1
|
de Jesus Velazquez-Garcia J, Basuroy K, Wong J, Demeshko S, Meyer F, Kim I, Henning R, Staechelin YU, Lange H, Techert S. Out-of-equilibrium dynamics of a grid-like Fe(ii) spin crossover dimer triggered by a two-photon excitation. Chem Sci 2024; 15:13531-13540. [PMID: 39183926 PMCID: PMC11339940 DOI: 10.1039/d4sc02933j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The application of two-photon excitation (TPE) in the study of light-responsive materials holds immense potential due to its deeper penetration and reduced photodamage. Despite these benefits, TPE has been underutilised in the investigation of the photoinduced spin crossover (SCO) phenomenon. Here, we employ TPE to delve into the out-of-equilibrium dynamics of a SCO FeII dimer of the form [FeII(HL)2]2(BF4)4·2MeCN (HL = 3,5-bis{6-(2,2'-bipyridyl)}pyrazole). Optical transient absorption (OTA) spectroscopy in solution proves that the same dynamics take place under both one-photon excitation (OPE) and TPE. The results show the emergence of the photoinduced high spin state in less than 2 ps and with a lifetime of 147 ns. Time-resolved photocrystallography (TRXRD) reveals a single molecular reorganisation within the first 500 ps following TPE. Additionally, variable temperature single crystal X-ray diffraction (VTSCXRD) and magnetic susceptibility measurements confirm that the thermal transition is silenced by the solvent. While the results of the OTA and TRXRD utilising TPE are intriguing, the high pump fluencies required to excite enough metal centres to the high spin state may impair its practical application. Nonetheless, this study sheds light on the potential of TPE for the investigation of the out-of-equilibrium dynamics of SCO complexes.
Collapse
Affiliation(s)
| | - Krishnayan Basuroy
- Deutsches Elektronen-Synchrotron DESY Notkestr. 85 22607 Hamburg Germany
| | - Joanne Wong
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstraße 4 Göttingen 37077 Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstraße 4 Göttingen 37077 Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstraße 4 Göttingen 37077 Germany
| | - Insik Kim
- Center for Advanced Radiation Sources, The University of Chicago, Argonne National Laboratory 9700 South Cass Ave Lemont Illinois 90439 USA
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Argonne National Laboratory 9700 South Cass Ave Lemont Illinois 90439 USA
| | - Yannic U Staechelin
- Institute of Physical Chemistry, Universität Hamburg Martin-Luther-King-Platz 6 Hamburg 20146 Germany
| | - Holger Lange
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg 22761 Hamburg Germany
- Institute of Physics and Astronomy, Universität Potsdam Karl-Liebknecht-Str. 24 14476 Potsdam Germany
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY Notkestr. 85 22607 Hamburg Germany
- Institut für Röntgenphysik, Georg-August-Universität Göttingen Friedrich-Hund-Platz 1 Göttingen 37077 Germany
| |
Collapse
|
2
|
Du L, An J, Katayama T, Duan M, Shi X, Wang Y, Furube A. Photogenerated carrier dynamics of Mn2+ doped CsPbBr3 assembled with TiO2 systems: Effect of Mn doping content. J Chem Phys 2024; 160:164713. [PMID: 38656441 DOI: 10.1063/5.0197068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024] Open
Abstract
In recent years, all-inorganic perovskite materials have become an ideal choice for new thin film solar cells due to their excellent photophysical properties and have become a research hotspot. Studying the ultrafast dynamics of photo-generated carriers is of great significance for further improving the performance of such devices. In this work, we focus on the transient dynamic process of CsPbBr3/TiO2 composite systems with different Mn2+ doping contents using femtosecond transient absorption spectroscopy technology. We used singular value decomposition and global fitting to analyze the transient absorption spectra and obtained three components, which are classified as hot carrier cooling, charge transfer, and charge recombination processes, respectively. We found that the doping concentration of Mn2+ has an impact on all three processes. We think that the following two factors are responsible: one is the density of defect states and the other is the bandgap width of perovskite. As the concentration of doped Mn2+ increases, the charge transfer time constant shows a trend of initially increasing, followed by a subsequent decrease, reaching a turning point. This indicates that an appropriate amount of Mn2+ doping can effectively improve the photoelectric performance of solar cell systems. We proposed a possible charge transfer mechanism model and further elucidated the microscopic mechanism of the effect of Mn2+ doping on the interface charge transfer process of the CsPbBr3/TiO2 solar cell system.
Collapse
Affiliation(s)
- Luchao Du
- Institute of Atomic and Molecular Physics, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jie An
- Institute of Atomic and Molecular Physics, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Tetsuro Katayama
- Institute of Post-LED Photonics, Tokushima University, 2-1, Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Menghan Duan
- Institute of Atomic and Molecular Physics, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - XiaoPing Shi
- Institute of Atomic and Molecular Physics, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yunpeng Wang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Akihiro Furube
- Institute of Post-LED Photonics, Tokushima University, 2-1, Minamijosanjima-cho, Tokushima 770-8506, Japan
| |
Collapse
|
3
|
Liu S, Chen Z, Liu Y, Wu L, Wang B, Wang Z, Wu B, Zhang X, Zhang J, Chen M, Huang H, Ye J, Chu PK, Yu XF, Polavarapu L, Hoye RLZ, Gao F, Zhao H. Data-Driven Controlled Synthesis of Oriented Quasi-Spherical CsPbBr 3 Perovskite Materials. Angew Chem Int Ed Engl 2024; 63:e202319480. [PMID: 38317379 DOI: 10.1002/anie.202319480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Controlled synthesis of lead-halide perovskite crystals is challenging yet attractive because of the pivotal role played by the crystal structure and growth conditions in regulating their properties. This study introduces data-driven strategies for the controlled synthesis of oriented quasi-spherical CsPbBr3, alongside an investigation into the synthesis mechanism. High-throughput rapid characterization of absorption spectra and color under ultraviolet illumination was conducted using 23 possible ligands for the synthesis of CsPbBr3 crystals. The links between the absorption spectra slope (difference in the absorbance at 400 nm and 450 nm divided by a wavelength interval of 50 nm) and crystal size were determined through statistical analysis of more than 100 related publications. Big data analysis and machine learning were employed to investigate a total of 688 absorption spectra and 652 color values, revealing correlations between synthesis parameters and properties. Ex situ characterization confirmed successful synthesis of oriented quasi-spherical CsPbBr3 perovskites using polyvinylpyrrolidone and Acacia. Density functional theory calculations highlighted strong adsorption of Acacia on the (110) facet of CsPbBr3. Optical properties of the oriented quasi-spherical perovskites prepared with these data-driven strategies were significantly improved. This study demonstrates that data-driven controlled synthesis facilitates morphology-controlled perovskites with excellent optical properties.
Collapse
Affiliation(s)
- Shaohui Liu
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215000, PR China
- Wenzhou Institute of Technology, Digital Intelligent Manufacturing Research Center, Wenzhou, 325000, PR China
| | - Zijian Chen
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
- Wenzhou Institute of Technology, Digital Intelligent Manufacturing Research Center, Wenzhou, 325000, PR China
- Department of Chemical and Environmental Engineering, the University of Nottingham Ningbo China, Ningbo, 315100, PR China
| | - Yingming Liu
- Centre for Photonics Information and Energy Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
| | - Lingjun Wu
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
| | - Boyuan Wang
- Wenzhou Institute of Technology, Digital Intelligent Manufacturing Research Center, Wenzhou, 325000, PR China
| | - Zixuan Wang
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
- Wenzhou Institute of Technology, Digital Intelligent Manufacturing Research Center, Wenzhou, 325000, PR China
| | - Bobin Wu
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215000, PR China
- Wenzhou Institute of Technology, Digital Intelligent Manufacturing Research Center, Wenzhou, 325000, PR China
| | - Xinyu Zhang
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
- Wenzhou Institute of Technology, Digital Intelligent Manufacturing Research Center, Wenzhou, 325000, PR China
| | - Jie Zhang
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215000, PR China
| | - Mengyun Chen
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Hao Huang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
| | - Junzhi Ye
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
| | - Lakshminarayana Polavarapu
- CINBIO, Materials Chemistry and Physics Group, University of Vigo, Campus Universitario Marcosende, Vigo, 36310, Spain
| | - Robert L Z Hoye
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Haitao Zhao
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
| |
Collapse
|
4
|
Zhang J, Zhu Y. Exploiting the Photo-Physical Properties of Metal Halide Perovskite Nanocrystals for Bioimaging. Chembiochem 2024; 25:e202300683. [PMID: 38031246 DOI: 10.1002/cbic.202300683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Perovskite nanomaterials have recently been exploited for bioimaging applications due to their unique photo-physical properties, including high absorbance, good photostability, narrow emissions, and nonlinear optical properties. These attributes outperform conventional fluorescent materials such as organic dyes and metal chalcogenide quantum dots and endow them with the potential to reshape a wide array of bioimaging modalities. Yet, their full potential necessitates a deep grasp of their structure-attribute relationship and strategies for enhancing water stability through surface engineering for meeting the stringent and unique requirements of each individual imaging modality. This review delves into this evolving frontier, highlighting how their distinctive photo-physical properties can be leveraged and optimized for various bioimaging modalities, including visible light imaging, near-infrared imaging, and super-resolution imaging.
Collapse
Affiliation(s)
- Jiahui Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Yifan Zhu
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|
5
|
Annurakshita S, Liu M, Vivo P, Bautista G. Probing compositional engineering effects on lead-free perovskite-inspired nanocrystal thin films using correlative nonlinear optical microscopy. NANOSCALE 2024; 16:2852-2859. [PMID: 38231157 DOI: 10.1039/d3nr05137d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
We introduce the use of correlative third-harmonic generation and multiphoton-induced luminescence microscopy to investigate the impact of manganese (Mn) doping on bismuth (Bi)-based perovskite-inspired nanocrystal thin films. The technique was found to be extremely sensitive to the microscopic features of the perovskite film and its structural compositions, allowing the unambiguous detection of compositionally different emitters in the perovskite film and manipulation of their nonlinear optical responses. Our work unveils a new way to investigate, manipulate, and exploit perovskite-inspired functional materials for nonlinear optical conversion at the nanoscale.
