1
|
Zhang J, Bai X, Chen R, Zheng J, Song D, Li R, Zhang H, Wang J. Transparent, Flexible, Responsive Switching "Delayed" Amphiphilic Coatings Designed on the Basis of the Full-Cycle Antifouling Strategy. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39441046 DOI: 10.1021/acsami.4c11341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Marine fouling on the surface of ships and equipment not only creates problems of enhanced resistance to navigation and increased energy consumption but also leads to unclear vision and inaccurate data collection. Antifouling coatings to resist fouling are effective, but it is difficult to achieve long-lasting fouling protection with a single interface state. Switching the status of the interface by intelligent response is a reasonable way to achieve full-cycle efficient antifouling. In this study, the hydrophobic and active antifouling interface in the initial state was achieved by adopting the fluorine-containing group and the natural extract (citronellol) as the antifouling active site. The switching of the interface relies on silanes, which respond to the generation of zwitterions in a seawater environment. Eventually, the interface switched from the hydrophobic state to the amphiphilic state with delayed formation, which achieved continued antifouling. Based on the full-cycle antifouling concept, the combination of low surface energy and antifouling active ingredients in the initial state sustainably switched surfaces in the midterm (free radicals generated during the hydrolysis process), and amphiphilic interfaces formed by "delays" produced an antifouling effect from the initial stage to the subsequent stage. The excellent antifouling activity (bacterial and diatom attachment inhibition by over 90% and significantly reduced mussel adhesion force), optical transparency, and flexibility of these coatings indicate the potential for the application of antifouling coatings prepared from hyperbranched silicone-based resins; they can also be used for data extraction sensors, underwater probes, marine photovoltaics, and other areas where transparency is required.
Collapse
Affiliation(s)
- Jianwei Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Xuefeng Bai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jiyong Zheng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266101, China
| | - Dalei Song
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rumin Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Hongsen Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
2
|
Koričan M, Vladimir N, Hadžić N, Ložar V. Life-cycle cost assessment of hull protection technologies considering their effect on the environmental friendliness of fishing vessels. MARINE POLLUTION BULLETIN 2024; 209:117137. [PMID: 39426175 DOI: 10.1016/j.marpolbul.2024.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Biofouling represents a global challenge for the maritime industry, affecting vessel performance and environmental footprint. This paper analyses various antifouling technologies to reduce the vessel's environmental impact and its operating costs by reduced fuel consumption and less frequent dry-docking. It evaluates both passive and active technologies - passive referring to antifouling coatings and active involving systems that continuously prevent biofouling using energy. The methodology employs mathematical models to quantify the additional resistance and emissions caused by biofouling. Using the case of a fishing vessel operating in the Adriatic Sea, operational features and potential economic and environmental benefits resulting implementing an innovative biofouling protection system are analysed. Economic analysis includes a comprehensive cost structure, investment details, maintenance and operating costs, and possible future carbon taxation scenarios. The research indicates that active antifouling protection is more efficient than passive protection, including a potential reduction of the required power of up to 120 kW, leading to decreased fuel consumption and lower environmental impact, particularly at higher speeds. Despite higher initial investments, life-cycle cost analysis favours active protection systems.
Collapse
Affiliation(s)
- Marija Koričan
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10002 Zagreb, Croatia
| | - Nikola Vladimir
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10002 Zagreb, Croatia.
| | - Neven Hadžić
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10002 Zagreb, Croatia
| | - Viktor Ložar
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10002 Zagreb, Croatia
| |
Collapse
|
3
|
Sun J, Liu X, Duan J, Sui K, Zhai X, Zhao X, Zhu Y, Guo D, Hou B. A type of multifunctional cellulose nanocrystal composite silicone-based polymer coating for marine antibiofouling. Int J Biol Macromol 2024; 278:134885. [PMID: 39168193 DOI: 10.1016/j.ijbiomac.2024.134885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/11/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Nanocomposite polymer coatings are being used as a new generation of marine antibiofouling coatings because of their toxin-free chemical composition and ease of large-scale adoption. Cellulose nanocrystal (CN) exhibits significant potential for composite reinforcement. Herein, CN was surface-modified via α,ω-bis(3-(2-hydroxyl-terminated polydimethylsiloxane (HTPDMS), resulting in dihydroxyl-terminated poly(dimethylsiloxane)-grafted CN (HP-g-CN). The amine-terminated PDMS as the foundational component was sequentially reacted with isophorone diisocyanate, isophthalaldehyde, and carbon disulfide to produce PDMS-based poly (urea-thiourea-imine) (PDMS-PUTI). Subsequently, a composite (PDMS-PUTI/HP-g-CN) was produced through physical blending. The intrinsic imine bonds and dynamic hydrogen-bonding network were responsible for the self-healing properties, which achieved a healing efficiency of up to 89.2 %. HP-g-CN was grafted with the non-leaching lubricant, HTPDMS, resulting in improved mechanical properties (1.38 MPa of ultimate strength) and adhesion strength (2.43 MPa), along with the self-cleaning and self-lubricating performance (0.700 coefficient) of the coating. Additionally, the fouling resistance to bovine serum albumin (BSA, 10.44 μg cm-2), bacteria (∼97.08 % and ∼ 98.05 % reduction for Pseudomonas sp. (P. sp.) and Shewanella sp. (S. sp.), respectively), and diatoms (∼27 cells mm-2) was further enhanced. Marine field tests conducted over 90 days revealed that the coatings were static fouling-resistant for an extended period. This study demonstrated a multifunctional, high-performance, and environmentally friendly nanocomposite polymer coating for preventing marine biofouling.
Collapse
Affiliation(s)
- Jiawen Sun
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Xingda Liu
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Jizhou Duan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Kunyan Sui
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Xiaofan Zhai
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xia Zhao
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yuqing Zhu
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ding Guo
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Baorong Hou
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
4
|
Marzullo P, Gruttadauria M, D’Anna F. Quaternary Ammonium Salts-Based Materials: A Review on Environmental Toxicity, Anti-Fouling Mechanisms and Applications in Marine and Water Treatment Industries. Biomolecules 2024; 14:957. [PMID: 39199346 PMCID: PMC11352365 DOI: 10.3390/biom14080957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
The adherence of pathogenic microorganisms to surfaces and their association to form antibiotic-resistant biofilms threatens public health and affects several industrial sectors with significant economic losses. For this reason, the medical, pharmaceutical and materials science communities are exploring more effective anti-fouling approaches. This review focuses on the anti-fouling properties, structure-activity relationships and environmental toxicity of quaternary ammonium salts (QAS) and, as a subclass, ionic liquid compounds. Greener alternatives such as QAS-based antimicrobial polymers with biocide release, non-fouling (i.e., PEG, zwitterions), fouling release (i.e., poly(dimethylsiloxanes), fluorocarbon) and contact killing properties are highlighted. We also report on dual-functional polymers and stimuli-responsive materials. Given the economic and environmental impacts of biofilms in submerged surfaces, we emphasize the importance of less explored QAS-based anti-fouling approaches in the marine industry and in developing efficient membranes for water treatment systems.
Collapse
Affiliation(s)
- Paola Marzullo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (M.G.); (F.D.)
- Sustainable Mobility Center (Centro Nazionale per la Mobilità Sostenibile—CNMS), Via Durando 39, 20158 Milano, Italy
| | - Michelangelo Gruttadauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (M.G.); (F.D.)
- Sustainable Mobility Center (Centro Nazionale per la Mobilità Sostenibile—CNMS), Via Durando 39, 20158 Milano, Italy
| | - Francesca D’Anna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (M.G.); (F.D.)
- Sustainable Mobility Center (Centro Nazionale per la Mobilità Sostenibile—CNMS), Via Durando 39, 20158 Milano, Italy
| |
Collapse
|
5
|
Hauer L, Naga A, Badr RGM, Pham JT, Wong WSY, Vollmer D. Wetting on silicone surfaces. SOFT MATTER 2024; 20:5273-5295. [PMID: 38952198 DOI: 10.1039/d4sm00346b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Silicone is frequently used as a model system to investigate and tune wetting on soft materials. Silicone is biocompatible and shows excellent thermal, chemical, and UV stability. Moreover, the mechanical properties of the surface can be easily varied by several orders of magnitude in a controlled manner. Polydimethylsiloxane (PDMS) is a popular choice for coating applications such as lubrication, self-cleaning, and drag reduction, facilitated by low surface energy. Aiming to understand the underlying interactions and forces, motivated numerous and detailed investigations of the static and dynamic wetting behavior of drops on PDMS-based surfaces. Here, we recognize the three most prevalent PDMS surface variants, namely liquid-infused (SLIPS/LIS), elastomeric, and liquid-like (SOCAL) surfaces. To understand, optimize, and tune the wetting properties of these PDMS surfaces, we review and compare their similarities and differences by discussing (i) the chemical and molecular structure, and (ii) the static and dynamic wetting behavior. We also provide (iii) an overview of methods and techniques to characterize PDMS-based surfaces and their wetting behavior. The static and dynamic wetting ridge is given particular attention, as it dominates energy dissipation, adhesion, and friction of sliding drops and influences the durability of the surfaces. We also discuss special features such as cloaking and wetting-induced phase separation. Key challenges and opportunities of these three surface variants are outlined.
