1
|
Pal S, Chatterjee N, Sinha Roy S, Chattopadhyay B, Acharya K, Datta S, Dhar P. Valorization of oil refinery by-products: production of sophorolipids utilizing fatty acid distillates and their potential antibacterial, anti-biofilm, and antifungal activities. World J Microbiol Biotechnol 2024; 40:344. [PMID: 39384621 DOI: 10.1007/s11274-024-04144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/14/2024] [Indexed: 10/11/2024]
Abstract
Starmerella bombicola is a native yeast strain producing sophorolipids as secondary metabolites. This study explores the production, characterization, and biological activities of sophorolipids and investigates the antimicrobial, anti-biofilm, and antifungal properties of sophorolipids produced from oil refinery wastes by the yeast Starmerella bombicola. The present work demonstrated that S. bombicola MTCC 1910 when grown in oil refinery wastes namely palm fatty acid distillates and soy fatty acid distillates enhanced the rate of sophorolipids production drastically in comparison to vegetable oil, sunflower oil used as hydrophobic feedstock. Sophorolipid yields were 18.14, 37.21, and 46.1 g/L with sunflower oil, palm, and soy fatty acid distillates respectively. The crude biosurfactants were characterized using TLC, FTIR, and HPLC revealing to be acetylated sophorolipids containing both the acidic and lactonic isomeric forms. The surface lowering and emulsifying properties of the sophorolipids from refinery wastes were significantly higher than the sunflower oil-derived sophorolipids. Also, all the sophorolipids exhibited strong antibacterial properties (minimum inhibitory concentrations were between 50 and 200 µg mL-1) against Salmonella typhimurium, Bacillus cereus, and Staphylococcus epidermidis and were validated with morphological analysis by Scanning electron microscopy. All the sophorolipids were potent biofilm inhibitors and eradicators (minimum biofilm inhibitory and eradication concentrations were between 12.5 to 1000 µg mL-1) for all the tested organisms. Furthermore, antifungal activities were also found to exhibit about 16-56% inhibition at 1 mg mL-1 for fungal mycelial growth. Therefore, this endeavour of sophorolipids production using palm and soy fatty acid distillates not only opens up a window for the bioconversion of industrial wastes into productive biosurfactants but also concludes that sophorolipids from oil refinery wastes are potent antimicrobial, anti-biofilm, and antifungal agents, highlighting their potential in biotechnological and medical applications.
Collapse
Affiliation(s)
- Srija Pal
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, 700027, West Bengal, India
- Department of Chemical Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Rajabazar, Machuabazar, Kolkata, 700009, West Bengal, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, 700027, West Bengal, India
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata, 700 098, West Bengal, India
| | - Sagnik Sinha Roy
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata, 700032, West Bengal, India
| | - Brajadulal Chattopadhyay
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata, 700032, West Bengal, India
| | - Krishnendu Acharya
- Department of Botany, University of Calcutta, 35, Ballygunge Circular Rd, Ballygunge, Kolkata, 700019, West Bengal, India
| | - Sriparna Datta
- Department of Chemical Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Rajabazar, Machuabazar, Kolkata, 700009, West Bengal, India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, 700027, West Bengal, India.
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata, 700 098, West Bengal, India.
| |
Collapse
|
2
|
Asadpour Panbehchouleh F, Amani H, Saeedi M. Menadione Sodium Bisulfite Loaded Rhamnolipid Based Solid Lipid Nanoparticle as Skin Lightener Formulation: A Green Production Beside In Vitro/In Vivo Safety Index Evaluation. Adv Pharm Bull 2024; 14:623-633. [PMID: 39494253 PMCID: PMC11530874 DOI: 10.34172/apb.2024.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose In the current investigation, an ultrasonic approach was performed to produce menadione sodium bisulfite-loaded solid lipid nanoparticles (MSB-SLNs) with rhamnolipid as bio-surfactant, which aimed to increase the dermal delivery and anti-pigmentation effect. Methods To achieve optimum delivery for MSB, the impact of the ratio of two surfactants (rhamnolipid: Tween) on nanoparticle attributes and the respective functions were evaluated. In vitro diffusion process, in vitro cytotoxicity assay, determination of melanin content of melanoma cells, L-DOPA auto-oxidation inhibitory test, and skin irritation studies carried out to investigate the suitability of MSB formulation in dermal application. Results The optimized nanoparticles showed an average particle size, zeta potential, polydispersity index (PDI), and drug entrapment efficiency of 117.26±1.12 nm, -6.28±0.33 mV, 0.262±0.002, 83.34±0.75% respectively in hydrophilic-lipophilic balance (HLB) of 12. The in vitro diffusion process demonstrated that MSB-SLN gel had a prolonged release pattern. The levels of MSB in the cutaneous layers (52.192±2.730% or 961.59±50.313 μg/cm2 ) and the receiver compartment (23.721±1.803 % or 437.049± 33.236 μg/cm2 ) for the MSB-SLN gel was higher than MSB simple and showed no cutaneous irritancy and toxicity in rats. MSB-SLN inhibited melanin formation and was remarkably higher than free MSB. MSB-SLN inhibited L-3,4- dihydroxyphenylalanine (L-DOPA) auto-oxidation to a greater extent (95.14±1.46%) than MSB solution (72.28±0.83%). Conclusion This study's observations revealed that the produced MSB-SLN might be used as a potential nano-vehicle for MSB dermal administration, thereby opening up innovative options for the management of hyper-melanogenesis problems.
