1
|
Zhu S, Song Z, Tapayan AS, Singh K, Wang KW, Chien Hagar HT, Zhang J, Kim H, Thepsuwan P, Kuo MH, Zhang K, Nguyen HM. Effects of Heparan Sulfate Trisaccharide Containing Oleanolic Acid in Attenuating Hyperphosphorylated Tau-Induced Cell Dysfunction Associated with Alzheimer's Disease. J Med Chem 2025. [PMID: 39842821 DOI: 10.1021/acs.jmedchem.4c02563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, marked by progressive brain degeneration and cognitive decline. A major pathological feature of AD is the accumulation of hyperphosphorylated tau (p-tau) in the form of neurofibrillary tangles (NFTs), which leads to neuronal death and neurodegeneration. P-tau also induces endoplasmic reticulum (ER) stress and activates the unfolded protein response, causing inflammation and apoptosis. Additionally, p-tau spreads in the brain through interactions with heparan sulfate (HS) proteoglycans, promoting aggregation and internalization. Targeting the tau-HS interaction offers a potential therapeutic strategy for AD. We present a novel HS mimetic with a lipophilic oleanolic acid linker and a sulfated trisaccharide, which shows strong cytoprotective effects against p-tau. Moreover, this compound alleviates p-tau-induced ER stress and inflammation. Molecular docking studies indicate that the conjugation of oleanolic acid enhances binding between the ligand and tau protofilament cores, facilitating protective interactions. These findings provide a foundation for the development of novel HS mimetics, enabling further investigation of tau-HS interactions in AD and other tauopathies.
Collapse
Affiliation(s)
- Sanyong Zhu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48202, United States
| | - April Sweet Tapayan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Kartikey Singh
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Kuang-Wei Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Hsiao-Tien Chien Hagar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jicheng Zhang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hyunbae Kim
- Center for Molecular Medicine and Genetics, Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48202, United States
| | - Patty Thepsuwan
- Center for Molecular Medicine and Genetics, Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48202, United States
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48202, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
2
|
Obana T, Nakajima M, Nakazato K, Nakagawa H, Murata K, Tsuda M, Fuwa H. Iriomoteolide-1a and -1b: Structure Elucidation by Integrating NMR Spectroscopic Analysis, Theoretical Calculation, and Total Synthesis. J Am Chem Soc 2024; 146:29836-29846. [PMID: 39417618 DOI: 10.1021/jacs.4c11714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The structure of iriomoteolide-1a, a marine macrolide with potent cytotoxic activity against human cancer cells, has been under scrutiny for more than a decade since the first total synthesis of the proposed structure was achieved by Horne. Here we disclose the correct structure of iriomoteolide-1a. Given a huge number of possible stereoisomers, we adopted an integrated strategy toward the structure elucidation of iriomoteolide-1a: (1) NMR spectroscopic analysis/molecular mechanics-based conformational analysis for configurational reassignment of the macrolactone domain; (2) model synthesis for validating the reassigned configuration of the macrolactone domain; (3) GIAO NMR calculation/DP4+ analysis of side chain stereoisomers; and (4) total synthesis of the most likely structure. Moreover, the correct structure of iriomoteolide-1b, a natural congener, was also determined by an integration of NMR spectroscopic analysis, GIAO NMR calculation/DP4+ analysis, and total synthesis.
Collapse
Affiliation(s)
- Tomohiro Obana
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Miyu Nakajima
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kazuki Nakazato
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hayato Nakagawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Keisuke Murata
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Masashi Tsuda
- Faculty of Agriculture and Marine Science and Marine Core Research Institute, Kochi University, Monobe-B200, Nankoku, Kochi 783-8502, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
3
|
Gurung PB, Shine G, Zhu J. Synthesis of Salmonella enteritidis Antigenic Tetrasaccharide Repeating Unit by Employing Cationic Gold(I)-Catalyzed Glycosylation Involving Glycosyl N-1,1-Dimethylpropargyl Carbamate Donors. J Org Chem 2024; 89:12547-12558. [PMID: 39137335 PMCID: PMC11384238 DOI: 10.1021/acs.joc.4c01484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Synthesis of an antigenic tetrasaccharide repeating unit of the O-polysaccharide of Salmonella enteritidis lipopolysaccharide has been accomplished. Those four monosaccharides were assembled stereoselectively by employing our recently developed cationic gold(I)-catalyzed glycosylation methodology involving various glycosyl N-1,1-dimethylpropargyl carbamate donors. The newly formed α-anomeric stereochemical configuration was controlled by the axial C2-OBz of the glycosyl donors via anchimeric assistance.
Collapse
Affiliation(s)
- Prem Bahadur Gurung
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Gavin Shine
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
4
|
Yang D, Ding H, Zhang XL, Zhang H, Zhang Y, Liu XW. Esterification and Etherification of Aliphatic Alcohols Enabled by Catalytic Strain-Release of Donor-Acceptor Cyclopropane. Org Lett 2024; 26:4986-4991. [PMID: 38842488 DOI: 10.1021/acs.orglett.4c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
We herein disclose a highly efficient protocol for the esterification and etherification of alcohols, leveraging a Sc(OTf)3-catalyzed ring-strain release event in the meticulously designed, chromatographically stable mixed anhydrides or benzyl esters that incorporate an intramolecular donor-acceptor cyclopropane (DAC). This versatile method facilitates the straightforward functionalization of sugar, terpene, and steroid alcohols under mild acidic conditions, as showcased by the single-catalyst-driven, dual protection of sugar diol.
Collapse
Affiliation(s)
- Dan Yang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Han Ding
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Xiao-Lin Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Huajun Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yuhan Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Xue-Wei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
5
|
Maji S, Ghotekar BK, Kulkarni SS. Total Synthesis of a Conjugation-Ready Tetrasaccharide Repeating Unit of Vibrio cholerae O:3 O-antigen Polysaccharide. Org Lett 2024; 26:745-750. [PMID: 38198674 DOI: 10.1021/acs.orglett.3c04225] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Herein, we report the first total synthesis of the tetrasaccharide repeating unit of Vibrio cholerae O:3 O-antigen polysaccharide. The highly complex tetrasaccharide contains rare amino sugars such as d-bacillosamine and l-fucosamine, highly labile sugar ascarylose, and higher carbon sugar d-d-heptose. Stereoselective glycosylation of the notoriously reactive ascarylose with d-d-heptose, poor nucleophilicity of the axial C4-OH of l-fucosamine, and amide coupling are the key challenges encountered in the total synthesis, which was completed via a longest linear sequence of 23 steps in 4.2% overall yield.