Collapse
Affiliation(s)
- Lukas Hauer
- Institute for Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Physics at Interfaces, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Abhinav Naga
- Department of Physics, Durham University, DH1 3LE, UK
- Institute for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, UK
| | - Rodrique G M Badr
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55099 Mainz, Germany
| | - Jonathan T Pham
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, 45221 OH, USA
| | - William S Y Wong
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Doris Vollmer
- Physics at Interfaces, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
6
|
Puertas-Bartolomé M, Gutiérrez-Urrutia I, Teruel-Enrico LL, Duong CN, Desai K, Trujillo S, Wittmann C, Del Campo A. Self-Lubricating, Living Contact Lenses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313848. [PMID: 38583064 DOI: 10.1002/adma.202313848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Indexed: 04/08/2024]
Abstract
The increasing prevalence of dry eye syndrome in aging and digital societies compromises long-term contact lens (CL) wear and forces users to regular eye drop instillation to alleviate discomfort. Here a novel approach with the potential to improve and extend the lubrication properties of CLs is presented. This is achieved by embedding lubricant-secreting biofactories within the CL material. The self-replenishable reservoirs autonomously produce and release hyaluronic acid (HA), a natural lubrication and wetting agent, long term. The hydrogel matrix regulates the growth of the biofactories and the HA production, and allows the diffusion of nutrients and HA for at least 3 weeks. The continuous release of HA sustainably reduces the friction coefficient of the CL surface. A self-lubricating CL prototype is presented, where the functional biofactories are contained in a functional ring at the lens periphery, outside of the vision area. The device is cytocompatible and fulfils physicochemical requirements of commercial CLs. The fabrication process is compatible with current manufacturing processes of CLs for vision correction. It is envisioned that the durable-by-design approach in living CL could enable long-term wear comfort for CL users and minimize the need for lubricating eye drops.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123, Saarbrücken, Germany
| | | | | | - Cao Nguyen Duong
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Krupansh Desai
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Sara Trujillo
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute for Systems Biotechnology, Saarland University, Campus A1 5, 66123, Saarbrücken, Germany
| | - Aránzazu Del Campo
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
7
|
Pereira D, Almeida JR, Cidade H, Correia-da-Silva M. Proof of Concept of Natural and Synthetic Antifouling Agents in Coatings. Mar Drugs 2024; 22:291. [PMID: 39057400 PMCID: PMC11278152 DOI: 10.3390/md22070291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Marine biofouling, caused by the deposition and accumulation of marine organisms on submerged surfaces, represents a huge concern for the maritime industries and also contributes to environmental pollution and health concerns. The most effective way to prevent this phenomenon is the use of biocide-based coatings which have proven to cause serious damage to marine ecosystems. Several research groups have focused on the search for new environmentally friendly antifoulants, including marine and terrestrial natural products and synthetic analogues. Some of these compounds have been incorporated into marine coatings and display interesting antifouling activities caused by the interference with the biofilm-forming species as well as by the inhibition of the settlement of macroorganisms. This review highlights the proof-of-concept studies of emerging natural or synthetic antifouling compounds in coatings, from lab-made to commercial ones, performed between 2019 and 2023 and their results in the field or in in vivo laboratorial tests.
Collapse
Affiliation(s)
- Daniela Pereira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal;
| | - Joana R. Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal;
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal;
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (CESPU), 4585-116 Gandra, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal;
| |
Collapse
|
8
|
Soleimani S, Jannesari A, Yousefzadi M, Ghaderi A, Shahdadi A. Fouling-Resistant Behavior of Hydrophobic Surfaces Based on Poly(dimethylsiloxane) Modified by Green rGO@ZnO Nanocomposites. ACS APPLIED BIO MATERIALS 2024; 7:2794-2808. [PMID: 38593040 DOI: 10.1021/acsabm.3c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In line with global goals to solve marine biofouling challenges, this study proposes an approach to developing a green synthesis inspired by natural resources for fouling-resistant behavior. A hybrid antifouling/foul release (HAF) coating based on poly(dimethylsiloxane) containing a green synthesized nanocomposite was developed as an environmentally friendly strategy. The nanocomposites based on graphene oxide (GO) and using marine sources, leaves, and stems of mangroves (Avicennia marina), brown algae (Polycladia myrica), and zinc oxide were compared. The effectiveness of this strategy was checked first in the laboratory and then in natural seawater. The performance stability of the coatings after immersion in natural seawater was also evaluated. With the lowest antifouling (17.95 ± 0.7%) and the highest defouling (51.2 ± 0.9%), the best fouling-resistant performance was for the coatings containing graphene oxide reduced with A. marina stem/zinc oxide (PrGZS) and graphene oxide reduced with A. marina leaves/zinc oxide with 50% multiwall carbon nanotubes (PrGZHC50), respectively. Therefore, the HAF coatings can be considered as developed and eco-friendly HAF coatings for the maritime industry.
Collapse
Affiliation(s)
- Soolmaz Soleimani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
- Department of Resins and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Ali Jannesari
- Department of Resins and Additives, Institute for Color Science and Technology, Tehran, Iran
| | | | - Arash Ghaderi
- Department of Chemistry, College of Sciences, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Adnan Shahdadi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| |
Collapse
|
9
|
Labrague G, Gomez F, Chen Z. Characterization of Buried Interfaces of Silicone Materials in Situ to Understand Their Fouling-Release, Antifouling, and Adhesion Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9345-9361. [PMID: 38669686 DOI: 10.1021/acs.langmuir.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Poly(dimethylsiloxane) (PDMS) has numerous excellent properties and is extensively used as the main component of many silicone products in a variety of research fields and practical applications such as biomedical materials, aviation, construction, electronic devices, and automobiles. Interfacial structures of PDMS and other components in silicone systems are important for such research and applications. It is difficult to probe interfacial molecular structures of buried solid-liquid and solid-solid interfaces of silicone materials due to the lack of appropriate analytical tools. In this feature article, we presented our research on elucidating the molecular structures of PDMS as well as other additives in silicone samples at buried interfaces in situ at the molecular level using a nonlinear optical spectroscopic technique, sum frequency generation (SFG) vibrational spectroscopy. SFG was applied to study various PDMS surfaces in liquid environments to understand their fouling-release and antifouling activities. SFG has also been used to study buried solid-solid interfaces between silicone adhesives and polymers, elucidating the molecular adhesion mechanisms. Our SFG studies provide important knowledge on interfacial structure-function relationships of silicone materials, helping the design and development of silicone materials with improved properties through optimization of silicone interfacial structures.
Collapse
Affiliation(s)
- Gladwin Labrague
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Fernando Gomez
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
García S, Boullosa-Falces D, Sanz DS, Trueba A, Gomez-Solaetxe MA. Artificial-intelligence-model to optimize biocide dosing in seawater-cooled industrial process applications considering environmental, technical, energetic, and economic aspects. BIOFOULING 2024; 40:366-376. [PMID: 38855912 DOI: 10.1080/08927014.2024.2363241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024]
Abstract
This research introduces an Artificial Intelligence (AI) based model designed to concurrently optimize energy supply management, biocide dosing, and maintenance scheduling for heat exchangers. This optimization considers energetic, technical, economic, and environmental considerations. The impact of biofilm on heat exchangers is assessed, revealing a 41% reduction in thermal efficiency and a 113% increase in flow frictional resistance of the fluid compared to the initial state. Consequently, the pump's power consumption, required to maintain hydraulic conditions, rises by 9%. The newly developed AI model detects the point at which the heat exchanger's performance begins to decline due to accumulating dirt, marking day 44 of experimentation as the threshold to commence the antifouling biocide dosing. Leveraging this AI model to monitor heat exchanger efficiency represents an innovative approach to optimizing antifouling biocide dosing and reduce the environmental impact stemming from industrial plants.
Collapse
Affiliation(s)
- Sergio García
- Departamento Ciencias, Técnicas de la Navegación y de la Construcción Naval, Universidad de Cantabria, Santander, Spainy
| | - David Boullosa-Falces
- Department of Energy Engineering, University of the Basque Country UPV/EHU, Portugalete, Spain
| | - David S Sanz
- Departamento Ciencias, Técnicas de la Navegación y de la Construcción Naval, Universidad de Cantabria, Santander, Spainy
| | - Alfredo Trueba
- Departamento Ciencias, Técnicas de la Navegación y de la Construcción Naval, Universidad de Cantabria, Santander, Spainy
| | | |
Collapse
|
11
|
Chen J, Zheng X, Jian R, Bai W, Zheng G, Xie Z, Lin Q, Lin F, Xu Y. In Situ Reduction of Silver Nanoparticles/Urushiol-Based Polybenzoxazine Composite Coatings with Enhanced Antimicrobial and Antifouling Performances. Polymers (Basel) 2024; 16:1167. [PMID: 38675086 PMCID: PMC11054688 DOI: 10.3390/polym16081167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Marine anti-fouling coatings represent an efficient approach to prevent and control the marine biofouling. However, a significant amount of antifouling agent is added to improve the static antifouling performance of the coatings, which leads to an issue whereby static antifouling performance conflicts with eco-friendly traits. Herein, this work reports an in situ reduction synthesis of silver nanoparticles (AgNPs) within polymers to produce composite coatings, aiming to solve the aforementioned issue. Firstly, urushiol-based benzoxazine monomers were synthesized by the Mannich reaction, using an eco-friendly natural product urushiol and n-octylamine and paraformaldehyde as the reactants. Additionally, AgNPs were obtained through the employment of free radicals formed by phenolic hydroxyl groups in the urushiol-based benzoxazine monomers, achieved by the in situ reduction of silver nitrate in benzoxazine. Then, the urushiol-based benzoxazine/AgNPs composite coatings were prepared by the thermosetting method. AgNPs exhibit broad-spectrum and highly efficient antimicrobial properties, with a low risk to human health and a minimal environmental impact. The composite coating containing a small amount of AgNPs (≤1 wt%) exhibits effective inhibition against various types of bacteria and marine microalgae in static immersion, thereby displaying outstanding antifouling properties. This organic polymer and inorganic nanoparticle composite marine antifouling coating, with its simple preparation method and eco-friendliness, presents an effective solution to the conflict between static antifouling effectiveness and environmental sustainability in marine antifouling coatings.
Collapse
Affiliation(s)
- Jipeng Chen
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; (J.C.); (X.Z.); (G.Z.); (Q.L.)
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Xiamen 361100, China;
| | - Xiaoxiao Zheng
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; (J.C.); (X.Z.); (G.Z.); (Q.L.)
| | - Rongkun Jian
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, China; (R.J.); (W.B.)
| | - Weibin Bai
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, China; (R.J.); (W.B.)
| | - Guocai Zheng
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; (J.C.); (X.Z.); (G.Z.); (Q.L.)
| | - Zhipeng Xie
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Xiamen 361100, China;
| | - Qi Lin
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; (J.C.); (X.Z.); (G.Z.); (Q.L.)
| | - Fengcai Lin
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; (J.C.); (X.Z.); (G.Z.); (Q.L.)
| | - Yanlian Xu
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; (J.C.); (X.Z.); (G.Z.); (Q.L.)
| |
Collapse
|
12
|
Lenchours Pezzano J, Rodriguez YE, Fernández-Gimenez AV, Laitano MV. Exploring fishery waste potential as antifouling component. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20159-20171. [PMID: 38372927 DOI: 10.1007/s11356-024-32491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
Marine biofouling is a global issue with economic and ecological implications. Existing solutions, such as biocide-based antifouling paints, are toxic for the environment. The search for better antifouling agents remains crucial. Recent research focuses on eco-friendly antifouling paints containing natural compounds like enzymes. This study evaluates enzymatic extracts from fishery residues for antifouling potential. Extracts from Pleoticus muelleri shrimp, Illex argentinus squid, and Lithodes santolla king crab were analyzed. Proteolytic activity and thermal stability were assessed, followed by bioassays on mussel byssus thread formation and barnacle cypris adhesive footprints. All three extracts demonstrated proteolytic activity and 24-h stability at temperate oceanic temperatures, except I. argentinus. P. muelleri extracts hindered cyprid footprint formation and mussel byssus thread generation. Further purification is required for L. santolla extract to assess its antifouling potential activity. This study introduces the use of fishery waste-derived enzyme extracts as a novel antifouling agent, providing a sustainable tool to fight against biofouling formation.