Collapse
Affiliation(s)
| | - Hossein Amani
- Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Majid Saeedi
- Pharmaceutical Sciences Research Centre, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
Thukral R, Arora P, Sharma S, Choudhury D, Singla N. Formulation and evaluation of solid lipid nanoparticles loaded with papaya seed chloroform extract for long-term antifertility effects on the male rat, Bandicota bengalensis. Drug Chem Toxicol 2024; 47:496-506. [PMID: 37501612 DOI: 10.1080/01480545.2023.2240542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/09/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
The study is the first to formulate and investigate potential of papaya seed chloroform extract based solid lipid nanoparticles (PSCEN) as antifertility agents on male Bandicota bengalensis. The prepared nanoparticles were spherical of size 300-600 nm. The release kinetics showed a controlled release of the drug with major release over 48 h. To assess the antifertility effects of PSCEN, adult male rats were fed a diet containing two different concentrations of PSCEN (5% and 10%) for 15 days under bi-choice conditions. The mean total active ingredient ingestion of the rats in the two treated groups ranged from 2.13-3.31 and 3.92-5.87 g/100g body weight, respectively. No adverse effects of treatment on body weight were observed. Also, no mortality of rats was observed. The treatment had a significant effect on the weight of the testis and the epididymis, but not on the other organs. Sperm motility (%), sperm viability (%), sperm count (millions/ml), sperm mitochondrial activity (%), sperm nuclear chromatin de-condensation (%) and sperm hypo-osmotic swelling (%) were significantly decreased, and sperm abnormality (%) significantly increased compared to the vehicle control group. The reproductive success rates of male rats treated with 5% and 10% PSCEN and mated with untreated female rats were 20.00-66.67% and 16.67%, respectively, while in untreated female rats mated with male rats of vehicle control group, reproductive success rate was 33.33 to 80%. The study found a maximal antifertility effect of the 10% PSCEN containing bait, which was irreversible up to 105 days after stopping treatment, suggesting long-term efficacy.
Collapse
Affiliation(s)
- Ruchika Thukral
- Department of Zoology, Punjab Agricultural University, Ludhiana, India
| | - Payal Arora
- Department of Zoology, Punjab Agricultural University, Ludhiana, India
| | - Sunidhi Sharma
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
- TIET-VT Centre of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, India
| | - Neena Singla
- Department of Zoology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
4
|
Kimta N, Majdalawieh AF, Nasrallah GK, Puri S, Nepovimova E, Jomova K, Kuča K. Leprosy: Comprehensive insights into pathology, immunology, and cutting-edge treatment strategies, integrating nanoparticles and ethnomedicinal plants. Front Pharmacol 2024; 15:1361641. [PMID: 38818380 PMCID: PMC11137175 DOI: 10.3389/fphar.2024.1361641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Mycobacterium leprae is the causative agent responsible for the chronic disease known as leprosy. This condition is characterized by dermal involvement, often leading to peripheral nerve damage, sensory-motor loss, and related abnormalities. Both innate and acquired immunological responses play a role in the disease, and even in individuals with lepromatous leprosy, there can be a transient increase in T cell immunity during lepromatous reactions. Diagnosing of early-stage leprosy poses significant challenges. In this context, nanoparticles have emerged as a promising avenue for addressing various crucial issues related to leprosy. These include combatting drug resistance, mitigating adverse effects of conventional medications, and enhancing targeted drug delivery. This review serves as a comprehensive compilation, encompassing aspects of pathology, immunology, and adverse effects of multidrug delivery systems in the context of leprosy treatment. Furthermore, the review underscores the significance of ethnomedicinal plants, bioactive secondary metabolites, and nanotherapeutics in the management of leprosy. It emphasizes the potential to bridge the gap between existing literature and ongoing research efforts, with a profound scope for validating traditional claims, developing herbal medicines, and formulating nanoscale drug delivery systems that are safe, effective, and widely accepted.
