1
|
Hata Y, Serizawa T. Nanoarchitectonics of cello-oligosaccharides: A route toward artificial nanocelluloses. Adv Colloid Interface Sci 2024; 336:103361. [PMID: 39642432 DOI: 10.1016/j.cis.2024.103361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Colloidal cellulose nanoparticles, or nanocelluloses, are derived from natural cellulose sources in a top-down manner via physical and/or chemical treatments that extract naturally occurring cellulose nanostructures. Naturally derived nanocelluloses have been successfully commercialized in various fields, and their potential is still being widely explored in materials science. Moreover, recent advances in nanoarchitectonics of low-molecular-weight cellulose, or cello-oligosaccharides, have opened new avenues for developing "artificial nanocelluloses". Artificial nanocelluloses composed of cello-oligosaccharides synthesized via enzymatic oligomerization or solid-phase glycan synthesis technology are termed "synthetic nanocelluloses". These nanostructures are abiotically constructed in a bottom-up manner at the molecular level via self-assembly of cello-oligosaccharides in vitro. Modulation of the assembly process and molecular design provides control over the molecular alignment, nanomorphology, and surface functionality of artificial nanocelluloses. This review summarizes recent research progress in artificial nanocelluloses, from the preparation and self-assembly of cello-oligosaccharides to their potential applications.
Collapse
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1-H-121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1-H-121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
2
|
Pylkkänen R, Maaheimo H, Liljeström V, Mohammadi P, Penttilä M. Glycoside Phosphorylase Catalyzed Cellulose and β-1,3-Glucan Synthesis Using Chromophoric Glycosyl Acceptors. Biomacromolecules 2024; 25:5048-5057. [PMID: 39025475 PMCID: PMC11322998 DOI: 10.1021/acs.biomac.4c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Glycoside phosphorylases are enzymes that are frequently used for polysaccharide synthesis. Some of these enzymes have broad substrate specificity, enabling the synthesis of reducing-end-functionalized glucan chains. Here, we explore the potential of glycoside phosphorylases in synthesizing chromophore-conjugated polysaccharides using commercially available chromophoric model compounds as glycosyl acceptors. Specifically, we report cellulose and β-1,3-glucan synthesis using 2-nitrophenyl β-d-glucopyranoside, 4-nitrophenyl β-d-glucopyranoside, and 2-methoxy-4-(2-nitrovinyl)phenyl β-d-glucopyranoside with Clostridium thermocellum cellodextrin phosphorylase and Thermosipho africanus β-1,3-glucan phosphorylase as catalysts. We demonstrate activity for both enzymes with all assayed chromophoric acceptors and report the crystallization-driven precipitation and detailed structural characterization of the synthesized polysaccharides, i.e., their molar mass distributions and various structural parameters, such as morphology, fibril diameter, lamellar thickness, and crystal form. Our results provide insights for the studies of chromophore-conjugated low molecular weight polysaccharides, glycoside phosphorylases, and the hierarchical assembly of crystalline cellulose and β-1,3-glucan.
Collapse
Affiliation(s)
- Robert Pylkkänen
- VTT
Technical Research Centre of Finland Ltd., FI-02044 VTT, Finland
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 AALTO, Finland
| | - Hannu Maaheimo
- VTT
Technical Research Centre of Finland Ltd., FI-02044 VTT, Finland
| | - Ville Liljeström
- Nanomicroscopy
Center, OtaNano, Aalto University, FI-00076 AALTO, Finland
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., FI-02044 VTT, Finland
| | - Merja Penttilä
- VTT
Technical Research Centre of Finland Ltd., FI-02044 VTT, Finland
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 AALTO, Finland
| |
Collapse
|
3
|
Zhong C, Nidetzky B. Bottom-Up Synthesized Glucan Materials: Opportunities from Applied Biocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400436. [PMID: 38514194 DOI: 10.1002/adma.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Linear d-glucans are natural polysaccharides of simple chemical structure. They are comprised of d-glucosyl units linked by a single type of glycosidic bond. Noncovalent interactions within, and between, the d-glucan chains give rise to a broad variety of macromolecular nanostructures that can assemble into crystalline-organized materials of tunable morphology. Structure design and functionalization of d-glucans for diverse material applications largely relies on top-down processing and chemical derivatization of naturally derived starting materials. The top-down approach encounters critical limitations in efficiency, selectivity, and flexibility. Bottom-up approaches of d-glucan synthesis offer different, and often more precise, ways of polymer structure control and provide means of functional diversification widely inaccessible to top-down routes of polysaccharide material processing. Here the natural and engineered enzymes (glycosyltransferases, glycoside hydrolases and phosphorylases, glycosynthases) for d-glucan polymerization are described and the use of applied biocatalysis for the bottom-up assembly of specific d-glucan structures is shown. Advanced material applications of the resulting polymeric products are further shown and their important role in the development of sustainable macromolecular materials in a bio-based circular economy is discussed.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz, 8010, Austria
| |
Collapse
|
4
|
Suehiro F, Hata Y, Sawada T, Serizawa T. Freeze-Dryable, Stable, and Click-Reactive Nanoparticles Composed of Cello-oligosaccharides for Biomolecular Sensing. ACS APPLIED BIO MATERIALS 2024; 7:4007-4016. [PMID: 38739554 DOI: 10.1021/acsabm.4c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Nanoparticles have been widely used as platforms for biomolecular sensing because of their high specific surface area and attractive properties depending on their constituents and structures. Nevertheless, it remains challenging to develop nanoparticulate sensing platforms that are easily storable without aggregation and conjugatable with various ligands in a simple manner. Herein, we demonstrate that nanoparticulate assemblies of cello-oligosaccharides with terminal azido groups are promising candidates. Azidated cello-oligosaccharides can be readily synthesized via the enzyme-catalyzed oligomerization reaction. This study characterized the assembled structures of azidated cello-oligosaccharides produced during the enzymatic synthesis and revealed that the terminal azidated cello-oligosaccharides formed rectangular nanosheet-shaped lamellar crystals. The azido groups located on the nanosheet surfaces were successfully exploited for antigen conjugation via the click chemistry. The resultant antigen-conjugated nanosheets allowed for the quantitative and specific detection of a corresponding antibody, even in 10% serum, owing to the antifouling properties of cello-oligosaccharide assemblies against proteins. It was found that the functionalized nanosheets were redispersible in water after freeze-drying. This remarkable characteristic is attributed to the well-hydrated saccharide residues on the nanosheet surfaces. Moreover, the antibody detection capability did not decline after the thermal treatment of the functionalized nanosheets in a freeze-dried state. Our findings contribute to developing convenient nanoparticulate biomolecular sensing platforms.
