1
|
Ye L, Wang Y, Lu X. Pickering emulsion stabilized by quercetin-β-cyclodextrin-diglyceride particles: Effect of diglyceride content on interfacial behavior and emulsifying property of complex particles. Food Chem 2024; 455:139901. [PMID: 38833858 DOI: 10.1016/j.foodchem.2024.139901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
This research develops diacylglycerol (DAG) based Pickering emulsions with enhanced oxidative stability stabilized by self-assembled quercetin/DAG/β-cyclodextrin (β-CD) complexes (QDCCs) using a one-step agitation method. Influence of DAG content (5%, 15%, 40%, and 80%, w/w) on the self-assembly behavior, interfacial properties, and emulsifying ability of complex particles was investigated. SEM, XRD and ATR-FTIR studies confirmed the formation of ternary composite particles. QDCCs in 80% DAG oil had the highest quercetin encapsulation efficiency (6.09 ± 0.01%), highest DPPH radical scavenging rate and ferric reducing antioxidant property (FRAP). β-CD and quercetin adsorption rates in emulsion with 80% DAG oil were 88.4 ± 2.53% and 98.34 ± 0.15%, respectively. Pickering emulsions with 80% DAG had the smallest droplet size (8.90 ± 1.87 μm) and excellent oxidation stability. This research develops a novel approach to regulate the physicochemical stability of DAG-based emulsions by anchoring natural antioxidants at the oil-water interface through a one-pot self-assembly method.
Collapse
Affiliation(s)
- Liuyu Ye
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| | - Xuanxuan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| |
Collapse
|
2
|
Del Duca G, Parisi E, Artusio F, Calì E, Fraterrigo Garofalo S, Rosso C, Cauda V, Chierotti MR, Simone E. A crystal engineering approach for rational design of curcumin crystals for Pickering stabilization of emulsions. Food Res Int 2024; 194:114871. [PMID: 39232509 DOI: 10.1016/j.foodres.2024.114871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Emulsions stabilized via Pickering particles are becoming more and more popular due to their high stability and biocompatibility. Hence, developing new ways to produce effective Pickering particles is essential. In this work, we present a crystal engineering approach to obtain precise control over particle properties such as size, shape, and crystal structure, which may affect wettability and surface chemistry. A highly reproducible synthesis method via anti-solvent crystallization was developed to produce sub-micron sized curcumin crystals of the metastable form III, to be used as Pickering stabilizers. The produced crystals presented a clear hydrophobic nature, which was demonstrated by their preference to stabilize water-in-oil (W/O) emulsions. A comprehensive experimental and computational characterization of curcumin crystals was performed to rationalize their hydrophobic nature. Analytical techniques including Raman spectroscopy, powder X-ray diffraction (PXRD), Solid-State Nuclear Magnetic Resonance (SSNMR), scanning electron microscopy (SEM), Differential Scanning Calorimetry (DSC), confocal fluorescence microscopy and contact angle measurements were used to characterize curcumin particles in terms of shape, size and interfacial activity. The attachment energy model was instead applied to study relevant surface features of curcumin crystals, such as topology and facet-specific surface chemistry. This work contributes to the understanding of the effect of crystal properties on the mechanism of Pickering stabilization, and paves the way for the formulation of innovative products in fields ranging from pharmaceuticals to food science.
Collapse
Affiliation(s)
- Giulia Del Duca
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy
| | - Emmanuele Parisi
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy
| | - Fiora Artusio
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy
| | - Eleonora Calì
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy
| | | | - Chiara Rosso
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy
| | - Michele R Chierotti
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy
| | - Elena Simone
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy.
| |
Collapse
|
3
|
Lu Y, Zhang Y, Zhang R, Gao Y, Miao S, Mao L. Different interfaces for stabilizing liquid-liquid, liquid-gel and gel-gel emulsions: Design, comparison, and challenges. Food Res Int 2024; 187:114435. [PMID: 38763682 DOI: 10.1016/j.foodres.2024.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024]
Abstract
Interfaces play essential roles in the stability and functions of emulsion systems. The quick development of novel emulsion systems (e.g., water-water emulsions, water-oleogel emulsions, hydrogel-oleogel emulsions) has brought great progress in interfacial engineering. These new interfaces, which are different from the traditional water-oil interfaces, and are also different from each other, have widened the applications of food emulsions, and also brought in challenges to stabilize the emulsions. We presented a comprehensive summary of various structured interfaces (stabilized by mixed-layers, multilayers, particles, nanodroplets, microgels etc.), and their characteristics, and designing strategies. We also discussed the applicability of these interfaces in stabilizing liquid-liquid (water-oil, water-water, oil-oil, alcohol-oil, etc.), liquid-gel, and gel-gel emulsion systems. Challenges and future research aspects were also proposed regarding interfacial engineering for different emulsions. Emulsions are interface-dominated materials, and the interfaces have dynamic natures, as the compositions and structures are not constant. Biopolymers, particles, nanodroplets, and microgels differed in their capacity to get absorbed onto the interface, to adjust their structures at the interface, to lower interfacial tension, and to stabilize different emulsions. The interactions between the interface and the bulk phases not only affected the properties of the interface, but also the two phases, leading to different functions of the emulsions. These structured interfaces have been used individually or cooperatively to achieve effective stabilization or better applications of different emulsion systems. However, dynamic changes of the interface during digestion are only poorly understood, and it is still challenging to fully characterize the interfaces.
Collapse
Affiliation(s)
- Yao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Yanhui Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruoning Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Like Mao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
4
|
Wang Y, Guo Y, Dong P, Lin K, Du P, Cao J, Cheng Y, Cheng F, Yun S, Feng C. Water-in-oil Pickering emulsion using ergosterol as an emulsifier solely. Food Res Int 2024; 186:114374. [PMID: 38729731 DOI: 10.1016/j.foodres.2024.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
As a crucial component of the fungal cell membranes, ergosterol has been demonstrated to possess surface activity attributed to its hydrophobic region and polar group. However, further investigation is required to explore its emulsification behavior upon migration to the oil-water interface. Therefore, this study was conducted to analyze the interface properties of ergosterol as a stabilizer for water in oil (W/O) emulsion. Moreover, the emulsion prepared under the optimal conditions was utilized to load the water-soluble bioactive substance with the chlorogenic acid as the model molecules. Our results showed that the contact angle of ergosterol was 117.017°, and its dynamic interfacial tension was obviously lower than that of a pure water-oil system. When the ratio of water to oil was 4: 6, and the content of ergosterol was 3.5 % (ergosterol/oil phase, w/w), the W/O emulsion had smaller particle size (438 nm), higher apparent viscosity, and better stability. Meanwhile, the stability of loaded chlorogenic acid was improved under unfavorable conditions (pH 1.2, 90 °C, ultraviolet irradiation, and oxidation), which were 73.87 %, 59.53 %, 62.53 %, and 69.73 %, respectively. Additionally, the bioaccessibility of chlorogenic acid (38.75 %) and ergosterol (33.69 %), and the scavenging rates of the emulsion on DPPH radicals (81.00 %) and hydroxyl radicals (82.30 %) were also enhanced. Therefore, a novel W/O Pickering emulsion was prepared in this work using ergosterol as an emulsifier solely, which has great potential for application in oil-based food and nutraceutical formulations.