Collapse
Affiliation(s)
- Juliana Lenchours Pezzano
- Marine Science Department, Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Yamila E Rodriguez
- Marine Science Department, Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Argentina
- Marine and Coastal Research Institute (IIMyC), Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Scientific and Technological Research National Council, Mar del Plata, Argentina
| | - Analía V Fernández-Gimenez
- Marine Science Department, Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Argentina
- Marine and Coastal Research Institute (IIMyC), Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Scientific and Technological Research National Council, Mar del Plata, Argentina
| | - María V Laitano
- Marine Science Department, Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Argentina.
- Marine and Coastal Research Institute (IIMyC), Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Scientific and Technological Research National Council, Mar del Plata, Argentina.
| |
Collapse
|
13
|
Wang H, Chen R, Song D, Sun G, Yu J, Liu Q, Liu J, Zhu J, Liu P, Wang J. Silicone-modified polyurea-interpenetrating polymer network fouling release coatings with excellent wear resistance property tailored to regulations. J Colloid Interface Sci 2024; 653:971-980. [PMID: 37776724 DOI: 10.1016/j.jcis.2023.09.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
The invasion of alien species via marine organisms attaching to the surfaces of ship hulls is a growing problem. A number of countries have introduced corresponding regulations to combat ship biofouling. One effective way to solve this problem is to apply a fouling release coating with excellent wear resistance. In this study, a silicone-modified polyaspartic ester polyurea was synthesized by a simultaneous crosslinking polymerization. Polyaspartic ester polyurea is employed to form a tightly cross-linked network with excellent toughness and outstanding adhesion, while polydimethylsiloxane is used to form a relatively soft cross-linked network with low surface energy and surface elasticity modulus. Polyurea and silicone molecular chain lock onto each other to form interpenetrating polymer network (IPN) through their respective polymerization systems and cross-linking processes. The synergy between silicone and polyurea provides excellent mechanical properties as well as fouling release performance through the locking mechanism. This study provides a promising and universal strategy for the development of fouling release coatings with excellent wear resistance.
Collapse
Affiliation(s)
- Hongxia Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nanhai Institute of Harbin Engineering University, Hainan 572024, China.
| | - Dalei Song
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Gaohui Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nanhai Institute of Harbin Engineering University, Hainan 572024, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nanhai Institute of Harbin Engineering University, Hainan 572024, China
| | - Jiahui Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Peili Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nanhai Institute of Harbin Engineering University, Hainan 572024, China
| |
Collapse
|
14
|
Naik AT, Kamensky KM, Hellum AM, Moisander PH. Disturbance frequency directs microbial community succession in marine biofilms exposed to shear. mSphere 2023; 8:e0024823. [PMID: 37931135 PMCID: PMC10790581 DOI: 10.1128/msphere.00248-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/30/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE Disturbances are major drivers of community succession in many microbial systems; however, relatively little is known about marine biofilm community succession, especially under antifouling disturbance. Antifouling technologies exert strong local disturbances on marine biofilms, and resulting biomass losses can be accompanied by shifts in biofilm community composition and succession. We address this gap in knowledge by bridging microbial ecology with antifouling technology development. We show that disturbance by shear can strongly alter marine biofilm community succession, acting as a selective filter influenced by frequency of exposure. Examining marine biofilm succession patterns with and without shear revealed stable associations between key prokaryotic and eukaryotic taxa, highlighting the importance of cross-domain assessment in future marine biofilm research. Describing how compounded top-down and bottom-up disturbances shape the succession of marine biofilms is valuable for understanding the assembly and stability of these complex microbial communities and predicting species invasiveness.
Collapse
Affiliation(s)
- Abhishek T. Naik
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
- School of Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, Massachusetts, USA
| | | | - Aren M. Hellum
- Naval Undersea Warfare Center, Newport, Rhode Island, USA
| | - Pia H. Moisander
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
- School of Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, Massachusetts, USA
| |
Collapse
|
15
|
Cao Z, Cao P. Research Progress on Low-Surface-Energy Antifouling Coatings for Ship Hulls: A Review. Biomimetics (Basel) 2023; 8:502. [PMID: 37887633 PMCID: PMC10603911 DOI: 10.3390/biomimetics8060502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
The adhesion of marine-fouling organisms to ships significantly increases the hull surface resistance and expedites hull material corrosion. This review delves into the marine biofouling mechanism on marine material surfaces, analyzing the fouling organism adhesion process on hull surfaces and common desorption methods. It highlights the crucial role played by surface energy in antifouling and drag reduction on hulls. The paper primarily concentrates on low-surface-energy antifouling coatings, such as organic silicon and organic fluorine, for ship hull antifouling and drag reduction. Furthermore, it explores the antifouling mechanisms of silicon-based and fluorine-based low-surface-energy antifouling coatings, elucidating their respective advantages and limitations in real-world applications. This review also investigates the antifouling effectiveness of bionic microstructures based on the self-cleaning abilities of natural organisms. It provides a thorough analysis of antifouling and drag reduction theories and preparation methods linked to marine organism surface microstructures, while also clarifying the relationship between microstructure surface antifouling and surface hydrophobicity. Furthermore, it reviews the impact of antibacterial agents, especially antibacterial peptides, on fouling organisms' adhesion to substrate surfaces and compares the differing effects of surface structure and substances on ship surface antifouling. The paper outlines the potential applications and future directions for low-surface-energy antifouling coating technology.
Collapse
Affiliation(s)
- Zhimin Cao
- Institute of Intelligent Manufacturing and Smart Transportation, Suzhou City University, Suzhou 215104, China
| | - Pan Cao
- College of mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
16
|
Kowalewska A, Majewska-Smolarek K. Self-Healing Antimicrobial Silicones-Mechanisms and Applications. Polymers (Basel) 2023; 15:3945. [PMID: 37835994 PMCID: PMC10575179 DOI: 10.3390/polym15193945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Organosilicon polymers (silicones) are an important part of material chemistry and a well-established commercial product segment with a wide range of applications. Silicones are of enduring interest due to their unique properties and utility. Recently, new application areas for silicone-based materials have emerged, such as stretchable electronics, wearable stress sensors, smart coatings, and soft robotics. For this reason, research interest over the past decade has been directed towards new methods of crosslinking and increasing the mechanical strength of polyorganosiloxanes. The introduction of self-healing mechanisms may be a promising alternative for such high-value materials. This approach has gained both growing research interest and a rapidly expanding range of applications. Inherent extrinsic and intrinsic self-healing methods have been used in the self-healing of silicones and have resulted in significant advances in polymer composites and coatings, including multicomponent systems. In this review, we present a summary of research work dedicated to the synthesis and applications of self-healing hybrid materials containing polysiloxane segments, with a focus on antimicrobial and antifouling coatings.
Collapse
Affiliation(s)
- Anna Kowalewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | | |
Collapse
|
17
|
Hao S, Qi Y, Zhang Z. Influence of Light Conditions on the Antibacterial Performance and Mechanism of Waterborne Fluorescent Coatings Based on Waterproof Long Afterglow Phosphors/PDMS Composites. Polymers (Basel) 2023; 15:3873. [PMID: 37835922 PMCID: PMC10574996 DOI: 10.3390/polym15193873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Marine microbial adhesion is the fundamental cause of large-scale biological fouling. Low surface energy coatings can prevent marine installations from biofouling; nevertheless, their static antifouling abilities are limited in the absence of shear forces produced by seawater. Novel waterborne antifouling coatings inspired by fluorescent coral were reported in this paper. Waterproof long afterglow phosphors (WLAP) were introduced into waterborne silicone elastomers by the physical blending method. The composite coatings store energy during the day, and the various colors of light emitted at night affect the regular physiological activities of marine bacteria. Due to the synergistic effect of fouling-release and fluorescence antifouling, the WLAP/polydimethylsiloxane (PDMS) composite coating showed excellent antifouling abilities. The antibacterial performance of coatings was tested under simulated day-night alternation, continuous light, and constant dark conditions, respectively. The results illustrated that the antibacterial performance of composite coatings under simulated day-night alternation conditions was significantly better than that under continuous light or darkness. The weak lights emitted by the coating can effectively inhibit the adhesion of bacteria. C-SB/PDMS showed the best antibacterial effect, with a bacterial adhesion rate (BAR) of only 3.7%. Constant strong light also affects the normal physiological behavior of bacteria, and the weak light of coatings was covered. The antibacterial ability of coatings primarily relied on their surface properties under continuous dark conditions. The fluorescent effect played a vital role in the synergetic antifouling mechanism. This study enhanced the static antifouling abilities of coatings and provided a new direction for environmentally friendly and long-acting marine antifouling coatings.
Collapse
Affiliation(s)
- Sinan Hao
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116026, China; (S.H.); (Z.Z.)
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yuhong Qi
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116026, China; (S.H.); (Z.Z.)
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zhanping Zhang
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116026, China; (S.H.); (Z.Z.)
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
18
|
Romeu MJ, Morais J, Vasconcelos V, Mergulhão F. Effect of Hydrogen Peroxide on Cyanobacterial Biofilms. Antibiotics (Basel) 2023; 12:1450. [PMID: 37760746 PMCID: PMC10525773 DOI: 10.3390/antibiotics12091450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Although a range of disinfecting formulations is commercially available, hydrogen peroxide is one of the safest chemical agents used for disinfection in aquatic environments. However, its effect on cyanobacterial biofilms is poorly investigated. In this work, biofilm formation by two filamentous cyanobacterial strains was evaluated over seven weeks on two surfaces commonly used in marine environments: glass and silicone-based paint (Sil-Ref) under controlled hydrodynamic conditions. After seven weeks, the biofilms were treated with a solution of hydrogen peroxide (H2O2) to assess if disinfection could affect long-term biofilm development. The cyanobacterial biofilms appeared to be tolerant to H2O2 treatment, and two weeks after treatment, the biofilms that developed on glass by one of the strains presented higher biomass amounts than the untreated biofilms. This result emphasizes the need to correctly evaluate the efficiency of disinfection in cyanobacterial biofilms, including assessing the possible consequences of inefficient disinfection on the regrowth of these biofilms.