Collapse
Affiliation(s)
- Fumi Suehiro
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
5
|
Kuga T, Sunagawa N, Igarashi K. Effect of Free Cysteine Residues to Serine Mutation on Cellodextrin Phosphorylase. J Appl Glycosci (1999) 2024; 71:37-46. [PMID: 38863949 PMCID: PMC11163329 DOI: 10.5458/jag.jag.jag-2023_0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/19/2024] [Indexed: 06/13/2024] Open
Abstract
Cellodextrin phosphorylase (CDP) plays a key role in energy-efficient cellulose metabolism of anaerobic bacteria by catalyzing phosphorolysis of cellodextrin to produce cellobiose and glucose 1-phosphate, which can be utilized for glycolysis without consumption of additional ATP. As the enzymatic phosphorolysis reaction is reversible, CDP is also employed to produce cellulosic materials in vitro. However, the enzyme is rapidly inactivated by oxidation, which hinders in vitro utilization in aerobic environments. It has been suggested that the cysteine residues of CDP, which do not form disulfide bonds, are responsible for the loss of activity, and the aim of the present work was to test this idea. For this purpose, we replaced all 11 free cysteine residues of CDP from Acetivibrio thermocellus (formerly known as Clostridium thermocellum) with serine, which structurally resembles cysteine in our previous work. Herein, we show that the resulting CDP variant, named CDP-CS, has comparable activity to the wild-type enzyme, but shows increased stability to oxidation during long-term storage. X-Ray crystallography indicated that the mutations did not markedly alter the overall structure of the enzyme. Ensemble refinement of the crystal structures of CDP and CDP-CS indicated that the C372S and C625S mutations reduce structural fluctuations in the protein main chain, which may contribute to the increased stability of CDP-CS to oxidation.
Collapse
Affiliation(s)
- Tomohiro Kuga
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
6
|
Kamada H, Hata Y, Sugiura K, Sawada T, Serizawa T. Interfacial jamming of surface-alkylated synthetic nanocelluloses for structuring liquids. Carbohydr Polym 2024; 331:121896. [PMID: 38388029 DOI: 10.1016/j.carbpol.2024.121896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Nanocelluloses derived from natural cellulose sources are promising sustainable nanomaterials. Previous studies have reported that nanocelluloses are strongly adsorbed onto liquid-liquid interfaces with the concurrent use of ligands and allow for the structuring of liquids, that is, the kinetic trapping of nonequilibrium shapes of liquids. However, the structuring of liquids using nanocelluloses alone has yet to be demonstrated, despite its great potential in the development of sustainable liquid-based materials that are biocompatible and environmentally friendly. Herein, we demonstrated the structuring of liquids using rectangular sheet-shaped synthetic nanocelluloses with surface alkyl groups. Synthetic nanocelluloses with ethyl, butyl, and hexyl groups on their surfaces were readily prepared following our previous reports via the self-assembly of enzymatically synthesized cello-oligosaccharides having the corresponding alkyl groups. Among the alkylated synthetic nanocelluloses, the hexylated nanocellulose was adsorbed and jammed at water-n-undecane interfaces to form interfacial assemblies, which acted substantially as an integrated film for structuring liquids. These phenomena were attributed to the unique structural characteristics of the surface-hexylated synthetic nanocelluloses; their sheet shape offered a large area for adsorption onto interfaces, and their controlled surface hydrophilicity/hydrophobicity enhanced the affinity for both liquid phases. Our findings promote the development of all-liquid devices using nanocelluloses.
Collapse
Affiliation(s)
- Hirotaka Kamada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kai Sugiura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
7
|
Mizuuchi Y, Hata Y, Sawada T, Serizawa T. Surface-mediated self-assembly of click-reactive cello-oligosaccharides for fabricating functional nonwoven fabrics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2311052. [PMID: 38361530 PMCID: PMC10868462 DOI: 10.1080/14686996.2024.2311052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Polymer fabrics are versatile materials used in various fields. Surface modification methods for hydrophobic polymer fibers have been developed to endow the materials with water wettability and functionality. Nevertheless, it remains a challenge to freely introduce functional groups to polymer fiber surfaces in a simple manner. Herein, we report the decoration of nonwoven fabric surfaces with azidated cello-oligosaccharide assemblies via molecular self-assembly. Cello-oligosaccharides with a terminal azido group were enzymatically synthesized and allowed to self-assemble in polyolefin, polyester, and vinylon nonwoven fabrics. It was found that the functional oligosaccharides formed bark-like assemblies on the nonwoven fiber surfaces, probably through heterogeneous nucleation. The hydrophilic oligosaccharide assemblies made the hydrophobic nonwoven surfaces water-wettable. Moreover, the azido group at oligosaccharide terminal was available for the post-functionalization of the modified nonwovens. In fact, an antigen was successfully conjugated to the modified nonwovens via the click chemistry. The antigen-conjugated nonwovens were useful for the specific and quantitative detection of a corresponding antibody. Our findings demonstrate the great potential of cello-oligosaccharide assembly for the functionalization of fabrics and other polymeric materials.