Collapse
Affiliation(s)
- Soumyakanta Maji
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Balasaheb K Ghotekar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
6
|
Abstract
The structural complexity of glycans poses a serious challenge in the chemical synthesis of glycosides, oligosaccharides and glycoconjugates. Glycan complexity, determined by composition, connectivity, and configuration far exceeds what nature achieves with nucleic acids and proteins. Consequently, glycoside synthesis ranks among the most complex tasks in organic synthesis, despite involving only a simple type of bond-forming reaction. Here, we introduce the fundamental principles of glycoside bond formation and summarize recent advances in glycoside bond formation and oligosaccharide synthesis.
Collapse
Affiliation(s)
- Conor J Crawford
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
7
|
Hamada S, Sumida M, Yamazaki R, Kobayashi Y, Furuta T. Oxidative Deprotection of Benzyl Protecting Groups for Alcohols by an Electronically Tuned Nitroxyl-Radical Catalyst. J Org Chem 2023; 88:12464-12473. [PMID: 37586039 DOI: 10.1021/acs.joc.3c01217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The oxidative deprotection of benzyl (Bn) groups using nitroxyl-radical catalyst 1 and co-oxidant phenyl iodonium bis(trifluoroacetate) (PIFA) is reported. This catalyst is highly active for the oxidation of benzylic ethers because of the electronic tuning on account of the electron-withdrawing ester groups next to the catalytically active center. This catalytic system promotes deprotections at ambient temperature and has a broad substrate scope, including substrates possessing hydrogenation-sensitive functional groups, while the deprotection hardly proceeds when using well-known nitroxyl-radical catalysts such as 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO). The 1/PIFA system also promotes the deprotection of several benzylic protecting groups, including 2-naphthylmethyl (NAP) and 4-methylbenzyl (MBn) groups. Catalyst 1 was also effective for the direct synthesis of ketones and aldehydes from Bn ethers via deprotected alcohols using an excess of the co-oxidant PIFA.
Collapse
Affiliation(s)
- Shohei Hamada
- Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Maiko Sumida
- Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Rikako Yamazaki
- Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yusuke Kobayashi
- Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Takumi Furuta
- Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
8
|
Wakpal J, Pathiranage V, Walker AR, Nguyen HM. Rational Design and Expedient Synthesis of Heparan Sulfate Mimetics from Natural Aminoglycosides for Structure and Activity Relationship Studies. Angew Chem Int Ed Engl 2023; 62:e202304325. [PMID: 37285191 PMCID: PMC10527013 DOI: 10.1002/anie.202304325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/08/2023]
Abstract
Heparan sulfate (HS) contains variably repeating disaccharide units organized into high- and low-sulfated domains. This rich structural diversity enables HS to interact with many proteins and regulate key signaling pathways. Efforts to understand structure-function relationships and harness the therapeutic potential of HS are hindered by the inability to synthesize an extensive library of well-defined HS structures. We herein report a rational and expedient approach to access a library of 27 oligosaccharides from natural aminoglycosides as HS mimetics in 7-12 steps. This strategy significantly reduces the number of steps as compared to the traditional synthesis of HS oligosaccharides from monosaccharide building blocks. Combined with computational insight, we identify a new class of four trisaccharide compounds derived from the aminoglycoside tobramycin that mimic natural HS and have a strong binding to heparanase but a low affinity for off-target platelet factor-4 protein.
Collapse
Affiliation(s)
- Joseph Wakpal
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | - Alice R Walker
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
9
|
Lu IC, Cheng KC, Wang YF, Pan CW, Hung JS, Mong KKT. Orthogonal Glycosylation with Phosphate Acceptors for Expeditious Synthesis of Bacterial Inner Core Oligosaccharides. Chem Asian J 2023; 18:e202300424. [PMID: 37339944 DOI: 10.1002/asia.202300424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
We report a practical one-pot glycosylation strategy for synthesis of bacterial inner core oligosaccharides that composed of unavailable L-glycero-D-manno and D-glycero-D-manno-heptopyranose components. The glycosylation method features a new orthogonal glycosylation procedure; whereby a phosphate acceptor is coupled with a thioglycosyl donor producing a disaccharide phosphate, which can be engaged in another orthogonal glycosylation procedure to couple with a thioglycosyl acceptor. The phosphate acceptors used in above one-pot procedure are directly prepared from thioglycosyl acceptors via the in-situ phosphorylation. Such phosphate acceptor preparation protocol eliminates the traditional protection and deprotection procedures. Based on the new one-pot glycosylation strategy, two partial inner core structures of Yersinia pestis lipopolysaccharide and Haemophilus ducreyi lipooligosaccharide were acquired.