Collapse
Affiliation(s)
- Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Amin F. Majdalawieh
- Department of Biology, Chemsitry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | | | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czechia
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czechia
| |
Collapse
|
5
|
Pal S, Chatterjee N, Das AK, McClements DJ, Dhar P. Sophorolipids: A comprehensive review on properties and applications. Adv Colloid Interface Sci 2023; 313:102856. [PMID: 36827914 DOI: 10.1016/j.cis.2023.102856] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Sophorolipids are surface-active glycolipids produced by several non-pathogenic yeast species and are widely used as biosurfactants in several industrial applications. Sophorolipids provide a plethora of benefits over chemically synthesized surfactants for certain applications like bioremediation, oil recovery, and pharmaceuticals. They are, for instance less toxic, more benign and environment friendly in nature, biodegradable, freely adsorb to different surfaces, self-assembly in hydrated solutions, robustness for industrial applications etc. These miraculous properties result in valuable physicochemical attributes such as low critical micelle concentrations (CMCs), reduced interfacial surface tension, and capacity to dissolve non-polar components. Moreover, they exhibit a diverse range of physicochemical, functional, and biological attributes due to their unique molecular composition and structure. In this article, we highlight the physico-chemical properties of sophorolipids, how these properties are exploited by the human community for extensive benefits and the conditions which lead to their unique tailor-made structures and how they entail their interfacial behavior. Besides, we discuss the advantages and disadvantages associated with the use of these sophorolipids. We also review their physiological and functional attributes, along with their potential commercial applications, in real-world scenario. Biosurfactants are compared to their man-made equivalents to show the variations in structure-property correlations and possible benefits. Those attempting to manufacture purported natural or green surfactant with innovative and valuable qualities can benefit from an understanding of biosurfactant features structured along the same principles. The uniqueness of this review article is the detailed physico-chemical study of the sophorolipid biosurfactant and how these properties helps in their usage and detailed explicit study of their applications in the current scenario and also covering their pros and cons.
Collapse
Affiliation(s)
- Srija Pal
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India
| | - Arun K Das
- Eastern Regional Station, ICAR-IVRI, 37 Belgachia Road, Kolkata 700037, West Bengal, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India.
| |
Collapse
|
6
|
Impact of nanoparticles on amyloid β-induced Alzheimer's disease, tuberculosis, leprosy and cancer: a systematic review. Biosci Rep 2023; 43:232435. [PMID: 36630532 PMCID: PMC9905792 DOI: 10.1042/bsr20220324] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Nanotechnology is an interdisciplinary domain of science, technology and engineering that deals with nano-sized materials/particles. Usually, the size of nanoparticles lies between 1 and 100 nm. Due to their small size and large surface area-to-volume ratio, nanoparticles exhibit high reactivity, greater stability and adsorption capacity. These important physicochemical properties attract scientific community to utilize them in biomedical field. Various types of nanoparticles (inorganic and organic) have broad applications in medical field ranging from imaging to gene therapy. These are also effective drug carriers. In recent times, nanoparticles are utilized to circumvent different treatment limitations. For example, the ability of nanoparticles to cross the blood-brain barrier and having a certain degree of specificity towards amyloid deposits makes themselves important candidates for the treatment of Alzheimer's disease. Furthermore, nanotechnology has been used extensively to overcome several pertinent issues like drug-resistance phenomenon, side effects of conventional drugs and targeted drug delivery issue in leprosy, tuberculosis and cancer. Thus, in this review, the application of different nanoparticles for the treatment of these four important diseases (Alzheimer's disease, tuberculosis, leprosy and cancer) as well as for the effective delivery of drugs used in these diseases has been presented systematically. Although nanoformulations have many advantages over traditional therapeutics for treating these diseases, nanotoxicity is a major concern that has been discussed subsequently. Lastly, we have presented the promising future prospective of nanoparticles as alternative therapeutics. In that section, we have discussed about the futuristic approach(es) that could provide promising candidate(s) for the treatment of these four diseases.
Collapse
|
7
|
TLR2 agonistic lipopeptide enriched PLGA nanoparticles as combinatorial drug delivery vehicle. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Rathee J, Kanwar R, Kumari L, Pawar SV, Salunke DB, Mehta SK. Preparation of α-Tocopherol based nanoemulsion for efficacious delivery of Methotrexate. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2021.2022491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jyoti Rathee
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Rohini Kanwar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
- Mehr Chand Mahajan D.A.V. College For Women, Chandigarh, India
| | - Laxmi Kumari
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sandip V. Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Deepak B. Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Surinder Kumar Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
9
|
Sałek K, Euston SR, Janek T. Phase Behaviour, Functionality, and Physicochemical Characteristics of Glycolipid Surfactants of Microbial Origin. Front Bioeng Biotechnol 2022; 10:816613. [PMID: 35155390 PMCID: PMC8830654 DOI: 10.3389/fbioe.2022.816613] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/10/2022] [Indexed: 01/14/2023] Open
Abstract
Growing demand for biosurfactants as environmentally friendly counterparts of chemically derived surfactants enhances the extensive search for surface-active compounds of biological (microbial) origin. The understanding of the physicochemical properties of biosurfactants such as surface tension reduction, dispersion, emulsifying, foaming or micelle formation is essential for the successful application of biosurfactants in many branches of industry. Glycolipids, which belong to the class of low molecular weight surfactants are currently gaining a lot of interest for industrial applications. For this reason, we focus mainly on this class of biosurfactants with particular emphasis on rhamnolipids and sophorolipids, the most studied of the glycolipids.