Collapse
Affiliation(s)
- Yaxin Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yuanhao Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Pengfei Dong
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Kai Lin
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Pengya Du
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Feier Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China.
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
5
|
Wu Q, Ding C, Wang B, Rong L, Mao Z, Feng X. Green, chemical-free, and high-yielding extraction of nanocellulose from waste cotton fabric enabled by electron beam irradiation. Int J Biol Macromol 2024; 267:131461. [PMID: 38599424 DOI: 10.1016/j.ijbiomac.2024.131461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/15/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Recycling and high-value reutilization of waste cotton fabrics (WCFs) has attracted a widespread concern. One potential solution is to extract nanocellulose. Sulfuric acid hydrolysis is a conventional method for the production of nanocellulose with high negative charge from WCFs. However, the recycling and disposal of chemicals in nanocellulose production, along with low yields, remain significant challenges. Consequently, there is a pressing need for a sustainable method to produce nanocellulose at higher yield without the use of chemicals. Herein, we propose a green, sustainable and chemical-free method to extract nanocellulose from WCFs. The nanocellulose displayed a rod-like shape with a length of 50-300 nm, a large aspect ratio of 18.4 ± 2 and the highest yield of up to 89.9 %. The combined short-time and efficient two-step process, involving electron beam irradiation (EBI) and high-pressure homogenization (HPH), offers a simple and efficient alternative approach with a low environmental impact, to extract nanocellulose. EBI induced a noticeable degradation in WCFs and HPH exfoliated cellulose to nano-size with high uniformity via mechanical forces. The as-prepared nanocellulose exhibits excellent emulsifying ability as the Pickering emulsion emulsifier. This work provides a facile and efficient approach for nanocellulose fabrication as well as a sustainable way for recycle and reutilization of the waste cotton fabrics.
Collapse
Affiliation(s)
- Qixian Wu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Donghua University, Shanghai 201620, China
| | - Chenyang Ding
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
| | - Bijia Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
| | - Liduo Rong
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Donghua University, Shanghai 201620, China
| | - Xueling Feng
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Wang M, Zhou Y, Fan L, Li J. Interfacial adsorption of soybean phosphatidylethanolamine in different oil phase and the stability of water-in-oil emulsion. Food Chem 2024; 439:138144. [PMID: 38100870 DOI: 10.1016/j.foodchem.2023.138144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/19/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Water-in-oil (W/O) emulsion holds great potential in designing fat-reduced foods. However, due to the lack of W/O-type surfactant, formation of all-natural W/O emulsion is challenged. This study aimed to investigate the effect of oil phase on interfacial adsorption of soybean phosphatidylethanolamine (SP) and stability of W/O emulsion. Five oils, including medium chain triglycerides oil (MO), coconut oil (CO), palm kernel oil (PKO), sunflower oil (SO) and rapeseed oil (RO), were selected. Results showed that diffusion rate of SP to the interface ranked as MO > CO > PKO > SO ≈ RO, increasing interfacial adsorption from 50.2 % to 85.3 %. Higher interfacial adsorption improved the deformation resistance of interfacial layer, causing more significant decrease in interfacial tension (3.54 mN/m). So, the largest water fraction (65 %) was stabilized by SP with MO and CO, and exhibited smaller droplet sizes and better stability. Consequently, shorter-chain oil was more suitable for preparing W/O emulsions.
Collapse
Affiliation(s)
- Mengzhu Wang
- State Key Laboratory of Food Science and Recourse, Jiangnan University, Wuxi 214122, China
| | - Yulin Zhou
- State Key Laboratory of Food Science and Recourse, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Recourse, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Recourse, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Zeng C, Wang Y, Liu Y, Su S, Lu Y, Qin S, Shi M. Self-constructed water-in-oil Pickering emulsions as a tool for increasing bioaccessibility of betulin. Food Chem X 2024; 21:101056. [PMID: 38187946 PMCID: PMC10770430 DOI: 10.1016/j.fochx.2023.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Self-constructed water-in-oil emulsions can be stabilized by a natural pentacyclic triterpenoid, betulin. A higher betulin concentration (3%) results in smaller emulsion droplet sizes. Microscopy, confocal laser scanning microscopy and rheology indicate that the stabilizing mechanism is attributed to betulin crystals on the emulsion interface and within the continuous phase, thereby enabling excellent freeze/thaw and thermal stability. The betulin Pickering emulsion (1%) significantly increased betulin bioaccessibility (22.4%) compared to betulin alone (0.2%) and betulin-oil physical mixture (7.9%). A higher level of betulin at 3% leads to smaller emulsion particle size, potentially resulting in a greater surface area. This, in return, promotes a higher release of free fatty acids (FFA), contributing to the release and solubilization of betulin from emulsions. Additionally, it leads to the formation of micelles, further increasing betulin bioaccessibility (29.3%). This study demonstrates Pickering emulsions solely stabilized by phytochemical betulin provides an innovative way to improve its bioaccessibility.
Collapse
Affiliation(s)
- Chaoxi Zeng
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuxian Wang
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yugang Liu
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shuxian Su
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuting Lu
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Si Qin
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Meng Shi
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
8
|
Zhang J, Dong F, Liu C, Nie J, Feng S, Yi T. Progress of Drug Nanocrystal Self-Stabilized Pickering Emulsions: Construction, Characteristics In Vitro, and Fate In Vivo. Pharmaceutics 2024; 16:293. [PMID: 38399347 PMCID: PMC10891687 DOI: 10.3390/pharmaceutics16020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
A drug nanocrystal self-stabilized Pickering emulsion (DNSPE) is a novel Pickering emulsion with drug nanocrystals as the stabilizer. As a promising drug delivery system, DNSPEs have attracted increasing attention in recent years due to their high drug loading capacity and ability to reduce potential safety hazards posed by surfactants or specific solid particles. This paper comprehensively reviews the progress of research on DNSPEs, with an emphasis on the main factors influencing their construction, characteristics and measurement methods in vitro, and fate in vivo, and puts forward issues that need to be studied further. The review contributes to the advancement of DNSPE research and the promotion of their application in the field of drug delivery.