Collapse
Affiliation(s)
- Maria João Romeu
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - João Morais
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (J.M.); (V.V.)
| | - Vítor Vasconcelos
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (J.M.); (V.V.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Filipe Mergulhão
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
19
|
Prado L, Böhringer D, Mazare A, Sotelo L, Sarau G, Christiansen S, Fabry B, Schmuki P, Virtanen S, Goldmann WH, Tesler AB. Silicone-Based Lubricant-Infused Slippery Coating Covalently Bound to Aluminum Substrates for Underwater Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:31776-31786. [PMID: 37348845 PMCID: PMC10327651 DOI: 10.1021/acsami.3c04508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023]
Abstract
Wetting of solid surfaces is crucial for biological and industrial processes but is also associated with several harmful phenomena such as biofouling and corrosion that limit the effectiveness of various technologies in aquatic environments. Despite extensive research, these challenges remain critical today. Recently, we have developed a facile UV-grafting technique to covalently attach silicone-based coatings to solid substrates. In this study, the grafting process was evaluated as a function of UV exposure time on aluminum substrates. While short-time exposure to UV light results in the formation of lubricant-infused slippery surfaces (LISS), a flat, nonporous variant of slippery liquid-infused porous surfaces, longer exposure leads to the formation of semi-rigid cross-linked polydimethylsiloxane (PDMS) coatings, both covalently bound to the substrate. These coatings were exposed to aquatic media to evaluate their resistance to corrosion and biofouling. While the UV-grafted cross-linked PDMS coating effectively inhibits aluminum corrosion in aquatic environments and allows organisms to grow on the surface, the LISS coating demonstrates improved corrosion resistance but inhibits biofilm adhesion. The synergy between facile and low-cost fabrication, rapid binding kinetics, eco-friendliness, and nontoxicity of the applied materials to aquatic life combined with excellent wetting-repellent characteristics make this technology applicable for implementation in aquatic environments.
Collapse
Affiliation(s)
- Lucia
H. Prado
- Department
of Materials Science and Engineering, Institute for Surface Science
and Corrosion, Faculty of Engineering, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
| | - David Böhringer
- Department
of Physics, Biophysics Group, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Henkestrasse 91, Erlangen 91052, Germany
| | - Anca Mazare
- Department
of Materials Science and Engineering, Institute for Surface Science
and Corrosion, Faculty of Engineering, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
| | - Lamborghini Sotelo
- Institute
for Nanotechnology and Correlative Microscopy eV INAM, Fraunhofer
Institute, Äußere
Nürnberger Str. 62, Forchheim 91301, Germany
- Department
of Physics, Institute for Optics, Information and Photonics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, Erlangen 91058, Germany
| | - George Sarau
- Institute
for Nanotechnology and Correlative Microscopy eV INAM, Fraunhofer
Institute, Äußere
Nürnberger Str. 62, Forchheim 91301, Germany
- Fraunhofer
Institute for Ceramic Technologies and Systems IKTS, Äußere Nürnberger Str. 62, Forchheim 91301, Germany
- Max Planck
Institute for the Science of Light, Staudtstr. 2, Erlangen 91058, Germany
| | - Silke Christiansen
- Institute
for Nanotechnology and Correlative Microscopy eV INAM, Fraunhofer
Institute, Äußere
Nürnberger Str. 62, Forchheim 91301, Germany
- Fraunhofer
Institute for Ceramic Technologies and Systems IKTS, Äußere Nürnberger Str. 62, Forchheim 91301, Germany
- Institute
for Experimental Physics, Freie Universität
Berlin, Arnimallee 14, Berlin 14195, Germany
| | - Ben Fabry
- Department
of Physics, Biophysics Group, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Henkestrasse 91, Erlangen 91052, Germany
| | - Patrik Schmuki
- Department
of Materials Science and Engineering, Institute for Surface Science
and Corrosion, Faculty of Engineering, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
- Regional
Centre of Advanced Technologies and Materials, Palacky University, Listopadu 50A, Olomouc 772 07, Czech Republic
| | - Sannakaisa Virtanen
- Department
of Materials Science and Engineering, Institute for Surface Science
and Corrosion, Faculty of Engineering, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
| | - Wolfgang H. Goldmann
- Department
of Physics, Biophysics Group, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Henkestrasse 91, Erlangen 91052, Germany
| | - Alexander B. Tesler
- Department
of Materials Science and Engineering, Institute for Surface Science
and Corrosion, Faculty of Engineering, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
| |
Collapse
|
20
|
Soleimani S, Jannesari A, Etezad SM. Prevention of marine biofouling in the aquaculture industry by a coating based on polydimethylsiloxane-chitosan and sodium polyacrylate. Int J Biol Macromol 2023:125508. [PMID: 37356687 DOI: 10.1016/j.ijbiomac.2023.125508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
In this study, a series of novel hydrophobic/hydrophilic hybrid (HHH) coatings with the feature of preventing the fouling phenomenon was fabricated based on polydimethylsiloxane (PDMS), as matrix and two hydrophilic polymers: chitosan and sodium polyacrylate, as dispersed phases. Antibacterial activity, pseudo-barnacle adhesion strength, surface free energy, water contact angle, and water absorption were performed for all samples. Evaluating field immersion of the samples was performed in the natural seawater. The results showed that the dispersed phase containing PDMS coatings showed simultaneously both of antibacterial activity and foul release behavior. Among the samples, the PCs4 coating containing 4 wt% Cs indicated the lowest pseudo barnacle adhesion strength (0.04 MPa), the lowest surface free energy (18.94 mN/m), the highest water contact angle (116.05°), and the percentage of fouling organisms 9.8 % after 30 days immersion. The HHH coatings can be considered as novel eco-friendly antifouling/foul release coatings for aquaculture applications.
Collapse
Affiliation(s)
- Soolmaz Soleimani
- Department of Resins and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Ali Jannesari
- Department of Resins and Additives, Institute for Color Science and Technology, Tehran, Iran.
| | - Seyed Masoud Etezad
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran
| |
Collapse
|
21
|
Scolaro C, Liotta LF, Calabrese C, Marcì G, Visco A. Adhesive and Rheological Features of Ecofriendly Coatings with Antifouling Properties. Polymers (Basel) 2023; 15:polym15112456. [PMID: 37299255 DOI: 10.3390/polym15112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
In this work, formulations of "environmentally compatible" silicone-based antifouling, synthesized in the laboratory and based on copper and silver on silica/titania oxides, have been characterized. These formulations are capable of replacing the non-ecological antifouling paints currently available on the market. The texture properties and the morphological analysis of these powders with an antifouling action indicate that their activity is linked to the nanometric size of the particles and to the homogeneous dispersion of the metal on the substrate. The presence of two metal species on the same support limits the formation of nanometric species and, therefore, the formation of homogeneous compounds. The presence of the antifouling filler, specifically the one based on titania (TiO2) and silver (Ag), facilitates the achievement of a higher degree of cross-linking of the resin, and therefore, a better compactness and completeness of the coating than that attained with the pure resin. Thus, a high degree of adhesion to the tie-coat and, consequently, to the steel support used for the construction of the boats was achieved in the presence of the silver-titania antifouling.
Collapse
Affiliation(s)
- Cristina Scolaro
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Leonarda Francesca Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Carla Calabrese
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Giuseppe Marcì
- "Schiavello-Grillone" Photocatalysis Group, Department of Engineering, University of Palermo, Viale Delle Scienze, 90128 Palermo, Italy
| | - Annamaria Visco
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
- Institute for Polymers, Composites and Biomaterials, CNR-IPCB, Via P. Gaifami 18, 9-95126 Catania, Italy
| |
Collapse
|
22
|
Weber F, Esmaeili N. Marine biofouling and the role of biocidal coatings in balancing environmental impacts. BIOFOULING 2023; 39:661-681. [PMID: 37587856 DOI: 10.1080/08927014.2023.2246906] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Marine biofouling is a global problem affecting various industries, particularly the shipping industry due to long-distance voyages across various ecosystems. Therein fouled hulls cause increased fuel consumption, greenhouse gas emissions, and the spread of invasive aquatic species. To counteract these issues, biofouling management plans are employed using manual cleaning protocols and protective coatings. This review provides a comprehensive overview of adhesion strategies of marine organisms, and currently available mitigation methods. Further, recent developments and open challenges of antifouling (AF) and fouling release (FR) coatings are discussed with regards to the future regulatory environment. Finally, an overview of the environmental and economic impact of fouling is provided to point out why and when the use of biocidal solutions is beneficial in the overall perspective.
Collapse
Affiliation(s)
- Florian Weber
- Department of Materials and Nanotechnology, SINTEF, Oslo, Norway
| | | |
Collapse
|
23
|
Li M, Nan L, Zhang B, Kong J, Wang Y, Ba M. Polyether-Thiourea-Siloxane Copolymer Based on H-Bonding Interaction for Marine Antifouling. Molecules 2023; 28:molecules28083574. [PMID: 37110807 PMCID: PMC10144924 DOI: 10.3390/molecules28083574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
By introducing thiourea and ether groups into MQ silicone resin polymer via free radical polymerization, a polyether-thiourea-siloxane (PTS) copolymer was synthesized. The characterization of the synthesized copolymer indicated the occurrence of H-bonding interactions and a narrow molecular weight polydispersity index. Antifouling coatings were produced by incorporating the synthesized copolymer and phenylmethylsilicone oil (PSO). The addition of a minute amount of copolymer enhanced the hydrophobicity of the coating by increasing its surface roughness. However, excessive addition of copolymer resulted in a significant deterioration of the coating surface smoothness. The copolymer improved the mechanical properties of the coating, but excessive addition decreased the crosslinking density and weakened the mechanical performance. With increasing copolymer addition, the leaching of PSO was significantly improved due to the change in the storage form of PSO in the coating caused by the copolymer. Based on the H-bonding interaction of the copolymer, the adhesion strength between the coating and the substrate was significantly improved. However, excessive addition of copolymer did not infinitely enhance the adhesion strength. The antifouling performance demonstrated that an appropriate amount of copolymer could obtain adequate PSO leaching efficiency, thereby effectively enhancing the antifouling performance of the coating. In this study, the prepared coating P12 (12 g of PTS in 100 g of PDMS) showed the most effective antifouling performance.