Collapse
Affiliation(s)
- Karina Sałek
- Institute for Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, United Kingdom
- *Correspondence: Karina Sałek,
| | - Stephen R. Euston
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
10
|
Gundogdu E, Demir ES, Ekinci M, Ozgenc E, Ilem-Ozdemir D, Senyigit Z, Gonzalez-Alvarez I, Bermejo M. An Innovative Formulation Based on Nanostructured Lipid Carriers for Imatinib Delivery: Pre-Formulation, Cellular Uptake and Cytotoxicity Studies. NANOMATERIALS 2022; 12:nano12020250. [PMID: 35055267 PMCID: PMC8778264 DOI: 10.3390/nano12020250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/05/2023]
Abstract
Imatinib (IMT) is a tyrosine kinase enzyme inhibitor and extensively used for the treatment of gastrointestinal stromal tumors (GISTs). A nanostructured lipid carrier system (NLCS) containing IMT was developed by using emulsification-sonication methods. The characterization of the developed formulation was performed in terms of its particle size, polydispersity index (PDI), zeta potential, entrapment efficiency, loading capacity, sterility, syringeability, stability, in vitro release kinetics with mathematical models, cellular uptake studies with flow cytometry, fluorescence microscopy and cytotoxicity for CRL-1739 cells. The particle size, PDI, loading capacity and zeta potential of selected NLCS (F16-IMT) were found to be 96.63 ± 1.87 nm, 0.27 ± 0.15, 96.49 ± 1.46% and -32.7 ± 2.48 mV, respectively. F16-IMT was found to be stable, thermodynamic, sterile and syringeable through an 18 gauze needle. The formulation revealed a Korsmeyer-Peppas drug release model of 53% at 8 h, above 90% of cell viability, 23.61 µM of IC50 and induction of apoptosis in CRL-1739 cell lines. In the future, F16-IMT can be employed to treat GISTs. A small amount of IMT loaded into the NLCSs will be better than IMT alone for therapy for GISTs. Consequently, F16-IMT could prove to be useful for effective GIST treatment.
Collapse
Affiliation(s)
- Evren Gundogdu
- Radiopharmacy Department, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey; (E.G.); (E.-S.D.); (M.E.); (E.O.); (D.I.-O.)
| | - Emine-Selin Demir
- Radiopharmacy Department, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey; (E.G.); (E.-S.D.); (M.E.); (E.O.); (D.I.-O.)
| | - Meliha Ekinci
- Radiopharmacy Department, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey; (E.G.); (E.-S.D.); (M.E.); (E.O.); (D.I.-O.)
| | - Emre Ozgenc
- Radiopharmacy Department, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey; (E.G.); (E.-S.D.); (M.E.); (E.O.); (D.I.-O.)
| | - Derya Ilem-Ozdemir
- Radiopharmacy Department, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey; (E.G.); (E.-S.D.); (M.E.); (E.O.); (D.I.-O.)
| | - Zeynep Senyigit
- Pharmaceutical Technology Department, Faculty of Pharmacy, Izmir Katip Celebi University, Cigli, Izmir 35400, Turkey;
| | - Isabel Gonzalez-Alvarez
- Pharmaceutical Technology Department, Faculty of Pharmacy, Miguel Hernández University, Avenida de la Universidad, 03202 Elche, Spain;
- Correspondence:
| | - Marival Bermejo
- Pharmaceutical Technology Department, Faculty of Pharmacy, Miguel Hernández University, Avenida de la Universidad, 03202 Elche, Spain;
| |
Collapse
|
11
|
Rathee J, Kaur A, Kanwar R, Kaushik D, Kumar R, Salunke DB, Mehta S. Polymeric Nanoparticles as a Promising Drug Delivery Platform for the Efficacious Delivery of Toll-Like Receptor 7/8 Agonists and IDO-Inhibitor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Joshi G, Quadir SS, Yadav KS. Road map to the treatment of neglected tropical diseases: Nanocarriers interventions. J Control Release 2021; 339:51-74. [PMID: 34555491 DOI: 10.1016/j.jconrel.2021.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022]
Abstract
Neglected tropical disease (NTD) is a set of 20 deadliest endemic diseases which shows its presence in most of the developing countries worldwide. Nearly 1 billion of the population are affected by it and suffered from poverty yearly. These diseases offer their own unique challenges and limitations towards effective prevention and treatment methods. Neglected tropical diseases are severe infections they may not kill the patient but debilitate the patient by causing severe skin deformities, disfigurement and horrible risks for several infections. Existing therapies for neglected diseases suffer from the loopholes like high degree of toxicity, side effects, low bioavailability, improper targeting and problematic application for affected populations. Progress in the field of nanotechnology in last decades suggested the intervention of nanocarriers to take over and drive the research and development to the next level by incorporating established drugs into the nanocarriers rather than discovering the newer drugs which is an expensive affair. These nanocarriers are believed to be a sure shot technique to fight infections at root level by virtue of its nanosize and ability to reach at cellular level. This article highlights the recent advances, rationale, targets and the challenges that are being faced to fight against NTDs and how the novel therapy tactics are able to contribute to its importance in prevention and treatment of NTDs.