Collapse
Affiliation(s)
- Yudai Mizuuchi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
8
|
Meng X, Cai C, Luo B, Liu T, Shao Y, Wang S, Nie S. Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics. NANO-MICRO LETTERS 2023; 15:124. [PMID: 37166487 PMCID: PMC10175533 DOI: 10.1007/s40820-023-01094-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
With the rapid development of the Internet of Things and flexible electronic technologies, there is a growing demand for wireless, sustainable, multifunctional, and independently operating self-powered wearable devices. Nevertheless, structural flexibility, long operating time, and wearing comfort have become key requirements for the widespread adoption of wearable electronics. Triboelectric nanogenerators as a distributed energy harvesting technology have great potential for application development in wearable sensing. Compared with rigid electronics, cellulosic self-powered wearable electronics have significant advantages in terms of flexibility, breathability, and functionality. In this paper, the research progress of advanced cellulosic triboelectric materials for self-powered wearable electronics is reviewed. The interfacial characteristics of cellulose are introduced from the top-down, bottom-up, and interfacial characteristics of the composite material preparation process. Meanwhile, the modulation strategies of triboelectric properties of cellulosic triboelectric materials are presented. Furthermore, the design strategies of triboelectric materials such as surface functionalization, interfacial structure design, and vacuum-assisted self-assembly are systematically discussed. In particular, cellulosic self-powered wearable electronics in the fields of human energy harvesting, tactile sensing, health monitoring, human-machine interaction, and intelligent fire warning are outlined in detail. Finally, the current challenges and future development directions of cellulosic triboelectric materials for self-powered wearable electronics are discussed.
Collapse
Affiliation(s)
- Xiangjiang Meng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Bin Luo
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Tao Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Yuzheng Shao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
9
|
Fang C, Shao T, Ji X, Wang F, Zhang H, Xu J, Miao W, Wang Z. High mechanical property and antibacterial poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/functional enzymatically-synthesized cellulose biodegradable composite. Int J Biol Macromol 2023; 225:776-785. [PMID: 36403771 DOI: 10.1016/j.ijbiomac.2022.11.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Biodegradable materials with antibacterial properties are highly promising. A novel antimicrobial nanocellulose (ECP) was synthesized in one-step by enzyme-catalyzed method to improve the mechanical and antimicrobial properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(HB-co-HV)]. The biodegradable nanocomposites were prepared by melt blending and the performance analysis results show that the nanocomposites display enhanced mechanical performances and antibacterial activities. Compared with the neat P(HB-co-HV), the P(HB-co-HV) doped with 0.5 wt%-ECP shows the highest mechanical properties with yield strength/elongation at break of 29.3 MPa, 7.63 %, respectively, an increase of 38 %/59 %, and a clear inhibition zone against Staphylococcus aureus (S. aureus) of approximately 3.0 mm. As a heterogeneous nucleation agent, ECP optimizes nucleation, and the interfacial interaction between phenol group and matrix promotes the compatibility and dispersion of ECP, resulting in superior mechanical properties of ECP-based composites. The P(HB-co-HV)/ECP nanocomposites have great potential in biomedical materials especially for the bone defect filling material.
