1
|
Wu J, Ren R, Chen T, Su LD, Tang T. Neuroimmune and neuroinflammation response for traumatic brain injury. Brain Res Bull 2024; 217:111066. [PMID: 39241894 DOI: 10.1016/j.brainresbull.2024.111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Traumatic brain injury (TBI) is one of the major diseases leading to mortality and disability, causing a serious disease burden on individuals' ordinary lives as well as socioeconomics. In primary injury, neuroimmune and neuroinflammation are both responsible for the TBI. Besides, extensive and sustained injury induced by neuroimmune and neuroinflammation also prolongs the course and worsens prognosis of TBI. Therefore, this review aims to explore the role of neuroimmune, neuroinflammation and factors associated them in TBI as well as the therapies for TBI. Thus, we conducted by searching PubMed, Scopus, and Web of Science databases for articles published between 2010 and 2023. Keywords included "traumatic brain injury," "neuroimmune response," "neuroinflammation," "astrocytes," "microglia," and "NLRP3." Articles were selected based on relevance and quality of evidence. On this basis, we provide the cellular and molecular mechanisms of TBI-induced both neuroimmune and neuroinflammation response, as well as the different factors affecting them, are introduced based on physiology of TBI, which supply a clear overview in TBI-induced chain-reacting, for a better understanding of TBI and to offer more thoughts on the future therapies for TBI.
Collapse
Affiliation(s)
- Junyun Wu
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Reng Ren
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Tao Chen
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Li-Da Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| | - Tianchi Tang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
2
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Nessel I, Whiley L, Dyall SC, Michael-Titus AT. A plasma lipid signature in acute human traumatic brain injury: Link with neuronal injury and inflammation markers. J Cereb Blood Flow Metab 2024:271678X241276951. [PMID: 39188133 DOI: 10.1177/0271678x241276951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Traumatic brain injury (TBI) leads to major membrane lipid breakdown. We investigated plasma lipids over 3 days post-TBI, to identify a signature of acute human TBI and assess its correlation with neuronal injury and inflammation. Plasma from patients with TBI (Abbreviated Injury Scale (AIS)3 - serious injury, n = 5; AIS4 - severe injury, n = 8), and controls (n = 13) was analysed for lipidomic profile, neurofilament light (NFL) and cytokines, and the omega-3 index was measured in red blood cells. A lipid signature separated TBI from controls, at 24 and 72 h. Major species driving the separation were: lysophosphatidylcholine (LPC), phosphatidylcholine (PC) and hexosylceramide (HexCer). Docosahexaenoic acid (DHA, 22:6) and LPC (0:0/22:6) decreased post-injury. NFL levels were increased at 24 and 72 h post-injury in AIS4 TBI vs. controls. Interleukin (IL-)6, IL-2 and IL-13 were elevated at 24 h in AIS4 patients vs. controls. NFL and IL-6 were negatively correlated with several lipids. The omega-3 index at admission was low in all patients (controls: 4.3 ± 1.1% and TBI: 4.0 ± 1.1%) and did not change significantly over 3 days post-injury. We have identified specific lipid changes, correlated with markers of injury and inflammation in acute TBI. These observations could inform future lipid-based therapeutic approaches.
Collapse
Affiliation(s)
- Isabell Nessel
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Luke Whiley
- Health Futures Institute, Murdoch University, Murdoch, Australia
| | - Simon C Dyall
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Adina T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Oft HC, Simon DW, Sun D. New insights into metabolism dysregulation after TBI. J Neuroinflammation 2024; 21:184. [PMID: 39075578 PMCID: PMC11288120 DOI: 10.1186/s12974-024-03177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Traumatic brain injury (TBI) remains a leading cause of death and disability that places a great physical, social, and financial burden on individuals and the health system. In this review, we summarize new research into the metabolic changes described in clinical TBI trials, some of which have already shown promise for informing injury classification and staging. We focus our discussion on derangements in glucose metabolism, cell respiration/mitochondrial function and changes to ketone and lipid metabolism/oxidation to emphasize potentially novel biomarkers for clinical outcome prediction and intervention and offer new insights into possible underlying mechanisms from preclinical research of TBI pathology. Finally, we discuss nutrition supplementation studies that aim to harness the gut/microbiome-brain connection and manipulate systemic/cellular metabolism to improve post-TBI recovery. Taken together, this narrative review summarizes published TBI-associated changes in glucose and lipid metabolism, highlighting potential metabolite biomarkers for clinical use, the cellular processes linking these markers to TBI pathology as well as the limitations and future considerations for TBI "omics" work.
Collapse
Affiliation(s)
- Helena C Oft
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dennis W Simon
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
5
|
Leontyev D, Pulliam AN, Ma X, Gaul DA, LaPlaca MC, Fernández FM. Spatial lipidomics maps brain alterations associated with mild traumatic brain injury. Front Chem 2024; 12:1394064. [PMID: 38873407 PMCID: PMC11169706 DOI: 10.3389/fchem.2024.1394064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Traumatic brain injury (TBI) is a global public health problem with 50-60 million incidents per year, most of which are considered mild (mTBI) and many of these repetitive (rmTBI). Despite their massive implications, the pathologies of mTBI and rmTBI are not fully understood, with a paucity of information on brain lipid dysregulation following mild injury event(s). To gain more insight on mTBI and rmTBI pathology, a non-targeted spatial lipidomics workflow utilizing high resolution mass spectrometry imaging was developed to map brain region-specific lipid alterations in rats following injury. Discriminant multivariate models were created for regions of interest including the hippocampus, cortex, and corpus callosum to pinpoint lipid species that differentiated between injured and sham animals. A multivariate model focused on the hippocampus region differentiated injured brain tissues with an area under the curve of 0.99 using only four lipid species. Lipid classes that were consistently discriminant included polyunsaturated fatty acid-containing phosphatidylcholines (PC), lysophosphatidylcholines (LPC), LPC-plasmalogens (LPC-P) and PC potassium adducts. Many of the polyunsaturated fatty acid-containing PC and LPC-P selected have never been previously reported as altered in mTBI. The observed lipid alterations indicate that neuroinflammation and oxidative stress are important pathologies that could serve to explain cognitive deficits associated with rmTBI. Therapeutics which target or attenuate these pathologies may be beneficial to limit persistent damage following a mild brain injury event.
Collapse
Affiliation(s)
- Dmitry Leontyev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alexis N. Pulliam
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, United States
| | - Xin Ma
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA, United States
| | - Michelle C. LaPlaca
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA, United States
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA, United States
| |
Collapse
|
6
|
Arora P, Sharma A, Trivedi R, Sharma P, Padhy S, Shah S, Dutta SK, Manda K, Rana P. Lipidomic Analysis Reveals Systemic Alterations in Servicemen Exposed to Repeated Occupational Low-Level Blast Waves. Mil Med 2024:usae268. [PMID: 38776149 DOI: 10.1093/milmed/usae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/02/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
INTRODUCTION Occupational exposure to blast is a prevalent risk experienced by military personnel. While low-level exposure may not manifest immediate signs of illness, prolonged and repetitive exposure may result in neurophysiological dysfunction. Such repeated exposure to occupational blasts has been linked to structural and functional modifications in the brain, adversely affecting the performance of servicemen in the field. These neurological changes can give rise to symptoms resembling concussion and contribute to the development of post-traumatic stress disorder. MATERIALS AND METHODS To understand long-term effects of blast exposure, the study was conducted to assess memory function, serum circulatory protein and lipid biomarkers, and associated concussive symptomology in servicemen. Concussion-like symptoms were assessed using the Rivermead Post-Concussion Symptoms Questionnaire (RPSQ) along with memory function using PGI memory scale. The serum protein biomarkers were quantified using a sandwich ELISA assay, and the serum lipid profile was measured using liquid chromatography-mass spectrometer. RESULTS The findings revealed that repeated low-level blast exposure resulted in impaired memory function, accompanied by elevated levels of serum neurofilament light chain (neuroaxonal injury) and C-reactive protein. Furthermore, alterations in the lipid profile were observed, with an increase in lipid species associated with immune activation. These changes collectively point to systemic inflammation, neuronal injury, and memory dysfunction as pathological characteristics of repeated low-level blast exposure. CONCLUSION The results of our preliminary investigation offer valuable insights for further large-scale study and provide a guiding principle that necessitates a suitable mitigation approach to safeguard the health of personnel against blast overpressure.
Collapse
Affiliation(s)
- Palkin Arora
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi 110054, India
| | - Apoorva Sharma
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi 110054, India
| | - Richa Trivedi
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi 110054, India
| | - Priyanka Sharma
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi 110054, India
| | - Sankarsan Padhy
- RADAR and Sensor Wing, Proof and Experimental Establishment (PXE), DRDO, Chandipur, Balasore, Odisha 756025, India
| | - Shahnawaj Shah
- RADAR and Sensor Wing, Proof and Experimental Establishment (PXE), DRDO, Chandipur, Balasore, Odisha 756025, India
| | - Suman K Dutta
- Military Wing, Proof and Experimental Establishment (PXE), DRDO, Chandipur, Balasore, Odisha 756025, India
| | - Kailash Manda
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi 110054, India
| | - Poonam Rana
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi 110054, India
| |
Collapse
|
7
|
Sarkar C, Lipinski MM. Glycerophospholipid dysregulation after traumatic brain injury. Neurochem Int 2024; 175:105701. [PMID: 38428503 PMCID: PMC11040658 DOI: 10.1016/j.neuint.2024.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
Brain tissue is highly enriched in lipids, the majority of which are glycerophospholipids. Glycerophospholipids are the major constituents of cellular membranes and play an important role in maintaining integrity and function of cellular and subcellular structures. Any changes in glycerophospholipid homeostasis can adversely affect brain functions. Traumatic brain injury (TBI), an acquired injury caused by the impact of external forces to the brain, triggers activation of secondary biochemical events that include perturbation of lipid homeostasis. Several studies have demonstrated glycerophospholipid dysregulation in the brain and circulation after TBI. This includes spatial and temporal changes in abundance and distribution of glycerophospholipids in the injured brain. This is at least in part mediated by TBI-induced oxidative stress and by activation of lipid metabolism pathways involved in tissue repairing. In this review, we discuss current advances in understanding of the mechanisms and implications of glycerophospholipid dysregulation following TBI.