Collapse
Affiliation(s)
- Mengyu Li
- Department of Material Science and Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Liyang Nan
- Department of Material Science and Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Boxuan Zhang
- Department of Material Science and Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Junjun Kong
- Department of Material Science and Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Yufeng Wang
- Department of Material Science and Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Miao Ba
- Department of Material Science and Engineering, Changshu Institute of Technology, Changshu 215500, China
| |
Collapse
|
24
|
Jiang R, Zheng X, Zhu S, Li W, Zhang H, Liu Z, Zhou X. Recent Advances in Functional Polyurethane Chemistry: From Structural Design to Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Rijia Jiang
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| | - Xiangyu Zheng
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| | - Shanshan Zhu
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| | - Wenyao Li
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| | - Haiwei Zhang
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| | - Zhihao Liu
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| | - Xing Zhou
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| |
Collapse
|
25
|
Zhang LY, Feng DQ, Zhu PY, Song WL, Yasir M, Zhang C, Liu L. Hydrogel-Anchored Fe-Based Amorphous Coatings with Integrated Antifouling and Anticorrosion Functionality. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13644-13655. [PMID: 36861749 DOI: 10.1021/acsami.3c00227] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biofouling and corrosion of underwater equipment induced by marine organisms have become major issues in the marine industry. The superior corrosion resistance of Fe-based amorphous coatings makes them suitable for marine applications; however, they have a poor antifouling ability. In this work, a hydrogel-anchored amorphous (HAM) coating with satisfactory antifouling and anticorrosion performance is designed, utilizing an interfacial engineering strategy involving micropatterning, surface hydroxylation, and a dopamine intermediate layer to increase the adhesion strength between the hydrogel layer and the amorphous coating. The as-obtained HAM coating exhibits exceptional antifouling properties, achieving 99.8% resistance to algae, 100% resistance to mussels, and excellent biocorrosion resistance against Pseudomonas aeruginosa. Antifouling and anticorrosion performance of the HAM coating was also explored by conducting a marine field test in the East China Sea, and no signs of corrosion and fouling are observed after 1 month of immersion. It is revealed that the outstanding antifouling properties stem from the killing-resisting-camouflaging trinity that resists organism attachment across different length scales, and the excellent anticorrosion performance originates from the remarkable barrier of the amorphous coating against Cl- ion diffusion and microbe-induced biocorrosion. This work presents a novel methodology for designing marine protective coating with excellent antifouling and anticorrosion properties.
Collapse
Affiliation(s)
- Ling-Yu Zhang
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan-Qing Feng
- State-Province Joint Engineering Laboratory of Marine Bio products and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Peng-Yu Zhu
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wan-Li Song
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Yasir
- Department of Materials Science & Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Cheng Zhang
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lin Liu
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
26
|
Kil J, Rahman RT, Wang W, Choi S, Nam YS, Li S. Dual functionalized brush copolymers as versatile antifouling coatings. J Mater Chem B 2023; 11:2904-2915. [PMID: 36892061 DOI: 10.1039/d2tb02522a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Polymer coatings containing both fouling-resistant and fouling-release components have been reported to show synergistic antifouling properties. However, it remains unclear how the polymer composition influences the antifouling performance, particularly regarding foulants of different sizes and biological natures. Herein, we prepare dual functionalized brush copolymers containing fouling-resistant poly(ethylene glycol) (PEG) and fouling-release polydimethylsiloxane (PDMS) and examine their antifouling performances against different biofoulants. We utilize poly(pentafluorophenyl acrylate) (PPFPA) as a reactive precursor polymer and graft amine-functionalized PEG and PDMS side chains to create PPFPA-g-PEG-g-PDMS brush copolymers of systematically varying compositions. The copolymer films spin-coated on silicon wafers exhibit surface heterogeneity that can be correlated well with the bulk composition of the copolymer. When the copolymer-coated surfaces are examined against protein (human serum albumin and bovine serum albumin) adsorption and cell (lung cancer cells and microalgae) adhesion, they are found to perform better than the homopolymers. The enhanced antifouling properties are attributed to the copolymers having a PEG-rich top layer and a PEG/PDMS mixed bottom layer that work synergistically to resist biofoulant attachment. Furthermore, the composition of the best-performing copolymer is different for different foulants, with PPFPA-g-PEG39-g-PDMS46 exhibiting the best antifouling properties against proteins and PPFPA-g-PEG54-g-PDMS30 exhibiting the best antifouling properties against cells. We explain this difference by considering the changes in the length scale of the surface heterogeneity in relation to the foulant sizes.
Collapse
Affiliation(s)
- Jihyo Kil
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Rafia Tasnim Rahman
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Wenxuan Wang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Saehan Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
27
|
Oligo(2-alkyl-2-oxazoline)-Based Graft Copolymers for Marine Antifouling Coatings. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
28
|
Abstract
Simultaneous realization of superior mechanical and antifouling properties is critical for a coating. The use of stereoscopic polysiloxanes in place of linear polysiloxanes to fabricate antifouling coatings can combine properties of organic and inorganic materials, i.e., they can exhibit both high hardness and wear resistance from inorganic components as well as the flexibility and tunability from organic components. This strategy is used to prepare hard yet flexible antifouling coatings or polymer-ceramic hybrid antifouling coatings. In this mini-review, we report the recent advances in this field. Particularly, the effects of stereoscopic polysiloxane structures on their mechanical and antifouling properties are discussed in detail.
Collapse
|
29
|
Oliva M, Martinelli E, Guazzelli E, Cuccaro A, De Marchi L, Fumagalli G, Monni G, Vasarri M, Degl'Innocenti D, Pretti C. Posidonia oceanica (L.) (Delile, 1813) extracts as a potential booster biocide in fouling-release coatings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18480-18490. [PMID: 36215022 DOI: 10.1007/s11356-022-23460-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Since the banning of tributyltin, the addition of inorganic (metal oxides) and organic (pesticides, herbicides) biocides in antifouling paint has represented an unavoidable step to counteract biofouling and the resulting biodeterioration of submerged surfaces. Therefore, the development of new methods that balance antifouling efficacy with environmental impact has become a topic of great importance. Among several proposed strategies, natural extracts may represent one of the most suitable alternatives to the widely used toxic biocides. Posidonia oceanica is one of the most representative organisms of the Mediterranean Sea and contains hundreds of bioactive compounds. In this study, we prepared, characterized, and assessed a hydroalcoholic extract of P. oceanica and then compared it to three model species. Together, these four species belong to relevant groups of biofoulers: bacteria (Aliivibrio fischeri), diatoms (Phaeodactylum tricornutum), and serpulid polychaetes (Ficopomatus enigmaticus). We also added the same P. oceanica extract to a PDMS-based coating formula. We tested this coating agent with Navicula salinicola and Ficopomatus enigmaticus to evaluate both its biocidal performance and its antifouling properties. Our results indicate that our P. oceanica extract provides suitable levels of protection against all the tested organisms and significantly reduces adhesion of N. salinicola cells and facilitates their release in low-intensity waterflows.
Collapse
Affiliation(s)
- Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy.
| | - Elisa Martinelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
| | - Elisa Guazzelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
| | - Alessia Cuccaro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy
| | - Giorgia Fumagalli
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy
| | - Gianfranca Monni
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124, Pisa, Italy
| | - Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Donatella Degl'Innocenti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124, Pisa, Italy
| |
Collapse
|
30
|
Jiao Y, Rong Z, Gao C, Wu Y, Liu Y. Tannic Acid Crosslinked Self-Healing and Reprocessable Silicone Elastomers with Improved Antibacterial and Flame Retardant Properties. Macromol Rapid Commun 2023; 44:e2200681. [PMID: 36125336 DOI: 10.1002/marc.202200681] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Indexed: 11/11/2022]
Abstract
Silicone elastomers are widely used in aviation, electronics, automotive, and medical device fields, and their overuse inevitably causes recycled problems. In addition, the elastomers are subject to attack by bacteria and fire during use in some application scenarios, which is a safety hazard. Therefore, there is a great need to prepare silicone elastomers with improved antibacterial, flame retardant, self-healing, and recyclable functions. A new strategy is proposed to prepare silicone elastomers with bio-based tannic acid as cross-linkers to solve this problem by using polydimethylsiloxane as a soft chain segment and 2,2-bis(hydroxymethyl)propionic acid as an intermediate chain extender. Based on the phenol carbamate bonding and hydrogen bonding interactions, the elastomer has efficient self-healing ability and can achieve dynamic dissociation at 120 °C for complete recovery. In addition, due to the unique spatial structure and polyphenolic hydroxyl groups of tannic acid, the mechanical properties of the elastomer are greatly improved with an antimicrobial efficiency of over 90% and a final oxygen index of 25.5%. The multifunctional silicone elastomer has great potential applications in recyclable refractory materials and antimicrobial materials.
Collapse
Affiliation(s)
- Yizhi Jiao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhihao Rong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chuanhui Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yumin Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yuetao Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
31
|
Manderfeld E, Balasubramaniam A, Özcan O, Anderson C, Finlay JA, Clare AS, Hunsucker K, Swain GW, Rosenhahn A. Visible light-induced surface grafting polymerization of perfluoropolyether brushes as marine low fouling materials. Polym Chem 2023. [DOI: 10.1039/d3py00126a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Controlled grafting of perfluoropolyether brushes from polymer substrates as low fouling marine coatings. ITX coupled to OTS-monolayers was used as dormant group and activated by visible light to induce the polymerization reaction.
Collapse
|
32
|
Cao P, Wang H, Zhu M, Fu Y, Yuan C. Integration of Antifouling and Underwater Sound Absorption Properties into PDMS/MWCNT/SiO 2 Coatings. Biomimetics (Basel) 2022; 7:biomimetics7040248. [PMID: 36546948 PMCID: PMC9775102 DOI: 10.3390/biomimetics7040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Any surface immersed in sea water will suffer from marine fouling, including underwater sound absorption coatings. Traditional underwater sound absorption coatings rely heavily on the use of toxic, biocide-containing paints to combat biofouling. In this paper, an environmentally-friendly nanocomposite with integrated antifouling and underwater sound absorption properties was fabricated by adopting MWCNTs-COOH and SiO2 into PDMS at different ratios. SEM, FTIR and XPS results demonstrated MWCNTs were mixed into PDMS, and the changes in elements were also analyzed. SiO2 nanoparticles in PDMS decreased the tensile properties of the coating, while erosion resistance was enhanced. Antibacterial properties of the coatings containing MWCNTs-COOH and SiO2 at a ratio of 1:1, 1:3, and 1:5 reached 62.02%, 72.36%, and 74.69%, respectively. In the frequency range of 1500-5000 Hz, the average sound absorption coefficient of PDMS increased from 0.5 to greater than 0.8 after adding MWCNTs-COOH and SiO2, which illustrated that the addition of nanoparticles enhanced the underwater sound absorption performance of the coating. Incorporating MWCNTs-COOH and SiO2 nanoparticles into the PDMS matrix to improve its sound absorption and surface antifouling properties provides a promising idea for marine applications.