Collapse
Affiliation(s)
- Chenxia Fang
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Taoran Shao
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xingxiang Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fangfang Wang
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Hao Zhang
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jiayi Xu
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Weijun Miao
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zongbao Wang
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
10
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Nanospiked paper: Microfibrous cellulose materials nanostructured via partial hydrolysis and self-assembly. Carbohydr Polym 2023; 300:120257. [DOI: 10.1016/j.carbpol.2022.120257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/02/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
|
12
|
Serizawa T, Yamaguchi S, Amitani M, Ishii S, Tsuyuki H, Tanaka Y, Sawada T, Kawamura I, Watanabe G, Tanaka M. Alkyl chain length-dependent protein nonadsorption and adsorption properties of crystalline alkyl β-celluloside assemblies. Colloids Surf B Biointerfaces 2022; 220:112898. [DOI: 10.1016/j.colsurfb.2022.112898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/27/2022]
|
13
|
Zhong C, Zajki-Zechmeister K, Nidetzky B. Effect of ionic liquid on the enzymatic synthesis of cello-oligosaccharides and their assembly into cellulose materials. Carbohydr Polym 2022; 301:120302. [DOI: 10.1016/j.carbpol.2022.120302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
|
14
|
Schwaiger KN, Voit A, Wiltschi B, Nidetzky B. Engineering cascade biocatalysis in whole cells for bottom-up synthesis of cello-oligosaccharides: flux control over three enzymatic steps enables soluble production. Microb Cell Fact 2022; 21:61. [PMID: 35397553 PMCID: PMC8994397 DOI: 10.1186/s12934-022-01781-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/24/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Soluble cello-oligosaccharides (COS, β-1,4-D-gluco-oligosaccharides with degree of polymerization DP 2-6) have been receiving increased attention in different industrial sectors, from food and feed to cosmetics. Development of large-scale COS applications requires cost-effective technologies for their production. Cascade biocatalysis by the three enzymes sucrose-, cellobiose- and cellodextrin phosphorylase is promising because it enables bottom-up synthesis of COS from expedient substrates such as sucrose and glucose. A whole-cell-derived catalyst that incorporates the required enzyme activities from suitable co-expression would represent an important step towards making the cascade reaction fit for production. Multi-enzyme co-expression to reach distinct activity ratios is challenging in general, but it requires special emphasis for the synthesis of COS. Only a finely tuned balance between formation and elongation of the oligosaccharide precursor cellobiose results in the desired COS. RESULTS Here, we show the integration of cellodextrin phosphorylase into a cellobiose-producing whole-cell catalyst. We arranged the co-expression cassettes such that their expression levels were upregulated. The most effective strategy involved a custom vector design that placed the coding sequences for cellobiose phosphorylase (CbP), cellodextrin phosphorylase (CdP) and sucrose phosphorylase (ScP) in a tricistron in the given order. The expression of the tricistron was controlled by the strong T7lacO promoter and strong ribosome binding sites (RBS) for each open reading frame. The resulting whole-cell catalyst achieved a recombinant protein yield of 46% of total intracellular protein in an optimal ScP:CbP:CdP activity ratio of 10:2.9:0.6, yielding an overall activity of 315 U/g dry cell mass. We demonstrated that bioconversion catalyzed by a semi-permeabilized whole-cell catalyst achieved an industrial relevant COS product titer of 125 g/L and a space-time yield of 20 g/L/h. With CbP as the cellobiose providing enzyme, flux into higher oligosaccharides (DP ≥ 6) was prevented and no insoluble products were formed after 6 h of conversion. CONCLUSIONS A whole-cell catalyst for COS biosynthesis was developed. The coordinated co-expression of the three biosynthesis enzymes balanced the activities of the individual enzymes such that COS production was maximized. With the flux control set to minimize the share of insolubles in the product, the whole-cell synthesis shows a performance with respect to yield, productivity, product concentration and quality that is promising for industrial production.
Collapse
Affiliation(s)
- Katharina N. Schwaiger
- grid.432147.70000 0004 0591 4434ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Alena Voit
- grid.432147.70000 0004 0591 4434ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Birgit Wiltschi
- grid.432147.70000 0004 0591 4434ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Bernd Nidetzky
- grid.432147.70000 0004 0591 4434ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria ,grid.410413.30000 0001 2294 748XInstitute of Biotechnology and Biochemical Engineering, NAWI Graz, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| |
Collapse
|
15
|
Sakurai Y, Sawada T, Serizawa T. Phosphorylase-catalyzed synthesis and self-assembled structures of cellulose oligomers in the presence of protein denaturants. Polym J 2021. [DOI: 10.1038/s41428-021-00592-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Wang Y, Li Q, Miao W, Lu P, You C, Wang Z. Hydrophilic PVDF membrane with versatile surface functions fabricated via cellulose molecular coating. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Bulmer GS, de Andrade P, Field RA, van Munster JM. Recent advances in enzymatic synthesis of β-glucan and cellulose. Carbohydr Res 2021; 508:108411. [PMID: 34392134 PMCID: PMC8425183 DOI: 10.1016/j.carres.2021.108411] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/07/2023]
Abstract
Bottom-up synthesis of β-glucans such as callose, fungal β-(1,3)(1,6)-glucan and cellulose, can create the defined compounds that are needed to perform fundamental studies on glucan properties and develop applications. With the importance of β-glucans and cellulose in high-profile fields such as nutrition, renewables-based biotechnology and materials science, the enzymatic synthesis of such relevant carbohydrates and their derivatives has attracted much attention. Here we review recent developments in enzymatic synthesis of β-glucans and cellulose, with a focus on progress made over the last five years. We cover the different types of biocatalysts employed, their incorporation in cascades, the exploitation of enzyme promiscuity and their engineering, and reaction conditions affecting the production as well as in situ self-assembly of (non)functionalised glucans. The recent achievements in the application of glycosyl transferases and β-1,4- and β-1,3-glucan phosphorylases demonstrate the high potential and versatility of these biocatalysts in glucan synthesis in both industrial and academic contexts.
Collapse
Affiliation(s)
- Gregory S Bulmer
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Peterson de Andrade
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jolanda M van Munster
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; Scotland's Rural College, Edinburgh, UK.
| |
Collapse
|
18
|
Hata Y, Serizawa T. Robust Gels Composed of Self-Assembled Cello-oligosaccharide Networks. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yuuki Hata
- Division of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
19
|
Hata Y, Serizawa T. Self-assembly of cellulose for creating green materials with tailor-made nanostructures. J Mater Chem B 2021; 9:3944-3966. [PMID: 33908581 DOI: 10.1039/d1tb00339a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Inspired by living systems, biomolecules have been employed in vitro as building blocks for creating advanced nanostructured materials. In regard to nucleic acids, peptides, and lipids, their self-assembly pathways and resulting assembled structures are mostly encoded in their molecular structures. On the other hand, outside of its chain length, cellulose, a polysaccharide, lacks structural diversity; therefore, it is challenging to direct this homopolymer to controllably assemble into ordered nanostructures. Nevertheless, the properties of cellulose assemblies are outstanding in terms of their robustness and inertness, and these assemblies are attractive for constructing versatile materials. In this review article, we summarize recent research progress on the self-assembly of cellulose and the applications of assembled cellulose materials, especially for biomedical use. Given that cellulose is the most abundant biopolymer on Earth, gaining control over cellulose assembly represents a promising route for producing green materials with tailor-made nanostructures.