Collapse
Affiliation(s)
- Chinmoy Sarkar
- Shock, Trauma and Anesthesiology Research (STAR) Center, Department of Anesthesiology, Baltimore, MD, 21201, USA.
| | - Marta M Lipinski
- Shock, Trauma and Anesthesiology Research (STAR) Center, Department of Anesthesiology, Baltimore, MD, 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
8
|
Wei Z, Yu H, Zhao H, Wei M, Xing H, Pei J, Yang Y, Ren K. Broadening horizons: ferroptosis as a new target for traumatic brain injury. BURNS & TRAUMA 2024; 12:tkad051. [PMID: 38250705 PMCID: PMC10799763 DOI: 10.1093/burnst/tkad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Accepted: 10/15/2023] [Indexed: 01/23/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with ~50 million people experiencing TBI each year. Ferroptosis, a form of regulated cell death triggered by iron ion-catalyzed and reactive oxygen species-induced lipid peroxidation, has been identified as a potential contributor to traumatic central nervous system conditions, suggesting its involvement in the pathogenesis of TBI. Alterations in iron metabolism play a crucial role in secondary injury following TBI. This study aimed to explore the role of ferroptosis in TBI, focusing on iron metabolism disorders, lipid metabolism disorders and the regulatory axis of system Xc-/glutathione/glutathione peroxidase 4 in TBI. Additionally, we examined the involvement of ferroptosis in the chronic TBI stage. Based on these findings, we discuss potential therapeutic interventions targeting ferroptosis after TBI. In conclusion, this review provides novel insights into the pathology of TBI and proposes potential therapeutic targets.
Collapse
Affiliation(s)
- Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, No. 1, Longhu Middle Ring Road, Jinshui District, Zhengzhou, China
| | - Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
| | - Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, No. 1, Longhu Middle Ring Road, Jinshui District, Luoyang, China
| | - Mingze Wei
- The Second Clinical Medical College, Harbin Medical University, No. 263, Kaiyuan Avenue, Luolong District, Harbin, China
| | - Han Xing
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No. 246, Xuefu Road, Nangang District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No.3 Provincial People’s Hospital, No. 198, Funiu Road, Zhongyuan District, Henan province, Zhengzhou 450052, China
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, No. 198, Funiu Road, Zhongyuan District, Zhengzhou 450052, China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No. 246, Xuefu Road, Nangang District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou 450052, China
| |
Collapse
|
9
|
Pulliam A, Gier EC, Gaul DA, Moore SG, Fernández FM, LaPlaca MC. Comparing Brain and Blood Lipidome Changes following Single and Repetitive Mild Traumatic Brain Injury in Rats. ACS Chem Neurosci 2024; 15:300-314. [PMID: 38179922 PMCID: PMC10797623 DOI: 10.1021/acschemneuro.3c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Traumatic brain injury (TBI) is a major health concern in the United States and globally, contributing to disability and long-term neurological problems. Lipid dysregulation after TBI is underexplored, and a better understanding of lipid turnover and degradation could point to novel biomarker candidates and therapeutic targets. Here, we investigated overlapping lipidome changes in the brain and blood using a data-driven discovery approach to understand lipid alterations in the brain and serum compartments acutely following mild TBI (mTBI) and the potential efflux of brain lipids to peripheral blood. The cortices and sera from male and female Sprague-Dawley rats were analyzed via ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) in both positive and negative ion modes following single and repetitive closed head impacts. The overlapping lipids in the data sets were identified with an in-house data dictionary for investigating lipid class changes. MS-based lipid profiling revealed overall increased changes in the serum compartment, while the brain lipids primarily showed decreased changes. Interestingly, there were prominent alterations in the sphingolipid class in the brain and blood compartments after single and repetitive injury, which may suggest efflux of brain sphingolipids into the blood after TBI. Genetic algorithms were used for predictive panel selection to classify injured and control samples with high sensitivity and specificity. These overlapping lipid panels primarily mapped to the glycerophospholipid metabolism pathway with Benjamini-Hochberg adjusted q-values less than 0.05. Collectively, these results detail overlapping lipidome changes following mTBI in the brain and blood compartments, increasing our understanding of TBI-related lipid dysregulation while identifying novel biomarker candidates.
Collapse
Affiliation(s)
- Alexis
N. Pulliam
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology/Emory University, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Eric C. Gier
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David A. Gaul
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Samuel G. Moore
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Facundo M. Fernández
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Michelle C. LaPlaca
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology/Emory University, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
10
|
Yilmaz A, Liraz-Zaltsman S, Shohami E, Gordevičius J, Kerševičiūtė I, Sherman E, Bahado-Singh RO, Graham SF. The longitudinal biochemical profiling of TBI in a drop weight model of TBI. Sci Rep 2023; 13:22260. [PMID: 38097614 PMCID: PMC10721861 DOI: 10.1038/s41598-023-48539-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and disability worldwide, particularly among individuals under the age of 45. It is a complex, and heterogeneous disease with a multifaceted pathophysiology that remains to be elucidated. Metabolomics has the potential to identify metabolic pathways and unique biochemical profiles associated with TBI. Herein, we employed a longitudinal metabolomics approach to study TBI in a weight drop mouse model to reveal metabolic changes associated with TBI pathogenesis, severity, and secondary injury. Using proton nuclear magnetic resonance (1H NMR) spectroscopy, we biochemically profiled post-mortem brain from mice that suffered mild TBI (N = 25; 13 male and 12 female), severe TBI (N = 24; 11 male and 13 female) and sham controls (N = 16; 11 male and 5 female) at baseline, day 1 and day 7 following the injury. 1H NMR-based metabolomics, in combination with bioinformatic analyses, highlights a few significant metabolites associated with TBI severity and perturbed metabolism related to the injury. We report that the concentrations of taurine, creatinine, adenine, dimethylamine, histidine, N-Acetyl aspartate, and glucose 1-phosphate are all associated with TBI severity. Longitudinal metabolic observation of brain tissue revealed that mild TBI and severe TBI lead distinct metabolic profile changes. A multi-class model was able to classify the severity of injury as well as time after TBI with estimated 86% accuracy. Further, we identified a high degree of correlation between respective hemisphere metabolic profiles (r > 0.84, p < 0.05, Pearson correlation). This study highlights the metabolic changes associated with underlying TBI severity and secondary injury. While comprehensive, future studies should investigate whether: (a) the biochemical pathways highlighted here are recapitulated in the brain of TBI sufferers and (b) if the panel of biomarkers are also as effective in less invasively harvested biomatrices, for objective and rapid identification of TBI severity and prognosis.
Collapse
Affiliation(s)
- Ali Yilmaz
- Metabolomics Department, Beaumont Research Institute, Beaumont Health, Royal Oak, MI, 48073, USA
- Oakland University-William Beaumont School of Medicine, Rochester, MI, 48073, USA
| | - Sigal Liraz-Zaltsman
- Department of Pharmacology, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel
- Department of Sports Therapy, Institute for Health and Medical Professions, Ono Academic College, Qiryat Ono, Israel
| | - Esther Shohami
- Department of Pharmacology, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Juozas Gordevičius
- VUGENE LLC, 625 EKenmoor Avenue Southeast, Suite 301, PMB 96578, Grand Rapids, MI, 49546, USA
| | - Ieva Kerševičiūtė
- VUGENE LLC, 625 EKenmoor Avenue Southeast, Suite 301, PMB 96578, Grand Rapids, MI, 49546, USA
| | - Eric Sherman
- Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Ray O Bahado-Singh
- Oakland University-William Beaumont School of Medicine, Rochester, MI, 48073, USA
| | - Stewart F Graham
- Metabolomics Department, Beaumont Research Institute, Beaumont Health, Royal Oak, MI, 48073, USA.
- Oakland University-William Beaumont School of Medicine, Rochester, MI, 48073, USA.
| |
Collapse
|
11
|
Kobeissy F, Goli M, Yadikar H, Shakkour Z, Kurup M, Haidar MA, Alroumi S, Mondello S, Wang KK, Mechref Y. Advances in neuroproteomics for neurotrauma: unraveling insights for personalized medicine and future prospects. Front Neurol 2023; 14:1288740. [PMID: 38073638 PMCID: PMC10703396 DOI: 10.3389/fneur.2023.1288740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2023] [Indexed: 02/12/2024] Open
Abstract
Neuroproteomics, an emerging field at the intersection of neuroscience and proteomics, has garnered significant attention in the context of neurotrauma research. Neuroproteomics involves the quantitative and qualitative analysis of nervous system components, essential for understanding the dynamic events involved in the vast areas of neuroscience, including, but not limited to, neuropsychiatric disorders, neurodegenerative disorders, mental illness, traumatic brain injury, chronic traumatic encephalopathy, and other neurodegenerative diseases. With advancements in mass spectrometry coupled with bioinformatics and systems biology, neuroproteomics has led to the development of innovative techniques such as microproteomics, single-cell proteomics, and imaging mass spectrometry, which have significantly impacted neuronal biomarker research. By analyzing the complex protein interactions and alterations that occur in the injured brain, neuroproteomics provides valuable insights into the pathophysiological mechanisms underlying neurotrauma. This review explores how such insights can be harnessed to advance personalized medicine (PM) approaches, tailoring treatments based on individual patient profiles. Additionally, we highlight the potential future prospects of neuroproteomics, such as identifying novel biomarkers and developing targeted therapies by employing artificial intelligence (AI) and machine learning (ML). By shedding light on neurotrauma's current state and future directions, this review aims to stimulate further research and collaboration in this promising and transformative field.
Collapse
Affiliation(s)
- Firas Kobeissy
- Department of Neurobiology, School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Hamad Yadikar
- Department of Biological Sciences Faculty of Science, Kuwait University, Safat, Kuwait
| | - Zaynab Shakkour
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
| | - Milin Kurup
- Alabama College of Osteopathic Medicine, Dothan, AL, United States
| | | | - Shahad Alroumi
- Department of Biological Sciences Faculty of Science, Kuwait University, Safat, Kuwait
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Kevin K. Wang
- Department of Neurobiology, School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
12
|
Kapoor S, Kolchinski A, Gusdon AM, Premraj L, Cho SM. Plasma biomarkers for brain injury in extracorporeal membrane oxygenation. Acute Crit Care 2023; 38:389-398. [PMID: 38052506 PMCID: PMC10718502 DOI: 10.4266/acc.2023.01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a life-saving intervention for patients with refractory cardiorespiratory failure. Despite its benefits, ECMO carries a significant risk of neurological complications, including acute brain injury (ABI). Although standardized neuromonitoring and neurological care have been shown to improve early detection of ABI, the inability to perform neuroimaging in a timely manner is a major limitation in the accurate diagnosis of neurological complications. Therefore, blood-based biomarkers capable of detecting ongoing brain injury at the bedside are of great clinical significance. This review aims to provide a concise review of the current literature on plasma biomarkers for ABI in patients on ECMO support.
