discovered a ubenimex-fluorouracil (5FU) conjugates BC-02, which displays significant in vivo anti-tumor activity, however, the instability of BC-02 in plasma limits its further development as a drug candidate. Herein, we designed and synthesized four novel ubenimex-5FU conjugates by optimizing the linkers between ubenimex and 5FU based on BC-02. Representative compound 20 is more stable than BC-02 in human plasma and displays about 100 times higher CD13 inhibitory activity than the positive control ubenimex. Meanwhile, the antiproliferative activity of 20 was comparable with 5FU in vitro. The preliminary mechanism study indicated that compound 20 exhibited significant anti-invasion and anti-angiogenesis activities in vitro. Furthermore, compound 20 obviously inhibits tumor growth and metastasis in vivo and prolong the survival time of tumor-bearing mice. Our study may have an important implication reference for the design of more druglike mutual prodrug, and compound 20 can be used as a lead compound for further design and development.
Collapse
Affiliation(s)
- Kairui Yue
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Xiaohan Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Geng Jia
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Liang Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Jian Zhang
- College of Pharmacy, Weifang Medical University, 261053 Wei'fang, Shandong, PR China
| | - Leqiao Tan
- Weifang Bochuang International Biological Medicinal Institute, Weifang, Shandong 261061, PR China
| | - Xuejian Wang
- College of Pharmacy, Weifang Medical University, 261053 Wei'fang, Shandong, PR China
| | - Zhaolin Zhang
- Weifang Bochuang International Biological Medicinal Institute, Weifang, Shandong 261061, PR China
| | - Peixia Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Wenfang Xu
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266071, PR China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| |
Collapse
|
35
|
Scott J, Deng Q, Vendrell M. Near-Infrared Fluorescent Probes for the Detection of Cancer-Associated Proteases. ACS Chem Biol 2021; 16:1304-1317. [PMID: 34315210 PMCID: PMC8383269 DOI: 10.1021/acschembio.1c00223] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
Proteases are enzymes capable of catalyzing protein breakdown, which is critical across many biological processes. There are several families of proteases, each of which perform key functions through the degradation of specific proteins. As our understanding of cancer improves, it has been demonstrated that several proteases can be overactivated during the progression of cancer and contribute to malignancy. Optical imaging systems that employ near-infrared (NIR) fluorescent probes to detect protease activity offer clinical promise, both for early detection of cancer as well as for the assessment of personalized therapy. In this Review, we review the design of NIR probes and their successful application for the detection of different cancer-associated proteases.
Collapse
Affiliation(s)
- Jamie
I. Scott
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4TJ Edinburgh, United Kingdom
| | - Qinyi Deng
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4TJ Edinburgh, United Kingdom
| | - Marc Vendrell
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4TJ Edinburgh, United Kingdom
| |
Collapse
|
36
|
Israel I, Elflein K, Schirbel A, Chen K, Samnick S. A comparison of the monomeric [ 68Ga]NODAGA-NGR and dimeric [ 68Ga]NOTA-(NGR) 2 as aminopeptidase N ligand for positron emission tomography imaging in tumor-bearing mice. Eur J Pharm Sci 2021; 166:105964. [PMID: 34375678 DOI: 10.1016/j.ejps.2021.105964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/23/2021] [Accepted: 08/01/2021] [Indexed: 11/30/2022]
Abstract
The aminopeptidase N (APN/CD13) is a key protein specifically expressed on activated endothelial cells and by various tumors, representing a promising target for molecular imaging and therapy of malignant diseases. It is known that the tripeptide NGR is a specific ligand for CD13, therefore radiolabeled NGR peptides are auspicious radiotracers for non-invasive imaging of CD13-positive tumors. From previous studies, it is known that the target affinity could be improved by molecules with multiple ligand sequences. Therefore, the aim of this study was to compare two NGR radioligands [68Ga]NODAGA-NGR (NGR monomer) and [68Ga]NOTA-(NGR)2 (NGR dimer), the latter with two NGR ligand motifs, in vitro and in vivo. CD13 expression was determined by FACS in the human tumor cells A549, SKHep-1, and MDA-MB-231, followed by the investigation of the cell uptake of [68Ga]NODAGA-NGR and [68Ga]NOTA-(NGR)2. For in vivo evaluation of [68Ga]NODAGA-NGR and [68Ga]NOTA-(NGR)2, microPET and biodistribution were carried out in A549- and SKHep-1-bearing mice. After the final examination, tumors were cryo-conserved, cut, and stained against CD13 and CD31. A549 and SKHep-1 cells were identified as CD13 positive, whereas no CD13 expression was detected in MDA-MB-231 cells. The cell uptake study showed relatively low accumulation of both the NGR monomer and dimer in all tumor cell lines examined, with consistently higher cell uptake observed for the dimer than for the monomer. In vivo, [68Ga]NODAGA-NGR and [68Ga]NOTA-(NGR)2 accumulated in the tumors, with slightly higher tumor-to-muscle ratio for the NGR dimer in A549 and SKHep-1. The tumor-to-liver ratio of the NGR dimer was diminished in comparison to the NGR monomer. This finding was confirmed by biodistribution, which revealed higher accumulation in liver and spleen for the NGR dimer. Immunohistochemical staining confirmed the CD13 expression in the tumors and tumor-associated vessels. In conclusion, both the [68Ga]NODAGA-NGR and the [68Ga]NOTA-(NGR)2 were found to be suitable for PET imaging of CD13-positive tumors. Despite slight differences in tumor-to-background ratio and organ accumulation, both radiotracers can be considered comparable.