Collapse
Affiliation(s)
- Yuuki Hata
- Division of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa-shi, Saitama 359-8513, Japan.
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
20
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
21
|
Nigmatullin R, de Andrade P, Harniman R, Field RA, Eichhorn SJ. Postsynthesis Self- And Coassembly of Enzymatically Produced Fluorinated Cellodextrins and Cellulose Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9215-9221. [PMID: 34297578 DOI: 10.1021/acs.langmuir.1c01389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The design of new functional materials and devices substantially relies on self-assembly of hierarchical structures. Formation of 2D platelets is known in the enzymatic synthesis of cellulose-like polymers. Here we demonstrate the feasibility of postsynthesis assembly of novel fluorinated cellodextrins. Highly ordered 2D structures of large lateral dimensions, unattainable in the polymerization process, can be formed because of postsynthesis assembly of the cellodextrins. These cellodextrins were also involved in coassembly with cellulose nanocrystals (CNCs) leading to hybrid systems. The hybrid architectures obtained depend on the content of fluorine atoms in the fluorinated cellodextrins. Monofluorinated cellodextrins coassemble with CNCs into a nanoweb, while multifluorinated cellodextrins assemble around the CNCs.
Collapse
Affiliation(s)
- Rinat Nigmatullin
- Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom
| | - Peterson de Andrade
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7TH, U.K
| | - Robert Harniman
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7TH, U.K
| | - Stephen J Eichhorn
- Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom
| |
Collapse
|
22
|
Sugiura K, Sawada T, Tanaka H, Serizawa T. Enzyme-catalyzed propagation of cello-oligosaccharide chains from bifunctional oligomeric primers for the preparation of block co-oligomers and their crystalline assemblies. Polym J 2021. [DOI: 10.1038/s41428-021-00513-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Serizawa T, Tanaka S, Sawada T. Control of parallel versus antiparallel molecular arrangements in crystalline assemblies of alkyl β-cellulosides. J Colloid Interface Sci 2021; 601:505-516. [PMID: 34090028 DOI: 10.1016/j.jcis.2021.05.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 11/28/2022]
Abstract
HYPOTHESIS The precise control of parallel versus antiparallel molecular arrangements in synthetic assemblies of biorelated molecules is an attractive research focus from both scientific and technological viewpoints. However, little is known about cellulose-based synthetic assemblies. We hypothesized the existence of potential parameters, such as temperature, salt concentration, salt species, and solvent species, for controlling the molecular arrangement in assemblies of alkyl β-cellulosides with different alkyl chain lengths. EXPERIMENTAL The self-assembly of alkyl β-cellulosides was triggered by neutralization-induced water insolubilization. The crystal structures of the cellulose moieties in the assemblies were characterized by attenuated total reflection-Fourier transform infrared absorption spectroscopy and wide-angle X-ray diffraction measurements. The morphologies of the assemblies were also characterized by scanning electron, atomic force, and transmission electron microscopy. FINDINGS The temperature for the self-assembly, the concentration and species of inorganic salt in the self-assembly solution, and the solvent species (namely, the addition of water-miscible organic solvents into the self-assembly solution) strongly affected the molecular arrangement of the assemblies. The observations suggested that hydrophobic effects between the alkyl groups of the alkyl β-cellulosides and/or interactions of the alkyl β-cellulosides with solvent species were potential factors for controlling the molecular arrangement.
Collapse
Affiliation(s)
- Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Shoki Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|
24
|
Zhong C, Zajki-Zechmeister K, Nidetzky B. Reducing end thiol-modified nanocellulose: Bottom-up enzymatic synthesis and use for templated assembly of silver nanoparticles into biocidal composite material. Carbohydr Polym 2021; 260:117772. [PMID: 33712130 DOI: 10.1016/j.carbpol.2021.117772] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022]
Abstract
Nanoparticle-polymer composites are important functional materials but structural control of their assembly is challenging. Owing to its crystalline internal structure and tunable nanoscale morphology, cellulose is promising polymer scaffold for templating such composite materials. Here, we show bottom-up synthesis of reducing end thiol-modified cellulose chains by iterative bi-enzymatic β-1,4-glycosylation of 1-thio-β-d-glucose (10 mM), to a degree of polymerization of ∼8 and in a yield of ∼41% on the donor substrate (α-d-glucose 1-phosphate, 100 mM). Synthetic cellulose oligomers self-assemble into highly ordered crystalline (cellulose allomorph II) material showing long (micrometers) and thin nanosheet-like morphologies, with thickness of 5-7 nm. Silver nanoparticles were attached selectively and well dispersed on the surface of the thiol-modified cellulose, in excellent yield (≥ 95%) and high loading efficiency (∼2.2 g silver/g thiol-cellulose). Examined against Escherichia coli and Staphylococcus aureus, surface-patterned nanoparticles show excellent biocidal activity. Bottom-up approach by chemical design to a functional cellulose nanocomposite is presented. Synthetic thiol-containing nanocellulose can expand the scope of top-down produced cellulose materials.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria.
| | - Krisztina Zajki-Zechmeister
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria.