Collapse
Affiliation(s)
- Shambhavee Annurakshita
- Photonics Laboratory, Physics Unit, Tampere University, Korkeakoulunkatu 3, 33720, Tampere, Finland.
| | - Maning Liu
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland
- Centre for Analysis and Synthesis, Lund University, P.O. Box 124, 22100 Lund, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Paola Vivo
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland
| | - Godofredo Bautista
- Photonics Laboratory, Physics Unit, Tampere University, Korkeakoulunkatu 3, 33720, Tampere, Finland.
| |
Collapse
|
6
|
Zhang Y, Du W, Liu X. Photophysics and its application in photon upconversion. NANOSCALE 2024; 16:2747-2764. [PMID: 38250819 DOI: 10.1039/d3nr05450k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Photoluminescence (PL) upconversion is a phenomenon involving light-matter interaction, where the energy of the emitted photons is higher than that of the incident photons. PL upconversion has promising applications in optoelectronic devices, displays, photovoltaics, imaging, diagnosis and treatment. In this review, we summarize the mechanism of PL upconversion and ultrafast PL physical processes. In particular, we highlight the advances in laser cooling, biological imaging, volumetric displays and photonics.
Collapse
Affiliation(s)
- Yutong Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenna Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Pramanik A, Kundu S, Kolawole OP, Gates K, Ray PC. Aspect Ratio and Quantum Confinement Tunable Giant Two-Photon Absorption from 1D CsPbI 3 Perovskite Nanorods. Chem Phys Lett 2024; 835:140952. [PMID: 38047212 PMCID: PMC10691783 DOI: 10.1016/j.cplett.2023.140952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Herein, we investigate the influence of aspect ratio and quantum confinement on the single-photon (σ1) and two-photon absorption cross-section (σ2) for perovskite CsPbI3 nanorod (NR). Notably, experimentally measured data show extremely high σ2 for CsPbI3 NR (10.8 × 107 GM) which is five orders of magnitude higher than organic chromophores, and two order of magnitude higher than CsPbBr3 nanocrystals. Moreover, σ2 for NRs can be enhanced by two-orders of magnitude by varying the aspect ratio and σ1 enhances linearly with aspect ratios. Furthermore, experimental data show moderate quantum confinement effect on the volume-normalized σ1 and σ2 for nanorods.
Collapse
Affiliation(s)
- Avijit Pramanik
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, USA
| | - Sanchita Kundu
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, USA
| | | | - Kaelin Gates
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, USA
| | - Paresh Chandra Ray
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, USA
| |
Collapse
|
8
|
Shi Q, Kumar P, Pullerits T. Temperature-Dependent Intensity Modulated Two-Photon Excited Fluorescence Microscopy for High Resolution Mapping of Charge Carrier Dynamics. ACS PHYSICAL CHEMISTRY AU 2023; 3:467-476. [PMID: 37780538 PMCID: PMC10540292 DOI: 10.1021/acsphyschemau.3c00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 10/03/2023]
Abstract
We present a temperature-dependent intensity modulated two-photon excited fluorescence microscopy technique that enables high-resolution quantitative mapping of charge carrier dynamics in perovskite microcrystal film. By disentangling the emission into harmonics of the excitation modulation frequency, we analyze the first and second order charge carrier recombination processes, including potential accumulation effects. Our approach allows for a quantitative comparison of different emission channels at a micrometer resolution. To demonstrate the effectiveness of the method, we applied it to a methylammonium lead bromide perovskite microcrystal film. We investigated the temperature-dependent modulated imaging, encompassing the exciton dissociation-association and charge carrier trapping-detrapping equilibrium. Additionally, we explored the potential freezing out of traps and the phase transition occurring at low temperatures.
Collapse
Affiliation(s)
- Qi Shi
- The
Division of Chemical Physics and NanoLund, Lund University, Box 124, 22100 Lund, Sweden
| | - Pushpendra Kumar
- Department
of Physics, Kirori Mal College, University
of Delhi, Delhi 110007, India
| | - Tönu Pullerits
- The
Division of Chemical Physics and NanoLund, Lund University, Box 124, 22100 Lund, Sweden
| |
Collapse
|
9
|
He Y, Liu S, Yao Z, Zhao Q, Chabera P, Zheng K, Yang B, Pullerits T, Chen J. Nature of Self-Trapped Exciton Emission in Zero-Dimensional Cs 2ZrCl 6 Perovskite Nanocrystals. J Phys Chem Lett 2023; 14:7665-7671. [PMID: 37603899 PMCID: PMC10476180 DOI: 10.1021/acs.jpclett.3c01878] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Low dimensional perovskite-inspired materials with self-tapped exciton (STE) emission have stimulated a surge of cutting-edge research in optoelectronics. Despite numerous efforts on developing versatile low-dimensional perovskite-inspired materials with efficient STE emissions, there is little emphasis on the intrinsic dynamics of STE-based broad emission in these materials. Here, we investigated the excited state dynamics in zero-dimensional (0D) Cs2ZrCl6 nanocrystals (NCs) with efficient blue STE emission. By using femtosecond transient absorption (fs-TA) spectroscopy, the ultrafast STE formation process within 400 fs is directly observed. Then, the formed STEs relax to an intermediate STE state with a lifetime of ∼180 ps before reaching the emissive STE state with a lifetime of ∼15 μs. Our work offers a comprehensive and precise dynamic picture of STE emission in low-dimensional metal halides and sheds light on extending their potential applications.
Collapse
Affiliation(s)
- Yanmei He
- Department
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
- Nano-Science
Center & Department of Chemistry, University
of Copenhagen, Universitetsparken
5, 2100 Copenhagen, Denmark
| | - Siping Liu
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, P. R. China
- Guangxi
Key Laboratory of Chemistry and Engineering of Forest Products, School
of Chemistry and Chemical Engineering, Guangxi
Minzu University, Nanning 530006, P. R. China
| | - Zehan Yao
- Department
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Qian Zhao
- Department
of Chemistry, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Pavel Chabera
- Department
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Kaibo Zheng
- Department
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
- Department
of Chemistry, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Bin Yang
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, P. R. China
| | - Tönu Pullerits
- Department
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Junsheng Chen
- Department
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
- Nano-Science
Center & Department of Chemistry, University
of Copenhagen, Universitetsparken
5, 2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Zhou Y, Hu Y, Zhang W, Liu C. Amplified spontaneous emission from inclusions containing cesium lead bromide in glasses. OPTICS EXPRESS 2023; 31:27192-27202. [PMID: 37710799 DOI: 10.1364/oe.495694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/17/2023] [Indexed: 09/16/2023]
Abstract
Cesium lead halide (CsPbX3, X = Cl, Br and I) perovskite nanocrystals embedded glasses exhibit good optical properties and have potential as gain media. However, origins of the amplified spontaneous emission (ASE) from CsPbX3 nanocrystals are controversial. Here, it is found that ASE is from CsPbX3 nanocrystals in inclusions instead of CsPbX3 nanocrystals dispersed in the glass matrix. Inclusions with various sizes are capable of generating ASE, and ASE of the inclusions can sustain at energy densities as high as several tens of mJ/cm2. Thresholds of the fs laser energy densities increase with the increase in fs laser wavelength, and high net optical gain coefficient is obtained.
Collapse
|
11
|
Su X, Pan Y, Gao D, Wang J, Yu H, Chen R, Guan B, Yang X, Wang Y, Wang L. Surface Vertical Multi-Emission Laser with Distributed Bragg Reflector Feedback from CsPbI 3 Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101669. [PMID: 37242084 DOI: 10.3390/nano13101669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Quantum dots (QDs) laser has become an important way to solve micro-application problems in many fields. However, single wavelength distributed Bragg reflector (DBR) has many limitations in practical applications, such as signal transmission. How to realize multiwavelength DBR lasing output simply is a challenge. To achieve a stable multi-wavelength quantum dots laser in the near-infrared region, the perovskite CsPbI3 QDs laser with DBR structure is developed in this paper. A tetragonal crystal structure with complete bonding information and no defect is explained by X-ray diffractions (XRD) and Raman spectrum. The cross-section morphology of the DBR laser and the surface morphology of QDs is measured by scanning electron microscope (SEM) and transmission electron microscope (TEM), respectively. An elliptical light propagation field and a double wavelength laser radiation are obtained from the finite-difference time-domain (FDTD) simulation. The output of the three wavelength lasers at 770 nm, 823 nm, and 873 nm is measured. The emission time of a DBR laser is about 2 h, and the average fluorescence quantum yield is 60%. The cavity length selection and energy level model are put in place to clearly see the working mechanism. All the results suggest that an effective and stable CsPbI3 quantum dots DBR laser is realized.
Collapse
Affiliation(s)
- Xueqiong Su
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Yong Pan
- College of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dongwen Gao
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Jin Wang
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Huimin Yu
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Ruixiang Chen
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Baolu Guan
- Key Laboratory of Opto-Electronics Technology, Ministry of Education, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Xinyu Yang
- The College of Chemistry & Materials Engineering, WenZhou University, Wenzhou 325000, China
| | - Yimeng Wang
- The School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Li Wang
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
12
|
Zhao G, Kou Y, Song N, Wei X, Zhai X, Feng P, Wang F, Yan CH, Tang Y. Intelligent Colorimetric Indicators for Quality Monitoring and Multilevel Anticounterfeiting with Kinetics-Tunable Fluorescence. ACS NANO 2023; 17:7624-7635. [PMID: 37053382 DOI: 10.1021/acsnano.3c00074] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The spoilage and forgery of perishable products such as food, drugs, and vaccines cause serious health hazards and economic loss every year. Developing highly efficient and convenient time-temperature indicators (TTIs) to realize quality monitoring and anticounterfeiting simultaneously is urgent but remains a challenge. To this end, a kind of colorimetric fluorescent TTI, based on CsPbBr3@SiO2 nanoparticles with tunable quenching kinetics, is developed. The kinetics rate of the CsPbBr3-based TTIs is easily regulated by adjusting temperature, concentration of the nanoparticles, and addition of salts, stemming from the cation exchange effect, common-ion effect, and structural damage by water. Typically, when combined with europium complexes, the developed TTIs show an irreversible dynamic change in fluorescent colors from green to red upon increasing temperature and time. Furthermore, a locking encryption system with multiple logics is also realized by combining TTIs with different kinetics. The correct information only appears at specific ranges of time and temperature under UV light and is irreversibly self-erased afterward. The simple and low-cost composition and the ingenious design of kinetics-tunable fluorescence in this work stimulate more insights and inspiration toward intelligent TTIs, especially for high-security anticounterfeiting and quality monitoring, which is really conducive to ensuring food and medicine safety.
Collapse
Affiliation(s)
- Guodong Zhao
- Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yao Kou
- Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Nan Song
- Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiaohe Wei
- Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiaoyong Zhai
- Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Pengfei Feng
- Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, P.R. China
| | - Chun-Hua Yan
- Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yu Tang
- Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, P.R. China
| |
Collapse
|
13
|
Ren C, Hu D, Cui Y, Chen P, Xu X, Cheng J, He T. Ag-doped InP/ZnS quantum dots for type-I photosensitizers. Chem Commun (Camb) 2023; 59:2311-2314. [PMID: 36748302 DOI: 10.1039/d2cc06119h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Water-soluble Ag-doped InP/ZnS quantum dots (QDs) with high photoluminescence quantum yield were synthesized and characterized. Their maximum two- and three-photon absorption cross sections are determined as ∼1.7 × 104 GM at 820 nm and ∼1.7 × 10-76 cm6 s2 photon-2 at 1260 nm. Importantly, for the first time, we demonstrated that Ag-doped InP/ZnS QDs can be used for type-I photodynamic therapy and are more suitable for the hypoxic environment of tumors.