Collapse
Affiliation(s)
- Jifen Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; (J.Z.); (S.F.)
| | - Fangming Dong
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; (J.Z.); (S.F.)
| | - Chuan Liu
- Chengdu Institute of Food Inspection, Chengdu 611130, China;
| | - Jinyu Nie
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; (J.Z.); (S.F.)
| | - Shan Feng
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; (J.Z.); (S.F.)
| | - Tao Yi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macau 999078, China
| |
Collapse
|
9
|
Yuan Y, Chen C, Guo X, Li B, He N, Wang S. Noncovalent interactions between biomolecules facilitated their application in food emulsions' construction: A review. Compr Rev Food Sci Food Saf 2024; 23:e13285. [PMID: 38284579 DOI: 10.1111/1541-4337.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 01/30/2024]
Abstract
The use of biomolecules, such as proteins, polysaccharides, saponins, and phospholipids, instead of synthetic emulsifiers in food emulsion creation has generated significant interest among food scientists due to their advantages of being nontoxic, harmless, edible, and biocompatible. However, using a single biomolecule may not always meet practical needs for food emulsion applications. Therefore, biomolecules often require modification to achieve ideal interfacial properties. Among them, noncovalent interactions between biomolecules represent a promising physical modification method to modulate their interfacial properties without causing the health risks associated with forming new chemical bonds. Electrostatic interactions, hydrophobic interactions, and hydrogen bonding are examples of noncovalent interactions that facilitate biomolecules' effective applications in food emulsions. These interactions positively impact the physical stability, oxidative stability, digestibility, delivery characteristics, response sensitivity, and printability of biomolecule-based food emulsions. Nevertheless, using noncovalent interactions between biomolecules to facilitate their application in food emulsions still has limitations that need further improvement. This review introduced common biomolecule emulsifiers, the promotion effect of noncovalent interactions between biomolecules on the construction of emulsions with different biomolecules, their positive impact on the performance of emulsions, as well as their limitations and prospects in the construction of biomolecule-based emulsions. In conclusion, the future design and development of food emulsions will increasingly rely on noncovalent interactions between biomolecules. However, further improvements are necessary to fully exploit these interactions for constructing biomolecule-based emulsions.
Collapse
Affiliation(s)
- Yi Yuan
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Congrong Chen
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Xinyi Guo
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou, P. R. China
| | - Ni He
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou, P. R. China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| |
Collapse
|
10
|
Choi S, Ko J, Park SB, Kim JY, Ha JH, Roh S, An YH, Hwang NS. Double Emulsion-Mediated Delivery of Polyphenol Mixture Alleviates Atopic Dermatitis. Adv Healthc Mater 2023; 12:e2300998. [PMID: 37677107 DOI: 10.1002/adhm.202300998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Although the polyphenols have been studied to alleviate inflammation, there are still challenges to delivering the polyphenols with stabilized formulation due to their low water solubility and susceptibility to oxidation. Herein, the transdermal delivery system of polyphenol mixture (PM), including quercetin (Q), phloretin (P), and ellagic acid (E), is developed using double emulsion for applying to atopic dermatitis (AD). Through the in vitro anti-degranulation assay, the optimal molar ratio of each polyphenol (Q:P:E = 5:1:1) is obtained, and the PM shows at most a 43.6% reduction of degranulation of immune cells, which is the primary factor of AD. Moreover, the water-in-oil-in-water double emulsion (W/O/W) enhances the PM's stability and has a higher anti-degranulation effect than the oil-in-water emulsion (O/W). In the in vivo 1-chloro-2,4-dinitrobenzene (DNCB)-induced mice AD model, PM reduces more AD symptoms than every single polyphenol. The PM-encapsulated W/O/W (PM_W/O/W) shows the most effectiveness in AD by decreasing dermatitis score, i.e., skin/ear thickness, mast cells, and serum IgE level. Finally, this suggests that the findings on the optimal ratio of PM and double emulsion-based delivery would be beneficial in treating AD and can be applied to other allergic diseases.
Collapse
Affiliation(s)
- Subin Choi
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Su-Bin Park
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo-Young Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung-Hwa Ha
- Department of Social Welfare, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
11
|
Sarraf M, Naji‐Tabasi S, Beig‐Babaei A, Moros JE, Sánchez MC, Franco JM, Tenorio‐Alfonso A. Improving the structure and properties of whey protein emulsion gel using soluble interactions with xanthan and basil seed gum. Food Sci Nutr 2023; 11:6907-6919. [PMID: 37970390 PMCID: PMC10630812 DOI: 10.1002/fsn3.3598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 11/17/2023] Open
Abstract
Applying hydrocolloids in the structure of protein emulsion gel can improve its properties. Interaction of whey protein concentrate (WPC) (5%) with xanthan gum (XG) and basil seed gum (BSG) at different concentrations (0.2%, 0.4%, and 0.6%) was investigated to improve mechanical and structural properties of emulsion gel. Results illustrated that gums created a stronger structure around the oil droplets, which confocal images approved it. Also, the particle size decreased and uniformed by cooperating 0.6% gum in comparison with WPC (46.87 μm). The lowest and highest hardness values were observed in emulsion gel formed by WPC (1.27 N) and 0.6BSG: WPC (3.03 N), respectively. Also, the increase of gum concentration had a positive on consistency parameter of texture, so the value was 11.48 N s in WPC emulsion gel and it reached 0.6BSG: WPC (25.71 N s) and 0.6XG: WPC (19.96 N s). Evaluating the stability of the treatments by centrifugation indicated that 0.6BSG: WPC (89.10%) and 0.6XG: WPC (74%) had the highest level of stability. Increasing gum concentration increased the consistency and viscosity. Also, the viscoelastic properties of emulsion gel improved by 0.6% BSG. The elastic modulus of the WPC, 0.6XG: WPC, and 0.6BSG: WPC emulsion gels at the same frequency (1 Hz) was 240.90, 894.59, and 1185.61 Pa, respectively. In general, the interaction of WPC solution with hydrocolloids, especially BSG, is suggested to prepare more stable and elastic emulsion gels.
Collapse
Affiliation(s)
- Mozhdeh Sarraf
- Department of Food ChemistryResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Sara Naji‐Tabasi
- Department of Food NanotechnologyResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Adel Beig‐Babaei
- Department of Food ChemistryResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - José E. Moros
- Department of Chemical Engineering, ETSI, Pro2TecS – Chemical Process and Product Technology Research CenterUniversidad de HuelvaHuelvaSpain
| | - M. Carmen Sánchez
- Department of Chemical Engineering, ETSI, Pro2TecS – Chemical Process and Product Technology Research CenterUniversidad de HuelvaHuelvaSpain
| | - José M. Franco
- Department of Chemical Engineering, ETSI, Pro2TecS – Chemical Process and Product Technology Research CenterUniversidad de HuelvaHuelvaSpain
| | - Adrián Tenorio‐Alfonso
- Department of Chemical Engineering, ETSI, Pro2TecS – Chemical Process and Product Technology Research CenterUniversidad de HuelvaHuelvaSpain
| |
Collapse
|
12
|
Santhamoorthy M, Ramkumar V, Thirupathi K, Gnanasekaran L, Karuppannan V, Phan TTV, Kim SC. L-lysine Functionalized Mesoporous Silica Hybrid Nanoparticles for pH-Responsive Delivery of Curcumin. Pharmaceutics 2023; 15:1631. [PMID: 37376080 DOI: 10.3390/pharmaceutics15061631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Stimuli-responsive controlled drug delivery systems have attracted the attention of researchers in recent decades due to their potential application in developing efficient drug carriers that are responsive to applied stimuli triggers. In this work, we present the synthesis of L-lysine (an amino acid that combines both amine and carboxylic acid groups in a single unit) modified mesoporous silica nanoparticles (MS@Lys NPs) for the delivery of the anticancer bioactive agent (curcumin, Cur) to cancer cells. To begin, mesoporous silica hybrid nanoparticles (MS@GPTS NPs) with 3-glycidoxypropyl trimethoxy silane (GPTS) were synthesized. The L-lysine groups were then functionalized onto the mesopore channel surfaces of the MS@GPTS NPs through a ring-opening reaction between the epoxy groups of the GPTS and the amine groups of the L-lysine units. Several instrumental techniques were used to examine the structural properties of the prepared L-lysine-modified mesoporous silica nanoparticles (MS@Lys NPs). The drug loading and pH-responsive drug delivery behavior of MS@Lys NPs were studied at different pH levels (pH 7.4, 6.5, and 4.0) using curcumin (Cur) as a model anticancer bioactive agent. The MS@Lys NPs' in vitro cytocompatibility and cell uptake behavior were also examined using MDA-MB-231 cells. The experimental results imply that MS@Lys NPs might be used in cancer therapy as pH-responsive drug delivery applications.