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010 Graz, Austria.
| |
Collapse
|
25
|
Li Q, Ma Z, Meng D, Sui X, You C. Facile biosynthesis of synthetic crystalline cellulose nanoribbon from maltodextrin through a minimized two-enzyme phosphorylase cascade and its application in emulsion. J Biotechnol 2021; 332:54-60. [PMID: 33785372 DOI: 10.1016/j.jbiotec.2021.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 11/19/2022]
Abstract
Nanocellulose has many promising applications such as a green ingredient for Pickering emulsion. Traditional strategies to produce nanocellulose, which are acid or enzymatic hydrolysis and mechanical methods on natural complicated cellulose, are hard to control and can result in significant pollutants during the processes. Herein, we demonstrated a facile and sustainable method for the biocatalytic production of insoluble synthetic crystalline cellulose nanoribbon (CCNR) from cheap maltodextrin by coupling α-glucan phosphorylase (αGP) and cellodextrin phosphorylase (CDP) using cellobiose as a primer. And by optimizing the combination of different αGP and CDP, it turned out that the optimal enzyme combination is αGP from Thermotoga maritime and CDP from Clostridium thermocellum, in which CDP was attached to a family 9 cellulose-binding module. The product yield and degree of polymerization (DP) of insoluble synthetic CCNR was affected by the primer concentration at a fixed concentration of maltodextrin. After optimization of reaction conditions, the highest product yield of insoluble synthetic CCNR was 44.92 % and the highest DP of the insoluble synthetic CCNR was 24 from 50 g 1-1 maltodextrin. This insoluble synthetic CCNR can be used as a Pickering emulsions stabilizer, showing excellent emulsifiability. This study provides a promising alternative for cost-efficient production of insoluble synthetic CCNR which was used as a green emulsion stabilizer.
Collapse
Affiliation(s)
- Qiangzi Li
- University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District, Beijing 100049, P.R. China; Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
| | - Zhongsheng Ma
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P.R. China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai, 201620, P.R. China
| | - Dongdong Meng
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P.R. China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai, 201620, P.R. China.
| | - Chun You
- University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District, Beijing 100049, P.R. China; Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, P.R. China.
| |
Collapse
|
26
|
Serizawa T, Maeda T, Yamaguchi S, Sawada T. Aqueous Suspensions of Cellulose Oligomer Nanoribbons for Growth and Natural Filtration-Based Separation of Cancer Spheroids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13890-13898. [PMID: 33135411 DOI: 10.1021/acs.langmuir.0c02294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In vitro growth of cancer spheroids (CSs) and the subsequent separation of CSs from a 2D or 3D cell culture system are important for fundamental cancer studies and cancer drug screening. Although biopolymer-based or synthetic hydrogels are suitable candidates to be used as 3D cell culture scaffolds, alternatives with better processing capabilities are still required to set up cell culture microenvironment. In this study, we show that aqueous suspensions of crystalline nanoribbons composed of cellulose oligomers have a potential for CS growth and separation. The nanoribbon suspensions in serum-containing cell culture media fixed single cancer cells and CSs with large sizes in a 3D space, leading to suspension cultures for CS growth corresponding to culture time. Well-grown CSs were easily separated from the suspensions by natural filtration using a mesh filter with a suitable pore size. Cell viability tests revealed negligible cytotoxicity of the nanoribbons. In addition, physical damages to CSs by the separation procedures were negligible. Stable suspensions of biocompatible nanomaterials will thus provide novel microenvironments for growth and separation of diverse cell aggregates.
Collapse
Affiliation(s)
- Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tohru Maeda
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Saeko Yamaguchi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|
27
|
Leitner P, Zhong C, Petschacher B, Nidetzky B, Zimmer A, Petschacher C. Pharmaceutical use of nanocellulose produced by enzymes. MAKEDONSKO FARMACEVTSKI BILTEN 2020. [DOI: 10.33320/maced.pharm.bull.2020.66.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Patricia Leitner
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | - Barbara Petschacher
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Christina Petschacher
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| |
Collapse
|
28
|
Pylkkänen R, Mohammadi P, Arola S, de Ruijter JC, Sunagawa N, Igarashi K, Penttilä M. In Vitro Synthesis and Self-Assembly of Cellulose II Nanofibrils Catalyzed by the Reverse Reaction of Clostridium thermocellum Cellodextrin Phosphorylase. Biomacromolecules 2020; 21:4355-4364. [PMID: 32960595 DOI: 10.1021/acs.biomac.0c01162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In nature, various organisms produce cellulose as microfibrils, which are processed into their nano- and microfibrillar and/or crystalline components by humans in order to obtain desired material properties. Interestingly, the natural synthesis machinery can be circumvented by enzymatically synthesizing cellulose from precursor molecules in vitro. This approach is appealing for producing tailor-made cellulosic particles and materials because it enables optimization of the reaction conditions for cellulose synthesis in order to generate particles with a desired morphology in their pure form. Here, we present enzymatic cellulose synthesis catalyzed by the reverse reaction of Clostridium thermocellum cellodextrin phosphorylase in vitro. We were able to produce cellulose II nanofibril networks in all conditions tested, using varying concentrations of the glycosyl acceptors d-glucose or d-cellobiose (0.5, 5, and 50 mM). We show that shorter cellulose chains assemble into flat ribbon-like fibrils with greater diameter, while longer chains assemble into cylindrical fibrils with smaller diameter.