Collapse
Affiliation(s)
- Shrey Kapoor
- Division of Neurosciences Critical Care and Cardiac Surgery, Departments of Neurology, Surgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Kolchinski
- Division of Neurosciences Critical Care and Cardiac Surgery, Departments of Neurology, Surgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aaron M. Gusdon
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Lavienraj Premraj
- Griffith University School of Medicine, Queensland, Australia
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia
| | - Sung-Min Cho
- Division of Neurosciences Critical Care and Cardiac Surgery, Departments of Neurology, Surgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Gowthami N, Pursotham N, Dey G, Ghose V, Sathe G, Pruthi N, Shukla D, Gayathri N, Santhoshkumar R, Padmanabhan B, Chandramohan V, Mahadevan A, Srinivas Bharath MM. Neuroanatomical zones of human traumatic brain injury reveal significant differences in protein profile and protein oxidation: Implications for secondary injury events. J Neurochem 2023; 167:218-247. [PMID: 37694499 DOI: 10.1111/jnc.15953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
Traumatic brain injury (TBI) causes significant neurological deficits and long-term degenerative changes. Primary injury in TBI entails distinct neuroanatomical zones, i.e., contusion (Ct) and pericontusion (PC). Their dynamic expansion could contribute to unpredictable neurological deterioration in patients. Molecular characterization of these zones compared with away from contusion (AC) zone is invaluable for TBI management. Using proteomics-based approach, we were able to distinguish Ct, PC and AC zones in human TBI brains. Ct was associated with structural changes (blood-brain barrier (BBB) disruption, neuroinflammation, axonal injury, demyelination and ferroptosis), while PC was associated with initial events of secondary injury (glutamate excitotoxicity, glial activation, accumulation of cytoskeleton proteins, oxidative stress, endocytosis) and AC displayed mitochondrial dysfunction that could contribute to secondary injury events and trigger long-term degenerative changes. Phosphoproteome analysis in these zones revealed that certain differentially phosphorylated proteins synergistically contribute to the injury events along with the differentially expressed proteins. Non-synaptic mitochondria (ns-mito) was associated with relatively more differentially expressed proteins (DEPs) compared to synaptosomes (Syn), while the latter displayed increased protein oxidation including tryptophan (Trp) oxidation. Proteomic analysis of immunocaptured complex I (CI) from Syn revealed increased Trp oxidation in Ct > PC > AC (vs. control). Oxidized W272 in the ND1 subunit of CI, revealed local conformational changes in ND1 and the neighboring subunits, as indicated by molecular dynamics simulation (MDS). Taken together, neuroanatomical zones in TBI show distinct protein profile and protein oxidation representing different primary and secondary injury events with potential implications for TBI pathology and neurological status of the patients.
Collapse
Affiliation(s)
- Niya Gowthami
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Nithya Pursotham
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Gourav Dey
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Vivek Ghose
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Gajanan Sathe
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Nupur Pruthi
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Dhaval Shukla
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Rashmi Santhoshkumar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology (SIT), Tumakuru, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
14
|
Strogulski NR, Portela LV, Polster BM, Loane DJ. Fundamental Neurochemistry Review: Microglial immunometabolism in traumatic brain injury. J Neurochem 2023; 167:129-153. [PMID: 37759406 PMCID: PMC10655864 DOI: 10.1111/jnc.15959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Traumatic brain injury (TBI) is a devastating neurological disorder caused by a physical impact to the brain that promotes diffuse damage and chronic neurodegeneration. Key mechanisms believed to support secondary brain injury include mitochondrial dysfunction and chronic neuroinflammation. Microglia and brain-infiltrating macrophages are responsible for neuroinflammatory cytokine and reactive oxygen species (ROS) production after TBI. Their production is associated with loss of homeostatic microglial functions such as immunosurveillance, phagocytosis, and immune resolution. Beyond providing energy support, mitochondrial metabolic pathways reprogram the pro- and anti-inflammatory machinery in immune cells, providing a critical immunometabolic axis capable of regulating immunologic response to noxious stimuli. In the brain, the capacity to adapt to different environmental stimuli derives, in part, from microglia's ability to recognize and respond to changes in extracellular and intracellular metabolite levels. This capacity is met by an equally plastic metabolism, capable of altering immune function. Microglial pro-inflammatory activation is associated with decreased mitochondrial respiration, whereas anti-inflammatory microglial polarization is supported by increased oxidative metabolism. These metabolic adaptations contribute to neuroimmune responses, placing mitochondria as a central regulator of post-traumatic neuroinflammation. Although it is established that profound neurometabolic changes occur following TBI, key questions related to metabolic shifts in microglia remain unresolved. These include (a) the nature of microglial mitochondrial dysfunction after TBI, (b) the hierarchical positions of different metabolic pathways such as glycolysis, pentose phosphate pathway, glutaminolysis, and lipid oxidation during secondary injury and recovery, and (c) how immunometabolism alters microglial phenotypes, culminating in chronic non-resolving neuroinflammation. In this basic neurochemistry review article, we describe the contributions of immunometabolism to TBI, detail primary evidence of mitochondrial dysfunction and metabolic impairments in microglia and macrophages, discuss how major metabolic pathways contribute to post-traumatic neuroinflammation, and set out future directions toward advancing immunometabolic phenotyping in TBI.
Collapse
Affiliation(s)
- Nathan R. Strogulski
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Luis V. Portela
- Neurotrauma and Biomarkers Laboratory, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Brian M. Polster
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David J. Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Adams AA, Wood TL, Kim HA. Mature and Myelinating Oligodendrocytes Are Specifically Vulnerable to Mild Fluid Percussion Injury in Mice. Neurotrauma Rep 2023; 4:433-446. [PMID: 37435356 PMCID: PMC10331160 DOI: 10.1089/neur.2023.0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
Myelin loss and oligodendrocyte death are well documented in patients with traumatic brain injury (TBI), as well as in experimental animal models after moderate-to-severe TBI. In comparison, mild TBI (mTBI) does not necessarily result in myelin loss or oligodendrocyte death, but causes structural alterations in the myelin. To gain more insight into the impact of mTBI on oligodendrocyte lineage in the adult brain, we subjected mice to mild lateral fluid percussion injury (mFPI) and characterized the early impact (1 and 3 days post-injury) on oligodendrocytes in the corpus callosum using multiple oligodendrocyte lineage markers (platelet-derived growth factor receptor [PDGFR]-α, glutathione S-transferase [GST]-π, CC1, breast carcinoma-amplified sequence 1 [BCAS1], myelin basic protein [MBP], myelin-associated glycoprotein [MAG], proteolipid protein [PLP], and FluoroMyelin™). Two regions of the corpus callosum in relation to the impact site were analyzed: areas near (focal) and anterior (distal) to the impact site. mFPI did not result in oligodendrocyte death in either the focal or distal corpus callosum, nor impact on oligodendrocyte precursors (PDGFR-α+) and GST-π+ oligodendrocyte numbers. In the focal but not distal corpus callosum, mFPI caused a decrease in CC1+ as well as BCAS1+ actively myelinating oligodendrocytes and reduced FluoroMyelin intensity without altering myelin protein expression (MBP, PLP, and MAG). Disruption in node-paranode organization and loss of Nav1.6+ nodes were observed in both the focal and distal regions, even in areas without obvious axonal damage. Altogether, our study shows regional differences in mature and myelinating oligodendrocyte in response to mFPI. Further, mFPI elicits a widespread impact on node-paranode organization that affects regions both close to and remotely located from the site of injury.
Collapse
Affiliation(s)
- Alexandra A. Adams
- Department of Biological Sciences, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Teresa L. Wood
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Haesun A. Kim
- Department of Biological Sciences, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
16
|
Allen J, Pham L, Bond ST, O’Brien WT, Spitz G, Shultz SR, Drew BG, Wright DK, McDonald SJ. Acute effects of single and repeated mild traumatic brain injury on levels of neurometabolites, lipids, and mitochondrial function in male rats. Front Mol Neurosci 2023; 16:1208697. [PMID: 37456524 PMCID: PMC10338885 DOI: 10.3389/fnmol.2023.1208697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Mild traumatic brain injuries (mTBIs) are the most common form of acquired brain injury. Symptoms of mTBI are thought to be associated with a neuropathological cascade, potentially involving the dysregulation of neurometabolites, lipids, and mitochondrial bioenergetics. Such alterations may play a role in the period of enhanced vulnerability that occurs after mTBI, such that a second mTBI will exacerbate neuropathology. However, it is unclear whether mTBI-induced alterations in neurometabolites and lipids that are involved in energy metabolism and other important cellular functions are exacerbated by repeat mTBI, and if such alterations are associated with mitochondrial dysfunction. Methods In this experiment, using a well-established awake-closed head injury (ACHI) paradigm to model mTBI, male rats were subjected to a single injury, or five injuries delivered 1 day apart, and injuries were confirmed with a beam-walk task and a video observation protocol. Abundance of several neurometabolites was evaluated 24 h post-final injury in the ipsilateral and contralateral hippocampus using in vivo proton magnetic resonance spectroscopy (1H-MRS), and mitochondrial bioenergetics were evaluated 30 h post-final injury, or at 24 h in place of 1H-MRS, in the rostral half of the ipsilateral hippocampus. Lipidomic evaluations were conducted in the ipsilateral hippocampus and cortex. Results We found that behavioral deficits in the beam task persisted 1- and 4 h after the final injury in rats that received repetitive mTBIs, and this was paralleled by an increase and decrease in hippocampal glutamine and glucose, respectively, whereas a single mTBI had no effect on sensorimotor and metabolic measurements. No group differences were observed in lipid levels and mitochondrial bioenergetics in the hippocampus, although some lipids were altered in the cortex after repeated mTBI. Discussion The decrease in performance in sensorimotor tests and the presence of more neurometabolic and lipidomic abnormalities, after repeated but not singular mTBI, indicates that multiple concussions in short succession can have cumulative effects. Further preclinical research efforts are required to understand the underlying mechanisms that drive these alterations to establish biomarkers and inform treatment strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Josh Allen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Louise Pham
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Simon T. Bond
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - William T. O’Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Gershon Spitz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Health Sciences, Vancouver Island University, Nanaimo, BC, Canada
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Brian G. Drew
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - David K. Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Jia B, Li J, Song Y, Luo C. ACSL4-Mediated Ferroptosis and Its Potential Role in Central Nervous System Diseases and Injuries. Int J Mol Sci 2023; 24:10021. [PMID: 37373168 DOI: 10.3390/ijms241210021] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
As an iron-dependent regulated form of cell death, ferroptosis is characterized by iron-dependent lipid peroxidation and has been implicated in the occurrence and development of various diseases, including nervous system diseases and injuries. Ferroptosis has become a potential target for intervention in these diseases or injuries in relevant preclinical models. As a member of the Acyl-CoA synthetase long-chain family (ACSLs) that can convert saturated and unsaturated fatty acids, Acyl-CoA synthetase long-chain familymember4 (ACSL4) is involved in the regulation of arachidonic acid and eicosapentaenoic acid, thus leading to ferroptosis. The underlying molecular mechanisms of ACSL4-mediated ferroptosis will promote additional treatment strategies for these diseases or injury conditions. Our review article provides a current view of ACSL4-mediated ferroptosis, mainly including the structure and function of ACSL4, as well as the role of ACSL4 in ferroptosis. We also summarize the latest research progress of ACSL4-mediated ferroptosis in central nervous system injuries and diseases, further proving that ACSL4-medicated ferroptosis is an important target for intervention in these diseases or injuries.