Collapse
Affiliation(s)
| | - Vanaraj Ramkumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kokila Thirupathi
- Department of Physics, Government Arts and Science College for Women, Karimangalam, Dharmapuri 635111, Tamil Nadu, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica 1000007, Chile
| | - Vanitha Karuppannan
- Department of Physics, Bannari Amman Institute of Technology, Sathyamangalam, Erode 638401, Tamil Nadu, India
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Da Nang 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Da Nang 550000, Vietnam
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
13
|
Liu Y, Zhao J, Chen J, Miao X. Nanocrystals in cosmetics and cosmeceuticals by topical delivery. Colloids Surf B Biointerfaces 2023; 227:113385. [PMID: 37270904 DOI: 10.1016/j.colsurfb.2023.113385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
The main issues with local delivery of cosmetics are their high sensitivity and limited drug loading of active pharmaceutical ingredient. Nanocrystal technology offers consumers cutting-edge and effective products and exhibits enormous development potential in the beauty business as a new delivery method to address the issue of low solubility and low permeability of sensitive chemicals. In this review, we described the processes for making NCs, along with the impacts of loading and the uses of different carriers. Among them, nanocrystalline loaded gel and emulsion are widely used and may further improve the stability of the system. Then, we introduced the beauty efficacy of drug NCs from five aspects: anti-inflammation and acne, anti-bacterial, lightening and freckle removal, anti-aging as well as UV protection. Following that, we presented the current scenario about stability and safety. Finally, the challenges and vacancy were discussed along with the potential uses of NCs in the cosmetics industry. This review serves as a resource for the advancement of nanocrystal technology in the cosmetics sector.
Collapse
Affiliation(s)
- Yi Liu
- Marine College, Shandong University, Weihai 264209, China; SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Jingru Zhao
- Marine College, Shandong University, Weihai 264209, China
| | - Jing Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
14
|
Aery S, Parry A, Araiza-Calahorra A, Evans SD, Gleeson HF, Dan A, Sarkar A. Ultra-stable liquid crystal droplets coated by sustainable plant-based materials for optical sensing of chemical and biological analytes. JOURNAL OF MATERIALS CHEMISTRY. C 2023; 11:5831-5845. [PMID: 37153011 PMCID: PMC10158717 DOI: 10.1039/d3tc00598d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Herein, we demonstrate for the first time the synthesis of ultra-stable, spherical, nematic liquid crystal (LC) droplets of narrow size polydispersity coated by sustainable, biodegradable, plant-based materials that trigger a typical bipolar-to-radial configurational transition in dynamic response to chemical and biological analytes. Specifically, a highly soluble polymer, potato protein (PoP) and a physically-crosslinked potato protein microgel (PoPM) of ∼100 nm in diameter, prepared from the PoP, a byproduct of the starch industry, were compared for their ability to coat LC droplets. Although both PoP and PoPM were capable of reducing the interfacial tension between water and n-tetradecane <30 mN m-1, PoPM-coated LC droplets showed better stability than the PoP-coated droplets via a Pickering-like mechanism. Strikingly, the Pickering LC droplets outperformed PoP-stabilized droplets in terms of dynamic response with 5× lower detection limit to model chemical analytes (sodium dodecyl sulphate, SDS) due to the difference in SDS-binding features between the protein and the microgel. To eliminate the effect of size polydispersity on the response, monodisperse Pickering LC droplets of diameter ∼16 μm were additionally obtained using microfluidics, which mirrored the response to chemical as well as biological analytes, i.e., primary bile acid, an important biomarker of liver diseases. We demonstrate that these eco-friendly microgels used for creating monodisperse, ultra-stable, LC complex colloids are powerful templates for fabricating next generation, sustainable optical sensors for early diagnosis in clinical settings and other sensing applications.
Collapse
Affiliation(s)
- Shikha Aery
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University Chandigarh 160014 India
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds LS2 9JT UK
| | - Adele Parry
- School of Physics and Astronomy, University of Leeds LS2 9JT UK
| | - Andrea Araiza-Calahorra
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds LS2 9JT UK
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds LS2 9JT UK
| | - Helen F Gleeson
- School of Physics and Astronomy, University of Leeds LS2 9JT UK
| | - Abhijit Dan
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University Chandigarh 160014 India
- Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Simhat Haringhata West Bengal 741249 India
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds LS2 9JT UK
| |
Collapse
|
15
|
Lu S, Li X, Wei X, Huang C, Zheng J, Ou S, Yang T, Liu F. Preparation and Characterization of a Novel Natural Quercetin Self-Stabilizing Pickering Emulsion. Foods 2023; 12:foods12071415. [PMID: 37048236 PMCID: PMC10094174 DOI: 10.3390/foods12071415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
In contrast to their well-known physiological properties, phytochemicals, such as flavonoids, have been less frequently examined for their physiochemical properties (e.g., surface activity). A natural quercetin self-stabilizing Pickering emulsion was fabricated and characterized in the present study. The antisolvent precipitation method was used to modify quercetin (in dihydrate form), and the obtained particles were characterized by light microscope, atom force microscope, XRD, and contact angle. The antisolvent treatment was found to reduce the particle size, crystallinity, and surface hydrophobicity of quercetin. We then examined the effects of the antisolvent ratio, particle concentration, and oil fraction on the properties of the quercetin particle-stabilized emulsions. In addition, increasing the antisolvent ratio (1:1~1:10) effectively improved the emulsification performance of the quercetin particles. The emulsion showed good storage stability, and the particle size of the emulsion decreased with the rising particle concentration and increased with the rising oil phase ratio. The findings indicate that natural quercetin treated with antisolvent method has a good ability to stabilize Pickering emulsion, and this emulsion may have good prospective application potential for the development of novel and functional emulsion foods.