Collapse
Affiliation(s)
- I-Chen Lu
- Applied Chemistry Department, National Yang-Ming Chiao Tung University, 1001, University Road, East District, Hsinchu City, 30093, R.O.C., Taiwan
| | - Kuang-Chun Cheng
- Applied Chemistry Department, National Yang-Ming Chiao Tung University, 1001, University Road, East District, Hsinchu City, 30093, R.O.C., Taiwan
| | - Yi-Fang Wang
- Applied Chemistry Department, National Yang-Ming Chiao Tung University, 1001, University Road, East District, Hsinchu City, 30093, R.O.C., Taiwan
| | - Chia-Wei Pan
- Applied Chemistry Department, National Yang-Ming Chiao Tung University, 1001, University Road, East District, Hsinchu City, 30093, R.O.C., Taiwan
| | - Jan-Siang Hung
- Applied Chemistry Department, National Yang-Ming Chiao Tung University, 1001, University Road, East District, Hsinchu City, 30093, R.O.C., Taiwan
| | - Kwok-Kong Tony Mong
- Applied Chemistry Department, National Yang-Ming Chiao Tung University, 1001, University Road, East District, Hsinchu City, 30093, R.O.C., Taiwan
| |
Collapse
|
10
|
Chen D, Srivastava AK, Dubrochowska J, Liu L, Li T, Hoffmann JP, Kolls JK, Boons GJ. A Bioactive Synthetic Outer-Core Oligosaccharide Derived from a Klebsiella pneumonia Lipopolysaccharide for Bacteria Recognition. Chemistry 2023; 29:e202203408. [PMID: 36662447 PMCID: PMC10159924 DOI: 10.1002/chem.202203408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
There is an urgent need for new treatment options for carbapenem-resistant Klebsiella pneumoniae (K. pneumoniae), which is a common cause of life-threatening hospital- and community-acquired infections. Prophylactic or therapeutic vaccination may offer an approach to control these infections, however, none has yet been approved for human use. Here, we report the chemical synthesis of an outer core tetra- and pentasaccharide derived from the lipopolysaccharide of K. pneumoniae. The oligosaccharides were equipped with an aminopentyl linker, which facilitated conjugation to the carrier proteins CRM197 and BSA. Mice immunized with the glycoconjugate vaccine candidates elicited antibodies that recognized isolated LPS as well as various strains of K. pneumoniae. The successful preparation of the oligosaccharides relied on the selection of monosaccharide building blocks equipped with orthogonal hydroxyl and amino protecting groups. It allowed the differentiation of three types of amines of the target compounds and the installation of a crowded 4,5-branched Kdo moiety.
Collapse
Affiliation(s)
- Dushen Chen
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Akhilesh K Srivastava
- Department of Medicine and Pediatrics, Tulane School of Medicine, New Orleans, LA, USA
| | - Justyna Dubrochowska
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Tiehai Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Joseph P Hoffmann
- Department of Medicine and Pediatrics, Tulane School of Medicine, New Orleans, LA, USA
| | - Jay K Kolls
- Department of Medicine and Pediatrics, Tulane School of Medicine, New Orleans, LA, USA
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Chemistry Department, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
Kang J, Rhee YH. Synthesis of the Tetrasaccharide Glycone Part of Tetrocarcin A. J Org Chem 2023. [PMID: 36812358 DOI: 10.1021/acs.joc.2c02832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
A de novo synthesis of the tetrasaccharide fragment of tetrocarcin A is described. The key feature of this approach is highlighted by the regio- and diastereoselective Pd-catalyzed hydroalkoxylation of ene-alkoxyallenes with an unprotected l-digitoxose glycoside. The subsequent reaction with digitoxal in combination with chemoselective hydrogenation generated the target molecule.
Collapse
Affiliation(s)
- Jihun Kang
- Department of Chemistry, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Kyungbuk Republic of Korea 37673
| | - Young Ho Rhee
- Department of Chemistry, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Kyungbuk Republic of Korea 37673
| |
Collapse
|
12
|
Dhara D, Dhara A, Murphy PV, Mulard LA. Protecting group principles suited to late stage functionalization and global deprotection in oligosaccharide synthesis. Carbohydr Res 2022; 521:108644. [PMID: 36030632 DOI: 10.1016/j.carres.2022.108644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
Abstract
Chemical synthesis is a powerful tool to access homogeneous complex glycans, which relies on protecting group (PG) chemistry. However, the overall efficiency of chemical glycan assembly is still low when compared to oligonucleotide or oligopeptide synthesis. There have been many contributions giving rise to collective improvement in carbohydrate synthesis that includes PG manipulation and stereoselective glycoside formation and some of this chemistry has been transferred to the solid phase or adapted for programmable one pot synthesis approaches. However, after all glycoside bond formation reactions are completed, the global deprotection (GD) required to give the desired target OS can be challenging. Difficulties observed in the removal of permanent PGs to release the desired glycans can be due to the number and diversity of PGs present in the protected OSs, nature and structural complexity of glycans, etc. Here, we have reviewed the difficulties associated with the removal of PGs from densely protected OSs to obtain their free glycans. In particularly, this review focuses on the challenges associated with hydrogenolysis of benzyl groups, saponification of esters and functional group interconversion such as oxidation/reduction that are commonly performed in GD stage. More generally, problems observed in the removal of permanent PGs is reviewed herein, including benzyl, acyl (levulinoyl, acetyl), N-trichloroacetyl, N-2,2,2-trichloroethoxycarbonyl, N-phthaloyl etc. from a number of fully protected OSs to release the free sugar, that have been previously reported in the literature.
Collapse
Affiliation(s)
- Debashis Dhara
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France; School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.
| | - Ashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Laurence A Mulard
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France
| |
Collapse
|
13
|
Singh RK, Sianturi J, Seeberger PH. Synthesis of Oligosaccharides Resembling the Streptococcus suis Serotype 18 Capsular Polysaccharide as a Basis for Glycoconjugate Vaccine Development. Org Lett 2022; 24:2371-2375. [PMID: 35311265 PMCID: PMC8981331 DOI: 10.1021/acs.orglett.2c00596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
Here we report the
first total synthesis of several oligosaccharides
resembling the capsular polysaccharide of swine pathogen S.
suis serotype 18 repeating unit [→3)-d-GalNAc(α1-3)[d-Glc(β1-2)]-d-GalA4OAc(β1-3)-d-GalNAc(α1-3)-d-BacNAc4NAc(α1→]n. Access to the pentasaccharide repeating unit antigen
proved to be very challenging due to the poor reactivity in the context
of the trisaccharide. The challenge was overcome by the creation of
a galacturonic acid in a late stage of the synthesis.