Collapse
Affiliation(s)
- Bowen Jia
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Yiting Song
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
18
|
Dhariwal S, Maan K, Baghel R, Sharma A, Malakar D, Rana P. Systematic untargeted UHPLC-Q-TOF-MS based lipidomics workflow for improved detection and annotation of lipid sub-classes in serum. Metabolomics 2023; 19:24. [PMID: 36971892 DOI: 10.1007/s11306-023-01983-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/04/2023] [Indexed: 03/28/2023]
Abstract
INTRODUCTION AND OBJECTIVE Taking into consideration the challenges of lipid analytics, present study aims to design the best high-throughput workflow for detection and annotation of lipids. MATERIAL AND METHODS Serum lipid profiling was performed on CSH-C18 and EVO-C18 columns using UHPLC Q-TOF-MS and generated lipid features were annotated based on m/z and fragment ion using different software. RESULT AND DISCUSSION Better detection of features was observed in CSH-C18 than EVO-C18 with enhanced resolution except for Glycerolipids (triacylglycerols) and Sphingolipids (sphingomyelin). CONCLUSION The study revealed an optimized untargeted Lipidomics-workflow with comprehensive lipid profiling (CSH-C18 column) and confirmatory annotation (LipidBlast).
Collapse
Affiliation(s)
- Seema Dhariwal
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Kiran Maan
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Ruchi Baghel
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Apoorva Sharma
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | | | - Poonam Rana
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K. Mazumdar Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
19
|
Creech M, Carvalho L, McCoy H, Jacobs J, Hinson HE. Mass Spectrometry-Based Approaches for Clinical Biomarker Discovery in Traumatic Brain Injury. Curr Treat Options Neurol 2022; 24:605-618. [PMID: 37025501 PMCID: PMC10072855 DOI: 10.1007/s11940-022-00742-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 11/28/2022]
Abstract
Purpose of Review Precision treatments to address the multifaceted pathophysiology of traumatic brain injury (TBI) are desperately needed, which has led to the intense study of fluid-based protein biomarkers in TBI. Mass Spectrometry (MS) is increasingly being applied to biomarker discovery and quantification in neurological disease to explore the proteome, allowing for more flexibility in biomarker discovery than commonly encountered antibody-based assays. In this narrative review, we will provide specific examples of how MS technology has advanced translational research in traumatic brain injury (TBI) focusing on clinical studies, and looking ahead to promising emerging applications of MS to the field of Neurocritical Care. Recent Findings Proteomic biomarker discovery using MS technology in human subjects has included the full range of injury severity in TBI, though critically ill patients can offer more options to biofluids given the need for invasive monitoring. Blood, urine, cerebrospinal fluid, brain specimens, and cerebral extracellular fluid have all been sources for analysis. Emerging evidence suggests there are distinct proteomic profiles in radiographic TBI subtypes, and that biomarkers may be used to distinguish patients sustaining TBI from healthy controls. Metabolomics may offer a window into the perturbations of ongoing cerebral insults in critically ill patients after severe TBI. Summary Emerging MS technologies may offer biomarker discovery and validation opportunities not afforded by conventional means due to its ability to handle the complexities associated with the proteome. While MS techniques are relatively early in development in the neurosciences space, the potential applications to TBI and neurocritical care are likely to accelerate in the coming decade.
Collapse
Affiliation(s)
- Matthew Creech
- Department of Neurology, Oregon Health and Science University, Portland OR
| | - Lindsey Carvalho
- Department of Neurology, Oregon Health and Science University, Portland OR
| | - Heather McCoy
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, WA
| | - Jon Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, WA
| | - H E Hinson
- Department of Neurology, Oregon Health and Science University, Portland OR
- Department of Emergency Medicine, Oregon Health and Science University, Portland OR
| |
Collapse
|
20
|
Pang Q, Zheng L, Ren Z, Xu H, Guo H, Shan W, Liu R, Gu Z, Wang T. Mechanism of Ferroptosis and Its Relationships with Other Types of Programmed Cell Death: Insights for Potential Therapeutic Benefits in Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1274550. [PMID: 36062196 PMCID: PMC9433211 DOI: 10.1155/2022/1274550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/19/2022] [Accepted: 08/13/2022] [Indexed: 12/05/2022]
Abstract
Traumatic brain injury (TBI) is a serious health issue with a high incidence, high morbidity, and high mortality that poses a large burden on society. Further understanding of the pathophysiology and cell death models induced by TBI may support targeted therapies for TBI patients. Ferroptosis, a model of programmed cell death first defined in 2012, is characterized by iron dyshomeostasis, lipid peroxidation, and glutathione (GSH) depletion. Ferroptosis is distinct from apoptosis, autophagy, pyroptosis, and necroptosis and has been shown to play a role in secondary brain injury and worsen long-term outcomes after TBI. This review systematically describes (1) the regulatory pathways of ferroptosis after TBI, (2) the neurobiological links between ferroptosis and other cell death models, and (3) potential therapies targeting ferroptosis for TBI patients.
Collapse
Affiliation(s)
- Qiuyu Pang
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Lexin Zheng
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Zhiyang Ren
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Heng Xu
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Hanmu Guo
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Wenqi Shan
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Rong Liu
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Zhiya Gu
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Tao Wang
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| |
Collapse
|
21
|
Lilley LM, Sanche S, Moore SC, Salemi MR, Vu D, Iyer S, Hengartner NW, Mukundan H. Methods to capture proteomic and metabolomic signatures from cerebrospinal fluid and serum of healthy individuals. Sci Rep 2022; 12:13339. [PMID: 35922450 PMCID: PMC9349260 DOI: 10.1038/s41598-022-16598-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
Discovery of reliable signatures for the empirical diagnosis of neurological diseases-both infectious and non-infectious-remains unrealized. One of the primary challenges encountered in such studies is the lack of a comprehensive database representative of a signature background that exists in healthy individuals, and against which an aberrant event can be assessed. For neurological insults and injuries, it is important to understand the normal profile in the neuronal (cerebrospinal fluid) and systemic fluids (e.g., blood). Here, we present the first comparative multi-omic human database of signatures derived from a population of 30 individuals (15 males, 15 females, 23-74 years) of serum and cerebrospinal fluid. In addition to empirical signatures, we also assigned common pathways between serum and CSF. Together, our findings provide a cohort against which aberrant signature profiles in individuals with neurological injuries/disease can be assessed-providing a pathway for comprehensive diagnostics and therapeutics discovery.
Collapse
Affiliation(s)
- Laura M Lilley
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA
| | - Steven Sanche
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA
| | - Shepard C Moore
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA
| | - Michelle R Salemi
- Genome Center, Proteomics Core Facility, University of California, Davis, CA, 95616, USA
| | - Dung Vu
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA
| | - Srinivas Iyer
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA
| | | | - Harshini Mukundan
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA.
| |
Collapse
|
22
|
Kocheril PA, Moore SC, Lenz KD, Mukundan H, Lilley LM. Progress Toward a Multiomic Understanding of Traumatic Brain Injury: A Review. Biomark Insights 2022; 17:11772719221105145. [PMID: 35719705 PMCID: PMC9201320 DOI: 10.1177/11772719221105145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is not a single disease state but describes an array
of conditions associated with insult or injury to the brain. While some
individuals with TBI recover within a few days or months, others present with
persistent symptoms that can cause disability, neuropsychological trauma, and
even death. Understanding, diagnosing, and treating TBI is extremely complex for
many reasons, including the variable biomechanics of head impact, differences in
severity and location of injury, and individual patient characteristics. Because
of these confounding factors, the development of reliable diagnostics and
targeted treatments for brain injury remains elusive. We argue that the
development of effective diagnostic and therapeutic strategies for TBI requires
a deep understanding of human neurophysiology at the molecular level and that
the framework of multiomics may provide some effective solutions for the
diagnosis and treatment of this challenging condition. To this end, we present
here a comprehensive review of TBI biomarker candidates from across the
multiomic disciplines and compare them with known signatures associated with
other neuropsychological conditions, including Alzheimer’s disease and
Parkinson’s disease. We believe that this integrated view will facilitate a
deeper understanding of the pathophysiology of TBI and its potential links to
other neurological diseases.
Collapse
Affiliation(s)
- Philip A Kocheril
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shepard C Moore
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kiersten D Lenz
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Laura M Lilley
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
23
|
Plasma Lipid Profiles Change with Increasing Numbers of Mild Traumatic Brain Injuries in Rats. Metabolites 2022; 12:metabo12040322. [PMID: 35448509 PMCID: PMC9025508 DOI: 10.3390/metabo12040322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Mild traumatic brain injury (mTBI) causes structural, cellular and biochemical alterations which are difficult to detect in the brain and may persist chronically following single or repeated injury. Lipids are abundant in the brain and readily cross the blood-brain barrier, suggesting that lipidomic analysis of blood samples may provide valuable insight into the neuropathological state. This study used liquid chromatography-mass spectrometry (LC-MS) to examine plasma lipid concentrations at 11 days following sham (no injury), one (1×) or two (2×) mTBI in rats. Eighteen lipid species were identified that distinguished between sham, 1× and 2× mTBI. Three distinct patterns were found: (1) lipids that were altered significantly in concentration after either 1× or 2× F mTBI: cholesterol ester CE (14:0) (increased), phosphoserine PS (14:0/18:2) and hexosylceramide HCER (d18:0/26:0) (decreased), phosphoinositol PI(16:0/18:2) (increased with 1×, decreased with 2× mTBI); (2) lipids that were altered in response to 1× mTBI only: free fatty acid FFA (18:3 and 20:3) (increased); (3) lipids that were altered in response to 2× mTBI only: HCER (22:0), phosphoethanolamine PE (P-18:1/20:4 and P-18:0/20:1) (increased), lysophosphatidylethanolamine LPE (20:1), phosphocholine PC (20:0/22:4), PI (18:1/18:2 and 20:0/18:2) (decreased). These findings suggest that increasing numbers of mTBI induce a range of changes dependent upon the lipid species, which likely reflect a balance of damage and reparative responses.
Collapse
|
24
|
Poblete RA, Arenas M, Sanossian N, Hong YK, Freeman WD, Lyden PD, Louie SG. Pro-resolving lipid mediators in traumatic brain injury: emerging concepts and translational approach. Am J Transl Res 2022; 14:1482-1494. [PMID: 35422939 PMCID: PMC8991125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/20/2022] [Indexed: 01/26/2023]
Abstract
Despite the high mortality and disability associated with traumatic brain injury (TBI), effective pharmacologic treatments are lacking. Of emerging interest, bioactive lipids, including specialized pro-resolving lipid mediators of inflammation (SPMs), act to attenuate inflammation after injury resolution. The SPM lipidome may serve as a biomarker of disease and predictor of clinical outcomes, and the use of exogenous SPM administration represents a novel therapeutic strategy for TBI. This review article provides a comprehensive discussion of the current pre-clinical and clinical literature supporting the importance of bioactive lipids, including SPMs, in TBI recovery. We additionally propose a translational approach to answer important clinical and scientific questions to advance the study of bioactive lipids and SPMs towards clinical research. Given the morbidity and mortality associated with TBI with limited treatment options, novel approaches are needed.