Collapse
Affiliation(s)
- Ina Israel
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Konstantin Elflein
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
37
|
Wang M, Qu Y, Hu D, Niu T, Qian Z. Nanomedicine Applications in Treatment of Primary Central Nervous System Lymphoma: Current State of the Art. J Biomed Nanotechnol 2021; 17:1459-1485. [PMID: 34544527 DOI: 10.1166/jbn.2021.3133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare but highly aggressive subtype of extra nodal non-Hodgkin lymphoma (NHL), which is confined in the central nervous system (CNS). Despite recent advancements in treatment options, the overall prognosis of PCNSL remains poor. Among many unfavorable factors affecting efficacy, inadequate drug delivery into the CNS is still the thorniest challenge. Blood-brain barrier (BBB) constitutes a significant impediment, restricting entry of most therapeutics to the brain. Nanotechnology has offered great promise for brain diseases, as various nano-based drug delivery systems (NDDSs) have been developed for delivery of theranostic agents in to the CNS. These drug delivery systems possess significant advantages, including good feasibility, reliable safety profile, excellent BBB penetration and potent antitumor effects. As for treatment of PCNSL, numerous well-developed BBB-crossing nano-based strategies can be applied with proper modifications and improvements. Some exquisitely designed NDDSs specific for PCNSL have shown great potential. In this review, we provide a summary on current status of diagnosis and treatment of PCNSL, followed by an overview of BBB-crossing strategies applied in management of PCNSL, both novel and wellestablished. Finally, challenges and future perspectives in this field are also discussed.
Collapse
Affiliation(s)
- Mengyao Wang
- Department of Hematology and Research Laboratory of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ying Qu
- Department of Hematology and Research Laboratory of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Danrong Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center, Chengdu, Sichuan, 610041, P. R. China
| | - Ting Niu
- Department of Hematology and Research Laboratory of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
38
|
Feng L, Tian Z, Zhang M, He X, Tian X, Yu Z, Ma X, Wang C. Real-time identification of gut microbiota with aminopeptidase N using an activable NIR fluorescent probe. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Aronson MR, Medina SH, Mitchell MJ. Peptide functionalized liposomes for receptor targeted cancer therapy. APL Bioeng 2021; 5:011501. [PMID: 33532673 PMCID: PMC7837755 DOI: 10.1063/5.0029860] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Most clinically approved cancer therapies are potent and toxic small molecules that are limited by severe off-target toxicities and poor tumor-specific localization. Over the past few decades, attempts have been made to load chemotherapies into liposomes, which act to deliver the therapeutic agent directly to the tumor. Although liposomal encapsulation has been shown to decrease toxicity in human patients, reliance on passive targeting via the enhanced permeability and retention (EPR) effect has left some of these issues unresolved. Recently, investigations into modifying the surface of liposomes via covalent and/or electrostatic functionalization have offered mechanisms for tumor homing and subsequently controlled chemotherapeutic delivery. A wide variety of biomolecules can be utilized to functionalize liposomes such as proteins, carbohydrates, and nucleic acids, which enable multiple directions for cancer cell localization. Importantly, when nanoparticles are modified with such molecules, care must be taken as not to inactivate or denature the ligand. Peptides, which are small proteins with <30 amino acids, have demonstrated the exceptional ability to act as ligands for transmembrane protein receptors overexpressed in many tumor phenotypes. Exploring this strategy offers a method in tumor targeting for cancers such as glioblastoma multiforme, pancreatic, lung, and breast based on the manifold of receptors overexpressed on various tumor cell populations. In this review, we offer a comprehensive summary of peptide-functionalized liposomes for receptor-targeted cancer therapy.