Collapse
Affiliation(s)
- Rajat Kumar Singh
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Julinton Sianturi
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
14
|
Bennett CS. Glycosyl Sulfonates Beyond Triflates. CHEM REC 2021; 21:3102-3111. [PMID: 34142755 PMCID: PMC10923190 DOI: 10.1002/tcr.202100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/03/2021] [Indexed: 11/10/2022]
Abstract
While glycosyl triflates are frequently invoked as intermediates in many chemical glycosylation reactions, the chemistry of other glycosyl sulfonates remains comparatively underexplored. Given the reactivity of sulfonates can span several orders of magnitude, this represents an untapped resource for the development of stereoselective glycosylation reactions. This personal account describes our laboratories efforts to take advantage of this reactivity to develop β-specific glycosylation reactions. Initial investigations led to the development of 2-deoxy-sugar tosylates as highly selective donors for β-glycoside synthesis, an approach which has been used to great success by our group and others for the construction of deoxy-sugar oligosaccharides and natural products. Subsequent studies demonstrate that "matching" the reactivity of the sulfonate to that of the sugar donor leads to highly selective SN 2-glycosylations with a range of substrates.
Collapse
Affiliation(s)
- Clay S Bennett
- Department of Chemistry, Tufts University, 62 Talbot Ave., 02155, Medford, MA, USA
| |
Collapse
|
15
|
Misra AK, Gucchait A, Kundu M. Synthesis of Pentasaccharide Repeating Unit Corresponding to the Cell Wall O-Polysaccharide of Salmonella enterica O55 Strain Containing a Rare Sugar 3-Acetamido-3-deoxy-d-fucose. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0037-1610777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractA pentasaccharide repeating unit corresponding to the cell wall O-antigen of Salmonella enterica O55 containing a rare sugar, 3-acetamido-3-deoxy-d-fucose has been synthesized as its p-methoxyphenyl glycoside using a sequential stereoselective glycosylation strategy. A suitably functionalized 3-azido-3-deoxy-d-fucose thioglycoside derivative was prepared in very good yield and used in the stereoselective glycosylation reaction. Functionalized monosaccharide intermediates were prepared judiciously and stereoselectively assembled to get the desired pentasaccharide derivative in excellent yield.
Collapse
|
16
|
Srivastava AD, Unione L, Bunyatov M, Gagarinov IA, Delgado S, Abrescia NGA, Ardá A, Boons GJ. Chemoenzymatic Synthesis of Complex N-Glycans of the Parasite S. mansoni to Examine the Importance of Epitope Presentation on DC-SIGN recognition. Angew Chem Int Ed Engl 2021; 60:19287-19296. [PMID: 34124805 PMCID: PMC8456914 DOI: 10.1002/anie.202105647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Indexed: 12/14/2022]
Abstract
The importance of multivalency for N-glycan-protein interactions has primarily been studied by attachment of minimal epitopes to artificial multivalent scaffold and not in the context of multi-antennary glycans. N-glycans can be modified by bisecting GlcNAc, core xylosides and fucosides, and extended N-acetyl lactosamine moieties. The impact of such modifications on glycan recognition are also not well understood. We describe here a chemoenzymatic methodology that can provide N-glycans expressed by the parasitic worm S. mansoni having unique epitopes at each antenna and containing core xyloside. NMR, computational and electron microscopy were employed to investigate recognition of the glycans by the human lectin DC-SIGN. It revealed that core xyloside does not influence terminal epitope recognition. The multi-antennary glycans bound with higher affinity to DC-SIGN compared to mono-valent counterparts, which was attributed to proximity-induced effective concentration. The multi-antennary glycans cross-linked DC-SIGN into a dense network, which likely is relevant for antigen uptake and intracellular routing.
Collapse
Affiliation(s)
- Apoorva D Srivastava
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Luca Unione
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Mehman Bunyatov
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Ivan A Gagarinov
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Sandra Delgado
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48162, Derio, Bizkaia, Spain
| | - Nicola G A Abrescia
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48162, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Bizkaia, Spain
| | - Ana Ardá
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48162, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Bizkaia, Spain
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.,Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
17
|
Srivastava AD, Unione L, Bunyatov M, Gagarinov IA, Delgado S, Abrescia NGA, Ardá A, Boons G. Chemoenzymatic Synthesis of Complex
N
‐Glycans of the Parasite
S. mansoni
to Examine the Importance of Epitope Presentation on DC‐SIGN recognition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Apoorva D. Srivastava
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Bijvoet Center for Biomolecular Research Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Luca Unione
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Bijvoet Center for Biomolecular Research Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Mehman Bunyatov
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Bijvoet Center for Biomolecular Research Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Ivan A. Gagarinov
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Bijvoet Center for Biomolecular Research Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Sandra Delgado
- Molecular Recognition and Host-Pathogen Interactions CIC bioGUNE, Basque Research and Technology Alliance, BRTA Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
| | - Nicola G. A. Abrescia
- Molecular Recognition and Host-Pathogen Interactions CIC bioGUNE, Basque Research and Technology Alliance, BRTA Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
- Ikerbasque, Basque Foundation for Science 48013 Bilbao Bizkaia Spain
| | - Ana Ardá
- Molecular Recognition and Host-Pathogen Interactions CIC bioGUNE, Basque Research and Technology Alliance, BRTA Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
- Ikerbasque, Basque Foundation for Science 48013 Bilbao Bizkaia Spain
| | - Geert‐Jan Boons
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Bijvoet Center for Biomolecular Research Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Complex Carbohydrate Research Center University of Georgia 315 Riverbend Road Athens GA 30602 USA
- Department of Chemistry University of Georgia Athens GA 30602 USA
| |
Collapse
|
18
|
Zhang S, Sella M, Sianturi J, Priegue P, Shen D, Seeberger PH. Discovery of Oligosaccharide Antigens for Semi-Synthetic Glycoconjugate Vaccine Leads against Streptococcus suis Serotypes 2, 3, 9 and 14*. Angew Chem Int Ed Engl 2021; 60:14679-14692. [PMID: 33852172 PMCID: PMC8252040 DOI: 10.1002/anie.202103990] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Indexed: 01/03/2023]
Abstract
Streptococcus suis bacteria are one of the most serious health problems for pigs and an emerging zoonotic agent in humans working in the swine industry. S. suis bacteria express capsular polysaccharides (CPS) a major bacterial virulence factor that define the serotypes. Oligosaccharides resembling the CPS of S. suis serotypes 2, 3, 9, and 14 have been synthesized, glycans related to serotypes 2 and 9 were placed on glycan array surfaces to screen blood from infected pigs. Lead antigens for the development of semi-synthetic S. suis serotypes 2 and 9 glycoconjugate veterinary vaccines were identified in this way.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Mauro Sella
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Julinton Sianturi
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Patricia Priegue
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Dacheng Shen
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Present address: Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
19
|
Abstract
A new synthetic approach toward oligosaccharides consisting only of 2,3,6-trideoxypyranoglycosides is reported. The key feature is highlighted by the convergent approach that allows the introduction of the aglycon moiety in the late stage of the synthesis. As an illustrative example, the tetrasaccharide portion of cervimycin K was prepared as cyclohexyl glycoside.