Collapse
Affiliation(s)
- Garima Joshi
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Sheikh Shahnawaz Quadir
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai 400056, India.
| |
Collapse
|
13
|
Gundogdu EA, Demir ES, Ekinci M, Ozgenc E, Ilem Ozdemir D, Senyigit Z, Asikoglu M. The effect of radiolabeled nanostructured lipid carrier systems containing imatinib mesylate on NIH-3T3 and CRL-1739 cells. Drug Deliv 2021; 27:1695-1703. [PMID: 33263456 PMCID: PMC7745890 DOI: 10.1080/10717544.2020.1841337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The aim of current study is to develop new nanostructured lipid carrier systems (NLCSs) containing imatinib mesylate (IMT) and evaluate their targeting efficiency on NIH-3T3 as fibroblast cells and CRL-1739 as gastric adenocarcinoma cells with radiolabeled formulations. Three formulations (F1-IMT, F2-IMT and F3-IMT) were prepared and radiolabeled with 1 mCi/0.1 mL of [99mTc]Tc. The effect of reducing and antioxidant agents on radiolabeling process was evaluated and radiochemical purity of formulations was performed by radio thin-layer radiochromatography (RTLC). The results demonstrated that the radiochemical purity was found to be above 90% for [99mTc]Tc-F1-IMT and [99mTc]Tc-F2-IMT, while radiochemical purity of [99mTc]Tc-F3-IMT was found to be 85.61 ± 2.24%. Also, [99mTc]Tc-F1-IMT and [99mTc]Tc-F2-IMT have better stability in cell medium and saline than [99mTc]Tc-F3-IMT. Targeting efficiency of [99mTc]Tc-F1-IMT and [99mTc]Tc-F2-IMT comparatively evaluated by cell binding studies with [99mTc]NaTcO4 on NIH-3T3 and CRL-1739 cells. The cell binding capacity and targeting/non-targeting cell uptake ratio of these two formulations was found to be higher than [99mTc]NaTcO4 in CRL-1739. It is thought that the knowledge achieved in this study would contribute to using [99mTc]Tc-F1-IMT and [99mTc]Tc F2-IMT as an diagnosis and treatment agents.
Collapse
Affiliation(s)
| | - Emine Selin Demir
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Meliha Ekinci
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Emre Ozgenc
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Derya Ilem Ozdemir
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Zeynep Senyigit
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Makbule Asikoglu
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
14
|
de Souza Guedes L, Martinez RM, Bou-Chacra NA, Velasco MVR, Rosado C, Baby AR. An Overview on Topical Administration of Carotenoids and Coenzyme Q10 Loaded in Lipid Nanoparticles. Antioxidants (Basel) 2021; 10:1034. [PMID: 34206935 PMCID: PMC8300771 DOI: 10.3390/antiox10071034] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Carotenoids and coenzyme Q10 are naturally occurring antioxidant compounds that are also found in human skin. These bioactive compounds have been the focus of considerable research due to their antioxidant, anti-inflammatory, and photoprotective properties. In this review, the current state of the art in the encapsulation of carotenoids and coenzyme Q10 in lipid nanoparticles to improve their bioavailability, chemical stability, and skin absorption is discussed. Additionally, the main findings are highlighted on the cytotoxic and photoprotective effects of these systems in the skin.