Collapse
Affiliation(s)
- Roy A Poblete
- Department of Neurology, Keck School of Medicine, The University of Southern CaliforniaLos Angeles, CA, USA
| | - Marcela Arenas
- Department of Neurology, Keck School of Medicine, The University of Southern CaliforniaLos Angeles, CA, USA
| | - Nerses Sanossian
- Department of Neurology, Keck School of Medicine, The University of Southern CaliforniaLos Angeles, CA, USA
| | - Young-Kwon Hong
- Department of Surgery, Keck School of Medicine, The University of Southern CaliforniaLos Angeles, CA, USA
| | - William D Freeman
- Department of Neurology, College of Medicine and Science, Mayo ClinicLos Angeles, CA, USA
| | - Patrick D Lyden
- Department of Neurology, Keck School of Medicine, The University of Southern CaliforniaLos Angeles, CA, USA,Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, The University of Southern CaliforniaLos Angeles, CA, USA
| | - Stan G Louie
- Division of Ophthalmology, Keck School of Medicine, The University of Southern CaliforniaLos Angeles, CA, USA,Department of Clinical Pharmacy, School of Pharmacy, The University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
25
|
Gier EC, Pulliam AN, Gaul DA, Moore SG, LaPlaca MC, Fernández FM. Lipidome Alterations following Mild Traumatic Brain Injury in the Rat. Metabolites 2022; 12:150. [PMID: 35208224 PMCID: PMC8878543 DOI: 10.3390/metabo12020150] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/10/2022] Open
Abstract
Traumatic brain injury (TBI) poses a major health challenge, with tens of millions of new cases reported globally every year. Brain damage resulting from TBI can vary significantly due to factors including injury severity, injury mechanism and exposure to repeated injury events. Therefore, there is need for robust blood biomarkers. Serum from Sprague Dawley rats was collected at several timepoints within 24 h of mild single or repeat closed head impacts. Serum samples were analyzed via ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) in positive and negative ion modes. Known lipid species were identified through matching to in-house tandem MS databases. Lipid biomarkers have a unique potential to serve as objective molecular measures of injury response as they may be liberated to circulation more readily than larger protein markers. Machine learning and feature selection approaches were used to construct lipid panels capable of distinguishing serum from injured and uninjured rats. The best multivariate lipid panels had over 90% cross-validated sensitivity, selectivity, and accuracy. These mapped onto sphingolipid signaling, autophagy, necroptosis and glycerophospholipid metabolism pathways, with Benjamini adjusted p-values less than 0.05. The novel lipid biomarker candidates identified provide insight into the metabolic pathways altered within 24 h of mild TBI.
Collapse
Affiliation(s)
- Eric C. Gier
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (E.C.G.); (D.A.G.); (S.G.M.)
| | - Alexis N. Pulliam
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA;
| | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (E.C.G.); (D.A.G.); (S.G.M.)
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Samuel G. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (E.C.G.); (D.A.G.); (S.G.M.)
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Michelle C. LaPlaca
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA;
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (E.C.G.); (D.A.G.); (S.G.M.)
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
26
|
Wang KK, Munoz Pareja JC, Mondello S, Diaz-Arrastia R, Wellington C, Kenney K, Puccio AM, Hutchison J, McKinnon N, Okonkwo DO, Yang Z, Kobeissy F, Tyndall JA, Büki A, Czeiter E, Pareja Zabala MC, Gandham N, Berman R. Blood-based traumatic brain injury biomarkers - Clinical utilities and regulatory pathways in the United States, Europe and Canada. Expert Rev Mol Diagn 2021; 21:1303-1321. [PMID: 34783274 DOI: 10.1080/14737159.2021.2005583] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major global health issue, resulting in debilitating consequences to families, communities, and health-care systems. Prior research has found that biomarkers aid in the pathophysiological characterization and diagnosis of TBI. Significantly, the FDA has recently cleared both a bench-top assay and a rapid point-of-care assays of tandem biomarker (UCH-L1/GFAP)-based blood test to aid in the diagnosis mTBI patients. With the global necessity of TBI biomarkers research, several major consortium multicenter observational studies with biosample collection and biomarker analysis have been created in the USA, Europe, and Canada. As each geographical region regulates its data and findings, the International Initiative for Traumatic Brain Injury Research (InTBIR) was formed to facilitate data integration and dissemination across these consortia. AREAS COVERED This paper covers heavily investigated TBI biomarkers and emerging non-protein markers. Finally, we analyze the regulatory pathways for converting promising TBI biomarkers into approved in-vitro diagnostic tests in the United States, European Union, and Canada. EXPERT OPINION TBI biomarker research has significantly advanced in the last decade. The recent approval of an iSTAT point of care test to detect mild TBI has paved the way for future biomarker clearance and appropriate clinical use across the globe.
Collapse
Affiliation(s)
- Kevin K Wang
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Jennifer C Munoz Pareja
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cheryl Wellington
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Kimbra Kenney
- Department of Neurology, Uniformed Service University, Bethesda, Maryland, USA
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jamie Hutchison
- The Hospital for Sick Children, Department of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nicole McKinnon
- The Hospital for Sick Children, Department of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - J Adrian Tyndall
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Endre Czeiter
- Department of Neurosurgery, Pecs University, Pecs, Hungary
| | | | - Nithya Gandham
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rebecca Berman
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| | | |
Collapse
|
27
|
Morel Y, Hegdekar N, Sarkar C, Lipinski MM, Kane MA, Jones JW. Structure-specific, accurate quantitation of plasmalogen glycerophosphoethanolamine. Anal Chim Acta 2021; 1186:339088. [PMID: 34756256 PMCID: PMC8581249 DOI: 10.1016/j.aca.2021.339088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/08/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022]
Abstract
Changes in plasmalogen glycerophosphoethanolamine (PE-P) composition (structure and abundance) are a key indicator of altered lipid metabolism. Differential changes in the levels of PE-P have been reported in different disease states, including neurodegenerative diseases. Of particular interest, traumatic brain injury (TBI) has resulted in altered expression of glycerophospholipid profiles, including PE-P. To date, most analytical assays assessing PE-P have focused on general lipidomic workflows to evaluate the relative, semi-quantitative abundance of PE-P during disease progression. This approach provides a broad evaluation of PE-P, yet often lacks specificity and sensitivity for individual PE-P structures which is a necessity for robust quantitative data. The present study highlights the development of a targeted, quantitative method using a HILIC separation and selective reaction monitoring mass spectrometry for the confident identification and accurate quantitation of PE-P. Our innovative method incorporates both the sn-1 alkyl vinyl ether and sn-2 acyl chain as product ion transitions, for specific and sensitive quantitation of 100 PE-P structures. Our method also uniquely allowed for the unambiguous assignment and quantitation of di-unsaturated sn-1 PE-P structures, which to date have not been conclusively quantified. Application of this assay to a TBI mouse model resulted in distinct temporal profiles for plasma PE-P up to 28 days post injury. Plasma PE-P were significantly increased 24 h after induced TBI, followed by a gradual reduction to sham concentrations by day 28. Overall, we established a structure-specific, quantitative assay for identification and quantitation of a comprehensive set of PE-P structures with demonstrated relevance to brain injury.
Collapse
Affiliation(s)
- Yulemni Morel
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, 21201, USA
| | - Nivedita Hegdekar
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Chinmoy Sarkar
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Marta M Lipinski
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, 21201, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, 21201, USA.
| |
Collapse
|
28
|
Schnelle ANW, Richardson LT, Pettit ME, DeMorrow S, Solouki T. Trihydroxycholanoyl-taurine in brains of rodents with hepatic encephalopathy. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4729. [PMID: 33942437 DOI: 10.1002/jms.4729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Hepatic encephalopathy (HE), a neurological disease resulting from liver failure, is difficult to manage and its causes are unclear. Bile acids have been postulated to be involved in the provenance and progression of various diseases including HE. Hence, the characterization of bile acid profiles in the brains of subjects with and without liver failure can provide important clues for the potential treatment of HE. Nanoflow ultra-performance liquid chromatography electrospray ionization ion mobility mass spectrometry (UPLC-ESI-IM-MS) is a highly sensitive method for detection of specific molecules, such as bile acids in brain samples, at biologically relevant concentrations. We used UPLC-ESI-IM-MS to characterize bile acid profiles in brain samples from seven "healthy" control rodents and 22 "diseased" rodents with liver failure (i.e., induced HE). An isomer of trihydroxycholanoyl-taurine was detected in brain tissue samples from both rats and mice with induced HE; however, this isomer was not detected in the brains of healthy rats and mice. Our findings were confirmed by comparing IM arrival times (AT), exact mass measurements (m/z), and mass spectral fragmentation patterns of the experimentally observed suspected species to standards of trihydroxycholanoyl-taurine isomers. Moreover, In Silico Fractionation was employed to provide an additional analytical dimension to verify bile acid identifications.
Collapse
Affiliation(s)
- Amy N W Schnelle
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA
| | - Luke T Richardson
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA
| | - Michael E Pettit
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA
- BioTherapeutics Analytical Development, Janssen Research and Development, LLC, 200 Great Valley Parkway, Malvern, Pennsylvania, 19355, USA
| | - Sharon DeMorrow
- Research Services, Central Texas Veterans Health Care System, Temple, Texas, 76504, USA
- Pharmacology and Toxicology Division, College of Pharmacy, University of Texas at Austin, Austin, Texas, 78712, USA
- Department of Internal Medicine, Dell Medical School, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Touradj Solouki
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA
| |
Collapse
|
29
|
Mughal A, Sackheim AM, Sancho M, Longden TA, Russell S, Lockette W, Nelson MT, Freeman K. Impaired capillary-to-arteriolar electrical signaling after traumatic brain injury. J Cereb Blood Flow Metab 2021; 41:1313-1327. [PMID: 33050826 PMCID: PMC8142130 DOI: 10.1177/0271678x20962594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) acutely impairs dynamic regulation of local cerebral blood flow, but long-term (>72 h) effects on functional hyperemia are unknown. Functional hyperemia depends on capillary endothelial cell inward rectifier potassium channels (Kir2.1) responding to potassium (K+) released during neuronal activity to produce a regenerative, hyperpolarizing electrical signal that propagates from capillaries to dilate upstream penetrating arterioles. We hypothesized that TBI causes widespread disruption of electrical signaling from capillaries-to-arterioles through impairment of Kir2.1 channel function. We randomized mice to TBI or control groups and allowed them to recover for 4 to 7 days post-injury. We measured in vivo cerebral hemodynamics and arteriolar responses to local stimulation of capillaries with 10 mM K+ using multiphoton laser scanning microscopy through a cranial window under urethane and α-chloralose anesthesia. Capillary angio-architecture was not significantly affected following injury. However, K+-induced hyperemia was significantly impaired. Electrophysiology recordings in freshly isolated capillary endothelial cells revealed diminished Ba2+-sensitive Kir2.1 currents, consistent with a reduction in channel function. In pressurized cerebral arteries isolated from TBI mice, K+ failed to elicit the vasodilation seen in controls. We conclude that disruption of endothelial Kir2.1 channel function impairs capillary-to-arteriole electrical signaling, contributing to altered cerebral hemodynamics after TBI.
