1
|
Egbeyemi OI, Hatem WA, Kober UA, Lapitsky Y. Transforming the Stability, Encapsulation, and Sustained Release Properties of Calcium Alginate Beads through Gel-Confined Coacervation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11947-11958. [PMID: 38807458 DOI: 10.1021/acs.langmuir.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Calcium alginate (Ca2+/alginate) gel beads find use in diverse applications, ranging from drug delivery and tissue engineering to bioprocessing, food formulation, and agriculture. Unless modified, however, these gels have limited stability in alkaline media (including phosphate buffers), and their high solute permeability limits their ability to efficiently encapsulate and slowly release water-soluble small molecules. Here, we show how these limitations can be addressed by mixing the alginate solutions used in the bead preparation with the nontoxic anionic polymer polyphosphate (PP). Upon complexing Ca2+ ions, PP undergoes complex coacervation (i.e., liquid/liquid phase separation into a Ca2+/PP-rich coacervate phase and a dilute supernatant phase). At lower PP concentrations, the Ca2+/PP coacervate appears to simply remain dispersed within the beads. Though its presence makes the beads more stable in alkaline media (phosphate-buffered saline and seawater), it has little impact on the bead stiffness, morphology, and (at least in the absence of substantial payload/coacervate association) encapsulation and release properties. When the PP concentrations exceed a critical value, however, Ca2+/PP coacervation within the gelling Ca2+/alginate beads collapses the resulting beads into more compact, interpenetrating polymer networks. Besides their enhanced stability to alkaline environments, these hybrid beads exhibit irregular morphologies with wrinkled and dimpled surface structures and macroscopic (closed) internal pores, and their collapse into these polymer-rich networks also makes them significantly stiffer than their PP-free counterparts. Crucially, these beads also exhibit a much lower solute permeability, which enables highly efficient encapsulation and multiday release of water-soluble small molecules (with the beads encapsulating >90% of the added model payload and sustaining its release over 3-5 d). Collectively, these findings provide a mild and simple (single-step) pathway to generating ionically cross-linked alginate beads with significantly enhanced stability, encapsulation efficiency, and sustained release.
Collapse
Affiliation(s)
| | - Wesam A Hatem
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, United States
| | - Umberto A Kober
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, United States
| | - Yakov Lapitsky
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
2
|
Qiu Q, Wang Z, Lan L. Polyelectrolyte-Surfactant Complex Nanofibrous Membranes for Antibacterial Applications. Polymers (Basel) 2024; 16:414. [PMID: 38337304 DOI: 10.3390/polym16030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Polyelectrolyte-surfactant complexes (PESCs) have garnered significant attention due to their extensive range of biological and industrial applications. Most present applications are predominantly used in liquid or emulsion states, which limits their efficacy in solid material-based applications. Herein, pre-hydrolyzed polyacrylonitrile (HPAN) and quaternary ammonium salts (QAS) are employed to produce PESC electrospun membranes via electrospinning. The formation process of PESCs in a solution is observed. The results show that the degree of PAN hydrolysis and the varying alkyl chain lengths of surfactants affect the rate of PESC formation. Moreover, PESCs/PCL hybrid electrospun membranes are fabricated, and their antibacterial activities against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) are investigated. The resulting electrospun membranes exhibit high bactericidal efficacy, which enables them to serve as candidates for future biomedical and filtration applications.
Collapse
Affiliation(s)
- Qiaohua Qiu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengkai Wang
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liying Lan
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
3
|
Tabandeh S, Ateeq T, Leon L. Drug Encapsulation via Peptide-Based Polyelectrolyte Complexes. Chembiochem 2024; 25:e202300440. [PMID: 37875787 DOI: 10.1002/cbic.202300440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Peptide-based polyelectrolyte complexes are biocompatible materials that can encapsulate molecules with different polarities due to their ability to be precisely designed. Here we use UV-Vis spectroscopy, fluorescence microscopy, and infrared spectroscopy to investigate the encapsulation of model drugs, doxorubicin (DOX) and methylene blue (MB) using a series of rationally designed polypeptides. For both drugs, we find an overall higher encapsulation efficiency with sequences that have higher charge density, highlighting the importance of ionic interactions between the small molecules and the peptides. However, comparing molecules with the same charge density, illustrated that the most hydrophobic sequence pairs had the highest encapsulation of both DOX and MB molecules. The phase behavior and stability of DOX-containing complexes did not change compared to the complexes without drugs. However, MB encapsulation caused changes in the stabilities of the complexes. The sequence pair with the highest charge density and hydrophobicity had the most dramatic increase in stability, which coincided with a phase change from liquid to solid. This study illustrates how multiple types of molecular interactions are required for efficient encapsulation of poorly soluble drugs and provides insights into the molecular design of delivery carriers.