Collapse
Affiliation(s)
- Pan Cao
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
- Correspondence: (P.C.); (Y.F.); (C.Y.)
| | - Huming Wang
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Mingyi Zhu
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yifeng Fu
- School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (P.C.); (Y.F.); (C.Y.)
| | - Chengqing Yuan
- National Engineering Research Center for Water Transportation Safety, Reliability Engineering Institute, Wuhan University of Technology, Wuhan 430063, China
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
- Correspondence: (P.C.); (Y.F.); (C.Y.)
| |
Collapse
|
33
|
Luoma E, Laurila-Pant M, Altarriba E, Nevalainen L, Helle I, Granhag L, Lehtiniemi M, Srėbalienė G, Olenin S, Lehikoinen A. A multi-criteria decision analysis model for ship biofouling management in the Baltic Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158316. [PMID: 36037884 DOI: 10.1016/j.scitotenv.2022.158316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Biofouling of ship hulls form a vector for the introduction of non-indigenous organisms worldwide. Through increasing friction, the organisms attached to ships' hulls increase the fuel consumption, leading to both higher fuel costs and air emissions. At the same time, ship biofouling management causes both ecological risks and monetary costs. All these aspects should be considered case-specifically in the search of sustainable management strategies. Applying Bayesian networks, we developed a multi-criteria decision analysis model to compare biofouling management strategies in the Baltic Sea, given the characteristics of a ship, its operating profile and operational environment, considering the comprehensive environmental impact and the monetary costs. The model is demonstrated for three scenarios (SC1-3) and sub-scenarios (A-C), comparing the alternative biofouling management strategies in relation to NIS (non-indigenous species) introduction risk, eco-toxicological risk due to biocidal coating, carbon dioxide emissions and costs related to fuel consumption, in-water cleaning and hull coating. The scenarios demonstrate that by the careful consideration of the hull fouling management strategy, both money and environment can be saved. We suggest biocidal-free coating with a regular in-water cleaning using a capture system is generally the lowest-risk option. The best biocidal-free coating type and the optimal in-water cleaning interval should be evaluated case-specifically, though. In some cases, however, biocidal coating remains a justifiable option.
Collapse
Affiliation(s)
- Emilia Luoma
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland; Kotka Maritime Research Centre, Kotka, Finland; Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland.
| | - Mirka Laurila-Pant
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland; Kotka Maritime Research Centre, Kotka, Finland; Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| | - Elias Altarriba
- South-Eastern Finland University of Applied Sciences (Xamk), Logistics and Seafaring, Kotka, Finland; Kotka Maritime Research Centre, Kotka, Finland
| | - Lauri Nevalainen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland; Kotka Maritime Research Centre, Kotka, Finland; Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| | - Inari Helle
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland; Kotka Maritime Research Centre, Kotka, Finland; Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland; Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Lena Granhag
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Maiju Lehtiniemi
- Finnish Environment Institute, Marine Research Centre, Helsinki, Finland
| | - Greta Srėbalienė
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
| | - Sergej Olenin
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
| | - Annukka Lehikoinen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland; Kotka Maritime Research Centre, Kotka, Finland; Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| |
Collapse
|
34
|
Ru JC, Zhao XL, Cao ZH, Chen CZ, Li P, Li ZH. Acute Toxicity of a Novel anti-fouling Material Additive DCOIT to Marine Chlorella sp. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:1018-1022. [PMID: 36318303 DOI: 10.1007/s00128-022-03623-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one) is the main ingredient in SeaNine-211, a new antifouling agent that replaces organotin compounds to prevent the growth of fouling organisms on board. Biocides from antifoulants can cause problems for marine ecosystems by destroying non-target algal species. This study evaluated the potential adverse effects DCOIT using the Marine Chlorella sp. The concentration of DCOIT were set according to the semi-inhibitory concentrations for acute exposure experiments, and relevant oxidative stress indicators were measured to assess the acute toxic effects. The results showed that the inhibition concentrations (IC50) of DCOIT against Marine Chlorella sp was 2.522 mg/L. The genes related to photosynthesis and antioxidant capacity showed the effect of promoting low concentration and inhibiting high concentration. In addition, based on the ultrastructural observation and the expression analysis of photosynthesis related genes, it was found that DCOIT had a significant effect on plant photosynthesis.
Collapse
Affiliation(s)
- Jin-Chuang Ru
- Marine College, Shandong University, 264209, Weihai, Shandong, China
| | - Xue-Li Zhao
- Marine College, Shandong University, 264209, Weihai, Shandong, China
| | - Zhi-Han Cao
- Marine College, Shandong University, 264209, Weihai, Shandong, China
| | - Cheng-Zhuang Chen
- Marine College, Shandong University, 264209, Weihai, Shandong, China
| | - Ping Li
- Marine College, Shandong University, 264209, Weihai, Shandong, China.
| | - Zhi-Hua Li
- Marine College, Shandong University, 264209, Weihai, Shandong, China.
| |
Collapse
|
35
|
Sonntag SR, Gniesmer S, Gapeeva A, Offermann KJ, Adelung R, Mishra YK, Cojocaru A, Kaps S, Grisanti S, Grisanti S, Tura A. In Vitro Evaluation of Zinc Oxide Tetrapods as a New Material Component for Glaucoma Implants. Life (Basel) 2022; 12:1805. [PMID: 36362958 PMCID: PMC9697987 DOI: 10.3390/life12111805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 09/09/2024] Open
Abstract
In our previous study we were able to show that zinc oxide (ZnO) tetrapods inhibit wound healing processes. Therefore, the aim of this study was to test the antiproliferative effect of two types of porous polydimethylsiloxane (PDMS)/ tetrapodal zinc oxide (ZnO-T) materials, as well as their usability for glaucoma implants. To find the best implant material, two different porous PDMS/ZnO-T materials were examined. One consisted of 3D interconnected PDMS coarse-pored foams with protruding ZnO-T particles; the other consisted of fine-pored 3D interconnected ZnO-T networks homogeneously coated by a thin PDMS film in the nanometer range. Fibroblast cell viability was investigated for both materials via MTT dye, and some implant material samples were further processed for electron microscopy. Both PDMS/ZnO-T materials showed reduced cell viability in the MTT staining. Furthermore, the electron microscopy revealed barely any fibroblasts growing on the implant materials. At the surface of the fine-pored implant material, however, fibroblasts could not be observed in the etched control samples without ZnO-T. It was found that post-processing of the material to the final stent diameter was highly challenging and that the fabrication method, therefore, had to be adapted. In conclusion, we were able to demonstrate the antiproliferative potential of the two different PDMS/ZnO-T materials. Furthermore, smaller pore size (in the range of tens of micrometers) in the implant material seems to be preferable.
Collapse
Affiliation(s)
| | - Stefanie Gniesmer
- Department of Ophthalmology, University of Luebeck, 23538 Luebeck, Germany
| | - Anna Gapeeva
- Institute for Materials Science, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Klaus Jakob Offermann
- Institute for Materials Science, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Rainer Adelung
- Institute for Materials Science, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, 6400 Sønderborg, Denmark
| | - Ala Cojocaru
- Institute for Materials Science, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
- Phi-Stone AG, 24143 Kiel, Germany
| | - Sören Kaps
- Institute for Materials Science, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Swaantje Grisanti
- Department of Ophthalmology, University of Luebeck, 23538 Luebeck, Germany
| | - Salvatore Grisanti
- Department of Ophthalmology, University of Luebeck, 23538 Luebeck, Germany
| | - Aysegül Tura
- Department of Ophthalmology, University of Luebeck, 23538 Luebeck, Germany
| |
Collapse
|
36
|
Lagerström M, Wrange AL, Oliveira DR, Granhag L, Larsson AI, Ytreberg E. Are silicone foul-release coatings a viable and environmentally sustainable alternative to biocidal antifouling coatings in the Baltic Sea region? MARINE POLLUTION BULLETIN 2022; 184:114102. [PMID: 36113175 DOI: 10.1016/j.marpolbul.2022.114102] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/13/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
To combat unwanted fouling on immersed hulls, biocidal antifouling coatings are commonly applied to vessels trafficking the Baltic Sea. Here, the efficacy, environmental sustainability and market barriers of silicone foul-release coatings (FRCs) was assessed for this region to evaluate their viability as replacements for biocidal coatings. Coated panels were exposed statically over a 1 year period at three locations in the Baltic Sea region to assess the long-term performance of a biocide-free FRC and two copper coatings. The FRC was found to perform equally well or significantly better than the copper coatings. Even though most silicone FRCs on the market are biocide-free, a review of the literature regarding toxic effects and the identity and environmental fate of leachables shows that they may not be completely environmentally benign, simply for the lack of biocides. Nonetheless, FRCs are substantially less toxic compared to biocidal antifouling coatings and their use should be promoted.
Collapse
Affiliation(s)
- Maria Lagerström
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE 412 96, Gothenburg, Sweden.
| | - Anna-Lisa Wrange
- IVL Swedish Environmental Research Institute, Kristineberg 566, 45178 Fiskebäckskil, Sweden.
| | - Dinis Reis Oliveira
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE 412 96, Gothenburg, Sweden.
| | - Lena Granhag
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE 412 96, Gothenburg, Sweden.
| | - Ann I Larsson
- University of Gothenburg, Department of Marine Sciences, Tjärnö Marine Laboratory, 452 96 Strömstad, Sweden.
| | - Erik Ytreberg
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE 412 96, Gothenburg, Sweden.
| |
Collapse
|
37
|
Preparation of siloxymethyl-modified silicone acrylate prepolymers with UV/moisture dual curability for applications in anti-smudge, anti-fingerprint coatings. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Védie E, Barry-Martinet R, Senez V, Berglin M, Stenlund P, Brisset H, Bressy C, Briand JF. Influence of Sharklet-Inspired Micropatterned Polymers on Spatio-Temporal Variations of Marine Biofouling. Macromol Biosci 2022; 22:e2200304. [PMID: 36153836 DOI: 10.1002/mabi.202200304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/07/2022] [Indexed: 12/25/2022]
Abstract
This article aims to show the influence of surface characteristics (microtopography, chemistry, mechanical properties) and seawater parameters on the settlement of marine micro- and macroorganisms. Polymers with nine microtopographies, three distinct mechanical properties, and wetting characteristics are immersed for one month into two contrasting coastal sites (Toulon and Kristineberg Center) and seasons (Winter and Summer). Influence of microtopography and chemistry on wetting is assessed through static contact angle and captive air bubble measurements over 3-weeks immersion in artificial seawater. Microscopic analysis, quantitative flow cytometry, metabarcoding based on the ribulose biphosphate carboxylase (rbcL) gene amplification, and sequencing are performed to characterize the settled microorganisms. Quantification of macrofoulers is done by evaluating the surface coverage and the type of organism. It is found that for long static in situ immersion, mechanical properties and non-evolutive wettability have no major influence on both abundance and diversity of biofouling assemblages, regardless of the type of organisms. The apparent contradiction with previous results, based on model organisms, may be due to the huge diversity of marine environments, both in terms of taxa and their size. Evolutive wetting properties with wetting switching back and forth over time have shown to strongly reduce the colonization by macrofoulers.