Collapse
Affiliation(s)
- Jihun Kang
- Department of Chemistry, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Kyungbuk, Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Kyungbuk, Republic of Korea
| |
Collapse
|
20
|
Zhang S, Sella M, Sianturi J, Priegue P, Shen D, Seeberger PH. Discovery of Oligosaccharide Antigens for Semi‐Synthetic Glycoconjugate Vaccine Leads against
Streptococcus suis
Serotypes 2, 3, 9 and 14**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shuo Zhang
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Mauro Sella
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Julinton Sianturi
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Patricia Priegue
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Dacheng Shen
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Present address: Department of Chemistry and Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| |
Collapse
|
21
|
Chen K, Xie T, Shen Y, He H, Zhao X, Gao S. Calixanthomycin A: Asymmetric Total Synthesis and Structural Determination. Org Lett 2021; 23:1769-1774. [DOI: 10.1021/acs.orglett.1c00193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kuanwei Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Tao Xie
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yanfang Shen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Xiaoli Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
22
|
Rasool JU, Kumar A, Ali A, Ahmed QN. Triethylamine-methanol mediated selective removal of oxophenylacetyl ester in saccharides. Org Biomol Chem 2021; 19:338-347. [PMID: 33300928 DOI: 10.1039/d0ob02192j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly selective, mild, and efficient method for the cleavage of oxophenylacetyl ester protected saccharides was developed using triethylamine in methanol at room temperature. The reagent proved successful against different labile groups like acetal, ketal, and PMB and also generated good yields of the desired saccharides bearing lipid esters. Further, we also observed DBU in methanol as an alternative reagent for the deprotection of acetyl, benzoyl, and oxophenylacetyl ester groups.
Collapse
Affiliation(s)
- Javeed Ur Rasool
- Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu-180001 India and Academy of scientific and innovative research, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu-180001, India.
| | - Atul Kumar
- Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu-180001 India and Academy of scientific and innovative research, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu-180001, India. and Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District Samba, Jammu-180001, India
| | - Asif Ali
- CSIR-Traditional Knowledge Digital Library (TKDL), 14-Satsang Vihar, Vigyan Suchna Bhawan, New Delhi-110067, India
| | - Qazi Naveed Ahmed
- Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu-180001 India and Academy of scientific and innovative research, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu-180001, India.
| |
Collapse
|
23
|
Fox KA, Chadda R, Cardona F, Barron S, McArdle P, Murphy PV. Building blocks from monosaccharides for synthesis of scaffolds, including macrocycles. Application of allylic azide rearrangement, azide-alkyne cycloaddition and ring closing metathesis. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Verpalen ECJM, Brouwer AJ, Boons GJ. Synthesis of monophosphoryl lipid A using 2-naphtylmethyl ethers as permanent protecting groups. Carbohydr Res 2020; 498:108152. [PMID: 33032087 DOI: 10.1016/j.carres.2020.108152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022]
Abstract
Lipid A, which is a conserved component of lipopolysaccharides of gram-negative bacteria, has attracted considerable interest for the development of immuno-adjuvants. Most approaches for lipid A synthesis rely on the use of benzyl ethers as permanent protecting groups. Due to the amphiphilic character of lipid A, these compounds aggregate during the hydrogenation step to remove benzyl ethers, resulting in a sluggish reaction and by-product formation. To address this problem, we have developed a synthetic approach based on the use of 2-naphtylmethyl ether (Nap) ethers as permanent protecting group for hydroxyls. At the end of a synthetic sequence, multiple of these protecting groups can readily be removed by oxidation with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ). Di-allyl N,N-diisopropylphosphoramidite was employed to install the phosphate ester and the resulting allyl esters were cleaved using palladium tetrakistriphenylphosphine. The synthetic strategy allows late stage introduction of different fatty acids at the amines of the target compound, which is facilitated by Troc and Fmoc as orthogonal amino-protecting groups.
Collapse
Affiliation(s)
- Enrico C J M Verpalen
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands
| | - Arwin J Brouwer
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands; Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
25
|
Xue J, Han Z, Li G, Emmanuel KA, McManus CL, Sui Q, Ge D, Gao Q, Cai L. Synthesis of monophosphorylated lipid A precursors using 2-naphthylmethyl ether as a protecting group. Beilstein J Org Chem 2020; 16:1955-1962. [PMID: 32831952 PMCID: PMC7431767 DOI: 10.3762/bjoc.16.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Lipid A, the hydrophobic domain of lipopolysaccharide (LPS), is a strong immunostimulator and therefore a valuable target for the development of novel immunomodulators. Various lipid A derivatives have been chemically synthesized in order to reduce toxicity while retaining the immunostimulatory activity. In this work, we describe a novel approach to the frequently problematic synthesis of monophosphorylated mono- and disaccharide lipid X using a combination of established chemistry and a novel 2-naphthylmethyl ether (Nap) protecting group for “permanent” protection of hydroxy groups. Of particular note is the fact that the key Nap protecting group is able to remain in the molecule until the final global deprotection step. Our synthetic strategy is not only efficient in regards to the yield of the various chemical transformations, but also robust in regards to the potential application of this route to the production of other lipid A analogs.