Collapse
Affiliation(s)
- Shenglan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xueying Li
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xunran Wei
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Tao Yang
- School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Fu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Correspondence: ; Tel.: +86-020-85226630
| |
Collapse
|
16
|
Geng S, Han F, Lv X, Zhang S, Ma H, Liu B. Formation mechanism of Pickering emulsion gels stabilized by proanthocyanidin particles: Experimental and molecular dynamics studies. Food Chem 2023; 418:135904. [PMID: 36965389 DOI: 10.1016/j.foodchem.2023.135904] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
The feasibility of constructing a Pickering emulsion gel with proanthocyanidin particles (PAP) was evaluated in this study, and the related mechanism was revealed by combining instrumental characterization with molecular dynamics simulation. The results showed that PAP was composed of nano/micron spherical particles or their fragments, which had excellent wettability. Suitable PAP addition amount (w, ≥1%) and oil volume fraction (φ, 40-90 %) were beneficial to the formation of stable Pickering emulsion gel. The oil droplet size of gel was inversely proportional to w and φ. The mechanical parameters (gel strength, loss modulus, and storage modulus) were positively correlated with w and φ. Molecular dynamics simulation indicated that the proanthocyanidin molecules in the oil-water system could spontaneously reside and aggregate at the interface, and their interactions with water and oil reduced interfacial tension, which was consistent with the experimental results. This study provides a reference for other polyphenol-based Pickering emulsions.
Collapse
Affiliation(s)
- Sheng Geng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Fenxia Han
- School of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaofan Lv
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Sheng Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
17
|
Yang D, Feng Y, Yao X, Zhao B, Li D, Liu N, Fang Y, Midgley A, Liu D, Katsuyoshi N. Recent advances in bioactive nanocrystal-stabilized Pickering emulsions: Fabrication, characterization, and biological assessment. Compr Rev Food Sci Food Saf 2023; 22:946-970. [PMID: 36546411 DOI: 10.1111/1541-4337.13096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/07/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Numerous literatures have shown the advantages of Pickering emulsion (PE) for the delivery of bioactive ingredients in the fields of food, medicine, and cosmetics, among others. On this basis, the multi-loading mode of bioactives (internal phase encapsulation and/or loading at the interface) in small molecular bioactives nanocrystal-stabilized PE (BNC-PE) enables them higher loading efficiencies, controlled release, and synergistic or superimposed effects. Therefore, BNC-PE offers an efficacious delivery system. In this review, we briefly summarize BNC-PE fabrication and characterization, with a focus on the processes of possible evolution and absorption of differentially applied BNC-PE when interacting with the body. In addition, methods of monitoring changes and absorption of BNC-PE in vivo, from the nanomaterial perspective, are also introduced. The purpose of this review is to provide an accessible and comprehensive methodology for the characterization and evaluation of BNC-PE after formulation and preparation, especially in relation to biological assessment and detailed mechanisms throughout the absorption process of BNC-PE in vivo.
Collapse
Affiliation(s)
- Dan Yang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Yuqi Feng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Xiaolin Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Baofu Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Dan Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Ning Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Adam Midgley
- Key Laboratory of Bioactive Materials (MoE), College of Life Sciences, Nankai University, Tianjin, China
| | - Dechun Liu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Nishinari Katsuyoshi
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, China
| |
Collapse
|
18
|
Lu Y, Zhang R, Jia Y, Gao Y, Mao L. Effects of nanoparticle types and internal phase content on the properties of W/O emulsions based on dual stabilization mechanism. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
19
|
Zhou FZ, Yu XH, Luo DH, Yang XQ, Yin SW. Pickering water in oil emulsions prepared from biocompatible gliadin/ethyl cellulose complex particles. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
20
|
Ajayi SM, Olusanya SO, Sodeinde KO, Didunyemi AE, Atunde MO, Fapojuwo D, Olumayede EG, Lawal OS. Hydrophobic Modification of Cellulose from Oil Palm Empty Fruit Bunch: Characterization and Application in Pickering Emulsions Stabilization. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
21
|
Chen JF, Luo ZJ, Wang JM, Ruan QJ, Guo J, Yang XQ. Fabrication of stable Pickering double emulsion with edible chitosan/soy β-conglycinin complex particles via one-step emulsification strategy. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Bojarczuk A, Dzitkowska-Zabielska M. Polyphenol Supplementation and Antioxidant Status in Athletes: A Narrative Review. Nutrients 2022; 15:nu15010158. [PMID: 36615815 PMCID: PMC9823453 DOI: 10.3390/nu15010158] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Antioxidants in sports exercise training remain a debated research topic. Plant-derived polyphenol supplements are frequently used by athletes to reduce the negative effects of exercise-induced oxidative stress, accelerate the recovery of muscular function, and enhance performance. These processes can be efficiently modulated by antioxidant supplementation. The existing literature has failed to provide unequivocal evidence that dietary polyphenols should be promoted specifically among athletes. This narrative review summarizes the current knowledge regarding polyphenols' bioavailability, their role in exercise-induced oxidative stress, antioxidant status, and supplementation strategies in athletes. Overall, we draw attention to the paucity of available evidence suggesting that most antioxidant substances are beneficial to athletes. Additional research is necessary to reveal more fully their impact on exercise-induced oxidative stress and athletes' antioxidant status, as well as optimal dosing methods.
Collapse
|
23
|
Ajayi SM, Olusanya SO, Sodeinde KO, Olumayede EG, Lawal OS, Didunyemi AE, Atunde MO, Fapojuwo D. Application of hydrophobically modified cellulose from oil palm frond in Pickering emulsions stabilization. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
24
|
Organically surface engineered mesoporous silica nanoparticles control the release of quercetin by pH stimuli. Sci Rep 2022; 12:20661. [PMID: 36450792 PMCID: PMC9712501 DOI: 10.1038/s41598-022-25095-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Controlling the premature release of hydrophobic drugs like quercetin over physiological conditions remains a challenge motivating the development of smart and responsive drug carriers in recent years. This present work reported a surface modification of mesoporous silica nanoparticles (MSN) by a functional compound having both amines (as a positively charged group) and carboxylic (negatively charged group), namely 4-((2-aminoethyl)amino)-4-oxobut-2-enoic acid (AmEA) prepared via simple mechanochemistry approach. The impact of MSN surface modification on physical, textural, and morphological features was evaluated by TGA, N2 adsorption-desorption, PSA-zeta, SEM, and TEM. The BET surface area of AmEA-modified MSN (MSN-AmEA) was found to be 858.41 m2 g-1 with a pore size of 2.69 nm which could accommodate a high concentration of quercetin 118% higher than MSN. In addition, the colloidal stability of MSN-AmEA was greatly improved as indicated by high zeta potential especially at pH 4 compared to MSN. In contrast to MSN, MSN-AmEA has better in controlling quercetin release triggered by pH, thanks to the presence of the functional groups that have a pose-sensitive interaction hence it may fully control the quercetin release, as elaborated by the DFT study. Therefore, the controlled release of quercetin over MSN-AmEA verified its capability of acting as a smart drug delivery system.