Collapse
Affiliation(s)
- Sara Tabandeh
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
| | - Tahoora Ateeq
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
| | - Lorraine Leon
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
- NanoScience Technology Center, University of Central Florida, 12424 Research Pkwy #400, Orlando, FL-32826, USA
| |
Collapse
|
4
|
Heo TY, Audus DJ, Choi SH. Scaling Relationship of Complex Coacervate Core Micelles: Role of Core Block Stretching. ACS Macro Lett 2023; 12:1396-1402. [PMID: 37782013 DOI: 10.1021/acsmacrolett.3c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The scaling relationship of complex coacervate core micelles (C3Ms) has been investigated experimentally and theoretically. The C3Ms are formed by mixing two oppositely charged block copolyelectrolyte solutions (i.e., AB + AC system) and are characterized by small-angle neutron (SANS) and X-ray scattering (SAXS). Scaling relationships for micellar structure parameters, including core radius, total radius, corona thickness, and aggregation number, all with respect to the core block length, are determined. A scaling theory is also proposed by minimizing the free energy per chain, leading to four regimes depending on the core and corona chain conformations. Although the corona block is significantly longer than the core block, the structure of our C3Ms is consistent with that of the crew-cut I regime. A highly swollen core by water enables the core blocks to be stretched significantly and corona chains to be minimally overlapped.
Collapse
Affiliation(s)
- Tae-Young Heo
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Debra J Audus
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| |
Collapse
|
5
|
Li M, Mirshafian R, Wang J, Mohanram H, Ahn KA, Hosseinzadeh S, Pervushin KV, Waite JH, Yu J. Compliant Clients: Catechols Exhibit Enhanced Solubility and Stability in Diverse Complex Coacervates. Biomacromolecules 2023; 24:4190-4198. [PMID: 37603820 DOI: 10.1021/acs.biomac.3c00519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Polyelectrolyte coacervates, with their greater-than-water density, low interfacial energy, shear thinning viscosity, and ability to undergo structural arrest, mediate the formation of diverse load-bearing macromolecular materials in living organisms as well as in industrial material fabrication. Coacervates, however, have other useful attributes that are challenging to study given the metastability of coacervate colloidal droplets and a lack of suitable analytical methods. We adopt solution electrochemistry and nuclear magnetic resonance measurements to obtain remarkable insights about coacervates as solvent media for low-molecular-weight catechols. When catechols are added to dispersions of coacervated polyelectrolytes, there are two significant consequences: (1) catechols preferentially partition up to 260-fold into the coacervate phase, and (2) coacervates stabilize catechol redox potentials by up to +200 mV relative to the equilibrium solution. The results suggest that the relationship between phase-separated polyelectrolytes and their client molecules is distinct from that existing in aqueous solution and has the potential for insulating many redox-unstable chemicals.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Razieh Mirshafian
- Marine Science Institute, University of California, Santa Barbara, California 93106, United States
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Barbara, California 93106, United States
| | - Jining Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Harini Mohanram
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Kollbe Ando Ahn
- Marine Science Institute, University of California, Santa Barbara, California 93106, United States
| | - Shayan Hosseinzadeh
- Marine Science Institute, University of California, Santa Barbara, California 93106, United States
| | - Konstantin V Pervushin
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - J Herbert Waite
- Marine Science Institute, University of California, Santa Barbara, California 93106, United States
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Barbara, California 93106, United States
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 637553, Singapore
| |
Collapse
|
6
|
Bediako JK, El Ouardi Y, Massima Mouele ES, Mensah B, Repo E. Polyelectrolyte and polyelectrolyte complex-incorporated adsorbents in water and wastewater remediation - A review of recent advances. CHEMOSPHERE 2023; 325:138418. [PMID: 36925007 DOI: 10.1016/j.chemosphere.2023.138418] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
In recent years, polyelectrolyte-incorporated functional materials have emerged as novel adsorbents for effective remediation of pollutants in water and wastewater. Polyelectrolytes (PEs) are a special class of polymers with long chains of repeating charged moieties. Polyelectrolyte complexes (PECs) are obtained by mixing aqueous solutions of oppositely charged PEs. Herewith, this review discusses recent advances with respect to water and wastewater remediation using PE- and PEC-incorporated adsorbents. The review begins by highlighting some water resources, their pollution sources and available treatment techniques. Next, an overview of PEs and PECs is discussed, highlighting the evolving progress in their processing. Consequently, application of these materials in different facets of water and wastewater remediation, including heavy metal removal, precious metal and rare earth element recovery, desalination, dye and emerging micropollutant removal, are critically reviewed. For water and wastewater remediation, PEs and PECs are mostly applied either in their original forms, as composites or as morphologically-tunable complexes. PECs are deemed superior to other materials owing to their tunability for both cationic and anionic pollutants. Generally, natural and semi-synthetic PEs have been largely applied owing to their low cost, ready availability and eco-friendliness. Except dye removal and desalination of saline water, application of synthetic PEs and PECs is scanty, and hence requires more focus in future research.