Collapse
Affiliation(s)
- Elora Védie
- Laboratoire MAPIEM, E.U. 4323, SeaTech Ecole d'Ingénieur, Université de Toulon, CS 60584, Toulon, 83041 Cedex 9, France
| | - Raphaëlle Barry-Martinet
- Laboratoire MAPIEM, E.U. 4323, SeaTech Ecole d'Ingénieur, Université de Toulon, CS 60584, Toulon, 83041 Cedex 9, France
| | - Vincent Senez
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Mattias Berglin
- RISE Research Institutes of Sweden AB, Arvid Wallgrens backe 20, Göteborg, SE-413 46, Sweden
| | - Patrik Stenlund
- RISE Research Institutes of Sweden AB, Arvid Wallgrens backe 20, Göteborg, SE-413 46, Sweden
| | - Hugues Brisset
- Laboratoire MAPIEM, E.U. 4323, SeaTech Ecole d'Ingénieur, Université de Toulon, CS 60584, Toulon, 83041 Cedex 9, France
| | - Christine Bressy
- Laboratoire MAPIEM, E.U. 4323, SeaTech Ecole d'Ingénieur, Université de Toulon, CS 60584, Toulon, 83041 Cedex 9, France
| | - Jean-François Briand
- Laboratoire MAPIEM, E.U. 4323, SeaTech Ecole d'Ingénieur, Université de Toulon, CS 60584, Toulon, 83041 Cedex 9, France
| |
Collapse
|
39
|
Polyethylene Glycol-b-poly(trialkylsilyl methacrylate-co-methyl methacrylate) Hydrolyzable Block Copolymers for Eco-Friendly Self-Polishing Marine Coatings. Polymers (Basel) 2022; 14:polym14214589. [PMID: 36365584 PMCID: PMC9656287 DOI: 10.3390/polym14214589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022] Open
Abstract
Hydrolyzable block copolymers consisting of a polyethylene glycol (PEG) first block and a random poly(trialkylsilyl methacrylate (TRSiMA, R = butyl, isopropyl)-co-methyl methacrylate (MMA)) second block were synthesized by RAFT polymerization. Two PEGs with different molar masses (Mn = 750 g/mol (PEG1) and 2200 g/mol (PEG2)) were used as macro-chain transfer agents and the polymerization conditions were set in order to obtain copolymers with a comparable mole content of trialkylsilyl methacrylate (~30 mole%) and two different PEG mole percentages of 10 and 30 mole%. The hydrolysis rates of PEG-b-(TRSiMA-co-MMA) in a THF/basic (pH = 10) water solution were shown to drastically depend on the nature of the trialkylsilyl groups and the mole content of the PEG block. Films of selected copolymers were also found to undergo hydrolysis in artificial seawater (ASW), with tunable erosion kinetics that were modulated by varying the copolymer design. Measurements of the advancing and receding contact angles of water as a function of the immersion time in the ASW confirmed the ability of the copolymer film surfaces to respond to the water environment as a result of two different mechanisms: (i) the hydrolysis of the silylester groups that prevailed in TBSiMA-based copolymers; and (ii) a major surface exposure of hydrophilic PEG chains that was predominant for TPSiMA-based copolymers. AFM analysis revealed that the surface nano-roughness increased upon immersion in ASW. The erosion of copolymer film surfaces resulted in a self-polishing, antifouling behavior against the diatom Navicula salinicola. The amount of settled diatoms depended on the hydrolysis rate of the copolymers.
Collapse
|
40
|
Santos J, Pedersen ML, Ulusoy B, Weinell CE, Pedersen HC, Petersen PM, Dam-Johansen K, Pedersen C. A Tunable Hyperspectral Imager for Detection and Quantification of Marine Biofouling on Coated Surfaces. SENSORS (BASEL, SWITZERLAND) 2022; 22:7074. [PMID: 36146436 PMCID: PMC9505677 DOI: 10.3390/s22187074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Fouling control coatings (FCCs) are used to prevent the accumulation of marine biofouling on, e.g., ship hulls, which causes increased fuel consumption and the global spread of non-indigenous species. The standards for performance evaluations of FCCs rely on visual inspections, which induce a degree of subjectivity. The use of RGB images for objective evaluations has already received interest from several authors, but the limited acquired information restricts detailed analyses class-wise. This study demonstrates that hyperspectral imaging (HSI) expands the specificity of biofouling assessments of FCCs by capturing distinguishing spectral features. We developed a staring-type hyperspectral imager using a liquid crystal tunable filter as the wavelength selective element. A novel light-emitting diode illumination system with high and uniform irradiance was designed to compensate for the low-filter transmittance. A spectral library was created from reflectance-calibrated optical signatures of representative biofouling species and coated panels. We trained a neural network on the annotated library to assign a class to each pixel. The model was evaluated on an artificially generated target, and global accuracy of 95% was estimated. The classifier was tested on coated panels (exposed at the CoaST Maritime Test Centre) with visible intergrown biofouling. The segmentation results were used to determine the coverage percentage per class. Although a detailed taxonomic description might be complex due to spectral similarities among groups, these results demonstrate the feasibility of HSI for repeatable and quantifiable biofouling detection on coated surfaces.
Collapse
Affiliation(s)
- Joaquim Santos
- Department of Electrical and Photonics Engineering (DTU Electro), Technical University of Denmark, 4000 Roskilde, Denmark
| | - Morten Lysdahlgaard Pedersen
- CoaST, Department of Chemical and Biochemical Engineering (DTU Chemical Engineering), Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Sino-Danish Center for Education and Research, Beijing 100093, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Burak Ulusoy
- CoaST, Department of Chemical and Biochemical Engineering (DTU Chemical Engineering), Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Sino-Danish Center for Education and Research, Beijing 100093, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Claus Erik Weinell
- CoaST, Department of Chemical and Biochemical Engineering (DTU Chemical Engineering), Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Henrik Chresten Pedersen
- Department of Electrical and Photonics Engineering (DTU Electro), Technical University of Denmark, 4000 Roskilde, Denmark
| | - Paul Michael Petersen
- Department of Electrical and Photonics Engineering (DTU Electro), Technical University of Denmark, 4000 Roskilde, Denmark
| | - Kim Dam-Johansen
- CoaST, Department of Chemical and Biochemical Engineering (DTU Chemical Engineering), Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Christian Pedersen
- Department of Electrical and Photonics Engineering (DTU Electro), Technical University of Denmark, 4000 Roskilde, Denmark
| |
Collapse
|
41
|
Ali A, Ul Amin B, Yu W, Gui T, Cong W, Zhang K, Tong Z, Hu J, Zhan X, Zhang Q. Eco-friendly biodegradable polyurethane based coating for antibacterial and antifouling performance. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Li Z, Zhang Y, Yan S, Zhang Y, Liu M, Gong L. Fabrication and characterization of novel polyurethane Encapsulant with excellent underwater acoustic transparency and hydrophobicity. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhihua Li
- School of Materials Science and Engineering Central South University Changsha China
| | - Yidan Zhang
- School of Materials Science and Engineering Central South University Changsha China
| | - Shuxuan Yan
- School of Materials Science and Engineering Central South University Changsha China
| | - Yibo Zhang
- School of Materials Science and Engineering Central South University Changsha China
| | - Mengmei Liu
- School of Materials Science and Engineering Central South University Changsha China
| | - Liangjun Gong
- School of Materials Science and Engineering Central South University Changsha China
| |
Collapse
|
43
|
Xiong G, Zhang Z, Zhang C, Qi Y. SLAP@g-C 3N 4 Fluorescent Photocatalytic Composite Powders Enhance the Anti-Bacteria Adhesion Performance and Mechanism of Polydimethylsiloxane Coatings. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3005. [PMID: 36080041 PMCID: PMC9457994 DOI: 10.3390/nano12173005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Fluorescent antifouling and photocatalytic antifouling technologies have shown potential in the field of marine antifouling. SLAP@g-C3N4/PDMS (SLAP@CN/PDMS) composite antifouling coatings were designed and prepared using g-C3N4, sky-blue long afterglow phosphor (SLAP), and polydimethylsiloxane (PDMS). The fluorescence emitted by SLAP under dark conditions was used to excite g-C3N4 for fluorescent photocatalysis and to prolong the photocatalytic activity of g-C3N4. Key data were collected by testing and characterization and are presented in this work. The results showed that g-C3N4 was successfully coated on the SLAP surface and formed a heterogeneous structure. After the composite powder was added to the PDMS coating, the coating maintained low surface energy but enhanced the surface roughness of the coating. The experimental results of degraded Rhodamine B (RhB) showed that SLAP prolonged the g-C3N4 photocatalytic activity time. The anti-marine bacterial adhesion performance of the coating was investigated by bacterial adhesion experiments. The results showed that SLAP@CN could effectively improve the anti-bacterial adhesion performance of PDMS coating, in which the anti-bacterial adhesion performance of SLAP@CN-2.5/PDMS was improved by nearly 19 times. This antifouling coating introduces fluorescent antifouling, photocatalytic antifouling, and fluorescence-driven photocatalytic antifouling based on the low surface energy antifouling of silicones and achieves "all-weather" fluorescent photocatalytic antifouling.