Collapse
|
25
|
Wang C, Jiang H, Li Y. Water-in-Oil Pickering Emulsions Stabilized by Phytosterol/Chitosan Complex Particles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Jiang H, Hu X, Jiang W, Guan X, Li Y, Ngai T. Water-in-Oil Pickering Emulsions Stabilized by Hydrophobized Protein Microspheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12273-12280. [PMID: 36172706 DOI: 10.1021/acs.langmuir.2c01904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Water-in-oil (w/o) Pickering emulsions have gained considerable attention in colloid science and daily applications. However, for the formation of w/o emulsions, especially those with high internal water content, the particulate stabilizers are required to be sufficiently hydrophobic, and synthetic or chemically modified particles have been mostly reported until now, which are not biocompatible and sustainable. We present a zein protein-based microsphere derived from the Pickering emulsion template, in which protein microspheres are feasibly in situ hydrophobized by silica nanoparticles, enabling the stabilization of w/o Pickering emulsions. The effects of microsphere concentration, water/oil volume ratio, oil types, and pH on the stabilization of prepared w/o emulsions are systematically studied, revealing prominent characteristics of the controllable size, high water fraction, universal adaptation of oils, as well as broad pH stability. As a demonstration, the Pickering emulsion effectively encapsulates vitamin C and shows high stability for long storage duration against ultraviolet radiation/heat. Therefore, this novel proteinaceous particle-stabilized w/o Pickering emulsion has great potential in the delivery and protection of water-soluble bioactive substrates.
Collapse
Affiliation(s)
- Hang Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiaofeng Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Weijie Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin Guan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T, Hong Kong 00852, P. R. China
| | - Yunxing Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T, Hong Kong 00852, P. R. China
| |
Collapse
|
27
|
Klitou P, Rosbottom I, Karde V, Heng JY, Simone E. Relating Crystal Structure to Surface Properties: A Study on Quercetin Solid Forms. CRYSTAL GROWTH & DESIGN 2022; 22:6103-6113. [PMID: 36217418 PMCID: PMC9542717 DOI: 10.1021/acs.cgd.2c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The surface energy and surface chemistry of a crystal are of great importance when designing particles for a specific application, as these will impact both downstream manufacturing processes as well as final product quality. In this work, the surface properties of two different quercetin solvates (quercetin dihydrate and quercetin DMSO solvate) were studied using molecular (synthonic) modeling and experimental techniques, including inverse gas chromatography (IGC) and contact angle measurements, to establish a relationship between crystal structure and surface properties. The attachment energy model was used to predict morphologies and calculate surface properties through the study of their growth synthons. The modeling results confirmed the surface chemistry anisotropy for the two forms. For quercetin dihydrate, the {010} facets were found to grow mainly by nonpolar offset quercetin-quercetin stacking interactions, thus being hydrophobic, while the {100} facets were expected to be hydrophilic, growing by a polar quercetin-water hydrogen bond. For QDMSO, the dominant facet {002} grows by a strong polar quercetin-quercetin hydrogen bonding interaction, while the second most dominant facet {011} grows by nonpolar π-π stacking interactions. Water contact angle measurements and IGC confirmed a greater overall surface hydrophilicity for QDMSO compared to QDH and demonstrated surface energy heterogeneity for both structures. This work shows how synthonic modeling can help in the prediction of the surface nature of crystalline particles and guide the choice of parameters that will determine the optimal crystal form and final morphology for targeted surface properties, for example, the choice of crystallization conditions, choice of solvent, or presence of additives or impurities, which can direct the crystallization of a specific crystal form or crystal shape.
Collapse
Affiliation(s)
- Panayiotis Klitou
- School
of Food Science and Nutrition, Food Colloids and Bioprocessing Group, University of Leeds, Woodhouse Ln., Woodhouse, LeedsLS2 9JT, United Kingdom
| | - Ian Rosbottom
- Department
of Chemical Engineering, Imperial College
London, Imperial College Rd, South Kensington, LondonSW7 2AZ, United Kingdom
| | - Vikram Karde
- Department
of Chemical Engineering, Imperial College
London, Imperial College Rd, South Kensington, LondonSW7 2AZ, United Kingdom
| | - Jerry Y.Y. Heng
- Department
of Chemical Engineering, Imperial College
London, Imperial College Rd, South Kensington, LondonSW7 2AZ, United Kingdom
| | - Elena Simone
- School
of Food Science and Nutrition, Food Colloids and Bioprocessing Group, University of Leeds, Woodhouse Ln., Woodhouse, LeedsLS2 9JT, United Kingdom
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi, 24, 10129TorinoTO, Italy
| |
Collapse
|
28
|
Designing covalent sodium caseinate-quercetin complexes to improve emulsifying properties and oxidative stability. Food Res Int 2022; 160:111738. [DOI: 10.1016/j.foodres.2022.111738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
|
29
|
Souza EM, Ferreira MR, Soares LA. Pickering emulsions stabilized by zein particles and their complexes and possibilities of use in the food industry: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Liang R, Yang J, Liu C, Yang C. Exploration of stabilization mechanism of polyol-in-oil-in-water quercetin-loaded Pickering double emulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Li H, Wang T, Su J, Van der Meeren P. Influence of pH and low/high- methoxy pectin complexation on the hydrophobic binding sites of β-lactoglobulin studied by a fluorescent probe method. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Zhang Y, Zhou F, Zeng X, Shen P, Yuan D, Zhong M, Zhao Q, Zhao M. pH-driven-assembled soy peptide nanoparticles as particulate emulsifier for oil-in-water Pickering emulsion and their potential for encapsulation of vitamin D 3. Food Chem 2022; 383:132489. [PMID: 35183964 DOI: 10.1016/j.foodchem.2022.132489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
Pickering emulsions prepared by food-grade particles have gained growing attention due to their promising application in functional food and pharmaceutical industries. In this study, we successfully fabricated soy peptide-based nanoparticles (SPN) through pH-driven process. Obtained particles with small particle size were surface active and shared intermediate wettability, and they could be well applied as an efficient particulate emulsifier for stabilizing oil-in-water Pickering emulsions at SPN concentration above 0.25 wt%. Furthermore, formed emulsions stabilized with SPN exhibited good protection towards Vitamin D3 against UV irradiation and oxidative deterioration, where controlled release of Vitamin D3in vitro could also be well achieved by modulating particle concentration. The whole process can contribute to a sustainable development of low-value peptide byproducts as functional food ingredients.