Collapse
Affiliation(s)
- Amreen Mughal
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | | | - Maria Sancho
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Sheila Russell
- Department of Surgery, University of Vermont, Burlington, VT, USA
| | - Warren Lockette
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Kalev Freeman
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
- Department of Surgery, University of Vermont, Burlington, VT, USA
| |
Collapse
|
30
|
Geng Z, Guo Z, Guo R, Ye R, Zhu W, Yan B. Ferroptosis and traumatic brain injury. Brain Res Bull 2021; 172:212-219. [PMID: 33932492 DOI: 10.1016/j.brainresbull.2021.04.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is a worldwide health problem contributing to significant economic burden. TBI is difficult to treat partly due to incomplete understanding of pathophysiology. Ferroptosis is a type of iron-dependent programmed cell death which has gained increasing attention due to its possible role in TBI. Current studies have demonstrated that ferroptosis is related to the pathology of TBI, and inhibition of ferroptosis may improve long term outcomes of TBI. Therefore, clarification of the exact association between ferroptosis and traumatic brain injury is necessary and may provide new targets for treatment. This review describes (1) the ferroptosis pathways following traumatic brain injury, (2) the role of ferroptosis during the chronic phase of traumatic brain injury, and (3) potential therapies targeting the ferroptosis pathways.
Collapse
Affiliation(s)
- Zhiwen Geng
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, China.
| | - Zhiliang Guo
- Department of Neurology, The Second Affiliated Hospital of Soochow University, China.
| | - Ruibing Guo
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, China.
| | - Ruidong Ye
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, China.
| | - Wusheng Zhu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, China.
| | - Bernard Yan
- Department of Neurology, Neurointervention Service, Royal Melbourne Hospital, Australia; Melbourne Brain Centre @ RMH, Department of Medicine, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
31
|
Sackheim AM, Villalba N, Sancho M, Harraz OF, Bonev AD, D’Alessandro A, Nemkov T, Nelson MT, Freeman K. Traumatic Brain Injury Impairs Systemic Vascular Function Through Disruption of Inward-Rectifier Potassium Channels. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab018. [PMID: 34568829 PMCID: PMC8462507 DOI: 10.1093/function/zqab018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Trauma can lead to widespread vascular dysfunction, but the underlying mechanisms remain largely unknown. Inward-rectifier potassium channels (Kir2.1) play a critical role in the dynamic regulation of regional perfusion and blood flow. Kir2.1 channel activity requires phosphatidylinositol 4,5-bisphosphate (PIP2), a membrane phospholipid that is degraded by phospholipase A2 (PLA2) in conditions of oxidative stress or inflammation. We hypothesized that PLA2-induced depletion of PIP2 after trauma impairs Kir2.1 channel function. A fluid percussion injury model of traumatic brain injury (TBI) in rats was used to study mesenteric resistance arteries 24 hours after injury. The functional responses of intact arteries were assessed using pressure myography. We analyzed circulating PLA2, hydrogen peroxide (H2O2), and metabolites to identify alterations in signaling pathways associated with PIP2 in TBI. Electrophysiology analysis of freshly-isolated endothelial and smooth muscle cells revealed a significant reduction of Ba2+-sensitive Kir2.1 currents after TBI. Additionally, dilations to elevated extracellular potassium and BaCl2- or ML 133-induced constrictions in pressurized arteries were significantly decreased following TBI, consistent with an impairment of Kir2.1 channel function. The addition of a PIP2 analog to the patch pipette successfully rescued endothelial Kir2.1 currents after TBI. Both H2O2 and PLA2 activity were increased after injury. Metabolomics analysis demonstrated altered lipid metabolism signaling pathways, including increased arachidonic acid, and fatty acid mobilization after TBI. Our findings support a model in which increased H2O2-induced PLA2 activity after trauma hydrolyzes endothelial PIP2, resulting in impaired Kir2.1 channel function.
Collapse
Affiliation(s)
- Adrian M Sackheim
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Nuria Villalba
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Maria Sancho
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Osama F Harraz
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Adrian D Bonev
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Angelo D’Alessandro
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Kalev Freeman
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, USA
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA
- Address correspondence to K.F. (e-mail: )
| |
Collapse
|
32
|
Nessel I, Michael-Titus AT. Lipid profiling of brain tissue and blood after traumatic brain injury. Semin Cell Dev Biol 2021; 112:145-156. [DOI: 10.1016/j.semcdb.2020.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 11/15/2022]
|
33
|
Yu J, Meng F, He F, Chen F, Bao W, Yu Y, Zhou J, Gao J, Li J, Yao Y, Ge WP, Luo B. Metabolic Abnormalities in Patients with Chronic Disorders of Consciousness. Aging Dis 2021; 12:386-403. [PMID: 33815872 PMCID: PMC7990357 DOI: 10.14336/ad.2020.0812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
The vegetative state (VS) and minimally conscious state (MCS) are two major types of chronic disorders of consciousness (DoC). The assessment of these two consciousness states generally relies on the Coma Recovery Scale-Revised (CRS-R) score, but a high misdiagnosis rate limits the generalized use of this score. To identify metabolites in human plasma that can accurately distinguish VS from MCS patients, comprehensive plasma metabolic profiles were obtained with targeted metabolomics analysis and untargeted and targeted lipidomics analysis. Univariate and multivariate analyses were used to assess the significance of differences. Compared with healthy controls (HCs), the DoC groups, Emerged from Minimally Conscious State (EMCS) group and Alzheimer’s disease (AD) group had significantly different metabolic profiles. Purine metabolism pathway differed the most between the DoC (MCS and VS) and HC groups. In this pathway, adenosine, ADP, and AMP, which are the derived products of ATP degradation, were decreased in the MCS and VS groups compared to healthy controls. More importantly, we identified certain lipids for which the levels were enriched in the VS or MCS groups. Specifically, phosphatidylcholine, (38:5)-H (PC(38:5)-H), and arachidonic acid (AA) differed substantially between the VS and MCS groups and may be used to distinguish these two groups of patients. Together, our findings suggest that metabolic profiling is significantly altered in patients with chronic DoC.
Collapse
Affiliation(s)
- Jie Yu
- 1Department of Neurology and Brain Medical Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fanxia Meng
- 1Department of Neurology and Brain Medical Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fangping He
- 1Department of Neurology and Brain Medical Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fei Chen
- 2Children's Research Institute, Department of Neuroscience, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wangxiao Bao
- 1Department of Neurology and Brain Medical Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yamei Yu
- 1Department of Neurology and Brain Medical Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jintao Zhou
- 1Department of Neurology and Brain Medical Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian Gao
- 3Department of Rehabilitation, Hangzhou Hospital of Zhejiang Armed Police Corps, Hangzhou 310051, China
| | - Jingqi Li
- 3Department of Rehabilitation, Hangzhou Hospital of Zhejiang Armed Police Corps, Hangzhou 310051, China
| | - Yao Yao
- 4Department of Pharmaceutical and Biomedical Sciences, University of Georgia, GA 30602, USA
| | - Woo-Ping Ge
- 5Chinese Institute for Brain Research, Beijing 102206, China
| | - Benyan Luo
- 1Department of Neurology and Brain Medical Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
34
|
Keating CE, Browne KD, Cullen DK. Dietary manipulation of vulnerability to traumatic brain injury-induced neuronal plasma membrane permeability. Exp Neurol 2021; 340:113649. [PMID: 33600812 DOI: 10.1016/j.expneurol.2021.113649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/22/2021] [Accepted: 02/12/2021] [Indexed: 01/22/2023]
Abstract
Traumatic brain injury (TBI) can produce physical disruptions in the plasma membranes of neurons, referred to as mechanoporation, which lead to increased cell permeability. We suspect that such trauma-induced membrane disruptions may be influenced by the physical properties of the plasma membrane, such as elasticity or rigidity. These membrane properties are influenced by lipid composition, which can be modulated via diet, leading to the intriguing possibility of prophylactically altering diet to confer resiliency to this mechanism of acute neuronal damage in TBI. In this proof-of-concept study, we used three different diets-one high in polyunsaturated fatty acids suggested to increase elasticity (Fish Oil), one high in saturated fatty acids and cholesterol suggested to increase rigidity (High Fat), and one standard rat chow (Control)-to alter brain plasma membrane lipid composition before subjecting rats to lateral fluid percussion injury (FPI). Lipid analysis (n = 12 rats) confirmed that diets altered brain fatty acid composition after 4 weeks of feeding, with the Fish Oil diet increasing unsaturated fatty acids, and interestingly, the High Fat diet increasing omega-6 docosapentaenoic acid. One cohort of animals (n = 34 rats) was assessed immediately after FPI or sham injury for acute changes in neuronal membrane permeability in the injury-adjacent cortex. Surprisingly, sham animals fed Fish Oil had increased membrane permeability, suggesting altered passive membrane properties. In contrast, injured animals fed the High Fat diet displayed less intense uptake of permeability marker, suggesting a reduced extent of injury-induced plasma membrane disruption, although the density of affected cells matched the other diet groups. In a separate cohort survived for 7 days after FPI (n = 48 rats), animals fed the High Fat diet exhibited a reduced lesion area. At both time points there were no statistically significant differences in inflammation. Unexpectedly, these results indicate that the High Fat diet, as opposed to the Fish Oil diet, beneficially modulated acute plasma membrane permeability and resulted in a smaller lesion size at 7 days post-injury. Additional studies are necessary to determine the impact of these various diets on behavioral outcomes post-TBI. Further investigation is also needed to understand the physical properties in neuronal plasma membranes that may underlie increased resiliency to trauma-induced disruptions and, importantly, to understand how these properties may be influenced by targeted dietary modifications for vulnerable populations.
Collapse
Affiliation(s)
- Carolyn E Keating
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, 19104, USA.
| | - Kevin D Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, 19104, USA.