Collapse
Affiliation(s)
- Luciana de Souza Guedes
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Renata Miliani Martinez
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Nádia A. Bou-Chacra
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Maria Valéria Robles Velasco
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Catarina Rosado
- CBIOS, Universidade Lusófona’s Research Center for Biosciences & Health Technologies, 1749-024 Lisbon, Portugal;
| | - André Rolim Baby
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| |
Collapse
|
15
|
Proficiency of nanostructured lipid carriers for the formulation of amphiphilic bile acid oligomers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Hu X, Subramanian K, Wang H, Roelants SLKW, To MH, Soetaert W, Kaur G, Lin CSK, Chopra SS. Guiding environmental sustainability of emerging bioconversion technology for waste-derived sophorolipid production by adopting a dynamic life cycle assessment (dLCA) approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116101. [PMID: 33307395 DOI: 10.1016/j.envpol.2020.116101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Microbial biosurfactants are surface-active molecules that are naturally produced by a range of microorganisms. They have certain advantages over chemical surfactants, such as lower toxicity, higher biodegradability, anti-tumor, and anti-microbial properties. Sophorolipids (SLs) in particular are one of the most promising biosurfactants, as they hold the largest share of the biosurfactant market. Currently, researchers are developing novel approaches for SL production that utilize renewable feedstocks and advanced separation technologies. However, challenges still exist regarding consumption of materials, enzymes, and electricity, that are primarily fossil based. Researchers lack a clear understanding of the associated environmental impacts. It is imperative to quantify and optimize the environmental impacts associated with this emerging technology very early in its design phase to guide a sustainable scale-up. It is necessary to take a collaborative perspective, wherein life cycle assessment (LCA) experts work with experimentalists, to quantify environmental impacts and provide recommendations for improvements in the novel waste-derived SL production pathways. Studies that have analyzed the environmental sustainability of microbial biosurfactant production are very scarce in literature. Hence, in this work, we explore the possibility of applying LCA to evaluate the environmental sustainability of SL production. A dynamic LCA (dLCA) framework that quantifies the environmental impacts of a process in an iterative manner, is proposed and applied to evaluate SL production. The first traversal of the dLCA was associated with the selection of an optimal feedstock, and results identified food waste as a promising feedstock. The second traversal compared fermentation coupled with alternative separation techniques, and highlighted that the fed-batch fermentation of food waste integrated with the in-situ separation technique resulted in less environmental impacts. These results will guide experimentalists to further optimize those processes, and improve the environmental sustainability of SL production. Resultant datasets can be iteratively used in subsequent traversals to account for technological changes and mitigate the corresponding impacts before scaling up.
Collapse
Affiliation(s)
- Xiaomeng Hu
- School of Energy and Environment, City University of Hong Kong, Kowloon, SAR, Hong Kong
| | - Karpagam Subramanian
- School of Energy and Environment, City University of Hong Kong, Kowloon, SAR, Hong Kong
| | - Huaimin Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, SAR, Hong Kong
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Bio Base Europe Pilot Plant, Ghent, Belgium
| | - Ming Ho To
- School of Energy and Environment, City University of Hong Kong, Kowloon, SAR, Hong Kong
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Bio Base Europe Pilot Plant, Ghent, Belgium
| | - Guneet Kaur
- Department of Biology, Hong Kong Baptist University, Hong Kong; Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, M3J 1P3, Canada
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon, SAR, Hong Kong
| | - Shauhrat S Chopra
- School of Energy and Environment, City University of Hong Kong, Kowloon, SAR, Hong Kong.
| |
Collapse
|
17
|
Chaves LL, Patriota Y, Soares-Sobrinho JL, Vieira ACC, Lima SAC, Reis S. Drug Delivery Systems on Leprosy Therapy: Moving Towards Eradication? Pharmaceutics 2020; 12:E1202. [PMID: 33322356 PMCID: PMC7763250 DOI: 10.3390/pharmaceutics12121202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022] Open
Abstract
Leprosy disease remains an important public health issue as it is still endemic in several countries. Mycobacterium leprae, the causative agent of leprosy, presents tropism for cells of the reticuloendothelial and peripheral nervous system. Current multidrug therapy consists of clofazimine, dapsone and rifampicin. Despite significant improvements in leprosy treatment, in most programs, successful completion of the therapy is still sub-optimal. Drug resistance has emerged in some countries. This review discusses the status of leprosy disease worldwide, providing information regarding infectious agents, clinical manifestations, diagnosis, actual treatment and future perspectives and strategies on targets for an efficient targeted delivery therapy.
Collapse
Affiliation(s)
- Luíse L. Chaves
- Laboratório Associado para a Química Verde, Rede de Química e Tecnologia, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.C.C.V.); (S.A.C.L.)
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Universidade Federal de Pernambuco, Recife 50740-521, Brazil; (Y.P.); (J.L.S.-S.)
| | - Yuri Patriota
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Universidade Federal de Pernambuco, Recife 50740-521, Brazil; (Y.P.); (J.L.S.-S.)
| | - José L. Soares-Sobrinho
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Universidade Federal de Pernambuco, Recife 50740-521, Brazil; (Y.P.); (J.L.S.-S.)
| | - Alexandre C. C. Vieira
- Laboratório Associado para a Química Verde, Rede de Química e Tecnologia, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.C.C.V.); (S.A.C.L.)
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Recife 50740-521, Brazil
| | - Sofia A. Costa Lima
- Laboratório Associado para a Química Verde, Rede de Química e Tecnologia, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.C.C.V.); (S.A.C.L.)