Collapse
|
40
|
Torkamanian-Afshar M, Nematzadeh S, Tabarzad M, Najafi A, Lanjanian H, Masoudi-Nejad A. In silico design of novel aptamers utilizing a hybrid method of machine learning and genetic algorithm. Mol Divers 2021; 25:1395-1407. [PMID: 33554306 DOI: 10.1007/s11030-021-10192-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/28/2021] [Indexed: 12/29/2022]
Abstract
Aptamers can be regarded as efficient substitutes for monoclonal antibodies in many diagnostic and therapeutic applications. Due to the tedious and prohibitive nature of SELEX (systematic evolution of ligands by exponential enrichment), the in silico methods have been developed to improve the enrichment processes rate. However, the majority of these methods did not show any effort in designing novel aptamers. Moreover, some target proteins may have not any binding RNA candidates in nature and a reductive mechanism is needed to generate novel aptamer pools among enormous possible combinations of nucleotide acids to be examined in vitro. We have applied a genetic algorithm (GA) with an embedded binding predictor fitness function to in silico design of RNA aptamers. As a case study of this research, all steps were accomplished to generate an aptamer pool against aminopeptidase N (CD13) biomarker. First, the model was developed based on sequential and structural features of known RNA-protein complexes. Then, utilizing RNA sequences involved in complexes with positive prediction results, as the first-generation, novel aptamers were designed and top-ranked sequences were selected. A 76-mer aptamer was identified with the highest fitness value with a 3 to 6 time higher score than parent oligonucleotides. The reliability of obtained sequences was confirmed utilizing docking and molecular dynamic simulation. The proposed method provides an important simplified contribution to the oligonucleotide-aptamer design process. Also, it can be an underlying ground to design novel aptamers against a wide range of biomarkers.
Collapse
Affiliation(s)
- Mahsa Torkamanian-Afshar
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran.,Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.,Department of Computer Technologies, Beykent University, Istanbul, Turkey
| | - Sajjad Nematzadeh
- Department of Computer Technologies, Beykent University, Istanbul, Turkey
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Tehran, Iran
| | - Hossein Lanjanian
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Masoudi-Nejad
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran. .,Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
41
|
Ghosh K, Amin SA, Gayen S, Jha T. Chemical-informatics approach to COVID-19 drug discovery: Exploration of important fragments and data mining based prediction of some hits from natural origins as main protease (Mpro) inhibitors. J Mol Struct 2021; 1224:129026. [PMID: 32834115 PMCID: PMC7405777 DOI: 10.1016/j.molstruc.2020.129026] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
As the world struggles against current global pandemic of novel coronavirus disease (COVID-19), it is challenging to trigger drug discovery efforts to search broad-spectrum antiviral agents. Thus, there is a need of strong and sustainable global collaborative works especially in terms of new and existing data analysis and sharing which will join the dots of knowledge gap. Our present chemical-informatics based data analysis approach is an attempt of application of previous activity data of SARS-CoV main protease (Mpro) inhibitors to accelerate the search of present SARS-CoV-2 Mpro inhibitors. The study design was composed of three major aspects: (1) classification QSAR based data mining of diverse SARS-CoV Mpro inhibitors, (2) identification of favourable and/or unfavourable molecular features/fingerprints/substructures regulating the Mpro inhibitory properties, (3) data mining based prediction to validate recently reported virtual hits from natural origin against SARS-CoV-2 Mpro enzyme. Our Structural and physico-chemical interpretation (SPCI) analysis suggested that heterocyclic nucleus like diazole, furan and pyridine have clear positive contribution while, thiophen, thiazole and pyrimidine may exhibit negative contribution to the SARS-CoV Mpro inhibition. Several Monte Carlo optimization based QSAR models were developed and the best model was used for screening of some natural product hits from recent publications. The resulted active molecules were analysed further from the aspects of fragment analysis. This approach set a stage for fragment exploration and QSAR based screening of active molecules against putative SARS-CoV-2 Mpro enzyme. We believe the future in vitro and in vivo studies would provide more perspectives for anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Kalyan Ghosh