Collapse
Affiliation(s)
- Gang Xiong
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116000, China
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116000, China
| | - Zhanping Zhang
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116000, China
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116000, China
| | - Chen Zhang
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116000, China
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116000, China
| | - Yuhong Qi
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116000, China
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116000, China
| |
Collapse
|
44
|
He Z, Yang X, Mu L, Wang N, Lan X. A versatile "3M" methodology to obtain superhydrophobic PDMS-based materials for antifouling applications. Front Bioeng Biotechnol 2022; 10:998852. [PMID: 36105602 PMCID: PMC9464926 DOI: 10.3389/fbioe.2022.998852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Fouling, including inorganic, organic, bio-, and composite fouling seriously affects our daily life. To reduce these effects, antifouling strategies including fouling resistance, release, and degrading, have been proposed. Superhydrophobicity, the most widely used characteristic for antifouling that relies on surface wettability, can provide surfaces with antifouling abilities owing to its fouling resistance and/or release effects. PDMS shows valuable and wide applications in many fields, and due to the inherent hydrophobicity, superhydrophobicity can be achieved simply by roughening the surface of pure PDMS or its composites. In this review, we propose a versatile "3M" methodology (materials, methods, and morphologies) to guide the fabrication of superhydrophobic PDMS-based materials for antifouling applications. Regarding materials, pure PDMS, PDMS with nanoparticles, and PDMS with other materials were introduced. The available methods are discussed based on the different materials. Materials based on PDMS with nanoparticles (zero-, one-, two-, and three-dimensional nanoparticles) are discussed systematically as typical examples with different morphologies. Carefully selected materials, methods, and morphologies were reviewed in this paper, which is expected to be a helpful reference for future research on superhydrophobic PDMS-based materials for antifouling applications.
Collapse
Affiliation(s)
- Zhoukun He
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
| | - Xiaochen Yang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Na Wang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
| |
Collapse
|
45
|
Sfameni S, Rando G, Marchetta A, Scolaro C, Cappello S, Urzì C, Visco A, Plutino MR. Development of Eco-Friendly Hydrophobic and Fouling-Release Coatings for Blue-Growth Environmental Applications: Synthesis, Mechanical Characterization and Biological Activity. Gels 2022; 8:528. [PMID: 36135240 PMCID: PMC9498436 DOI: 10.3390/gels8090528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
The need to ensure adequate antifouling protection of the hull in the naval sector led to the development of real painting cycles, which involve the spreading of three layers of polymeric material on the hull surface exposed to the marine environment, specifically defined as primer, tie coat and final topcoat. It is already well known that coatings based on suitable silanes provide an efficient and non-toxic approach for the hydrophobic and antifouling/fouling release treatment of surfaces. In the present work, functional hydrophobic hybrid silica-based coatings (topcoats) were developed by using sol-gel technology and deposited on surfaces with the "doctor blade" method. In particular, those organic silanes, featuring opportune functional groups such as long (either fluorinated) alkyl chains, have a notable influence on surface wettability as showed in this study. Furthermore, the hydrophobic behavior of this functionalized coating was improved by introducing an intermediate commercial tie-coat layer between the primer and the topcoat, in order to decrease the wettability (i.e., decreasing the surface energy with a matching increase in the contact angle, CA) and to therefore make such coatings ideal for the design and development of fouling release paints. The hereby synthesized coatings were characterized by optical microscopy, contact angle analysis and a mechanical pull-off test to measure the adhesive power of the coating against a metal substrate typically used in the nautical sector. Analysis to evaluate the bacterial adhesion and the formation of microbial biofilm were related in laboratory and simulation (microcosm) scales, and assessed by SEM analysis.
Collapse
Affiliation(s)
- Silvia Sfameni
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Alessia Marchetta
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Cristina Scolaro
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
| | - Simone Cappello
- Institute for Biological Resource and Marine Biotechnology (IRBIM)-CNR of Messina, Spianata S. Raineri 86, 98122 Messina, Italy
| | - Clara Urzì
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Annamaria Visco
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for Polymers, Composites and Biomaterials-CNR IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| |
Collapse
|
46
|
Xi X, Zhang Z, Qi Y. Preparation and Properties of PED-TDI Polyurethane-Modified Silicone Coatings. Polymers (Basel) 2022; 14:polym14153212. [PMID: 35956726 PMCID: PMC9370997 DOI: 10.3390/polym14153212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
To explore the influence mechanisms of polyurethane soft segments on modified silicone coatings, a series of modified coatings was prepared by introducing different contents of hydroxypropyl-terminated polydimethylsiloxane (PDMS2200) into the soft segment of polyurethane. ATR-FTIR, NMR, CLSM, AFM, contact angle measurement, the tensile test, bacterial adhesion, and the benthic diatom adhesion test were used to investigate the structure, morphology, roughness, degree of microphase separation, surface energy, tensile properties, and antifouling properties of the modified coatings. The results show that PDMS2200 could aggravate the microphase separation of the modified coatings, increase the surface-free energy, and reduce its elastic modulus; when the microphase separation exceeded a certain degree, increasing PDMS2200 would decrease the tensile properties. The PED-TDI polyurethane-modified silicone coating prepared with the formula of PU-Si17 had the best tensile properties and antifouling properties among all modified coatings.
Collapse
|
47
|
Pinho I, Amezcua F, Rivera JM, Green-Ruiz C, Piñón-Colin TDJ, Wakida F. First report of plastic contamination in batoids: Plastic ingestion by Haller's Round Ray (Urobatis halleri) in the Gulf of California. ENVIRONMENTAL RESEARCH 2022; 211:113077. [PMID: 35276199 DOI: 10.1016/j.envres.2022.113077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The presence of microplastics has been reported in the marine environment and these pollutants have also been reported in food webs. Information about the presence of microplastics in the Haller's Round Ray (Urobatis halleri) and bottom sediments off the east coast of the Gulf of California is non-existent. The digestive tracts of individuals of this species and sediment samples were examined for plastic particles in this region. In total, 107 plastic particles were found in the sediment. All were fibers and 94.4% were microplastics, the rest were mesoplastics. The gastrointestinal tracts of 142 rays were analysed, and it was determined that this is a benthic feeder. A total of 386 plastic particles were recovered from 46 individuals (32.4%). On average 10.2 (±7.4) plastic particles were found per specimen, with plastic lengths ranging from 0.00821 mm to 0.953 mm. The FTIR-ATR analysis revealed the presence of six types of polymers: polyamide or nylon polyethylene, polypropylene, and polyacrylic were found in both sediments and gastrointestinal tracts of Haller's Round Ray. Polyethylene terephthalate and polyacrylamide were only found in the gastrointestinal tracts of the ray. These polymers are consistent with the human activities undertaken in this area, specifically intensive small-scale and industrial fisheries, as they are used for the elaboration of fishing nets, plastic bags, storage containers, clothing, and fishing boats maintenance. Our results show that benthic feeders are exposed to plastic debris, and its presence is another potential threat to batoids, which are already threatened by bycatch, overfishing, and other pollutants. However, studies on the ingestion of plastic debris in batoids and its presence in the sediment are still scarce or non-existent for this region. As such, these studies are necessary to help in the preservation of these species.
Collapse
Affiliation(s)
- Inês Pinho
- International MSc in Marine Biodiversity and Conservation, Ghent University, Marine Biology Research Group, Krijgslaan 281/S8, 9000, Ghent, Belgium
| | - Felipe Amezcua
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena S/N, Mazatlán, Sin, 82040, Mexico.
| | - Jessica M Rivera
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, Las Agujas, 44600, Zapopan, Jalisco, Mexico
| | - Carlos Green-Ruiz
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena S/N, Mazatlán, Sin, 82040, Mexico
| | - Teresita de Jesus Piñón-Colin
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, C.P. 22390, Tijuana, Baja California, Mexico
| | - Fernando Wakida
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, C.P. 22390, Tijuana, Baja California, Mexico
| |
Collapse
|
48
|
Xiong G, Zhang Z, Qi Y. Preparation of g-C 3N 4/TNTs/CNTs Photocatalytic Composite Powder and Its Enhancement of Antifouling Performance of Polydimethylsiloxane Coatings. NANOMATERIALS 2022; 12:nano12142442. [PMID: 35889666 PMCID: PMC9320443 DOI: 10.3390/nano12142442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023]
Abstract
Semiconductor photocatalytic materials have shown potential in the field of antifouling due to their good antibacterial properties, stability, and nontoxic properties. It is an effective way to use them to improve the static antifouling performance of silicone antifouling coatings. g-C3N4/TNTs/CNTs (CNTC) photocatalytic composite powders were prepared and introduced into polydimethylsiloxane (PDMS) coatings to enhance their antifouling performance. Firstly, g-C3N4/TNTs with heterostructure were thermally polymerized by urea and TiO2 nanotubes (TNTs), and then g-C3N4/TNTs and multi-walled carbon nanotubes (CNTs) were composited to obtain CNTC. Finally, CNTC was added into PDMS to prepare g-C3N4/TNTs/CNTs/PDMS (CNTC/P) composite antifouling coating. The results showed that CNTC successfully recombined and formed a heterostructure, and the recombination rate of photogenerated carriers decreased after recombination. The addition of CNTC to PDMS increased the hydrophobicity and roughness while reducing the surface energy (SE) of the coatings. CNTC could effectively improve the anti-attachment performance of PDMS coatings to bacteria and benthic diatom. The bacterial attachment rate (AB) and benthic diatom attachment rate (AD) of CNTC/P-20 were, respectively, 13.1% and 63.1%; they are much lower than that of the coating without photocatalytic composite powder. This coating design provides a new idea for developing new “efficient” and “green” photocatalytic composite antifouling coatings.
Collapse
Affiliation(s)
- Gang Xiong
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116000, China; (G.X.); (Y.Q.)
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116000, China
| | - Zhanping Zhang
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116000, China; (G.X.); (Y.Q.)
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116000, China
- Correspondence:
| | - Yuhong Qi
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116000, China; (G.X.); (Y.Q.)
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116000, China
| |
Collapse
|
49
|
On the mechanism of marine fouling-prevention performance of oil-containing silicone elastomers. Sci Rep 2022; 12:11799. [PMID: 35821390 PMCID: PMC9276722 DOI: 10.1038/s41598-022-15553-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
For many decades, silicone elastomers with oil incorporated have served as fouling-release coating for marine applications. In a comprehensive study involving a series of laboratory-based marine fouling assays and extensive global field studies of up to 2-year duration, we compare polydimethylsiloxane (PDMS) coatings of the same composition loaded with oil via two different methods. One method used a traditional, one-pot pre-cure oil addition approach (o-PDMS) and another method used a newer post-cure infusion approach (i-PDMS). The latter displays a substantial improvement in biofouling prevention performance that exceeds established commercial silicone-based fouling-release coating standards. We interpret the differences in performance between one-pot and infused PDMS by developing a mechanistic model based on the Flory–Rehner theory of swollen polymer networks. Using this model, we propose that the chemical potential of the incorporated oil is a key consideration for the design of future fouling-release coatings, as the improved performance is driven by the formation and stabilization of an anti-adhesion oil overlayer on the polymer surface.
Collapse
|
50
|
Mo Y, Xue P, Xing J, Liu H, Wang J, Liu J. Conventional silicone coating improved by novel bioinspired microcavity arrays: Generating stable air bubble arrays for gas-liquid interface antifouling. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|