Collapse
Affiliation(s)
- Jundi Xue
- Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, China
| | - Ziyi Han
- China State Institute of Pharmaceutical Industry, 285 Gebaini Rd, Shanghai 201203, China
| | - Gen Li
- China State Institute of Pharmaceutical Industry, 285 Gebaini Rd, Shanghai 201203, China
| | - Khalisha A Emmanuel
- Department of Chemistry, University of South Carolina Lancaster, 476 Hubbard Drive, Lancaster, South Carolina 29720, USA
| | - Cynthia L McManus
- Department of Chemistry, University of South Carolina Lancaster, 476 Hubbard Drive, Lancaster, South Carolina 29720, USA
| | - Qiang Sui
- Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, China.,China State Institute of Pharmaceutical Industry, 285 Gebaini Rd, Shanghai 201203, China
| | - Dongmian Ge
- Suzhou Jingye Medicine & Chemical Co., Ltd, 88 Sanlian Street, Suzhou, Jiangsu Province, 215129, China
| | - Qi Gao
- China State Institute of Pharmaceutical Industry, 285 Gebaini Rd, Shanghai 201203, China
| | - Li Cai
- Department of Chemistry, University of South Carolina Lancaster, 476 Hubbard Drive, Lancaster, South Carolina 29720, USA
| |
Collapse
|
26
|
Gucchait A, Shit P, Misra AK. Concise synthesis of a tetrasaccharide related to the repeating unit of the cell wall O-antigen of Salmonella enterica O60. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Romeo JR, McDermott L, Bennett CS. Reagent-Controlled α-Selective Dehydrative Glycosylation of 2,6-Dideoxy Sugars: Construction of the Arugomycin Tetrasaccharide. Org Lett 2020; 22:3649-3654. [PMID: 32281384 PMCID: PMC7239334 DOI: 10.1021/acs.orglett.0c01153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The first synthesis of the tetrasaccharide fragment of the anthracycline natural product Arugomycin is described. A reagent controlled dehydrative glycosylation method involving cyclopropenium activation was utilized to synthesize the α-linkages with complete anomeric selectivity. The synthesis was completed in 20 total steps, and in 2.5% overall yield with a longest linear sequence of 15 steps.
Collapse
Affiliation(s)
- Joseph R Romeo
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Luca McDermott
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Clay S Bennett
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
28
|
Zhu S, Li J, Loka RS, Song Z, Vlodavsky I, Zhang K, Nguyen HM. Modulating Heparanase Activity: Tuning Sulfation Pattern and Glycosidic Linkage of Oligosaccharides. J Med Chem 2020; 63:4227-4255. [PMID: 32216347 DOI: 10.1021/acs.jmedchem.0c00156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Heparanase cleaves polymeric heparan sulfate (HS) molecules into smaller oligosaccharides, allowing for release of angiogenic growth factors promoting tumor development and autoreactive immune cells to reach the insulin-producing β cells. Interaction of heparanase with HS chains is regulated by specific substrate sulfation sequences. We have synthesized 11 trisaccharides that are highly tunable in structure and sulfation pattern, allowing us to determine how heparanase recognizes HS substrate and selects a favorable cleavage site. Our study shows that (1) N-SO3- at +1 subsite and 6-O-SO3- at -2 subsite of trisaccharides are critical for heparanase recognition, (2) addition of 2-O-SO3- at the -1 subsite and of 3-O-SO3- to GlcN unit is not advantageous, and (3) the anomeric configuration (α or β) at the reducing end is crucial in controlling heparanase activity. Our study also illustrates that the α-trisaccharide having N- and 6-O-SO3- at -2 and +1 subsites inhibited heparanase and was resistant toward hydrolysis.
Collapse
Affiliation(s)
- Sanyong Zhu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jiayi Li
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Ravi S Loka
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
29
|
Xie T, Zheng C, Chen K, He H, Gao S. Asymmetric Total Synthesis of the Complex Polycyclic Xanthone FD‐594. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tao Xie
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Chaoying Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Kuanwei Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| |
Collapse
|
30
|
Flexible Total Synthesis of 11‐Deoxylandomycins and Their Non‐Natural Analogues by Way of Asymmetric Metal Catalysis. Angew Chem Int Ed Engl 2020; 59:2349-2353. [DOI: 10.1002/anie.201913706] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Indexed: 11/07/2022]
|
31
|
Xie T, Zheng C, Chen K, He H, Gao S. Asymmetric Total Synthesis of the Complex Polycyclic Xanthone FD‐594. Angew Chem Int Ed Engl 2020; 59:4360-4364. [DOI: 10.1002/anie.201915787] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/12/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Tao Xie
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Chaoying Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Kuanwei Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| |
Collapse
|
32
|
Ghosh B, Kulkarni SS. Advances in Protecting Groups for Oligosaccharide Synthesis. Chem Asian J 2020; 15:450-462. [DOI: 10.1002/asia.201901621] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/27/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Bhaswati Ghosh
- Department of ChemistryIndian Institute of Technology Bombay Mumbai 400076 India
| | - Suvarn S. Kulkarni
- Department of ChemistryIndian Institute of Technology Bombay Mumbai 400076 India
| |
Collapse
|
33
|
Ghotekar BK, Podilapu AR, Kulkarni SS. Total Synthesis of the Lipid-Anchor-Attached Core Trisaccharides of Lipoteichoic Acids of Streptococcus pneumoniae and Streptococcus oralis Uo5. Org Lett 2020; 22:537-541. [PMID: 31887057 DOI: 10.1021/acs.orglett.9b04264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein we report an efficient total synthesis of lipid-anchor-appended core trisaccharides of lipoteichoic acids of Streptococcus pneumoniae and Streptococcus oralis Uo5. The key features include the expedient synthesis of the rare sugar 2,4,6-trideoxy-2-acetamido-4-amino-d-Galp building block via one-pot sequential SN2 reactions and the α-selective coupling of d-thioglucoside with the diacyl glycerol acceptor to construct a common disaccharide acceptor, which was utilized in the total synthesis of target molecules 1 and 2.