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh, 470003, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P. O. Box 17020, Kolkata, 700032, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh, 470003, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P. O. Box 17020, Kolkata, 700032, India
| |
Collapse
|
42
|
Cao J, Zhao C, Dong H, Xu Q, Zhang Y. Development of pyrazoline-based derivatives as aminopeptidase N inhibitors to overcome cancer invasion and metastasis. RSC Adv 2021; 11:21426-21432. [PMID: 35478833 PMCID: PMC9034162 DOI: 10.1039/d1ra03629g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/06/2021] [Indexed: 11/21/2022] Open
Abstract
Aminopeptidase N is considered as a promising anti-tumor target due to its role in tumor invasion, metastasis and angiogenesis. In this report, a new series of pyrazoline-based derivatives were designed, synthesized and evaluated for biological activities. The structure–activity relationships of these pyrazoline-based derivatives were also discussed in detail. Among them, compound 2k, with 2,6-dichloro substitution, showed the best APN inhibitory activity, of which the IC50 value was two orders of magnitude lower than that of the positive control bestatin. At the same concentration of 100 μM, the in vitro anti-invasion activity of compound 2k was also significantly better than that of bestatin. Moreover, compound 2k could effectively prevent the pulmonary metastasis of mice H22 hepatoma cells in vivo, supporting its further research and development as an antitumor agent. Compound 2k exhibited promising in vitro anti-invasion and in vivo anti-metastasis potencies, suggesting its prospect as an anti-invasion and anti-metastasis lead.![]()
Collapse
Affiliation(s)
- Jiangying Cao
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Cheeloo College of Medicine
- Shandong University
| | - Chunlong Zhao
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Cheeloo College of Medicine
- Shandong University
| | - Hang Dong
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Cheeloo College of Medicine
- Shandong University
| | - Qifu Xu
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Cheeloo College of Medicine
- Shandong University
| | - Yingjie Zhang
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Cheeloo College of Medicine
- Shandong University
| |
Collapse
|
43
|
Chlorin e6 embedded in phospholipid nanoparticles equipped with specific peptides: Interaction with tumor cells with different aminopeptidase N expression. Biomed Pharmacother 2020; 134:111154. [PMID: 33360931 DOI: 10.1016/j.biopha.2020.111154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023] Open
Abstract
A promising direction in Biopharmaceuticals is the development of specific peptide-based systems to improve drug delivery. This approach may increase tumor specificity and drug penetration into the target cell. Similar systems have been designed for several antitumor drugs. However, for photodynamic therapy drugs, such studies are not yet enough. Previously, we have developed a method of inclusion of chlorin e6 (Ce6), a photosensitizer used in photodynamic therapy, in phospholipid nanoparticles with a diameter of up to 30 nm, and reported an increase in its effectiveness in the experiments in vivo. In this work, we propose to modify a previously developed delivery system for Ce6 by the addition of cell-penetrating (R7) and/or targeting NGR peptides. The interaction of the compositions developed with HepG2 and MCF-7 tumor cells is shown. The expression of CD13 protein with affinity to NGR on the surface of these cells has been studied using flow cytometry. The expression of this protein on the HepG2 cells and its absence on MCF-7 was demonstrated. After incubation of tumor cells with the resulting Ce6 compositions, we evaluated the cellular accumulation, photoinduced, and dark cytotoxicity of the drugs. After irradiation, the highest level of cytotoxicity was observed when R7 peptide was added to the system, either alone or in combination with NGR. In addition to R7, the NGR-motif peptide increased the internalization of Ce6 in HepG2 cells without affecting its photodynamic activity. In this work we also discuss possible mechanisms of action of the cell-penetrating peptide when attached to phospholipid nanoparticles.