Collapse
Affiliation(s)
- Robert Pylkkänen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Espoo, Finland.,VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| | - Pezhman Mohammadi
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| | - Suvi Arola
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| | - Jorg C de Ruijter
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, 113-8657 Tokyo, Japan
| | - Kiyohiko Igarashi
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland.,Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, 113-8657 Tokyo, Japan
| | - Merja Penttilä
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Espoo, Finland.,VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| |
Collapse
|
29
|
Nidetzky B, Zhong C. Phosphorylase-catalyzed bottom-up synthesis of short-chain soluble cello-oligosaccharides and property-tunable cellulosic materials. Biotechnol Adv 2020; 51:107633. [PMID: 32966861 DOI: 10.1016/j.biotechadv.2020.107633] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/23/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
Abstract
Cellulose-based materials are produced industrially in countless varieties via top-down processing of natural lignocellulose substrates. By contrast, cellulosic materials are only rarely prepared via bottom up synthesis and oligomerization-induced self-assembly of cellulose chains. Building up a cellulose chain via precision polymerization is promising, however, for it offers tunability and control of the final chemical structure. Synthetic cellulose derivatives with programmable material properties might thus be obtained. Cellodextrin phosphorylase (CdP; EC 2.4.1.49) catalyzes iterative β-1,4-glycosylation from α-d-glucose 1-phosphate, with the ability to elongate a diversity of acceptor substrates, including cellobiose, d-glucose and a range of synthetic glycosides having non-sugar aglycons. Depending on the reaction conditions leading to different degrees of polymerization (DP), short-chain soluble cello-oligosaccharides (COS) or insoluble cellulosic materials are formed. Here, we review the characteristics of CdP as bio-catalyst for synthetic applications and show advances in the enzymatic production of COS and reducing end-modified, tailored cellulose materials. Recent studies reveal COS as interesting dietary fibers that could provide a selective prebiotic effect. The bottom-up synthesized celluloses involve chains of DP ≥ 9, as precipitated in solution, and they form ~5 nm thick sheet-like crystalline structures of cellulose allomorph II. Solvent conditions and aglycon structures can direct the cellulose chain self-assembly towards a range of material architectures, including hierarchically organized networks of nanoribbons, or nanorods as well as distorted nanosheets. Composite materials are also formed. The resulting materials can be useful as property-tunable hydrogels and feature site-specific introduction of functional and chemically reactive groups. Therefore, COS and cellulose obtained via bottom-up synthesis can expand cellulose applications towards product classes that are difficult to access via top-down processing of natural materials.
Collapse
Affiliation(s)
- Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria; Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz 8010, Austria.
| | - Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria
| |
Collapse
|
30
|
Hata Y, Kojima T, Maeda T, Sawada T, Serizawa T. pH‐Triggered Self‐Assembly of Cellulose Oligomers with Gelatin into a Double‐Network Hydrogel. Macromol Biosci 2020; 20:e2000187. [DOI: 10.1002/mabi.202000187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2‐12‐1‐H121 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| | - Tomoya Kojima
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2‐12‐1‐H121 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| | - Tohru Maeda
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2‐12‐1‐H121 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| | - Toshiki Sawada
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2‐12‐1‐H121 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
- Precursory Research for Embryonic Science and TechnologyJapan Science and Technology Agency 4‐1‐8 Honcho Kawaguchi‐shi Saitama 332‐0012 Japan
| | - Takeshi Serizawa
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2‐12‐1‐H121 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| |
Collapse
|
31
|
Serizawa T, Maeda T, Sawada T. Neutralization-Induced Self-Assembly of Cellulose Oligomers into Antibiofouling Crystalline Nanoribbon Networks in Complex Mixtures. ACS Macro Lett 2020; 9:301-305. [PMID: 35648536 DOI: 10.1021/acsmacrolett.9b01008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular self-assembly in solutions is a powerful strategy for fabricating functional architectures. Various bio(macro)molecules have been used as self-assembly components. However, structural polysaccharides, such as cellulose and chitin, have rarely been a research focus for molecular self-assembly, even though their crystalline assemblies potentially have robust physicochemical properties. Herein, we demonstrated the neutralization-induced self-assembly of cellulose oligomers into antibiofouling crystalline nanoribbon networks to produce physically cross-linked hydrogels. The self-assembly proceeded even in versatile complex mixtures, such as serum-containing cell culture media, in a controlled manner for 3D cell culture. The cultured cells grew into cell aggregates (spheroids), which were simply collected through natural filtration due to the mechanically crushable property of the crystalline nanoribbons through water flow by pipetting. We will show the potential of cellulose oligomers for biocompatible, crystalline soft materials.
Collapse
Affiliation(s)
- Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tohru Maeda
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|
32
|
Hata Y, Fukaya Y, Sawada T, Nishiura M, Serizawa T. Biocatalytic oligomerization-induced self-assembly of crystalline cellulose oligomers into nanoribbon networks assisted by organic solvents. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1778-1788. [PMID: 31501749 PMCID: PMC6720341 DOI: 10.3762/bjnano.10.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/06/2019] [Indexed: 05/05/2023]
Abstract
Crystalline poly- and oligosaccharides such as cellulose can form extremely robust assemblies, whereas the construction of self-assembled materials from such molecules is generally difficult due to their complicated chemical synthesis and low solubility in solvents. Enzyme-catalyzed oligomerization-induced self-assembly has been shown to be promising for creating nanoarchitectured crystalline oligosaccharide materials. However, the controlled self-assembly into organized hierarchical structures based on a simple method is still challenging. Herein, we demonstrate that the use of organic solvents as small-molecule additives allows for control of the oligomerization-induced self-assembly of cellulose oligomers into hierarchical nanoribbon network structures. In this study, we dealt with the cellodextrin phosphorylase-catalyzed oligomerization of phosphorylated glucose monomers from ᴅ-glucose primers, which produce precipitates of nanosheet-shaped crystals in aqueous solution. The addition of appropriate organic solvents to the oligomerization system was found to result in well-grown nanoribbon networks. The organic solvents appeared to prevent irregular aggregation and subsequent precipitation of the nanosheets via solvation for further growth into the well-grown higher-order structures. This finding indicates that small-molecule additives provide control over the self-assembly of crystalline oligosaccharides for the creation of hierarchically structured materials with high robustness in a simple manner.