Collapse
Affiliation(s)
- Balasaheb K Ghotekar
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Ananda Rao Podilapu
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Suvarn S Kulkarni
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| |
Collapse
|
34
|
Lee J, Kang J, Lee S, Rhee YH. Flexible Total Synthesis of 11‐Deoxylandomycins and Their Non‐Natural Analogues by Way of Asymmetric Metal Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Juyeol Lee
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Jihun Kang
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Sukhyun Lee
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Young Ho Rhee
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| |
Collapse
|
35
|
Keith DJ, Townsend SD. Total Synthesis of the Congested, Bisphosphorylated Morganella morganii Zwitterionic Trisaccharide Repeating Unit. J Am Chem Soc 2019; 141:12939-12945. [PMID: 31329445 DOI: 10.1021/jacs.9b06830] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zwitterionic polysaccharides (ZPSs) activate T-cell-dependent immune responses by major histocompatibility complex class II presentation. Herein, we report the first synthesis of a Morganella morganii ZPS repeating unit as an enabling tool in the synthesis of novel ZPS materials. The repeating unit incorporates a 1,2-cis-α-glycosidic bond; the problematic 1,2-trans-galactosidic bond, Gal-β-(1 → 3)-GalNAc; and phosphoglycerol and phosphocholine residues which have not been previously observed together as functional groups on the same oligosaccharide. The successful third-generation approach leverages a first in class glycosylation of a phosphoglycerol-functionalized acceptor. To install the phosphocholine unit, a highly effective phosphocholine donor was synthesized.
Collapse
Affiliation(s)
- D Jamin Keith
- Department of Chemistry , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Steven D Townsend
- Department of Chemistry , Vanderbilt University , Nashville , Tennessee 37235 , United States
| |
Collapse
|
36
|
Mizia JC, Bennett CS. Reagent Controlled Direct Dehydrative Glycosylation with 2-Deoxy Sugars: Construction of the Saquayamycin Z Pentasaccharide. Org Lett 2019; 21:5922-5927. [PMID: 31305082 DOI: 10.1021/acs.orglett.9b02056] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first synthesis of the pentasaccharide fragment of the angucycline antibiotic saquayamycin Z is described. By using our sulfonyl chloride mediated reagent controlled dehydrative glycosylation, we are able to assemble the glycosidic linkages with high levels of anomeric selectivity. The total synthesis was completed in 25 total steps, and in 2.5% overall yield with a longest linear sequence of 15 steps.
Collapse
Affiliation(s)
- J Colin Mizia
- Department of Chemistry , Tufts University , Medford , Massachusetts 02155 , United States
| | - Clay S Bennett
- Department of Chemistry , Tufts University , Medford , Massachusetts 02155 , United States
| |
Collapse
|
37
|
Yalamanchili S, Lloyd D, Bennett CS. Synthesis of the Hexasaccharide Fragment of Landomycin A Using a Mild, Reagent-Controlled Approach. Org Lett 2019; 21:3674-3677. [PMID: 31021647 DOI: 10.1021/acs.orglett.9b01118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of the hexasaccharide fragment of landomycin A is reported. Using p-toluenesulfonyl chloride mediated dehydrative glycosylation, we constructed the deoxy-sugar linkages in a stereoselective fashion without the need for temporary prosthetic groups to control selectivity. Through this approach, the hexasaccharide was obtained in 28 steps and 8.9% overall yield, which is an order of magnitude higher than that of previously reported approaches.
Collapse
Affiliation(s)
- Subbarao Yalamanchili
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| | - Dina Lloyd
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| | - Clay S Bennett
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| |
Collapse
|
38
|
Kumar A, Gannedi V, Rather SA, Vishwakarma RA, Ahmed QN. Introducing Oxo-Phenylacetyl (OPAc) as a Protecting Group for Carbohydrates. J Org Chem 2019; 84:4131-4148. [PMID: 30888192 DOI: 10.1021/acs.joc.9b00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A series of oxo-phenylacetyl (OPAc)-protected saccharides, with divergent base sensitivity profiles against benzoyl (Bz) and acetyl (Ac) were synthesized, and KHSO5/AcCl in methanol was identified as an easy, mild, selective, and efficient deprotecting reagent for their removal in the perspective of carbohydrate synthesis. Timely monitoring of AcCl reagent was supportive in both sequential and simultaneous deprotecting of OPAc, Bz, and Ac. The salient feature of our method is the orthogonal stability against different groups, its ease to generate different valuable acceptors using designed monosaccharides, and use of OPAc as a glycosyl donar.
Collapse
Affiliation(s)
- Atul Kumar
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| | - Veeranjaneyulu Gannedi
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| | - Suhail A Rather
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India
| | - Qazi Naveed Ahmed
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| |
Collapse
|
39
|
Ghosh T, Mukherji A, Srivastava HK, Kancharla PK. Secondary amine salt catalyzed controlled activation of 2-deoxy sugar lactols towards alpha-selective dehydrative glycosylation. Org Biomol Chem 2019; 16:2870-2875. [PMID: 29633773 DOI: 10.1039/c8ob00423d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new organocatalytic glycosylation method exploiting the lactol functionality has been disclosed. The catalytic generation of glycosyl oxacarbenium ions from lactols under forcible conditions via weakly Brønsted-acidic, readily available secondary amine salts affects the diastereoselective glycosylation of 2-deoxypyranoses and furanoses. This operationally simple iminium catalyzed activation of 2-deoxy hemi-acetals is a potential alternative to the existing cumbersome methods that need specialized handling. The mechanisms for this unique transformation and kinetic/thermodynamic effects have been discussed based on both experimental evidence and theoretical studies.
Collapse
Affiliation(s)
- Titli Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | | | | | | |
Collapse
|
40
|
Revuelta J, Fuentes R, Lagartera L, Hernáiz MJ, Bastida A, García-Junceda E, Fernández-Mayoralas A. Assembly of glycoamino acid building blocks: a new strategy for the straightforward synthesis of heparan sulfate mimics. Chem Commun (Camb) 2018; 54:13455-13458. [PMID: 30431033 DOI: 10.1039/c8cc08067d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new strategy that enables a modular straightforward synthesis of heparan sulfate oligosaccharide mimics by the assembly of simple glycoamino acid building blocks is described. The coupling between units is readily carried out by an amidation reaction. Several glycoamino acid oligomers were prepared and their interaction with the FGF2 protein was analyzed.