Collapse
Affiliation(s)
- Can Ren
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Die Hu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China.
| | - Yanyan Cui
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Peixian Chen
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China.
| | - Xiaoqian Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China.
| | - Jiaji Cheng
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Tingchao He
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
14
|
Kar MR, Kumar S, Acharya TK, Goswami C, Bhaumik S. Highly water-stable, luminescent, and monodisperse polymer-coated CsPbBr 3 nanocrystals for imaging in living cells with better sensitivity. RSC Adv 2023; 13:5946-5956. [PMID: 36816075 PMCID: PMC9936268 DOI: 10.1039/d2ra07019g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Recently, CsPbX3 (X= Cl, Br, I) nanocrystals (NCs) have evolved as a potential contender for various optoelectronic applications due to some of their excellent photophysical properties. Their superior non-linear optical properties enable them to take part in bioimaging applications due to their longer penetration depth and less scattering effect in living cells. However, the poor stability of perovskite NCs in aqueous media still remains a great challenge for practical usage. Comparatively stable silica-coated NCs have a tendency to agglomerate among other NCs and transform into bigger particles. Such big particles clog the inside of narrow channels during the uptake and can't effectively reach the targeted cells. To tackle such issues, we introduce a fast and reproducible synthesis process of CsPbBr3 NCs that are coated with different long-chained organic ligands/polymers and compared their photophysical properties. Among them, polyvinylpyrrolidone (PVP) encapsulated NCs are highly luminescent in the green spectral region and showed a maximum photoluminescence quantum yield (PLQY) of up to 84%. The incorporation of n-isopropyl acrylamide (NIPAM) along with PVP further improves the stability of the PVP-coated NCs against heat and moisture. These NCs exhibit higher water stability compared to silica-coated NCs and maintained their emission properties for about one week in DI water. The smaller particle size, uniform size distribution, higher structural stability, and better dispersivity of polymer-coated NCs in the aqueous media enable them to perform as fluorescent probes for live cell imaging in mammalian Chinese Hamster Ovary (CHO-K1) cells. There is no adverse affect in the cells' viability and morphology even after long incubation periods (∼72 hours). The dosage of Pb-ions contained in the polymer-coated NCs is calculated as below 5 μg mL-1, which is suitable for live cell imaging. This work provides insight for expanding the use of these NCs significantly into bioimaging applications with higher sensitivity.
Collapse
Affiliation(s)
- Manav Raj Kar
- Department of Engineering and Materials Physics, Institute of Chemical Technology-IndianOil Odisha Campus Mouza-Samantapuri Bhubaneswar 751013 Odisha India
| | - Shamit Kumar
- School of Biological Sciences, National Institute of Science Education and ResearchBhubaneswar752050OdishaIndia
| | - Tusar Kanta Acharya
- School of Biological Sciences, National Institute of Science Education and ResearchBhubaneswar752050OdishaIndia
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and ResearchBhubaneswar752050OdishaIndia
| | - Saikat Bhaumik
- Department of Engineering and Materials Physics, Institute of Chemical Technology-IndianOil Odisha Campus Mouza-Samantapuri Bhubaneswar 751013 Odisha India
| |
Collapse
|
15
|
Qin C, Geng Y, Zhou Z, Song J, Ma S, Jia G, Jiao Z, Zhu Z, Jiang Y. Observation of carrier transfer in a vertical 0D-CsPbBr 3/2D-MoS 2 mixed-dimensional van der Waals heterojunction. OPTICS EXPRESS 2023; 31:2593-2601. [PMID: 36785269 DOI: 10.1364/oe.480651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Two-dimensional transition metal dichalcogenides with outstanding properties open up a new way to develop optoelectronic devices such as phototransistors and light-emitting diodes. Heterostructure with light-harvesting materials can produce many photogenerated carriers via charge and/or energy transfer. In this paper, the ultrafast dynamics of charge transfer in zero-dimensional CsPbBr3 quantum dot/two-dimensional MoS2 van der Waals heterostructures are investigated through femtosecond time-resolved transient absorption spectroscopy. Hole and electron transfers in the ps and fs magnitude at the interfaces between MoS2 and CsPbBr3 are observed by modulating pump wavelengths of the pump-probe configurations. Our study highlights the opportunities for realizing the exciton devices based on quantum dot/two-dimensional semiconductor heterostructures.
Collapse
|
16
|
Lin WH, Pan SC, Hsu JF, Tseng ZL, Jyu SS, Lin JH. Investigation of Two Photon Absorption of Ligand-Modified CsPbBr 3 Quantum Dots. J Phys Chem Lett 2022; 13:11245-11252. [PMID: 36448820 DOI: 10.1021/acs.jpclett.2c02615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The characteristics and application of nonlinear absorption from CsPbBr3 QDs film with the ligand-modified strategy have been investigated in this work. By means of a near-infrared fs Ti:sapphire laser as a light source, the up-conversion emission of CsPbBr3 QDs film of around 518 nm revealed a quadratic increase with the pump intensity. Through the temperature-dependent up-conversion emission, we obtained the binding energy and longitudinal optical (LO) phonon energy of CsPbBr3 QDs film of around 58.1 and 61.2 meV, respectively. Due to more active thermal coupling between the excited electron or hot phonon effect, the photon decay trace under two-photon excitation was prolonged at higher temperatures. The ligand-modified CsPbBr3 QDs film exhibits a relatively large TPA coefficient of around 28.6 cm/GW by the open aperture Z-scan measurement, and it has been demonstrated as a promising nonlinear medium to obtain the pulsewidth of ultrafast lasers.
Collapse
Affiliation(s)
- Wan-Hsuan Lin
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei10608, Taiwan
| | - Shao-Chien Pan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei10608, Taiwan
| | - Jen-Feng Hsu
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei10608, Taiwan
| | - Zong-Liang Tseng
- Organic Electronics Research Center and Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City243303, Taiwan
| | - Siao-Shan Jyu
- Taiwan O-Film Technology Company Limited, New Taipei City22101, Taiwan
| | - Ja-Hon Lin
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei10608, Taiwan
| |
Collapse
|
17
|
Hong D, Zhang Y, Pan S, Liu H, Mao W, Lu Z, Tian Y. Moisture-Dependent Blinking of Individual CsPbBr 3 Nanocrystals Revealed by Single-Particle Spectroscopy. J Phys Chem Lett 2022; 13:10751-10758. [PMID: 36374491 DOI: 10.1021/acs.jpclett.2c03159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
All-inorganic metal halide perovskite nanocrystals (NCs) have been exceptional candidates for high-performance solution-processed optoelectronic and photonic devices compared with organometal halide perovskite NCs due to their superior stability. However, the interactions between all-inorganic perovskite NCs and moisture, which is an acknowledged detrimental factor, are still under debate, and detailed investigations to uncover such fundamentals remain to be performed. Herein, with wide-field fluorescence microscopy, the burst photoluminescence blinking responses of CsPbBr3 NCs were observed in ambient air, and moisture rather than oxygen was verified to be the key factor that leads to the enhanced PL intensity and reduced OFF duration. This behavior is rationalized through an effective passivation effect of the adsorbed water molecules on the surface halide vacancies on CsPbBr3 NCs. This work validates that ∼40% humidity atmospheres are helpful for better utilizing the all-inorganic perovskites, which is evidence of their promising prospect for application.
Collapse
Affiliation(s)
- Daocheng Hong
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu224051, China
- Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu210023, China
| | - Yuchen Zhang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu210023, China
| | - Shuhan Pan
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu210023, China
| | - Hanyu Liu
- Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu210023, China
| | - Wei Mao
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu210023, China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu210023, China
| | - Yuxi Tian
- Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu210023, China
| |
Collapse
|
18
|
He Y, Zheng K, Henry PF, Pullerits T, Chen J. Direct Observation of Size-Dependent Phase Transition in Methylammonium Lead Bromide Perovskite Microcrystals and Nanocrystals. ACS OMEGA 2022; 7:39970-39974. [PMID: 36385807 PMCID: PMC9648073 DOI: 10.1021/acsomega.2c04503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Methylammonium (MA) lead halide perovskites have been widely studied as active materials for advanced optoelectronics. As crystalline semiconductor materials, their properties are strongly affected by their crystal structure. Depending on their applications, the size of MA lead halide perovskite crystals varies by several orders of magnitude. The particle size can lead to different structural phase transitions and optoelectronic properties. Herein, we investigate the size effect for phase transition of MA lead bromide (MAPbBr3) by comparing the temperature-dependent neutron powder diffraction patterns of microcrystals and nanocrystals. The orthorhombic-to-tetragonal phase transition occurs in MAPbBr3 microcrystals within the temperature range from 100 to 310 K. However, the phase transition is absent in nanocrystals in this temperature range. In this work, we offer a persuasive and direct evidence of the relationship between the particle size and the phase transition in perovskite crystals.
Collapse
Affiliation(s)
- Yanmei He
- Department
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Kaibo Zheng
- Department
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
- Department
of Chemistry, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Paul F. Henry
- ISIS
Pulsed Neutron Muon Facility, Rutherford
Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom
| | - Tönu Pullerits
- Department
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Junsheng Chen
- Department
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
- Nano-Science
Center & Department of Chemistry, University
of Copenhagen, Universitetsparken
5, Copenhagen 2100, Denmark
| |
Collapse
|
19
|
Chen J, Zhang W, Pullerits T. Two-photon absorption in halide perovskites and their applications. MATERIALS HORIZONS 2022; 9:2255-2287. [PMID: 35727018 DOI: 10.1039/d1mh02074a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Active research on halide perovskites has given us a deep understanding of this family of materials and their potential for applications in advanced optoelectronic devices. One of the prominent outcomes is the use of perovskite materials for nonlinear optical applications. Two-photon absorption in perovskites, in particular their nanostructures, has been extensively studied and shows huge promise for many applications. However, we are still far from a thorough understanding of two-photon absorption in halide perovskites from a micro to macro perspective. Here we summarize different techniques for studying the two-photon absorption in nonlinear optical materials. We discuss the in-depth photophysics in two-photon absorption in halide perovskites. A comprehensive summary about the factors which influence two-photon absorption provides the direction to improve the two-photon absorption properties of halide perovskites. A summary of the recent applications of two-photon absorption in halide perovskites provides inspirations for engineers to utilize halide perovskites in two-photon absorption device development. This review will help readers to have a comprehensive and in-depth understanding of the research field of two-photon absorption of halide perovskites from microscopic mechanisms to applications. The article can serve as a manual and give inspiration for future researchers.