- Cooperativa de Ensino Superior Politécnico e Universitário, Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal
| | - Salette Reis
- Laboratório Associado para a Química Verde, Rede de Química e Tecnologia, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.C.C.V.); (S.A.C.L.)
| |
Collapse
|
18
|
Jha A, Nikam AN, Kulkarni S, Mutalik SP, Pandey A, Hegde M, Rao BSS, Mutalik S. Biomimetic nanoarchitecturing: A disguised attack on cancer cells. J Control Release 2020; 329:413-433. [PMID: 33301837 DOI: 10.1016/j.jconrel.2020.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
With the changing face of healthcare, there is a demand for drug delivery systems that have increased efficacy and biocompatibility. Nanotechnology derived drug carrier systems were found to be ideal candidates to meet these demands. Among the vast number of nanosized delivery systems, biomimetic nanoparticles have been researched at length. These nanoparticles mimic cellular functions and are highly biocompatible. They are also able to avoid clearance by the reticuloendothelial system which increases the time spent by them in the systemic circulation. Additionally, their low immunogenicity and targeting ability increase their significance as drug carriers. Based on their core material we have summarized them as biomimetic inorganic nanoparticles, biomimetic polymeric nanoparticles, and biomimetic lipid nanoparticles. The core then may be coated using membranes derived from erythrocytes, cancer cells, leukocytes, stem cells, and other membranes to endow them with biomimetic properties. They can be used for personalized therapy and diagnosis of a large number of diseases, primarily cancer. This review summarizes the various therapeutic approaches using biomimetic nanoparticles along with their applications in the field of cancer imaging, nucleic acid therapy and theranostic properties. A brief overview about toxicity concerns related to these nanoconstructs has been added to provide knowledge about biocompatibility of such nanoparticles.
Collapse
Affiliation(s)
- Adrija Jha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India
| | - Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India
| | - Sadhana P Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India
| | - Manasa Hegde
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India
| | | | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India.
| |
Collapse
|
19
|
Duong VA, Nguyen TTL, Maeng HJ. Preparation of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Drug Delivery and the Effects of Preparation Parameters of Solvent Injection Method. Molecules 2020; 25:E4781. [PMID: 33081021 PMCID: PMC7587569 DOI: 10.3390/molecules25204781] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 02/01/2023] Open
Abstract
Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have emerged as potential drug delivery systems for various applications that are produced from physiological, biodegradable, and biocompatible lipids. The methods used to produce SLNs and NLCs have been well investigated and reviewed, but solvent injection method provides an alternative means of preparing these drug carriers. The advantages of solvent injection method include a fast production process, easiness of handling, and applicability in many laboratories without requirement of complicated instruments. The effects of formulations and process parameters of this method on the characteristics of the produced SLNs and NLCs have been investigated in several studies. This review describes the methods currently used to prepare SLNs and NLCs with focus on solvent injection method. We summarize recent development in SLNs and NLCs production using this technique. In addition, the effects of solvent injection process parameters on SLNs and NLCs characteristics are discussed.
Collapse
Affiliation(s)
- Van-An Duong
- Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam;
| | - Thi-Thao-Linh Nguyen
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| |
Collapse
|
20
|
Thakur S, Singh A, Sharma R, Aurora R, Jain SK. Biosurfactants as a Novel Additive in Pharmaceutical Formulations: Current Trends and Future Implications. Curr Drug Metab 2020; 21:885-901. [PMID: 33032505 DOI: 10.2174/1389200221666201008143238] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Surfactants are an important category of additives that are used widely in most of the formulations as solubilizers, stabilizers, and emulsifiers. Current drug delivery systems comprise of numerous synthetic surfactants (such as Cremophor EL, polysorbate 80, Transcutol-P), which are associated with several side effects though used in many formulations. Therefore, to attenuate the problems associated with conventional surfactants, a new generation of surface-active agents is obtained from the metabolites of fungi, yeast, and bacteria, which are termed as biosurfactants. OBJECTIVES In this article, we critically analyze the different types of biosurfactants, their origin along with their chemical and physical properties, advantages, drawbacks, regulatory status, and detailed pharmaceutical applications. METHODS 243 papers were reviewed and included in this review. RESULTS Briefly, Biosurfactants are classified as glycolipids, rhamnolipids, sophorolipids, trehalolipids, surfactin, lipopeptides & lipoproteins, lichenysin, fatty acids, phospholipids, and polymeric biosurfactants. These are amphiphilic biomolecules with lipophilic and hydrophilic ends and are used as drug delivery vehicles (foaming, solubilizer, detergent, and emulsifier) in the pharmaceutical industry. Despite additives, they have some biological activity as well (anti-cancer, anti-viral, anti-microbial, P-gp inhibition, etc.). These biomolecules possess better safety profiles and are biocompatible, biodegradable, and specific at different temperatures. CONCLUSION Biosurfactants exhibit good biomedicine and additive properties that can be used in developing novel drug delivery systems. However, more research should be driven due to the lack of comprehensive toxicity testing and high production cost which limits their use.