Collapse
Affiliation(s)
- Yuanhong Zhang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Feibai Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Xiaofang Zeng
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Penghui Shen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dan Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Min Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| |
Collapse
|
33
|
Taarji N, Bouhoute M, Kobayashi I, Tominaga K, Isoda H, Nakajima M. Physicochemical stability and in-vitro bioaccessibility of concentrated γ-Oryzanol nanodispersions fabricated by solvent displacement method. Food Chem 2022; 382:132300. [PMID: 35134726 DOI: 10.1016/j.foodchem.2022.132300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/20/2022]
Abstract
Concentrated γ-Oryzanol nanodispersions were fabricated using milli-Q water (no emulsifier) or 0.1% (w/w) polysorbate 80 (T80), modified lecithin (ML) or sodium caseinate (SC) as emulsifiers. The freshly prepared nanodispersions had comparable particle diameter (118 to 157 nm), γ-Oryzanol concentration (1.75 to 1.92 mg mL-1) and free-radical scavenging activity (59 to 62%) and had negative ζ-potentials (-22 to -59 mV), indicating that both γ-Oryzanol and emulsifier coexisted on the particles' interface. The nanoparticles had superior physicochemical stability up to 30 days of storage at 5 °C and were successfully autoclaved without excessive growth or aggregation. Nevertheless, they showed distinct physical stability upon storage at specific environmental conditions, which affected their In-vitro gastrointestinal digestion. Comprehensively, emulsifier-free nanodispersions were sensitive to acidic pH, NaCl and CaCl2 addition. ML and SC coated nanoparticles were sensitive to Ca2+ ions, while T80 stabilized nanodispersions resisted to all environmental stresses, resulting in optimal simulated intestinal absorption.
Collapse
Affiliation(s)
- Noamane Taarji
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan; Food and Medicinal Resource Engineering Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki 305-8565, Japan.
| | - Meryem Bouhoute
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan
| | - Isao Kobayashi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan; Food Research Institute, NARO, 2-1-12 Kannondai, Tsukuba 305-8642, Japan
| | - Kenichi Tominaga
- Food and Medicinal Resource Engineering Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki 305-8565, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan; Food and Medicinal Resource Engineering Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki 305-8565, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Ibaraki 305-8572, Japan
| | - Mitsutoshi Nakajima
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan; Food and Medicinal Resource Engineering Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki 305-8565, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Ibaraki 305-8572, Japan
| |
Collapse
|
34
|
Tenorio-Garcia E, Araiza-Calahorra A, Simone E, Sarkar A. Recent advances in design and stability of double emulsions: Trends in Pickering stabilization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Ouahrani S, Tzompa‐Sosa DA, Dewettinck K, Zaidi F. Oxidative stability, structural, and textural properties of margarine enriched with
Moringa oleifera
leaves extract. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sara Ouahrani
- Département des Sciences Alimentaires, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
| | - Daylan Amelia Tzompa‐Sosa
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - Koen Dewettinck
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - Farid Zaidi
- Département des Sciences Alimentaires, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
| |
Collapse
|
36
|
Whey Protein Isolate Nanofibers Prepared by Subcritical Water Stabilized High Internal Phase Pickering Emulsion to Deliver Curcumin. Foods 2022; 11:foods11111625. [PMID: 35681375 PMCID: PMC9179974 DOI: 10.3390/foods11111625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to design a Pickering emulsion (PE) stabilized by whey protein isolate nanofibers (WPINs) prepared with subcritical water (SW) to encapsulate and prevent curcumin (Cur) degradation. Cur-loaded WPINs–SW stabilized PE (WPINs–SW–PE) and hydrothermally prepared WPINs stabilized PE (WPINs–H–PE) were characterized using the particle size, zeta potential, Congo Red, CD, and TEM. The results indicated that WPINs–SW–PE and WPINs–H–PE showed regular spherical shapes with average lengths of 26.88 ± 1.11 μm and 175.99 ± 2.31 μm, and zeta potential values were −38.00 ± 1.00 mV and −34.60 ± 2.03 mV, respectively. The encapsulation efficiencies of WPINs–SW–PE and WPINs–H–PE for Cur were 96.72 ± 1.05% and 94.07 ± 2.35%. The bio-accessibility of Cur of WPINs–SW–PE and WPINs–H–PE were 57.52 ± 1.24% and 21.94 ± 2.09%. In addition, WPINs–SW–PE had a better loading effect and antioxidant activities compared with WPINs–H–PE. SW could be a potential processing method to prepare a PE, laying the foundation for the subsequent production of functional foods.
Collapse
|
37
|
Lan M, Zheng J, Huang C, Wang Y, Hu W, Lu S, Liu F, Ou S. Water-In-Oil Pickering Emulsions Stabilized by Microcrystalline Phytosterols in Oil: Fabrication Mechanism and Application as a Salt Release System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5408-5416. [PMID: 35439006 DOI: 10.1021/acs.jafc.1c05115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, Pickering emulsions stabilized by edible particles have attracted significant attention from the scientific community and food industry owing to their surfactant-free character. However, those edible particles are mostly used for stabilizing oil-in-water emulsions, whereas those for water-in-oil emulsions are very limited. In this article, stable water-in-oil Pickering emulsions were prepared through dispersing phytosterol particles in oil phase, and the effects of antisolvent treatment, the type of oil, particle concentration, and water fraction on the stability, type, and morphology of these emulsions were investigated. In addition, the release profile of salt as a model aqueous compound from these emulsions has also been studied. Results showed that due to its higher water content, the antisolvent pretreatment of phytosterol in the ethanol/water system facilitated the dispersion of dried phytosterol particles into oil phase as microcrystals. Water-in-oil Pickering emulsions with droplet sizes of 80-100 μm were fabricated at phytosterol concentrations of 1.5-3% w/v and water fractions of 0.2-0.6. The dissolved phytosterol molecules in oil phase could help in emulsion stabilization through interfacial crystallization during emulsification, evidenced by polar microscopic observations. Moreover, the salt release from phytosterol-stabilized Pickering emulsions showed a temperature-dependent profile which could have potential application in a controlled-release system. The current study provided important information for fabrication of stable water-in-oil emulsion using natural particles.
Collapse
Affiliation(s)
- Manyu Lan
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, PR China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, PR China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, PR China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, PR China
| | - Wenzhong Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Shenglan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, PR China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China
| | - Fu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, PR China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, PR China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China
| |
Collapse
|
38
|
Lin C, Pan P, Shan G, Du M. Microstructurally tunable pickering emulsions stabilized by poly(ethylene glycol)-b-poly(ε-caprolactone) diblock biodegradable copolymer micelles with predesigned polymer architecture. Food Chem 2022; 374:131827. [PMID: 35021583 DOI: 10.1016/j.foodchem.2021.131827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/25/2021] [Accepted: 12/05/2021] [Indexed: 11/25/2022]
Abstract
Poly(ethylene glycol)-b-poly(ε-caprolactone) diblock copolymers (PEG-b-PCL) with predesigned hydrophilic/hydrophobic block length ratios have been synthesized and self-assembled to form micelles, then used to emulsify medium-chain triglycerides with an aqueous phase. The morphologies and sizes of PEG-b-PCL copolymer micelles have been characterized by transmission electron microscopy and dynamic light scattering. Interfacial tension testing between micellar dispersions and oil, combined with water contact angle measurements, have been performed to assess the ability of these micelles to adjust interfacial tension and micellar hydrophobicity, respectively. Relationship between the wettability of PEG-b-PCL copolymer micelles and their emulsification properties has been proved through phase diagram, optical microscopic observation, droplet sizes evolution and phase separation behavior of Pickering emulsion samples. Results show that both oil-in-water and water-in-oil Pickering emulsions, as well as water-in-oil-in-water (W/O/W) double-Pickering emulsions, may be controllably prepared through one-step homogenization. Double microstructure of W/O/W Pickering emulsion has proved to be extremely stable during long-term storage.