Collapse
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuka Fukaya
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Masahito Nishiura
- DKS Co. Ltd., 5 Ogawaracho, Kisshoin, Minami-ku, Kyoto-shi, Kyoto 601-8391, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
33
|
Hata Y, Sawada T, Marubayashi H, Nojima S, Serizawa T. Temperature-Directed Assembly of Crystalline Cellulose Oligomers into Kinetically Trapped Structures during Biocatalytic Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7026-7034. [PMID: 31045372 DOI: 10.1021/acs.langmuir.9b00850] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Crystalline polysaccharides, such as cellulose and chitin, can form superior assemblies in terms of physicochemical stability and mechanical properties. However, their use as molecular building blocks for self-assembled materials is rare, possibly because each crystalline polysaccharide has its own unique monomer unit, preventing molecular design for controlling the self-assembly. Herein, we demonstrate the temperature-directed assembly of crystalline cellulose oligomers into kinetically trapped structures, namely, precipitated nanosheets, nanoribbon network hydrogels, and dispersed nanosheets (in descending order of temperature). It was found that enzymatically synthesized cellulose oligomers self-assembled in situ into those structures depending on the synthetic temperatures. Mechanistic studies suggested that the formation of the nanoribbon networks and the dispersed nanosheets at lower temperatures were driven by synergy between the decreased hydrophobic effect and the simultaneously induced self-crowding effect. Furthermore, nanoribbon network formation was exploited for the construction of cellulose oligomer-based hybrid gels with colloidal particles. Our findings promote the development of robust self-assembled materials composed of crystalline polysaccharides with highly ordered nano-to-macroscale structures.
Collapse
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) , Japan Science and Technology Agency (JST) , 4-1-8 Honcho , Kawaguchi-shi , Saitama 332-0012 , Japan
| | - Hironori Marubayashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| | - Shuichi Nojima
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| |
Collapse
|
34
|
|
35
|
Serizawa T, Fukaya Y, Sawada T. Nanoribbon network formation of enzymatically synthesized cellulose oligomers through dispersion stabilization of precursor particles. Polym J 2018. [DOI: 10.1038/s41428-018-0057-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Li J, Bullara D, Du X, He H, Sofou S, Kevrekidis IG, Epstein IR, Xu B. Kinetic Analysis of Nanostructures Formed by Enzyme-Instructed Intracellular Assemblies against Cancer Cells. ACS NANO 2018; 12. [PMID: 29537820 PMCID: PMC5916050 DOI: 10.1021/acsnano.8b01016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent studies have demonstrated that enzyme-instructed self-assembly (EISA) in extra- or intracellular environments can serve as a multistep process for controlling cell fate. There is little knowledge, however, about the kinetics of EISA in the complex environments in or around cells. Here, we design and synthesize three dipeptidic precursors (ld-1-SO3, dl-1-SO3, dd-1-SO3), consisting of diphenylalanine (l-Phe-d-Phe, d-Phe-l-Phe, d-Phe-d-Phe, respectively) as the backbone, which are capped by 2-(naphthalen-2-yl)acetic acid at the N-terminal and by 2-(4-(2-aminoethoxy)-4-oxobutanamido)ethane-1-sulfonic acid at the C-terminal. On hydrolysis by carboxylesterases (CES), these precursors result in hydrogelators, which self-assemble in water at different rates. Whereas all three precursors selectively kill cancer cells, especially high-grade serous ovarian carcinoma cells, by undergoing intracellular EISA, dl-1-SO3 and dd-1-SO3 exhibit the lowest and the highest activities, respectively, against the cancer cells. This trend inversely correlates with the rates of converting the precursors to the hydrogelators in phosphate-buffered saline. Because CES exists both extra- and intracellularly, we use kinetic modeling to analyze the kinetics of EISA inside cells and to calculate the cytotoxicity of each precursor for killing cancer cells. Our results indicate that (i) the stereochemistry of the precursors affects the morphology of the nanostructures formed by the hydrogelators, as well as the rate of enzymatic conversion; (ii) decreased extracellular hydrolysis of precursors favors intracellular EISA inside the cells; (iii) the inherent features ( e.g., self-assembling ability and morphology) of the EISA molecules largely dictate the cytotoxicity of intracellular EISA. As the kinetic analysis of intracellular EISA, this work elucidates how the stereochemistry modulates EISA in the complex extra- and/or intracellular environment for developing anticancer molecular processes. Moreover, it provides insights for understanding the kinetics and cytotoxicity of aggregates of aberrant proteins or peptides formed inside and outside cells.
Collapse
Affiliation(s)
- Jie Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Domenico Bullara
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Xuewen Du
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Stavroula Sofou
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ioannis G. Kevrekidis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Irving R. Epstein
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
- Corresponding Authors: ,
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
- Corresponding Authors: ,
| |
Collapse
|