Collapse
Affiliation(s)
- Junsheng Chen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Wei Zhang
- Chemical Physics and NanoLund, Lund University, Box 124, Lund 22100, Sweden.
| | - Tönu Pullerits
- Chemical Physics and NanoLund, Lund University, Box 124, Lund 22100, Sweden.
| |
Collapse
|
20
|
Alvarez SL, Riel CB, Madani M, Abdellah M, Zhao Q, Zou X, Pullerits T, Zheng K. Morphology-Dependent One- and Two-Photon Absorption Properties in Blue Emitting CsPbBr 3 Nanocrystals. J Phys Chem Lett 2022; 13:4897-4904. [PMID: 35622447 PMCID: PMC9189923 DOI: 10.1021/acs.jpclett.2c00710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The linear and nonlinear optical parameters and morphologic dependence of CsPbBr3 nanocrystals (NCs) are crucial for device engineering. In particular, such information in asymmetric nanocrystals is still insufficient. We characterized the OPLA (σ1) and TPA cross sections (σ2) of a series CsPbBr3 nanocrystals with various aspect ratios (AR) using femtosecond transient absorption spectroscopy (TAS). The σ1 presents a linear volume dependence of all the samples, which agrees with the previous behavior in CsPbBr3 QDs. However, the σ2 values do not exhibit conventional power dependency of the crystal volume but are also modulated by the shape-dependent local field factors. In addition, the local field effect in CsPbBr3 NCs is contributed by their asymmetric morphologies and polar ionic lattices, which is more pronounced than in conventional semiconductor NCs. Finally, we revealed that the lifetimes of photogenerated multiexcitonic species of those nanocrystals feature identical morphology independence in both OPLA and TPA.
Collapse
Affiliation(s)
| | - Christina Basse Riel
- Department
of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Mahtab Madani
- Department
of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Mohamed Abdellah
- Department
of Chemical Physics and NanoLund Chemical Center, Lund University P.O. Box 124, Lund 22100, Sweden
| | - Qian Zhao
- Department
of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Xianshao Zou
- Department
of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Tönu Pullerits
- Department
of Chemical Physics and NanoLund Chemical Center, Lund University P.O. Box 124, Lund 22100, Sweden
| | - Kaibo Zheng
- Department
of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- Department
of Chemical Physics and NanoLund Chemical Center, Lund University P.O. Box 124, Lund 22100, Sweden
| |
Collapse
|
21
|
Talianov PM, Yakubova AA, Bukreeva A, Masharin M, Eliseev IE, Zelenkov L, Muslimov AR, Bukatin A, Gordeeva A, Kudryavtseva V, Makarov SV, Sukhorukov GB, Timin AS, Zyuzin MV. Incorporation of Perovskite Nanocrystals into Polymer Matrix for Enhanced Stability in Biological Media: In Vitro and In Vivo Studies. ACS APPLIED BIO MATERIALS 2022; 5:2411-2420. [PMID: 35426657 DOI: 10.1021/acsabm.2c00295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The outstanding optical properties and multiphoton absorption of lead halide perovskites make them promising for use as fluorescence tags in bioimaging applications. However, their poor stability in aqueous media and biological fluids significantly limits their further use for in vitro and in vivo applications. In this work, we have developed a universal approach for the encapsulation of lead halide perovskite nanocrystals (PNCs) (CsPbBr3 and CsPbI3) as water-resistant fluorescent markers, which are suitable for fluorescence bioimaging. The obtained encapsulated PNCs demonstrate bright green emission at 510 nm (CsPbBr3) and red emission at 688 nm (CsPbI3) under one- and two-photon excitation, and they possess an enhanced stability in water and biological fluids (PBS, human serum) for a prolonged period of time (1 week). Further in vitro and in vivo experiments revealed enhanced stability of PNCs even after their introduction directly into the biological microenvironment (CT26 cells and DBA mice). The developed approach allows making a step toward stable, low-cost, and highly efficient bioimaging platforms that are spectrally tunable and have narrow emission.
Collapse
Affiliation(s)
- Pavel M Talianov
- School of Physics and Engineering, ITMO University, Lomonosova 9, 197101, St. Petersburg, Russian Federation
| | - Anastasia A Yakubova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.,Laboratory of Renewable Energy Sources, Alferov University, Khlopin St. 8/3, St. Petersburg 194021, Russian Federation
| | - Anastasia Bukreeva
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Mikhail Masharin
- School of Physics and Engineering, ITMO University, Lomonosova 9, 197101, St. Petersburg, Russian Federation
| | - Igor E Eliseev
- Laboratory of Renewable Energy Sources, Alferov University, Khlopin St. 8/3, St. Petersburg 194021, Russian Federation
| | - Lev Zelenkov
- School of Physics and Engineering, ITMO University, Lomonosova 9, 197101, St. Petersburg, Russian Federation
| | - Albert R Muslimov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.,Laboratory of Renewable Energy Sources, Alferov University, Khlopin St. 8/3, St. Petersburg 194021, Russian Federation
| | - Anton Bukatin
- Laboratory of Renewable Energy Sources, Alferov University, Khlopin St. 8/3, St. Petersburg 194021, Russian Federation
| | - Alexandra Gordeeva
- Skolkovo Institute of Science and Technology, Moscow 143026, Russian Federation
| | - Valeriya Kudryavtseva
- School of Engineering and Material Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Sergey V Makarov
- School of Physics and Engineering, ITMO University, Lomonosova 9, 197101, St. Petersburg, Russian Federation
| | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, Moscow 143026, Russian Federation.,School of Engineering and Material Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Alexander S Timin
- School of Physics and Engineering, ITMO University, Lomonosova 9, 197101, St. Petersburg, Russian Federation.,Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.,Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, 197101, St. Petersburg, Russian Federation
| |
Collapse
|
22
|
Bright CsPbBr3 Perovskite Nanocrystals with Improved Stability by In-Situ Zn-Doping. NANOMATERIALS 2022; 12:nano12050759. [PMID: 35269247 PMCID: PMC8912077 DOI: 10.3390/nano12050759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023]
Abstract
In this study, facile synthesis, characterization, and stability tests of highly luminescent Zn-doped CsPbBr3 perovskite nanocrystals (NCs) were demonstrated. The doping procedure was performed via partial replacement of PbBr2 with ZnBr2 in the precursor solution. Via Zn-doping, the photoluminescence quantum yield (PLQY) of the NCs was increased from 41.3% to 82.9%, with a blue-shifted peak at 503.7 nm and narrower spectral width of 18.7 nm which was consistent with the highly uniform size distribution of NCs observed from the TEM image. In the water-resistance stability test, the doped NCs exhibited an extended period-over four days until complete decomposition, under the harsh circumstances of hexane-ethanol-water mixing solution. The Zn-doped NC film maintained its 94% photoluminescence (PL) intensity after undergoing a heating/cooling cycle, surpassing the un-doped NC film with only 67% PL remaining. Based on our demonstrations, the in-situ Zn-doping procedure for the synthesis of CsPbBr3 NCs could be a promising strategy toward robust and PL-efficient nanomaterial to pave the way for realizing practical optoelectronic devices.
Collapse
|
23
|
Boziki A, Baudin P, Liberatore E, Ashari Astani N, Rothlisberger U. A theoretical perspective of the ultrafast transient absorption dynamics of CsPbBr 3. J Comput Chem 2022; 43:577-582. [PMID: 35146764 PMCID: PMC9305422 DOI: 10.1002/jcc.26815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/12/2022]
Abstract
Transient absorption spectra (TAS) of lead halide perovskites can provide important insights into the nature of the photoexcited state dynamics of this prototypical class of materials. Here, we perform ground and excited state molecular dynamics (MD) simulations within a restricted open shell Kohn-Sham (ROKS) approach in order to interpret the characteristic features of the TAS of CsPbBr3 . Our results reveal that properties such as the finite temperature band gap, the Stokes shift, and therefore, also the TAS are strongly size-dependent. Our TAS simulations show an early positive red-shifted feature on the fs scale that can be explained by geometric relaxation in the excited state. As excited-state processes can crucially affect the electronic properties of this class of photoactive materials, our observations are an important ingredient for further optimization of lead halide based optoelectronic devices.
Collapse
Affiliation(s)
- Ariadni Boziki
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pablo Baudin
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Elisa Liberatore
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Negar Ashari Astani
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
24
|
Wei Z, Pan Y, Hou G, Ran X, Chi Z, He Y, Kuang Y, Wang X, Liu R, Guo L. Excellent Multiphoton Excitation Fluorescence with Large Multiphoton Absorption Cross Sections of Arginine-Modified Gold Nanoclusters for Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2452-2463. [PMID: 34986306 DOI: 10.1021/acsami.1c16324] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fluorescent gold nanoclusters (Au NCs) with excellent one-photon and multiphoton properties have been demonstrated as promising candidates in many application fields. However, small multiphoton absorption (MPA) cross sections and weak multiphoton excitation (MPE) fluorescence impede their practical applications under near-infrared (NIR) excitation for biological imaging. Here, we report the regulated one-photon and multiphoton properties and mechanisms of arginine-stabilized 6-aza-2-thiothymine Au NCs (Arg/ATT-Au NCs) and the applications for MPE fluorescence imaging. The introduction of arginine into the capping layer of ATT-Au NCs significantly modifies the electronic structure, the absorption cross sections, and the relaxation dynamics of the lowest excited state, drastically reducing the nonradiative relaxation, suppressing the blinking, and greatly enhancing the fluorescence. Besides the improved one-photon properties, Arg/ATT-Au NCs demonstrate remarkable MPE fluorescence with a large MPA cross section. The two-photon (λex = 850 nm), three-photon (λex = 1400 nm), and four-photon (λex = 1700 nm) absorption cross sections have been determined to be 6.1 × 10-47 cm4 s1 photon-1, 1.5 × 10-78 cm6 s2 photon-2, and 5.5 × 10-108 cm8 s3 photon-3, respectively, much higher than those of conventional organic compounds and previously reported Au NCs. Moreover, Arg/ATT-Au NCs have been successfully applied in two-photon and three-photon excitation fluorescence imaging of living cells with NIR excitation. The manifold advantages of small size, high quantum yield, suppressed blinking, good photostability and cytocompatibility, large MPA cross sections, and excellent MPE fluorescence imaging performances make fluorescent Arg/ATT-Au NCs a great candidate of imaging probes with vis-NIR excitation.