Collapse
Affiliation(s)
- Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Ritika Sharma
- Sri Sai College of Pharmacy, Badhani, Pathankot, 145001, India
| | - Rohan Aurora
- The International School Bangalore, Karnataka, 562125, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
21
|
Zhong Q, Zhang L. Nanoparticles fabricated from bulk solid lipids: Preparation, properties, and potential food applications. Adv Colloid Interface Sci 2019; 273:102033. [PMID: 31614266 DOI: 10.1016/j.cis.2019.102033] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022]
Abstract
Unlike conventional emulsions, solid lipids are used to prepare solid lipid nanoparticles (SLNs) with crystalline structures and nanostructured lipid carriers (NLCs) with imperfect crystals or amorphous structures to encapsulate various bioactive compounds significant to food applications. The solid lipid matrix can stabilize particle structures and control release properties of the encapsulated compounds that may not be possible for emulsions with liquid droplets. In this review, common approaches of preparing SLNs and NLCs are first presented, followed by parameters used to study lipid particles, including dimensional, morphological, charge, thermal, and crystalline properties. The structures of SLNs and NLCs with respect to the release mechanisms of encapsulated compounds are discussed in the context of lipid and emulsifier chemistry and preparation conditions. Lastly, possible applications of SLNs and NLCs in food systems are discussed.
Collapse
Affiliation(s)
- Qixin Zhong
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA.
| | - Linhan Zhang
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
22
|
Kanwar R, Gradzielski M, Prevost S, Kaur G, Appavou MS, Mehta SK. Physicochemical stimuli as tuning parameters to modulate the structure and stability of nanostructured lipid carriers and release kinetics of encapsulated antileprosy drugs. J Mater Chem B 2019; 7:6539-6555. [PMID: 31584603 DOI: 10.1039/c9tb01330j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To unveil the effect of electrolyte concentration, pH and polymer addition on Tween 80 stabilized nanostructured lipid carriers (NLCs, based on dialkyldimethylammonium bromides DxDAB and Na oleate), an in-depth scattering analysis was performed. Dynamic and static light scattering (DLS/SLS) and small-angle neutron scattering (SANS) techniques along with zeta potential studies were exploited to understand the structural evolution and physical stability of NLCs. In these experiments, we varied the salt concentration, pH, and the admixture of Pluronic F127 in order to elucidate their effect on NLC morphologies. In most cases, two populations of different sizes are present which differ by one order of magnitude. The antileprosy drugs (ALD) Rifampicin and Dapsone were encapsulated in NLCs and the vector properties were assessed for a series of DxDAB (where x = 12, 14, 16 and 18) NLCs. The influence of composition on the entrapment and release behavior of NLCs was investigated: The size of NLCs correlates with the release rate of the incorporated drug. The interaction of drug-loaded NLCs with bovine serum albumin was studied to understand the release of ALD in the plasma.
Collapse
Affiliation(s)
- Rohini Kanwar
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| | - Michael Gradzielski
- Stranski Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Sylvain Prevost
- Institut Max von Laue - Paul Langevin (ILL), 71 avenue des Martyrs, 38042 Grenoble, France.
| | - Gurpreet Kaur
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - S K Mehta
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| |
Collapse
|
23
|
Kanwar R, Gradzielski M, Prevost S, Appavou MS, Mehta S. Experimental validation of biocompatible nanostructured lipid carriers of sophorolipid: Optimization, characterization and in-vitro evaluation. Colloids Surf B Biointerfaces 2019; 181:845-855. [DOI: 10.1016/j.colsurfb.2019.06.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 01/29/2023]
|
24
|
Kanwar R, Rathee J, Salunke DB, Mehta SK. Green Nanotechnology-Driven Drug Delivery Assemblies. ACS OMEGA 2019; 4:8804-8815. [PMID: 31459969 PMCID: PMC6648705 DOI: 10.1021/acsomega.9b00304] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/09/2019] [Indexed: 05/24/2023]
Abstract
Green nanotechnology incorporates the principles of green chemistry and green engineering to fabricate innocuous and eco-friendly nanoassemblies to combat the problems affecting the human health or environment. Subsequently, amalgamation of green nanotechnology with drug delivery area has actually commenced a new realm of "green nanomedicine". The burgeoning demand for green nanotechnology-driven drug delivery systems has led to the development of different types of delivery devices, like inorganic (metallic) nanoparticles, quantum dots, organic polymeric nanoparticles, mesoporous silica nanoparticles, dendrimers, nanostructured lipid carriers, solid lipid nanoparticles, etc. The present article deals with a brief account of delivery devices produced from green methods and describes site-specific drug delivery systems (including their pros and cons) and their relevance in the field of green nanomedicine.
Collapse
Affiliation(s)
- Rohini Kanwar
- Department of Chemistry and
Center of Advanced Studies in Chemistry, Panjab University, Chandigarh U.T. 160014, India
| | - Jyoti Rathee
- Department of Chemistry and
Center of Advanced Studies in Chemistry, Panjab University, Chandigarh U.T. 160014, India
| | - Deepak B. Salunke
- Department of Chemistry and
Center of Advanced Studies in Chemistry, Panjab University, Chandigarh U.T. 160014, India
| | - Surinder K. Mehta
- Department of Chemistry and
Center of Advanced Studies in Chemistry, Panjab University, Chandigarh U.T. 160014, India
| |
Collapse
|