Collapse
Affiliation(s)
- Chao Lin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China.
| | - Miao Du
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
39
|
Ethyl cellulose-chitosan complex particles stabilized W/O Pickering emulsion as a recyclable bio-catalytic microreactor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Cheng C, Yu X, Geng F, Wang L, Yang J, Huang F, Deng Q. Review on the Regulation of Plant Polyphenols on the Stability of Polyunsaturated-Fatty-Acid-Enriched Emulsions: Partitioning Kinetic and Interfacial Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3569-3584. [PMID: 35306817 DOI: 10.1021/acs.jafc.1c05335] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The plant polyphenols are normally presented as natural functional antioxidants, which also possess the potential ability to improve the physicochemical stability of polyunsaturated fatty acid (PUFA)-enriched emulsions by interface engineering. This review discussed the potential effects of polyphenols on the stability of PUFA-enriched emulsions from the perspective of the molecular thermodynamic antioxidative analysis, the kinetic of interfacial partitioning, and the covalent and non-covalent interactions with emulsifiers. Recently, research studies have proven that the interfacial structure of emulsions can be concurrently optimized via promoting interfacial partitioning of polyphenols and further increasing interfacial thickness and strength. Moreover, the applied limitations of polyphenols in PUFA-enriched emulsions were summarized, and then some valuable and constructive viewpoints were put forward in this review to provide guidance for the use of polyphenols in constructing PUFA-enriched emulsions.
Collapse
Affiliation(s)
- Chen Cheng
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xiao Yu
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People's Republic of China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, Sichuan 610106, People's Republic of China
| | - Lei Wang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Jing Yang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Fenghong Huang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Qianchun Deng
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
41
|
Moud AA. Fluorescence Recovery after Photobleaching in Colloidal Science: Introduction and Application. ACS Biomater Sci Eng 2022; 8:1028-1048. [PMID: 35201752 DOI: 10.1021/acsbiomaterials.1c01422] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
FRAP (fluorescence recovery after photo bleaching) is a method for determining diffusion in material science. In industrial applications such as medications, foods, Medtech, hygiene, and textiles, the diffusion process has a substantial influence on the overall qualities of goods. All these complex and heterogeneous systems have diffusion-based processes at the local level. FRAP is a fluorescence-based approach for detecting diffusion; in this method, a high-intensity laser is made for a brief period and then applied to the samples, bleaching the fluorescent chemical inside the region, which is subsequently filled up by natural diffusion. This brief Review will focus on the existing research on employing FRAP to measure colloidal system heterogeneity and explore diffusion into complicated structures. This description of FRAP will be followed by a discussion of how FRAP is intended to be used in colloidal science. When constructing the current Review, the most recent publications were reviewed for this assessment. Because of the large number of FRAP articles in colloidal research, there is currently a dearth of knowledge regarding the growth of FRAP's significance to colloidal science. Colloids make up only 2% of FRAP papers, according to ISI Web of Knowledge.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
42
|
Preparation and characterization of concentrated γ-Oryzanol nanodispersions by solvent displacement method: Effect of processing conditions on nanoparticles formation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Liu Y, Xia H, Guo S, Lu X, Zeng C. Development and characterization of a novel naturally occurring pentacyclic triterpene self-stabilized pickering emulsion. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Nayak A, Genot C, Meynier A, Dorlando A, Capron I. Impact of process and physico-chemical conditions on the formation of curcumin-whey protein composite particles capable to stabilize food-compatible oil in water emulsions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
De Iseppi A, Marangon M, Lomolino G, Crapisi A, Curioni A. Red and white wine lees as a novel source of emulsifiers and foaming agents. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
|
47
|
Carrera Sánchez C, Rodríguez Patino JM. Contribution of the engineering of tailored interfaces to the formulation of novel food colloids. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Wan Z, Xia H, Guo S, Zeng C. Water-in-oil Pickering emulsions stabilized solely by a naturally occurring steroidal sapogenin: Diosgenin. Food Res Int 2021; 147:110573. [PMID: 34399546 DOI: 10.1016/j.foodres.2021.110573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 01/28/2023]
Abstract
In this study, stable water-in-oil emulsions stabilized solely by a naturally occurring steroidal sapogenin was reported for the first time. The results show that a concentrated emulsion with an internal water ratio of up to 60% can be obtained with only 3% of diosgenin concentration. The concentration of diosgenin had a significant effect on the microstructure and rheological properties of the emulsions. More importantly, the emulsion has excellent freeze/thaw stability and thermal stability. The results of polarized light microscopy, CLSM, and XRD indicate that the great structural properties and high stability of the emulsion can be attributed to the combined action of the diosgenin crystal shells on the droplet surface and needle-crystals in the continuous phase. That is, Pickering stabilization and network stabilization acting synergistically on stabilization of the emulsions. This novel food grade water-in-oil emulsions demonstrated great potential for application in food and biomedical-related fields.
Collapse
Affiliation(s)
- Zheng Wan
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Huiping Xia
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Shiyin Guo
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China; Hunan Rapeseed Oil Nutrition Health and Deep Development Engineering Technology Research Center, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Chaoxi Zeng
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China; Hunan Rapeseed Oil Nutrition Health and Deep Development Engineering Technology Research Center, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| |
Collapse
|
49
|
Hong X, Zhao Q, Liu Y, Li J. Recent advances on food-grade water-in-oil emulsions: Instability mechanism, fabrication, characterization, application, and research trends. Crit Rev Food Sci Nutr 2021; 63:1406-1436. [PMID: 34387517 DOI: 10.1080/10408398.2021.1964063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to their promising application prospects, water-in-oil (W/O) emulsions have aroused continuous attention in recent years. However, long-term stability of W/O emulsions remains a particularly challenging problem in colloid science. With the increasing demand of consumers for natural, green, and healthy foods, the heavy reliance on chemically synthesized surfactants to achieve long-term stability has become the key technical defect restricting the application of W/O emulsions in food. To design and manufacture W/O emulsions with long-term stability and clean label, a comprehensive understanding of the fundamentals of the W/O emulsion system is required. This review aims to demystify the field of W/O emulsions and update its current research progress. We first provide a summary on the essential basic knowledge regarding the instability mechanisms, including physical and chemical instability in W/O emulsions. Then, the formulation of the W/O emulsion system is introduced, particularly focusing on the use of natural stabilizers. Besides, the characterization and application of W/O emulsions are also discussed. Finally, we propose promising research trends, including (1) developing W/O high internal phase emulsions (HIPEs) as fat mimetic and substitute, (2) promising formulation routine for long-term stable double emulsions, and (3) searching for novel plant-derived stabilizers of W/O emulsions.
Collapse
Affiliation(s)
- Xin Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
50
|
Pickering emulsions as a platform for structures design: cutting-edge strategies to engineer digestibility. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|