Collapse
Affiliation(s)
- Zhongran Wei
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Yatao Pan
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Guangjing Hou
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Xia Ran
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Zhen Chi
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Yulu He
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Yanmin Kuang
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Xiaojuan Wang
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Renming Liu
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Lijun Guo
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| |
Collapse
|
25
|
Shukla A, Kaur G, Babu KJ, Kaur A, Yadav DK, Ghosh HN. Defect-Interceded Cascading Energy Transfer and Underlying Charge Transfer in Europium-Doped CsPbCl 3 Nanocrystals. J Phys Chem Lett 2022; 13:83-90. [PMID: 34958589 DOI: 10.1021/acs.jpclett.1c03661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rare-earth ion (RE3+) doping in cesium lead chloride (CsPbCl3) has unlocked novel prospects to explore changes in optical, magnetic, and charge carrier transport properties. This leads to a huge advancement in optoelectronic applications, yet deep understanding of the photophysics governing the energy transfer processes is lacking and demands vital attention. Herein, we probe into the mechanistic transfer processes from the band edge of the host (CsPbCl3) to the dopant europium ion (Eu3+) with the aid of femtosecond fluorescence upconversion and transient absorption (TA) spectroscopy. The upconversion measurement portrays a defect-mediated cascading energy transfer from CsPbCl3 to Eu3+ and further cross-relaxation among Eu3+ states. Moreover, TA studies reveal that there is charge transfer from the band edge of CsPbCl3 to doping-induced shallow defect states. Furthermore, two-photon absorption study establishes no compromise in the transfer mechanism even upon bandgap excitation. This work validates that Eu-CsPbCl3 is an apt entrant for optoelectronic applications.
Collapse
Affiliation(s)
- Ayushi Shukla
- Institute of Nano Science and Technology, SAS Nagar, Sector 81, Mohali 140306, Punjab, India
| | - Gurpreet Kaur
- Institute of Nano Science and Technology, SAS Nagar, Sector 81, Mohali 140306, Punjab, India
| | | | - Arshdeep Kaur
- Institute of Nano Science and Technology, SAS Nagar, Sector 81, Mohali 140306, Punjab, India
| | - Dharmendra Kumar Yadav
- Institute of Nano Science and Technology, SAS Nagar, Sector 81, Mohali 140306, Punjab, India
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, SAS Nagar, Sector 81, Mohali 140306, Punjab, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
26
|
Theoretical studies on the two-photon absorption of II-VI semiconductor nano clusters. Sci Rep 2022; 12:110. [PMID: 34997111 PMCID: PMC8742029 DOI: 10.1038/s41598-021-04203-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/17/2021] [Indexed: 11/15/2022] Open
Abstract
Semiconductor clusters, ZnnOn, ZnnSn, and CdnSn (n = 2–8), were optimized and the corresponding stable structures were acquired. The symmetry, bond length, bond angle, and energy gap between HOMO and LUMO were analyzed. According to reasonable calculation and comparative analysis for small clusters Zn2O2, Zn2S2, and Cd2S2, an effective method based on density function theory (DFT) and basis set which lay the foundation for the calculation of the large clusters have been obtained. The two-photon absorption (TPA) results show that for the nano clusters with planar configuration, sizes play important role on the TPA cross section, while symmetries determine the TPA cross section under circumstance of 3D stable structures. All our conclusions provide theoretical support for the development of related experiments.
Collapse
|
27
|
Improved One- and Multiple-Photon Excited Photoluminescence from Cd 2+-Doped CsPbBr 3 Perovskite NCs. NANOMATERIALS 2022; 12:nano12010151. [PMID: 35010101 PMCID: PMC8746976 DOI: 10.3390/nano12010151] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023]
Abstract
Metal halide perovskite nanocrystals (NCs) attract much attention for light-emitting applications due to their exceptional optical properties. More recently, perovskite NCs have begun to be considered a promising material for nonlinear optical applications. Numerous strategies have recently been developed to improve the properties of metal halide perovskite NCs. Among them, B-site doping is one of the most promising ways to enhance their brightness and stability. However, there is a lack of study of the influence of B-site doping on the nonlinear optical properties of inorganic perovskite NCs. Here, we demonstrate that Cd2+ doping simultaneously improves both the linear (higher photoluminescence quantum yield, larger exciton binding energy, reduced trap states density, and faster radiative recombination) and nonlinear (higher two- and three-photon absorption cross-sections) optical properties of CsPbBr3 NCs. Cd2+ doping results in a two-photon absorption cross-section, reaching 2.6 × 106 Goeppert-Mayer (GM), which is among the highest reported for CsPbBr3 NCs.
Collapse
|
28
|
van der Laan M, de Weerd C, Poirier L, van de Water O, Poonia D, Gomez L, Kinge S, Siebbeles LDA, Koenderink AF, Gregorkiewicz T, Schall P. Photon Recycling in CsPbBr 3 All-Inorganic Perovskite Nanocrystals. ACS PHOTONICS 2021; 8:3201-3208. [PMID: 34820474 PMCID: PMC8603385 DOI: 10.1021/acsphotonics.1c00953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 05/21/2023]
Abstract
Photon recycling, the iterative process of re-absorption and re-emission of photons in an absorbing medium, can play an important role in the power-conversion efficiency of photovoltaic cells. To date, several studies have proposed that this process may occur in bulk or thin films of inorganic lead-halide perovskites, but conclusive proof of the occurrence and magnitude of this effect is missing. Here, we provide clear evidence and quantitative estimation of photon recycling in CsPbBr3 nanocrystal suspensions by combining measurements of steady-state and time-resolved photoluminescence (PL) and PL quantum yield with simulations of photon diffusion through the suspension. The steady-state PL shows clear spectral modifications including red shifts and quantum yield decrease, while the time-resolved measurements show prolonged PL decay and rise times. These effects grow as the nanocrystal concentration and distance traveled through the suspension increase. Monte Carlo simulations of photons diffusing through the medium and exhibiting absorption and re-emission account quantitatively for the observed trends and show that up to five re-emission cycles are involved. We thus identify 4 quantifiable measures, PL red shift, PL QY, PL decay time, and PL rise time that together all point toward repeated, energy-directed radiative transfer between nanocrystals. These results highlight the importance of photon recycling for both optical properties and photovoltaic applications of inorganic perovskite nanocrystals.
Collapse
Affiliation(s)
- Marco van der Laan
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Chris de Weerd
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Lucas Poirier
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Oscar van de Water
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Deepika Poonia
- Optoelectronic
Materials Section, Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Leyre Gomez
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Catalan
Institute of Nanoscience and Nanotechnology, CSIC, BIST, and CIBERBBN, 08193 Bellaterra, Barcelona, Spain
| | - Sachin Kinge
- Optoelectronic
Materials Section, Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
- Materials
Research & Development, Toyota Motor
Europe, B1930 Zaventem, Belgium
| | - Laurens D. A. Siebbeles
- Optoelectronic
Materials Section, Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - A. Femius Koenderink
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Tom Gregorkiewicz
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Peter Schall
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
29
|
Cong M, Zhang Q, Yang B, Chen J, Xiao J, Zheng D, Zheng T, Zhang R, Qing G, Zhang C, Han KL. Bright Triplet Self-Trapped Excitons to Dopant Energy Transfer in Halide Double-Perovskite Nanocrystals. NANO LETTERS 2021; 21:8671-8678. [PMID: 34633829 DOI: 10.1021/acs.nanolett.1c02653] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For inorganic semiconductor nanostructure, excitons in the triplet states are known as the "dark exciton" with poor emitting properties, because of the spin-forbidden transition. Herein, we report a design principle to boost triplet excitons photoluminescence (PL) in all-inorganic lead-free double-perovskite nanocrystals (NCs). Our experimental data reveal that singlet self-trapped excitons (STEs) experience fast intersystem crossing (80 ps) to triplet states. These triplet STEs give bright green color emission with unity PL quantum yield (PLQY). Furthermore, efficient energy transfer from triplet STEs to dopants (Mn2+) can be achieved, which leads to white-light emitting with 87% PLQY in both colloidal and solid thin film NCs. These findings illustrate a fundamental principle to design efficient white-light emitting inorganic phosphors, propelling the development of illumination-related applications.
Collapse
Affiliation(s)
- Muyu Cong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qingkai Zhang
- School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Junsheng Chen
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People's Republic of China
| | - Jie Xiao
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People's Republic of China
| | - Daoyuan Zheng
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Tiancheng Zheng
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People's Republic of China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People's Republic of China
| | - Chunfeng Zhang
- School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - Ke-Li Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
30
|
Dai Z, Chen J, Yang B. Yb 2+-Alloyed Cs 4PbI 6-CsPbI 3 Perovskite Nanocomposites for Efficient and Stable Pure-Red Emission. J Phys Chem Lett 2021; 12:10093-10098. [PMID: 34633198 DOI: 10.1021/acs.jpclett.1c02798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A series of Yb2+-alloyed CsPb1-xYbxI3 (x = 0, 0.2, 0.4, 0.6) perovskite nanocrystals (NCs): are synthesized by a modified hot-injection method. Yb2+ alloying induced a blue shift of photoluminescence (PL) spectra. In particular, when x = 0.6, the perovskite NCs exhibit pure-red emission with PL centered at 638 nm. Furthermore, the perovskite NCs with pure-red emission exhibit enhanced air and thermal stability, compared to pure CsPbI3 NCs. The enhanced stability can be assigned to the formation Cs4PbI6-CsPbI3:Yb composites. Charge-carrier dynamics study indicates that the Cs4PbI6-CsPbI3:Yb composites exhibit ultrafast hot-carrier cooling processes, which could break the Auger reheating effect. These properties suggest the Yb2+ alloyed CsPbI3 perovskite NCs have great potential for high-performance pure-red light-emitting diodes.
Collapse
Affiliation(s)
- Zhangben Dai
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Junsheng Chen
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| |
Collapse
|
31
|
Yin H, Chen J, Guan P, Zheng D, Kong Q, Yang S, Zhou P, Yang B, Pullerits T, Han K. Controlling Photoluminescence and Photocatalysis Activities in Lead-Free Cs 2 Pt x Sn 1-x Cl 6 Perovskites via Ion Substitution. Angew Chem Int Ed Engl 2021; 60:22693-22699. [PMID: 34355483 DOI: 10.1002/anie.202108133] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/24/2021] [Indexed: 02/05/2023]
Abstract
Lead-free halide perovskites have triggered interest in the field of optoelectronics and photocatalysis because of their low toxicity, and tunable optical and charge-carrier properties. From an application point of view, it is desirable to develop stable multifunctional lead-free halide perovskites. We have developed a series of Cs2 Ptx Sn1-x Cl6 perovskites (0≤x≤1) with high stability, which show switchable photoluminescence and photocatalytic functions by varying the amount of Pt4+ substitution. A Cs2 Ptx Sn1-x Cl6 solid solution with a dominant proportion of Pt4+ shows broadband photoluminescence with a lifetime on the microsecond timescale. A Cs2 Ptx Sn1-x Cl6 solid solution with a small amount of Pt4+ substitution exhibits photocatalytic hydrogen evolution activity. An optical spectroscopy study reveals that the switch between photoluminescence and photocatalysis functions is controlled by sub-band gap states. Our finding provides a new way to develop lead-free multifunctional halide perovskites with high stability.