Collapse
Affiliation(s)
- Julia Revuelta
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
41
|
Jana M, Bennett CS. Synthesis of the Non-Reducing Hexasaccharide Fragment of Saccharomicin B. Org Lett 2018; 20:7598-7602. [PMID: 30427691 DOI: 10.1021/acs.orglett.8b03333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A synthesis of the nonreducing end hexasaccharide of saccharomicin B, α-l-Eva-(1→4)-α-l-Eva-(1→4)-α-l-Dig-(1→4)-α-l-Eva-(1→4)-α-l-Dig-(1→4)-β-d-Fuc, has been developed. Selective glycosylations of l-digitoxose (l-Dig) using AgPF6/TTBP-mediated thioether activation and l-4-e pi-vancosamine (l-Eva) using Tf2O/DTBMP-mediated sulfoxide activation produced the hexasaccharide as a single diastereomer in very good yield. This hexasaccharide is properly functionalized to serve as a glycosyl donor for the total synthesis of saccharomicin B.
Collapse
Affiliation(s)
- Manas Jana
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| | - Clay S Bennett
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| |
Collapse
|
42
|
Bylsma M, Bennett CS. Stereospecific Synthesis of the Saccharosamine-Rhamnose-Fucose Fragment Present in Saccharomicin B. Org Lett 2018; 20:4695-4698. [PMID: 30015496 PMCID: PMC6094934 DOI: 10.1021/acs.orglett.8b02028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A synthetic route has been developed for constructing the d-saccharosamine-l-rhamnose-d-fucose (Sac-Rha-Fuc) trisaccharide fragment present in the antibacterial natural product saccharomicin B. The Sac monosaccharide was synthesized through a modified nine step procedure starting from d-rhamnal in 23% overall yield. 1- O-TBS Sac donors were used to construct the β-linked Sac-Rha disaccharide. This disaccharide was coupled to a Fuc acceptor under BSP/Tf2O conditions to afford a trisaccharide properly functionalized for elaboration to saccharomicin B.
Collapse
Affiliation(s)
- Marissa Bylsma
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Clay S. Bennett
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
43
|
Soliman SE, Bennett CS. Reagent-Controlled Synthesis of the Branched Trisaccharide Fragment of the Antibiotic Saccharomicin B. Org Lett 2018; 20:3413-3417. [PMID: 29790762 PMCID: PMC6094932 DOI: 10.1021/acs.orglett.8b01355] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A concise synthesis of a branched trisaccharide, α-l-Dig-(1 → 3)-[α-l-Eva-(1 → 4)]-β-d-Fuc, corresponding to saccharomicin B, has been developed via reagent-controlled α-selective glycosylations. Starting from the d-fucose acceptor, l- epi-vancosamine was selectively installed using 2,3-bis(2,3,4-trimethoxyphenyl)cyclopropene-1-thione/oxalyl bromide mediated dehydrative glycosylation. Following deprotection, l-digitoxose was installed using the AgPF6/TTBP thioether-activation method to produce the trisaccharide as a single α-anomer. This highly functionalized trisaccharide can potentially serve as both a donor and an acceptor for the total synthesis of the antibiotic saccharomicin B.
Collapse
Affiliation(s)
- Sameh E. Soliman
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Clay S. Bennett
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| |
Collapse
|
44
|
Saliba RC, Wooke ZJ, Nieves GA, Chu AHA, Bennett CS, Pohl NLB. Challenges in the Conversion of Manual Processes to Machine-Assisted Syntheses: Activation of Thioglycoside Donors with Aryl(trifluoroethyl)iodonium Triflimide. Org Lett 2018; 20:800-803. [PMID: 29336575 DOI: 10.1021/acs.orglett.7b03940] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The steps needed to adapt a stable iodonium promoter for use in automated fluorous-assisted solution-phase oligosaccharide synthesis are described. Direct adaptation of the originally reported batch procedure resulted in the formation of an orthoester or protecting group transfer to the glycosyl acceptor. Fortunately, the addition of inexpensive β-pinene as an acid scavenger avoided both of these side reactions. The utility of this newly developed protocol was applied to the automated solution-phase synthesis of a β-glucan fragment.
Collapse
Affiliation(s)
- Regis C Saliba
- Department of Chemistry, Indiana University , 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| | - Zachary J Wooke
- Department of Chemistry, Indiana University , 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| | - Gabriel A Nieves
- Department of Chemistry, Indiana University , 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| | - An-Hsiang Adam Chu
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Clay S Bennett
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University , 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States.,Radcliffe Institute of Advanced Study, Harvard University , 8 Garden Street, Cambridge, Massachusetts 02318, United States
| |
Collapse
|
45
|
Yao D, Liu Y, Gao Q, Sui Q, Liu X, Ding N. A comparison of benzyl and 2-naphthylmethyl ethers as permanent hydroxyl protecting groups in the synthesis of α-galactoglycosphingolipids KRN7000 and PBS-57. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1375114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Dongming Yao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yichu Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Qi Gao
- China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Qiang Sui
- China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Xiaoping Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Adero PO, Jarois DR, Crich D. Hydrogenolytic cleavage of naphthylmethyl ethers in the presence of sulfides. Carbohydr Res 2017; 449:11-16. [PMID: 28672165 PMCID: PMC5572532 DOI: 10.1016/j.carres.2017.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 12/11/2022]
Abstract
With the aid of a series of model thioether or thioglycoside containing polyols protected with combinations of benzyl ethers and 2-naphthylmethyl ethers it is demonstrated that the latter are readily cleaved selectively under hydrogenolytic conditions in the presence of the frequently catalyst-poisoning sulfides. These results suggest the possibility of employing 2-naphthylmethyl ethers in place of benzyl ethers in synthetic schemes when hydrogenolytic deprotection is anticipated in the presence of thioether type functionality.
Collapse
Affiliation(s)
- Philip O Adero
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Dean R Jarois
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA.
| |
Collapse
|