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, 19104, USA.
| |
Collapse
|
35
|
Poblete RA, Arenas M, Sanossian N, Freeman WD, Louie SG. The role of bioactive lipids in attenuating the neuroinflammatory cascade in traumatic brain injury. Ann Clin Transl Neurol 2020. [PMCID: PMC7732250 DOI: 10.1002/acn3.51240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity, mortality, and economic burden. Despite this, there are no proven medical therapies in the pharmacologic management of TBI. A better understanding of disease pathophysiology might lead to novel approaches. In one area of increasing interest, bioactive lipids known to attenuate inflammation might serve as an important biomarker and mediator of disease after TBI. In this review, we describe the pathophysiology of inflammation following TBI, the actions of endogenous bioactive lipids in attenuating neuroinflammation, and their possible therapeutic role in the management of TBI. In particular, specialized pro‐resolving lipid mediators (SPMs) of inflammation represent endogenous compounds that might serve as important biomarkers of disease and potential therapeutic targets. We aim to discuss the current literature from animal models of TBI and limited human experiences that suggest that bioactive lipids and SPMs are mechanistically important to TBI recovery, and by doing so, aim to highlight the need for further clinical and translational research. Early investigations of dietary and parenteral supplementation of pro‐resolving bioactive lipids have been promising. Given the high morbidity and mortality that occurs with TBI, novel approaches are needed.
Collapse
Affiliation(s)
- Roy A. Poblete
- Department of Neurology Keck School of MedicineUniversity of Southern California Los Angeles CaliforniaUSA
| | - Marcela Arenas
- Department of Neurology Keck School of MedicineUniversity of Southern California Los Angeles CaliforniaUSA
| | - Nerses Sanossian
- Department of Neurology Keck School of MedicineUniversity of Southern California Los Angeles CaliforniaUSA
| | - William D. Freeman
- Department of Neurology and Neurosurgery Mayo Clinic Florida 4500 San Pablo Road Jacksonville Florida32224USA
| | - Stan G. Louie
- Department of Clinical Pharmacy School of Pharmacy University of Southern California Los Angeles CaliforniaUSA
| |
Collapse
|
36
|
Keating CE, Cullen DK. Mechanosensation in traumatic brain injury. Neurobiol Dis 2020; 148:105210. [PMID: 33259894 DOI: 10.1016/j.nbd.2020.105210] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is distinct from other neurological disorders because it is induced by a discrete event that applies extreme mechanical forces to the brain. This review describes how the brain senses, integrates, and responds to forces under both normal conditions and during injury. The response to forces is influenced by the unique mechanical properties of brain tissue, which differ by region, cell type, and sub-cellular structure. Elements such as the extracellular matrix, plasma membrane, transmembrane receptors, and cytoskeleton influence its properties. These same components also act as force-sensors, allowing neurons and glia to respond to their physical environment and maintain homeostasis. However, when applied forces become too large, as in TBI, these components may respond in an aberrant manner or structurally fail, resulting in unique pathological sequelae. This so-called "pathological mechanosensation" represents a spectrum of cellular responses, which vary depending on the overall biomechanical parameters of the injury and may be compounded by repetitive injuries. Such aberrant physical responses and/or damage to cells along with the resulting secondary injury cascades can ultimately lead to long-term cellular dysfunction and degeneration, often resulting in persistent deficits. Indeed, pathological mechanosensation not only directly initiates secondary injury cascades, but this post-physical damage environment provides the context in which these cascades unfold. Collectively, these points underscore the need to use experimental models that accurately replicate the biomechanics of TBI in humans. Understanding cellular responses in context with injury biomechanics may uncover therapeutic targets addressing various facets of trauma-specific sequelae.
Collapse
Affiliation(s)
- Carolyn E Keating
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, USA
| | - D Kacy Cullen
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, USA.
| |
Collapse
|
37
|
Curovic VR, Suvitaival T, Mattila I, Ahonen L, Trošt K, Theilade S, Hansen TW, Legido-Quigley C, Rossing P. Circulating Metabolites and Lipids Are Associated to Diabetic Retinopathy in Individuals With Type 1 Diabetes. Diabetes 2020; 69:2217-2226. [PMID: 32737117 PMCID: PMC7506826 DOI: 10.2337/db20-0104] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022]
Abstract
Omics-based methods may provide new markers associated to diabetic retinopathy (DR). We investigated a wide omics panel of metabolites and lipids related to DR in type 1 diabetes. Metabolomic analyses were performed using two-dimensional gas chromatography with time-of-flight mass spectrometry and lipidomic analyses using an ultra-high-performance liquid chromatography quadruple time-of-flight mass spectrometry method in 648 individuals with type 1 diabetes. Subjects were subdivided into no DR, mild nonproliferative DR (NPDR), moderate NPDR, proliferative DR, and proliferative DR with fibrosis. End points were any progression of DR, onset of DR, and progression from mild to severe DR tracked from standard ambulatory care and investigated using Cox models. The cohort consisted of 648 participants aged a mean of 54.4 ± 12.8 years, 55.5% were men, and follow-up was 5.1-5.5 years. Cross-sectionally, 2,4-dihydroxybutyric acid (DHBA), 3,4-DHBA, ribonic acid, ribitol, and the triglycerides 50:1 and 50:2 significantly correlated (P < 0.042) to DR stage. Longitudinally, higher 3,4-DHBA was a risk marker for progression of DR (n = 133) after adjustment (P = 0.033). We demonstrated multiple metabolites being positively correlated to a higher grade of DR in type 1 diabetes and several triglycerides being negatively correlated. Furthermore, higher 3,4-DHBA was an independent risk marker for progression of DR; however, confirmation is required.
Collapse
Affiliation(s)
| | | | - Ismo Mattila
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Linda Ahonen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | | | | | | | - Cristina Legido-Quigley
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, U.K
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Slavoaca D, Muresanu D, Birle C, Rosu OV, Chirila I, Dobra I, Jemna N, Strilciuc S, Vos P. Biomarkers in traumatic brain injury: new concepts. Neurol Sci 2020; 41:2033-2044. [PMID: 32157587 DOI: 10.1007/s10072-019-04238-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury is a multifaceted condition that encompasses a spectrum of injuries: contusions, axonal injuries in specific brain regions, edema, and hemorrhage. Brain injury determines a broad clinical and disability spectrum due to the implication of various cellular pathways, genetic phenotypes, and environmental factors. It is challenging to predict patient outcomes, to appropriately evaluate the patients, to determine a suitable treatment strategy and rehabilitation program, and to communicate with patient relatives. Biomarkers detected from body fluids are potential evaluation tools for traumatic brain injury patients. These may serve as internal indicators of cerebral damage, delivering valuable information about the dynamic cellular, biochemical, and molecular environments. The diagnostic and prognostic value of biomarkers tested both in animal models of traumatic brain injury is still under question, despite a considerable scientific literature. Recent publications emphasize that a more realistic approach involves combining multiple types of biomarkers with other investigative tools (imaging, outcome scales, and genetic polymorphisms). Additionally, there is increasing interest in the use of biomarkers as tools for treatment monitoring and as surrogate outcome variables to facilitate the design of distinct randomized controlled trials. This review highlights the latest available evidence regarding biomarkers in adults after traumatic brain injury and discusses new approaches in the evaluation of this patient group.
Collapse
Affiliation(s)
- Dana Slavoaca
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Dafin Muresanu
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania.
| | - Codruta Birle
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Olivia Verisezan Rosu
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Ioana Chirila
- Neurology Clinic, Cluj Emergency County Hospital, Cluj-Napoca, Romania
| | - Iulia Dobra
- Neurology Clinic, Cluj Emergency County Hospital, Cluj-Napoca, Romania
| | - Nicoleta Jemna
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Stefan Strilciuc
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Pieter Vos
- Department of Neurology, Slingeland Hospital, Doetinchem, The Netherlands
| |
Collapse
|
39
|
Triglyceride is a Good Biomarker of Increased Injury Severity on a High Fat Diet Rat After Traumatic Brain Injury. Neurochem Res 2020; 45:1536-1550. [PMID: 32222876 DOI: 10.1007/s11064-020-03018-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
Injury severity is correlated with poor prognosis after traumatic brain injury (TBI). It is not known whether triglycerides (TGs) or total cholesterol (TC) is good biomarker of increased injury of neuroinflammation and apoptosis in a high fat diet (HFD)-treated rat after TBI episodes. Five-week-old male Sprague-Dawley (SD) rats were fed a HFD for 8 weeks. The anesthetized male SD rats were divided into three sub-groups: sham-operated and TBI with 1.6 atm or with 2.4 atm fluid percussion injury (FPI). Cell infarction volume (triphenyltetrazolium chloride stain), tumor necrosis factor-alpha (TNF-α) expression in the microglia (OX42 marker) and astrocytes (Glial fibrillary acidic protein marker), TNF-α receptor expression in the neurons (TNFR1 and TNFR2 markers), and the extent of neuronal apoptosis (TUNEL marker) were evaluated by immunofluorescence, and the functional outcome was assessed by an inclined plane test. These tests were performed 72 h after TBI. Serum triglyceride and cholesterol levels were measured at 24, 48 and 72 h after TBI. The FPI with 2.4 atm significantly increased body weight loss, infarction volume, neuronal apoptosis and TNF-α expression in the microglia and astrocytes, and it decreased the maximum grasp degree and TNFR1 and TNFR2 expression in neurons at the 3rd day following TBI. The serum TG level was positively correlated with FPI force, infarction volume, Neu-N-TUNEL, GFAP-TNFα, and OX42-TNFα Simultaneously; the serum TG level was negatively correlated with Neu-N-TNFR1 and Neu-N-TNFR2. TG is a good biomarker of increased injury for neuroinflammation and apoptosis at the 3rd day after TBI in HFD rats.
Collapse
|
40
|
Xia Z, Liu W, Zheng F, Huang W, Xing Z, Peng W, Tang T, Luo J, Yi L, Wang Y. VISSA-PLS-DA-Based Metabolomics Reveals a Multitargeted Mechanism of Traditional Chinese Medicine for Traumatic Brain Injury. ASN Neuro 2020; 12:1759091420910957. [PMID: 32146828 PMCID: PMC7066589 DOI: 10.1177/1759091420910957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Metabolomics is an emerging tool to uncover the complex pathogenesis of disease, as well as the multitargets of traditional Chinese medicines, with chemometric analysis being a key step. However, conventional algorithms are not suitable for directly analyzing data at all times. The variable iterative space shrinkage approach-partial least squares-discriminant analysis, a novel algorithm for data mining, was first explored to screen metabolic varieties to reveal the multitargets of Xuefu Zhuyu decoction (XFZY) against traumatic brain injury (TBI) by the 7th day. Rat plasma from Sham, Vehicle, and XFZY groups was used for gas chromatography/mass spectrometry-based metabolomics. This method showed an improved discrimination ability (area under the curve = 93.64%). Threonine, trans-4-hydroxyproline, and creatinine were identified as the direct metabolic targets of XFZY against TBI. Five metabolic pathways affected by XFZY in TBI rats, were enriched using Metabolic Pathway Analysis web tool (i.e., phenylalanine, tyrosine, and tryptophan biosynthesis; phenylalanine metabolism; galactose metabolism; alanine, aspartate, and glutamate metabolism; and tryptophan metabolism). In conclusion, metabolomics coupled with variable iterative space shrinkage approach-partial least squares-discriminant analysis model may be a valuable tool for identifying the holistic molecular mechanisms involved in the effects of traditional Chinese medicine, such as XFZY.