Collapse
|
44
|
Miao H, Chen X, Luan Y. Small Molecular Gemcitabine Prodrugs for Cancer Therapy. Curr Med Chem 2020; 27:5562-5582. [PMID: 31419928 DOI: 10.2174/0929867326666190816230650] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/22/2019] [Accepted: 07/09/2019] [Indexed: 02/04/2023]
Abstract
Gemcitabine as a pyrimidine nucleoside analog anticancer drug has high efficacy for a broad spectrum of solid tumors. Gemcitabine is activated within tumor cells by sequential phosphorylation carried out by deoxycytidine kinase to mono-, di-, and triphosphate nucleotides with the last one as the active form. But the instability, drug resistance and toxicity severely limited its utilization in clinics. In the field of medicinal chemistry, prodrugs have proven to be a very effective means for elevating drug stability and decrease undesirable side effects including the nucleoside anticancer drug such as gemcitabine. Many works have been accomplished in design and synthesis of gemcitabine prodrugs, majority of which were summarized in this review.
Collapse
Affiliation(s)
- He Miao
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Shandong Province, Qingdao, China
| | - Xuehong Chen
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Shandong Province, Qingdao, China
| | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Shandong Province, Qingdao, China
| |
Collapse
|
45
|
Bestatin and bacitracin inhibit porcine kidney cortex dipeptidyl peptidase IV activity and reduce human melanoma MeWo cell viability. Int J Biol Macromol 2020; 164:2944-2952. [DOI: 10.1016/j.ijbiomac.2020.08.157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 01/10/2023]
|
46
|
Pascual Alonso I, Rivera Méndez L, Valdés-Tresanco ME, Bounaadja L, Schmitt M, Arrebola Sánchez Y, Alvarez Lajonchere L, Charli JL, Florent I. Biochemical evidences for M1-, M17- and M18-like aminopeptidases in marine invertebrates from Cuban coastline. Z NATURFORSCH C 2020; 75:397-407. [PMID: 32609656 DOI: 10.1515/znc-2019-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 06/01/2020] [Indexed: 11/15/2022]
Abstract
Metallo-aminopeptidases (mAPs) control many physiological processes. They are classified in different families according to structural similarities. Neutral mAPs catalyze the cleavage of neutral amino acids from the N-terminus of proteins or peptide substrates; they need one or two metallic cofactors in their active site. Information about marine invertebrate's neutral mAPs properties is scarce; available data are mainly derived from genomics and cDNA studies. The goal of this work was to characterize the biochemical properties of the neutral APs activities in eight Cuban marine invertebrate species from the Phyla Mollusca, Porifera, Echinodermata, and Cnidaria. Determination of substrate specificity, optimal pH and effects of inhibitors (1,10-phenanthroline, amastatin, and bestatin) and cobalt on activity led to the identification of distinct neutral AP-like activities, whose biochemical behaviors were similar to those of the M1 and M17 families of mAPs. Additionally, M18-like glutamyl AP activities were detected. Thus, marine invertebrates express biochemical activities likely belonging to various families of metallo-aminopeptidases.
Collapse
Affiliation(s)
- Isel Pascual Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Laura Rivera Méndez
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Mario E Valdés-Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba.,Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Lotfi Bounaadja
- Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Marjorie Schmitt
- Laboratoire d'Innovation Moléculaire et Applications - Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA UMR7042, Mulhouse, France
| | | | - Luis Alvarez Lajonchere
- Museum of Natural History Felipe Poey, Faculty of Biology, University of Havana, Havana, Cuba
| | - Jean-Louis Charli
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Isabelle Florent
- Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d'Histoire Naturelle, CNRS, Paris, France
| |
Collapse
|
47
|
Amin SA, Banerjee S, Ghosh K, Gayen S, Jha T. Protease targeted COVID-19 drug discovery and its challenges: Insight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors. Bioorg Med Chem 2020; 29:115860. [PMID: 33191083 PMCID: PMC7647411 DOI: 10.1016/j.bmc.2020.115860] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/17/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
Prorteases (Mpro and PLpro) are part of the replication machinery of corona virus. Mpro and PLpro inhibitors may serve as therapeutic weapons against SARS-CoV-2. An exquisite picture of the recent coronavirus protease inhibitors is provided. Experimental screening approaches are also highlighted. Challenges in the development of effective as well as drug like protease inhibitors is also discussed.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) brutally perils physical and mental health worldwide. Unavailability of effective anti-viral drug rendering global threat of COVID-19 caused by SARS-CoV-2. In this scenario, viral protease enzymes are crucial targets for drug discovery. This extensive study meticulously focused on two viral proteases such as main protease (Mpro) and papain-like protease (PLpro), those are essential for viral replication. This review provides a detail overview of the targets (Mpro and PLpro) from a structural and medicinal chemistry point of view, together with recently reported protease inhibitors. An insight into the challenges in the development of effective as well as drug like protease inhibitors is discussed. Peptidomimetic and/or covalent coronavirus protease inhibitors possessed potent and selective active site inhibition but compromised in pharmacokinetic parameters to be a drug/drug like molecule. Lead optimization of non-peptidomimetic and/or low molecular weight compounds may be a better option for oral delivery. A masterly combination of adequate pharmacokinetic properties with coronavirus protease activity as well as selectivity will provide potential drug candidates in future. This study is a part of our endeavors which surely dictates medicinal chemistry efforts to discover effective anti-viral agent for this devastating disease.