Collapse
Affiliation(s)
- Hang Yin
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Junsheng Chen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Peng Guan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Daoyuan Zheng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Qingkun Kong
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Songqiu Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Panwang Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Tönu Pullerits
- Chemical Physics and NanoLund, Lund University, Box 124, Lund, 22100, Sweden
| | - Keli Han
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| |
Collapse
|
32
|
Chaudhary B, Kshetri YK, Kim HS, Lee SW, Kim TH. Current status on synthesis, properties and applications of CsPbX 3(X = Cl, Br, I) perovskite quantum dots/nanocrystals. NANOTECHNOLOGY 2021; 32:502007. [PMID: 34500445 DOI: 10.1088/1361-6528/ac2537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The quantum confinement effect and interesting optical properties of cesium lead halide (CsPbX3; X = Cl, Br, I) perovskite quantum dots (QDs) and nanocrystals (NCs) have given a new horizon to lighting and photonic applications. Given the exponential rate at which scientific results on CsPbX3NCs are published in the last few years, it can be expected that the research in CsPbX3NCs will further receive increasing scientific interests in the near future and possibly lead to great commercial opportunities to realize these materials based practical applications. With the rapid progress in the single-photon emitting CsPbX3QDs and NCs, practical applications of the quantum technologies such as single-photon emitting light-emitting diode, quantum lasers, quantum computing might soon be possible. But to reach at cutting edge of stable perovskite QDs/NCs, the study of fundamental insight and theoretical aspects of crystal design is yet insufficient. Even more, it has aroused many unanswered questions related to the stability, optical and electronic properties of the CsPbX3QDs. Aim of the present review is to illustrate didactically a precise study of recent progress in the synthesis, properties and applications of CsPbX3QDs and NCs. Critical issues that currently restrict the applicability of these QDs will be identified and advanced methodologies currently in the developing queue, to overcome the roadblock, will be presented. And finally, the prospects for future directions will be provided.
Collapse
Affiliation(s)
- Bina Chaudhary
- Department of Fusion Science and Technology, Sun Moon University, Chungnam, 31460, Republic of Korea
- Research Center for Eco-multifunctional Nano Materials, Sun Moon University, Chungnam, 31460, Republic of Korea
| | - Yuwaraj K Kshetri
- Research Center for Eco-multifunctional Nano Materials, Sun Moon University, Chungnam, 31460, Republic of Korea
| | - Hak-Soo Kim
- Department of Environment and Chemical Engineering, Sun Moon University, Chungnam, 31460, Republic of Korea
| | - Soo Wohn Lee
- Department of Environment and Chemical Engineering, Sun Moon University, Chungnam, 31460, Republic of Korea
| | - Tae-Ho Kim
- Department of Fusion Science and Technology, Sun Moon University, Chungnam, 31460, Republic of Korea
- Research Center for Eco-multifunctional Nano Materials, Sun Moon University, Chungnam, 31460, Republic of Korea
| |
Collapse
|
33
|
Wang G, Mei S, Liao J, Wang W, Tang Y, Zhang Q, Tang Z, Wu B, Xing G. Advances of Nonlinear Photonics in Low-Dimensional Halide Perovskites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100809. [PMID: 34121324 DOI: 10.1002/smll.202100809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Hybrid halide perovskites emerging as a highly promising class of functional materials for semiconductor optoelectronic applications have drawn great attention from worldwide researchers. In the past few years, prominent nonlinear optical properties have been demonstrated in perovskite bulk structures indicating their bright prospect in the field of nonlinear optics (NLO). Following the surge of 3D perovskites, more recently, the low-dimensional perovskites (LDPs) materials ranging from two-, one-, to zero-dimension such as quantum-wells or colloidal nanostructures have displayed unexpectedly attractive NLO response due to the strong quantum confinement, remarkable exciton effect, and structural diversity. In this perspective, the current state of the art is reviewed in the field of NLO for LDP materials. The relationship between confinement effect and NLO is analyzed systematically to give a comprehensive understanding of the function of dimension reduction. Furthermore, future directions and challenges toward the improvement of the NLO in LDP materials are discussed to provide an outlook in this rapidly developing field.
Collapse
Affiliation(s)
- Gang Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, P. R. China
| | - Shiliang Mei
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, P. R. China
| | - Jinfeng Liao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, P. R. China
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, P. R. China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, P. R. China
| |
Collapse
|
34
|
Yin H, Chen J, Guan P, Zheng D, Kong Q, Yang S, Zhou P, Yang B, Pullerits T, Han K. Controlling Photoluminescence and Photocatalysis Activities in Lead‐Free Cs
2
Pt
x
Sn
1−
x
Cl
6
Perovskites via Ion Substitution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hang Yin
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 China
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 China
| | - Junsheng Chen
- Nano-Science Center & Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Peng Guan
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 China
| | - Daoyuan Zheng
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 China
| | - Qingkun Kong
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 China
| | - Songqiu Yang
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 China
| | - Panwang Zhou
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 China
| | - Tönu Pullerits
- Chemical Physics and NanoLund Lund University Box 124 Lund 22100 Sweden
| | - Keli Han
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 China
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 China
| |
Collapse
|
35
|
Ricci F, Marougail V, Varnavski O, Wu Y, Padgaonkar S, Irgen-Gioro S, Weiss EA, Goodson T. Enhanced Exciton Quantum Coherence in Single CsPbBr 3 Perovskite Quantum Dots using Femtosecond Two-Photon Near-Field Scanning Optical Microscopy. ACS NANO 2021; 15:12955-12965. [PMID: 34346667 DOI: 10.1021/acsnano.1c01615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cesium-halide perovskite quantum dots (QDs) have gained tremendous interest as quantum emitters in quantum information processing applications due to their optical and photophysical properties. However, engineering excitonic states in quantum dots requires a deep knowledge of the coherent dynamics of their excitons at a single-particle level. Here, we use femtosecond time-resolved two-photon near-field scanning optical microscopy (NSOM) to reveal coherences involving a single cesium lead bromide perovskite QD (CsPbBr3) at room temperature. We show that, compared to other nonperovskite nanoparticles, the electronic coherence on a single perovskite QD has a relatively long lifetime of ca. 150 fs, whereas CdSe QDs have exciton coherence times shorter than 75 fs at room temperature. One possible explanation for the longer coherence time observed for the CsPbBr3 perovskite system is related to the exciton fine structure of these perovskite QDs compared to other nanoparticles. These perovskite QDs exhibit interesting optical properties that differ from those of the traditional QDs including bright triplet exciton states. In fact, due to the small amplitude of the energy gap fluctuations of dipole-allowed triplet states in perovskite QDs, the coherent superposition could be preserved for longer times. Furthermore, single-particle excitation approach implemented in this work allows us to remove effects of heterogeneity that are usually present in ensemble averaging experiments at room temperature. The realization of quantum-mechanical phase-coherence of a charge carrier that can operate at room temperature is an issue of great importance for the potential application of coherent electronic phenomena in electronic and optoelectronic devices. These interesting findings provide further evidence of the great potential of these perovskite QDs as candidates for quantum computing and information processing applications.
Collapse
Affiliation(s)
- Federica Ricci
- Department of Chemistry University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Veronica Marougail
- Department of Chemistry University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Oleg Varnavski
- Department of Chemistry University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yue Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Suyog Padgaonkar
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Shawn Irgen-Gioro
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Theodore Goodson
- Department of Chemistry University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
36
|
Kong Q, Yang B, Chen J, Zhang R, Liu S, Zheng D, Zhang H, Liu Q, Wang Y, Han K. Phase Engineering of Cesium Manganese Bromides Nanocrystals with Color‐Tunable Emission. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Qingkun Kong
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of the Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Junsheng Chen
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
| | - Siping Liu
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
| | - Daoyuan Zheng
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
| | - Hongling Zhang
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
| | - Qingtong Liu
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
| | - Yiying Wang
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
| | - Keli Han
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of the Chinese Academy of Sciences Beijing 100039 P. R. China
| |
Collapse
|
37
|
Kong Q, Yang B, Chen J, Zhang R, Liu S, Zheng D, Zhang H, Liu Q, Wang Y, Han K. Phase Engineering of Cesium Manganese Bromides Nanocrystals with Color-Tunable Emission. Angew Chem Int Ed Engl 2021; 60:19653-19659. [PMID: 34151496 DOI: 10.1002/anie.202105413] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/27/2021] [Indexed: 12/20/2022]
Abstract
For display applications, it is highly desirable to obtain tunable red/green/blue emission. However, lead-free perovskite nanocrystals (NCs) generally exhibit broadband emission with poor color purity. Herein, we developed a unique phase transition strategy to engineer the emission color of lead-free cesium manganese bromides NCs and we can achieve a tunable red/green/blue emission with high color purity in these NCs. Such phase transition can be triggered by isopropanol: from one dimensional (1D) CsMnBr3 NCs (red-color emission) to zero dimensional (0D) Cs3 MnBr5 NCs (green-color emission). Furthermore, in a humid environment both 1D CsMnBr3 NCs and 0D Cs3 MnBr5 NCs can be transformed into 0D Cs2 MnBr4 ⋅2 H2 O NCs (blue-color emission). Cs2 MnBr4 ⋅2 H2 O NCs could inversely transform into the mixture of CsMnBr3 and Cs3 MnBr5 phase during the thermal annealing dehydration step. Our work highlights the tunable optical properties in single component NCs via phase engineering and provides a new avenue for future endeavors in light-emitting devices.