Collapse
Affiliation(s)
- Zian Xia
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University
| | - Wenbin Liu
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology
| | - Fei Zheng
- College of Electrical and Information Engineering, Hunan University
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University
| | - Zhihua Xing
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University
| | - Jiekun Luo
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University
| | - Lunzhao Yi
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University
| |
Collapse
|
41
|
Thau-Zuchman O, Ingram R, Harvey GG, Cooke T, Palmas F, Pallier PN, Brook J, Priestley JV, Dalli J, Tremoleda JL, Michael-Titus AT. A Single Injection of Docosahexaenoic Acid Induces a Pro-Resolving Lipid Mediator Profile in the Injured Tissue and a Long-Lasting Reduction in Neurological Deficit after Traumatic Brain Injury in Mice. J Neurotrauma 2019; 37:66-79. [PMID: 31256709 DOI: 10.1089/neu.2019.6420] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Traumatic brain injury (TBI) can lead to life-changing neurological deficits, which reflect the fast-evolving secondary injury post-trauma. There is a need for acute protective interventions, and the aim of this study was to explore in an experimental TBI model the neuroprotective potential of a single bolus of a neuroactive omega-3 fatty acid, docosahexaenoic acid (DHA), administered in a time window feasible for emergency services. Adult mice received a controlled cortical impact injury (CCI) and neurological impairment was assessed with the modified Neurological Severity Score (mNSS) up to 28 days post-injury. DHA (500 nmol/kg) or saline were injected intravenously at 30 min post-injury. The lipid mediator profile was assessed in the injured hemisphere at 3 h post-CCI. After completion of behavioral tests and lesion assessment using magnetic resonance imaging, over 7 days or 28 days post-TBI, the tissue was analyzed by immunohistochemistry. The single DHA bolus significantly reduced the injury-induced neurological deficit and increased pro-resolving mediators in the injured brain. DHA significantly reduced lesion size, the microglia and astrocytic reaction, and oxidation, and decreased the accumulation of beta-amyloid precursor protein (APP), indicating a reduced axonal injury at 7 days post-TBI. DHA reduced the neurofilament light levels in plasma at 28 days. Therefore, an acute single bolus of DHA post-TBI, in a time window relevant for acute emergency intervention, can induce a long-lasting and significant improvement in neurological outcome, and this is accompanied by a marked upregulation of neuroprotective mediators, including the DHA-derived resolvins and protectins.
Collapse
Affiliation(s)
- Orli Thau-Zuchman
- Center for Neuroscience, Surgery and Trauma,z Queen Mary University of London, London, United Kingdom
| | - Rachael Ingram
- Center for Neuroscience, Surgery and Trauma,z Queen Mary University of London, London, United Kingdom
| | - Georgina G Harvey
- Center for Neuroscience, Surgery and Trauma,z Queen Mary University of London, London, United Kingdom
| | - Thomas Cooke
- Center for Neuroscience, Surgery and Trauma,z Queen Mary University of London, London, United Kingdom
| | - Francesco Palmas
- Lipid Mediator Unit, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Patrick N Pallier
- Center for Neuroscience, Surgery and Trauma,z Queen Mary University of London, London, United Kingdom
| | - Joseph Brook
- Center for Molecular Oncology, Queen Mary University of London, London, United Kingdom
| | - John V Priestley
- Center for Neuroscience, Surgery and Trauma,z Queen Mary University of London, London, United Kingdom
| | - Jesmond Dalli
- Lipid Mediator Unit, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Jordi L Tremoleda
- Center for Neuroscience, Surgery and Trauma,z Queen Mary University of London, London, United Kingdom
| | - Adina T Michael-Titus
- Center for Neuroscience, Surgery and Trauma,z Queen Mary University of London, London, United Kingdom
| |
Collapse
|
42
|
Overcoming Iron Deficiency of an Escherichia coli tonB Mutant by Increasing Outer Membrane Permeability. J Bacteriol 2019; 201:JB.00340-19. [PMID: 31235517 DOI: 10.1128/jb.00340-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/21/2019] [Indexed: 01/20/2023] Open
Abstract
The intake of certain nutrients, including ferric ion, is facilitated by the outer membrane-localized transporters. Due to ferric insolubility at physiological pH, Escherichia coli secretes a chelator, enterobactin, outside the cell and then transports back the enterobactin-ferric complex via an outer membrane receptor protein, FepA, whose activity is dependent on the proton motive force energy transduced by the TonB-ExbBD complex of the inner membrane. Consequently, ΔtonB mutant cells grow poorly on a medium low in iron. Prolonged incubation of ΔtonB cells on low-iron medium yields faster-growing colonies that acquired suppressor mutations in the yejM (pbgA) gene, which codes for a putative inner-to-outer membrane cardiolipin transporter. Further characterization of suppressors revealed that they display hypersusceptibility to vancomycin, a large hydrophilic antibiotic normally precluded from entering E. coli cells, and leak periplasmic proteins into the culture supernatant, indicating a compromised outer membrane permeability barrier. All phenotypes were reversed by supplying the wild-type copy of yejM on a plasmid, suggesting that yejM mutations are solely responsible for the observed phenotypes. The deletion of all known cardiolipin synthase genes (clsABC) did not produce the phenotypes similar to mutations in the yejM gene, suggesting that the absence of cardiolipin from the outer membrane per se is not responsible for increased outer membrane permeability. Elevated lysophosphatidylethanolamine levels and the synthetic growth phenotype without pldA indicated that defective lipid homeostasis in the yejM mutant compromises outer membrane lipid asymmetry and permeability barrier to allow enterobactin intake, and that YejM has additional roles other than transporting cardiolipin.IMPORTANCE The work presented here describes a positive genetic selection strategy for isolating mutations that destabilize the outer membrane permeability barrier of E. coli Given the importance of the outer membrane in restricting the entry of antibiotics, characterization of the genes and their products that affect outer membrane integrity will enhance the understanding of bacterial membranes and the development of strategies to bypass the outer membrane barrier for improved drug efficacy.
Collapse
|
43
|
Yang B, Fritsche KL, Beversdorf DQ, Gu Z, Lee JC, Folk WR, Greenlief CM, Sun GY. Yin-Yang Mechanisms Regulating Lipid Peroxidation of Docosahexaenoic Acid and Arachidonic Acid in the Central Nervous System. Front Neurol 2019; 10:642. [PMID: 31275232 PMCID: PMC6591372 DOI: 10.3389/fneur.2019.00642] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Phospholipids in the central nervous system (CNS) are rich in polyunsaturated fatty acids (PUFAs), particularly arachidonic acid (ARA) and docosahexaenoic acid (DHA). Besides providing physical properties to cell membranes, these PUFAs are metabolically active and undergo turnover through the “deacylation-reacylation (Land's) cycle”. Recent studies suggest a Yin-Yang mechanism for metabolism of ARA and DHA, largely due to different phospholipases A2 (PLA2s) mediating their release. ARA and DHA are substrates of cyclooxygenases and lipoxygenases resulting in an array of lipid mediators, which are pro-inflammatory and pro-resolving. The PUFAs are susceptible to peroxidation by oxygen free radicals, resulting in the production of 4-hydroxynonenal (4-HNE) from ARA and 4-hydroxyhexenal (4-HHE) from DHA. These alkenal electrophiles are reactive and capable of forming adducts with proteins, phospholipids and nucleic acids. The perceived cytotoxic and hormetic effects of these hydroxyl-alkenals have impacted cell signaling pathways, glucose metabolism and mitochondrial functions in chronic and inflammatory diseases. Due to the high levels of DHA and ARA in brain phospholipids, this review is aimed at providing information on the Yin-Yang mechanisms for regulating these PUFAs and their lipid peroxidation products in the CNS, and implications of their roles in neurological disorders.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry, University of Missouri, Columbia, MO, United States
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - David Q Beversdorf
- Departments of Radiology, Neurology and Psychological Sciences, and the Thompson Center, Columbia, MO, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, United States
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - William R Folk
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - C Michael Greenlief
- Department of Chemistry, University of Missouri, Columbia, MO, United States
| | - Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| |
Collapse
|
44
|
Screening for Preterm Birth: Potential for a Metabolomics Biomarker Panel. Metabolites 2019; 9:metabo9050090. [PMID: 31067710 PMCID: PMC6572582 DOI: 10.3390/metabo9050090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 12/27/2022] Open
Abstract
The aim of this preliminary study was to investigate the potential of maternal serum to provide metabolomic biomarker candidates for the prediction of spontaneous preterm birth (SPTB) in asymptomatic pregnant women at 15 and/or 20 weeks’ gestation. Metabolomics LC-MS datasets from serum samples at 15- and 20-weeks’ gestation from a cohort of approximately 50 cases (GA < 37 weeks) and 55 controls (GA > 41weeks) were analysed for candidate biomarkers predictive of SPTB. Lists of the top ranked candidate biomarkers from both multivariate and univariate analyses were produced. At the 20 weeks’ GA time-point these lists had high concordance with each other (85%). A subset of 4 of these features produce a biomarker panel that predicts SPTB with a partial Area Under the Curve (pAUC) of 12.2, a sensitivity of 87.8%, a specificity of 57.7% and a p-value of 0.0013 upon 10-fold cross validation using PanelomiX software. This biomarker panel contained mostly features from groups already associated in the literature with preterm birth and consisted of 4 features from the biological groups of “Bile Acids”, “Prostaglandins”, “Vitamin D and derivatives” and “Fatty Acids and Conjugates”.
Collapse
|
45
|
Martinez BI, Stabenfeldt SE. Current trends in biomarker discovery and analysis tools for traumatic brain injury. J Biol Eng 2019; 13:16. [PMID: 30828380 PMCID: PMC6381710 DOI: 10.1186/s13036-019-0145-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) affects 1.7 million people in the United States each year, causing lifelong functional deficits in cognition and behavior. The complex pathophysiology of neural injury is a primary barrier to developing sensitive and specific diagnostic tools, which consequentially has a detrimental effect on treatment regimens. Biomarkers of other diseases (e.g. cancer) have provided critical insight into disease emergence and progression that lend to developing powerful clinical tools for intervention. Therefore, the biomarker discovery field has recently focused on TBI and made substantial advancements to characterize markers with promise of transforming TBI patient diagnostics and care. This review focuses on these key advances in neural injury biomarkers discovery, including novel approaches spanning from omics-based approaches to imaging and machine learning as well as the evolution of established techniques.
Collapse
Affiliation(s)
- Briana I. Martinez
- School of Life Sciences, Arizona State University, Tempe, AZ USA
- School of Biological and Health Systems Engineering, Ira A. Fulton School of Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287-9709 USA
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Ira A. Fulton School of Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287-9709 USA
| |
Collapse
|