Collapse
Affiliation(s)
- Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, India
| | - Kalyan Ghosh
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, MP, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, MP, India.
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
48
|
Development of a Bestatin-SAHA Hybrid with Dual Inhibitory Activity against APN and HDAC. Molecules 2020; 25:molecules25214991. [PMID: 33126591 PMCID: PMC7662900 DOI: 10.3390/molecules25214991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 01/07/2023] Open
Abstract
With five histone deacetylase (HDAC) inhibitors approved for cancer treatment, proteolysis-targeting chimeras (PROTACs) for degradation of HDAC are emerging as an alternative strategy for HDAC-targeted therapeutic intervention. Herein, three bestatin-based hydroxamic acids (P1, P2 and P3) were designed, synthesized and biologically evaluated to see if they could work as HDAC degrader by recruiting cellular inhibitor of apoptosis protein 1 (cIAP1) E3 ubiquitin ligase. Among the three compounds, the bestatin-SAHA hybrid P1 exhibited comparable even more potent inhibitory activity against HDAC1, HDAC6 and HDAC8 relative to the approved HDAC inhibitor SAHA. It is worth noting that although P1 could not lead to intracellular HDAC degradation after 6 h of treatment, it could dramatically decrease the intracellular levels of HDAC1, HDAC6 and HDAC8 after 24 h of treatment. Intriguingly, the similar phenomenon was also observed in the HDAC inhibitor SAHA. Cotreatment with proteasome inhibitor bortezomib could not reverse the HDAC decreasing effects of P1 and SAHA, confirming that their HDAC decreasing effects were not due to protein degradation. Moreover, all three bestatin-based hydroxamic acids P1, P2 and P3 exhibited more potent aminopeptidase N (APN, CD13) inhibitory activities than the approved APN inhibitor bestatin, which translated to their superior anti-angiogenic activities. Taken together, a novel bestatin-SAHA hybrid was developed, which worked as a potent APN and HDAC dual inhibitor instead of a PROTAC.
Collapse
|
49
|
Lee J, Drinkwater N, McGowan S, Scammells P. A Structure-Activity Relationship Study of Novel Hydroxamic Acid Inhibitors around the S1 Subsite of Human Aminopeptidase N. ChemMedChem 2020; 16:234-249. [PMID: 32945135 DOI: 10.1002/cmdc.202000527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/24/2022]
Abstract
Aminopeptidase N (APN/CD13) is a zinc-dependent ubiquitous transmembrane ectoenzyme that is widely present in different types of cells. APN is one of the most extensively studied metalloaminopeptidases as an anti-cancer target due to its significant role in the regulation of metastasis and angiogenesis. Previously, we identified a potent and selective APN inhibitor, N-(2-(Hydroxyamino)-2-oxo-1-(3',4',5'-trifluoro-[1,1'-biphenyl]-4-yl)ethyl)-4-(methylsulfonamido)benzamide (3). Herein, we report the further modifications performed to explore SAR around the S1 subsite of APN and to improve the physicochemical properties. A series of hydroxamic acid analogues were synthesised, and the pharmacological activities were evaluated in vitro. N-(1-(3'-Fluoro-[1,1'-biphenyl]-4-yl)-2-(hydroxyamino)-2-oxoethyl)-4-(methylsulfonamido)benzamide (6 f) was found to display an extremely potent inhibitory activity in the sub-nanomolar range.
Collapse
Affiliation(s)
- Jisook Lee
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, VIC, 3052, Australia
| | - Nyssa Drinkwater
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia
| | - Sheena McGowan
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia
| | - Peter Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, VIC, 3052, Australia
| |
Collapse
|
50
|
Aminopeptidase N inhibitory peptides derived from hen eggs: Virtual screening, inhibitory activity, and action mechanisms. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|