Collapse
Affiliation(s)
- Qingkun Kong
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Junsheng Chen
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Siping Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Daoyuan Zheng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Hongling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Qingtong Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Yiying Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Keli Han
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| |
Collapse
|
38
|
|
39
|
Chen W, Zhang F, Wang C, Jia M, Zhao X, Liu Z, Ge Y, Zhang Y, Zhang H. Nonlinear Photonics Using Low-Dimensional Metal-Halide Perovskites: Recent Advances and Future Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004446. [PMID: 33543536 DOI: 10.1002/adma.202004446] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Low-dimensional metal-halide perovskites have exhibited significantly superior nonlinear optical properties compared to traditional semiconductor counterparts, thanks to their peculiar physical and electronic structures. Their exceptional nonlinear optical characteristics make them excellent candidates for revolutionizing widespread applications. However, the research of nonlinear photonics based on low-dimensional metal-halide perovskites is in its infancy. There is a lack of comprehensive and in-depth summary of this research realm. Here, the state-of-the-art research progress related to third-and higher-order nonlinear optical properties of low-dimensional metal-halide perovskites with diverse crystal structures from 3D down to 0D, together with their practical applications, is summarized comprehensively. Critical discussions are offered on the fundamental mechanisms beneath their exceptional nonlinear optical performance from the physics viewpoint, attempting to disclose the role of intrinsic attributes (e.g., composition, bandgap, size, shape, and structure) and external modulation strategies (e.g., developing core-shell structures, transition metal ion doping, and hybridization with dielectric microspheres) in tuning the response. Additionally, their potential applications in nonlinear photonics, nonlinear optoelectronics, and biophotonics are systematically and thoroughly summed up and categorized. Lastly, insights into the current technical challenges and future research opportunities of nonlinear photonics based on low-dimensional metal-halide perovskites are provided.
Collapse
Affiliation(s)
- Weiqiang Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Feng Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Cong Wang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Mingshuang Jia
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xinghang Zhao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zhaoran Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yanqi Ge
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yupeng Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
40
|
Jin M, Huang S, Quan C, Liang X, Du J, Liu Z, Zhang Z, Xiang W. Blue low-threshold room-temperature stimulated emission from thermostable perovskite nanocrystals glasses through controlling crystallization. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2020.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Pramanik A, Patibandla S, Gao Y, Gates K, Ray PC. Water Triggered Synthesis of Highly Stable and Biocompatible 1D Nanowire, 2D Nanoplatelet, and 3D Nanocube CsPbBr 3 Perovskites for Multicolor Two-Photon Cell Imaging. JACS AU 2021; 1:53-65. [PMID: 33554214 PMCID: PMC7851952 DOI: 10.1021/jacsau.0c00038] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 05/31/2023]
Abstract
Two-photon imaging in the near-infrared window holds huge promise for real life biological imaging due to the increased penetration depth. All-inorganic CsPbX3 nanocrystals with bright luminescence and broad spectral tunability are excellent smart probes for two-photon bioimaging. But, the poor stability in water is a well-documented issue for limiting their practical use. Herein, we present the development of specific antibody attached water-resistant one-dimensional (1D) CsPbBr3 nanowires, two-dimensional (2D) CsPbBr3 nanoplatelets, and three-dimensional (3D) CsPbBr3 nanocubes which can be used for selective and simultaneous two-photon imaging of heterogeneous breast cancer cells in the near IR biological window. The current manuscript reports the design of excellent photoluminescence quantum yield (PLQY), biocompatible and photostable 1D CsPbBr3 nanowires, 2D CsPbBr3 nanoplatelets, and 3D CsPbBr3 nanocubes through an interfacial conversion from zero-dimensional (0D) Cs4PbBr6 nanocrystals via a water triggered strategy. Reported data show that just by varying the amount of water, one can control the dimension of CsPbBr3 perovskite crystals. Time-dependent transition electron microscopy and emission spectra have been reported to find the possible pathway for the formation of 1D, 2D, and 3D CsPbBr3 nanocrystals from 0D Cs4PbBr6 nanocrystals. Biocompatible 1D, 2D, and 3D CsPbBr3 nanocrystals were developed by coating with amine-poly(ethylene glycol)-propionic acid. Experimental data show the water-driven design of 1D, 2D, and 3D CsPbBr3 nanocrystals exhibits strong single-photon PLQY of ∼66-88% as well as excellent two-photon absorption properties (σ2) of ∼8.3 × 105-7.1 × 104 GM. Furthermore, reported data show more than 86% of PL intensity remains for 1D, 2D, and 3D CsPbBr3 nanocrystals after 35 days under water, and they exhibit excellent photostability of keeping 99% PL intensity after 3 h under UV light. The current report demonstrates for the first time that antibody attached 1D and 2D perovskites have capability for simultaneous two-photon imaging of triple negative breast cancer cells and human epidermal growth factor receptor 2 positive breast cancer cells. CsPbBr3 nanocrystals exhibit very high two-photon absorption cross-section and good photostability in water, which are superior to those of commonly used organic probes (σ2 = 11 GM for fluorescein), and therefore, they have capability to be a better probe for bioimaging applications.
Collapse
Affiliation(s)
- Avijit Pramanik
- Department of Chemistry and
Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Shamily Patibandla
- Department of Chemistry and
Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Ye Gao
- Department of Chemistry and
Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Kaelin Gates
- Department of Chemistry and
Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Paresh Chandra Ray
- Department of Chemistry and
Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
42
|
An Z, Zhu S, An Z. Heterogeneous photocatalytic reversible deactivation radical polymerization. Polym Chem 2021. [DOI: 10.1039/d1py00130b] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photocatalytic reversible deactivation radical polymerization (RDRP) permits the use of sustainable solar light for spatiotemporal regulation of radical polymerization under mild conditions.
Collapse
Affiliation(s)
- Zixin An
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Shilong Zhu
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Zesheng An
- College of Chemistry
- Jilin University
- Changchun 130012
- China
- State Key Laboratory of Supramolecular Structure and Materials
| |
Collapse
|
43
|
Advances in inorganic-based colloidal nanovehicles functionalized for nitric oxide delivery. Colloids Surf B Biointerfaces 2020; 199:111508. [PMID: 33340932 DOI: 10.1016/j.colsurfb.2020.111508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) is an important pharmaceutical agent of considerable therapeutic interest ascribed to its vasodilative, tumoricidal and antibacterial effects. Rapid development of functional nanomaterials has provided opportunities for us to achieve controllable exogenous delivery of NO. In the current review, a variety of functionalized colloidal nanovehicles that have been developed to date for nitric oxide delivery are reported. Specifically, we focus on inorganic nanomaterials such as semiconductor quantum dots, silica nanoparticles, upconversion nanomaterials, carbon/graphene nanodots, gold nanoparticles, iron oxide nanoparticles as the functional or/and supporting materials to carry NO donors. N-diazeniumdiolates, S-nitrosothiols, nitrosyl metal complexes and organic nitrates as main types of NO donors have their own unique properties and molecular structures. Conjugating the NO donors of different forms with appropriate nanomaterials results in NO delivery nanovehicles capable of releasing NO in a dose-controllable or/and on-demand manner. We also consider the therapeutic applications of those NO delivery nanovehicles, especially their applications for cancer therapy. In the end, we discuss possible future directions for developing exogenous NO delivery systems with more desired structure and improved performance. This review aims to offer the readers an overall view of the advances in functionalized colloidal nanovehicles for NO delivery. It will be attractive to scientists and researchers in the areas of material science, nanotechnology, biomedical engineering, chemical biology, etc.
Collapse
|
44
|
Abstract
Halide perovskite nanocrystals (NCs) are a unique class of NCs with novel properties distinct from those of traditional semiconductor NCs. These exceptional properties of defect tolerance, large absorption coefficients, high brightness, and narrow emission linewidths stem from their atypical band structure. Their facile synthesis and broad colour tunability have attracted widespread interest for application in light emitting devices and lasers. One fledging niche area is the field of multiphoton excited emission where their giant nonlinear optical action cross-sections are highly favorable for imaging applications. This Frontier article examines the state-of-the-art in perovskite NCs for multiphoton applications from the materials science and physics perspectives that include their synthesis and nonlinear optical characterization. Opportunities and challenges of these exceptional NCs as potential fluorescent labels for multiphoton deep tissue microscopy are also highlighted.
Collapse
Affiliation(s)
- Huajun He
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
45
|
Vila‐Liarte D, Feil MW, Manzi A, Garcia‐Pomar JL, Huang H, Döblinger M, Liz‐Marzán LM, Feldmann J, Polavarapu L, Mihi A. Templated-Assembly of CsPbBr 3 Perovskite Nanocrystals into 2D Photonic Supercrystals with Amplified Spontaneous Emission. Angew Chem Int Ed Engl 2020; 59:17750-17756. [PMID: 32608040 PMCID: PMC7540499 DOI: 10.1002/anie.202006152] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/26/2020] [Indexed: 01/08/2023]
Abstract
Perovskite nanocrystals (NCs) have revolutionized optoelectronic devices because of their versatile optical properties. However, controlling and extending these functionalities often requires a light-management strategy involving additional processing steps. Herein, we introduce a simple approach to shape perovskite nanocrystals (NC) into photonic architectures that provide light management by directly shaping the active material. Pre-patterned polydimethylsiloxane (PDMS) templates are used for the template-induced self-assembly of 10 nm CsPbBr3 perovskite NC colloids into large area (1 cm2 ) 2D photonic crystals with tunable lattice spacing, ranging from 400 nm up to several microns. The photonic crystal arrangement facilitates efficient light coupling to the nanocrystal layer, thereby increasing the electric field intensity within the perovskite film. As a result, CsPbBr3 2D photonic crystals show amplified spontaneous emission (ASE) under lower optical excitation fluences in the near-IR, in contrast to equivalent flat NC films prepared using the same colloidal ink. This improvement is attributed to the enhanced multi-photon absorption caused by light trapping in the photonic crystal.
Collapse
Affiliation(s)
- David Vila‐Liarte
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)Campus de la UAB08193BellaterraCataloniaSpain
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)Paseo de Miramón 18220014Donostia—San SebastiánSpain
| | - Maximilian W. Feil
- Chair for Photonics and OptoelectronicsNano-Institute MunichDepartment of PhysicsLudwig-Maximilians-Universität (LMU)Königinstrasse 1080539MunichGermany
| | - Aurora Manzi
- Chair for Photonics and OptoelectronicsNano-Institute MunichDepartment of PhysicsLudwig-Maximilians-Universität (LMU)Königinstrasse 1080539MunichGermany
| | - Juan Luis Garcia‐Pomar
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)Campus de la UAB08193BellaterraCataloniaSpain
| | - He Huang
- Chair for Photonics and OptoelectronicsNano-Institute MunichDepartment of PhysicsLudwig-Maximilians-Universität (LMU)Königinstrasse 1080539MunichGermany
| | - Markus Döblinger
- Department of ChemistryLudwig-Maximilians-Universität (LMU)Butenandtstrasse 5–13 (E)81377MunichGermany
| | - Luis M Liz‐Marzán
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)Paseo de Miramón 18220014Donostia—San SebastiánSpain
- Centro de Investigación en Red en BioingenieríaBiomateriales y Nanomedicina (Ciber-BBN)Paseo de Miramón 18220014Donostia—San SebastiánSpain
- Ikerbasque, Basque Foundation for Science48013BilbaoSpain
| | - Jochen Feldmann
- Chair for Photonics and OptoelectronicsNano-Institute MunichDepartment of PhysicsLudwig-Maximilians-Universität (LMU)Königinstrasse 1080539MunichGermany
| | - Lakshminarayana Polavarapu
- Chair for Photonics and OptoelectronicsNano-Institute MunichDepartment of PhysicsLudwig-Maximilians-Universität (LMU)Königinstrasse 1080539MunichGermany
| | - Agustín Mihi
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)Campus de la UAB08193BellaterraCataloniaSpain
| |
Collapse
|
46
|
Vila‐Liarte D, Feil MW, Manzi A, Garcia‐Pomar JL, Huang H, Döblinger M, Liz‐Marzán LM, Feldmann J, Polavarapu L, Mihi A. Template‐basierte Herstellung von 2D‐photonischen Superkristallen mit verstärkter spontaner Emission aus CsPbBr
3
‐Perowskit‐Nanokristallen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David Vila‐Liarte
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus de la UAB 08193 Bellaterra Catalonia Spanien
- CIC biomaGUNE Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 20014 Donostia – San Sebastián Spanien
| | - Maximilian W. Feil
- Chair for Photonics and Optoelectronics Nano-Institute Munich Department of Physics Ludwig-Maximilians-Universität (LMU) Königinstr. 10 80539 Munich Deutschland
| | - Aurora Manzi
- Chair for Photonics and Optoelectronics Nano-Institute Munich Department of Physics Ludwig-Maximilians-Universität (LMU) Königinstr. 10 80539 Munich Deutschland
| | - Juan Luis Garcia‐Pomar
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus de la UAB 08193 Bellaterra Catalonia Spanien
| | - He Huang
- Chair for Photonics and Optoelectronics Nano-Institute Munich Department of Physics Ludwig-Maximilians-Universität (LMU) Königinstr. 10 80539 Munich Deutschland
| | - Markus Döblinger
- Department of Chemistry Ludwig-Maximilians-Universität (LMU) Butenandtstr. 5–13 (E) 81377 Munich Deutschland
| | - Luis M Liz‐Marzán
- CIC biomaGUNE Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 20014 Donostia – San Sebastián Spanien
- Centro de Investigación en Red en Bioingeniería Biomateriales y Nanomedicina (Ciber-BBN) Paseo de Miramón 182 20014 Donostia – San Sebastián Spanien
- Ikerbasque Basque Foundation for Science 48013 Bilbao Spanien
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics Nano-Institute Munich Department of Physics Ludwig-Maximilians-Universität (LMU) Königinstr. 10 80539 Munich Deutschland
| | - Lakshminarayana Polavarapu
- Chair for Photonics and Optoelectronics Nano-Institute Munich Department of Physics Ludwig-Maximilians-Universität (LMU) Königinstr. 10 80539 Munich Deutschland
| | - Agustín Mihi
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus de la UAB 08193 Bellaterra Catalonia Spanien
| |
Collapse
|
47
|
Li J, Jing Q, Xiao S, Gao Y, Wang Y, Zhang W, Sun XW, Wang K, He T. Spectral Dynamics and Multiphoton Absorption Properties of All-Inorganic Perovskite Nanorods. J Phys Chem Lett 2020; 11:4817-4825. [PMID: 32508096 DOI: 10.1021/acs.jpclett.0c00967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
All-inorganic perovskite (CsPbX3, X = Cl, Br, I) nanorods (NRs) not only retain their inherent advantages such as a high photoluminescence quantum yield and broad wavelength tunability but also exhibit superior photophysical properties including their extremely strong multiphoton absorption (MPA). However, the spectral dynamics and MPA properties of CsPbX3 NRs have not been fully investigated. Here, we report comprehensive comparison studies on the femtosecond spectral dynamical properties of CsPb(Br0.8Cl0.2)3, CsPbBr3, and CsPb(Br0.85I0.15)3 NRs, including their influences on their hot-carrier cooling, biexciton lifetime, and biexciton binding energy. Interestingly, although the three kinds of perovskite NRs have similar diameters and lengths, they differ significantly in their nonlinear optical properties, among which the CsPb(Br0.85I0.15)3 displayed the greatest MPA cross sections. Furthermore, the multiphoton-excited stimulated emission of CsPb(Br0.8Cl0.2)3 and CsPbBr3 NRs is demonstrated. This work indicates that CsPbX3 (X = Cl, Br, I) NRs are excellent candidates for exploring their applications in different optoelectronic devices.
Collapse
Affiliation(s)
- Junzi Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qiang Jing
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R China
| | - Shuyu Xiao
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yang Gao
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yue Wang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R China
| | - Wenjing Zhang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R China
| | - Xiao Wei Sun
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R China
| | - Kai Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R China
| | - Tingchao He
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
48
|
Szeremeta J, Antoniak MA, Wawrzyńczyk D, Nyk M, Samoć M. The Two-Photon Absorption Cross-Section Studies of CsPbX 3 (X = I, Br, Cl) Nanocrystals. NANOMATERIALS 2020; 10:nano10061054. [PMID: 32486161 PMCID: PMC7352535 DOI: 10.3390/nano10061054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/16/2022]
Abstract
The CsPbX3 nanocrystals (NCs) with X = I, Br, Cl, or the mixture of Br:I and Br:Cl in a 1:1 ratio were synthesized and characterized by TEM, DLS, and XRD. Recrystallization of the small luminescent NCs in the metastable cubic phase into bigger orthorhombic nanocrystals was monitored by XRD and identified as the main cause of the nanocolloid coagulation. The recrystallization also leads to a decrease in the photoluminescence quantum yield (QY) of the colloidal solution and shortening of the emission lifetime. The two-photon absorption cross-section σ2 values calculated from femtosecond Z-scan measurements were compared with those obtained based on the two-photon excited emission technique. These two techniques were shown to be equivalent with the cross-section values calculated per molar mass of CsPbX3 perovskite being in the range of 10-200 GM depending on the halide anions X-. The σ2 values recalculated for the mole of the NCs were in the range of 104-105 GM, which is in good agreement with values previously reported elsewhere and the σ2/M parameter was in the range of 0.01 to 0.33. This study shows the perovskite NCs to be a good nonlinear material with the third-order nonlinear optical susceptibility χ(3) of the NCs on the order of 10-11 esu.
Collapse
Affiliation(s)
- Janusz Szeremeta
- Advanced Materials Engineering and Modelling Group, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; (M.A.A.); (D.W.); (M.N.); (M.S.)
- Saule Technologies, Wrocław Technology Park, Duńska 11, 54-427 Wrocław, Poland
- Correspondence:
| | - Magda A. Antoniak
- Advanced Materials Engineering and Modelling Group, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; (M.A.A.); (D.W.); (M.N.); (M.S.)
| | - Dominika Wawrzyńczyk
- Advanced Materials Engineering and Modelling Group, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; (M.A.A.); (D.W.); (M.N.); (M.S.)
| | - Marcin Nyk
- Advanced Materials Engineering and Modelling Group, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; (M.A.A.); (D.W.); (M.N.); (M.S.)
| | - Marek Samoć
- Advanced Materials Engineering and Modelling Group, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; (M.A.A.); (D.W.); (M.N.); (M.S.)
| |
Collapse
|
49
|
Zhu Y, Liu Y, Miller KA, Zhu H, Egap E. Lead Halide Perovskite Nanocrystals as Photocatalysts for PET-RAFT Polymerization under Visible and Near-Infrared Irradiation. ACS Macro Lett 2020; 9:725-730. [PMID: 35648561 DOI: 10.1021/acsmacrolett.0c00232] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A key challenge of harvesting solar energy for chemical transformations is the scarcity of photocatalysts with broad activation wavelength and easily tunable band structures. Here, we introduce lead halide perovskite (CsPbBr3) nanocrystals as band-edge-tunable photocatalysts for efficient photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. PET-RAFT polymerization of various functional monomers is successfully conducted using a broad range of irradiation sources ranging from blue to red light (460 to 635 nm), resulting in polymer products with narrow dispersity (Đ = 1.02-1.13) and high degree of chain-end fidelity. Furthermore, the giant two-photon absorption cross-section of CsPbBr3 enables activation with a light source in the near-infrared region (laser pulses centered at 800 nm) for the PET-RAFT process.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Yifeng Liu
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Kristen A. Miller
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Hanyu Zhu
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Eilaf Egap
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
50
|
Li X, Yang C, Yu Y, Li Z, Lin J, Guan X, Zheng Z, Chen D. Dual-Modal Photon Upconverting and Downshifting Emissions from Ultra-stable CsPbBr 3 Perovskite Nanocrystals Triggered by Co-Growth of Tm:NaYbF 4 Nanocrystals in Glass. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18705-18714. [PMID: 32216263 DOI: 10.1021/acsami.0c01968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work reports a novel dual-phase glass containing Tm:NaYbF4 upconverting nanocrystals (UCNCs) and CsPbBr3 perovskite nanocrystals (PNCs). The advantages of this kind of nanocomposite are that it provides a solid inorganic glass host for the in situ co-growth of UCNCs and PNCs, and protects PNCs against decomposition affected by the external environment. Tm:NaYbF4 NC-sensitized stable CsPbBr3 PNCs photon UC emission in PNCs is achieved under the irradiation of a 980 nm near-infrared (NIR) laser, and the mechanism is evidenced to be radiative energy transfer (ET) from Tm3+: 1G4 state to PNCs rather than nonradiative Förster resonance ET. Consequently, the decay lifetime of exciton recombination is remarkably lengthened from intrinsic nanoseconds to milliseconds since carriers in PNCs are fed from the long-lifetime Tm3+ intermediate state. Under the simultaneous excitation of the ultraviolet (UV) light and NIR laser, dual-modal photon UC and downshifting (DS) emissions from ultra-stable CsPbBr3 PNCs in the glass are observed, and the combined UC/DS emitting color can be easily altered by modifying the pumping light power. In addition, UC exciton recombination and Tm3+ 4f-4f transitions are found to be highly temperature sensitive. All these unique emissive features enable the practical applications of the developed dual-phase glass in advanced anti-counterfeit and accurate temperature detection.
Collapse
Affiliation(s)
- Xiaoyan Li
- College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, China
- Key Laboratory of Green Perovskites Application of Fujian Province Universities, Fujian Jiangxia University, Fuzhou 350108, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
| | - Changbin Yang
- College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
| | - Yunlong Yu
- College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, China
- Key Laboratory of Green Perovskites Application of Fujian Province Universities, Fujian Jiangxia University, Fuzhou 350108, China
| | - Zheng Li
- College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
| | - Jidong Lin
- College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
| | - Xiangfeng Guan
- College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, China
| | - Zhiqiang Zheng
- College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
| | - Daqin Chen
- College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou 350117, China
| |
Collapse
|