Collapse
Affiliation(s)
- John Kwame Bediako
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850 Lappeenranta, Finland; Department of Food Process Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Youssef El Ouardi
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850 Lappeenranta, Finland
| | - Emile Salomon Massima Mouele
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850 Lappeenranta, Finland
| | - Bismark Mensah
- Department of Materials Science and Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana
| | - Eveliina Repo
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850 Lappeenranta, Finland
| |
Collapse
|
7
|
Huang H, Trentle M, Liu Z, Xiang K, Higgins W, Wang Y, Xue B, Yang S. Polymer Complex Fiber: Property, Functionality, and Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7639-7662. [PMID: 36719982 DOI: 10.1021/acsami.2c19583] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polymer complex fibers (PCFs) are a novel kind of fiber material processed from polymer complexes that are assembled through noncovalent interactions. These can realize the synergy of functional components and miscibility on the molecular level. The dynamic character of noncovalent interactions endows PCFs with remarkable properties, such as reversibility, stimuli responsiveness, self-healing, and recyclability, enabling them to be applied in multidisciplinary fields. The objective of this article is to provide a review of recent progress in the field of PCFs. The classification based on chain interactions will be first introduced followed by highlights of the fabrication technologies and properties of PCFs. The effects of composition and preparation method on fiber properties are also discussed, with some emphasis on utilizing these for rational design. Finally, we carefully summarize recent advanced applications of PCFs in the fields of energy storage and sensors, water treatment, biomedical materials, artificial actuators, and biomimetic platforms. This review is expected to deepen the comprehension of PCF materials and open new avenues for developing PCFs with tailor-made properties for advanced application.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Miranda Trentle
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama35294, United States
| | - Zexin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Kehui Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - William Higgins
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama35294, United States
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu610064, P. R. China
| | - Bing Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| |
Collapse
|
8
|
A mini-review on bio-inspired polymer self-assembly: single-component and interactive polymer systems. Emerg Top Life Sci 2022; 6:593-607. [PMID: 36254846 DOI: 10.1042/etls20220057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 12/30/2022]
Abstract
Biology demonstrates meticulous ways to control biomaterials self-assemble into ordered and disordered structures to carry out necessary bioprocesses. Empowering the synthetic polymers to self-assemble like biomaterials is a hallmark of polymer physics studies. Unlike protein engineering, polymer science demystifies self-assembly by purposely embedding particular functional groups into the backbone of the polymer while isolating others. The polymer field has now entered an era of advancing materials design by mimicking nature to a very large extend. For example, we can make sequence-specific polymers to study highly ordered mesostructures similar to studying proteins, and use charged polymers to study liquid-liquid phase separation as in membraneless organelles. This mini-review summarizes recent advances in studying self-assembly using bio-inspired strategies on single-component and multi-component systems. Sequence-defined techniques are used to make on-demand hybrid materials to isolate the effects of chirality and chemistry in synthetic block copolymer self-assembly. In the meantime, sequence patterning leads to more hierarchical assemblies comprised of only hydrophobic and hydrophilic comonomers. The second half of the review discusses complex coacervates formed as a result of the associative charge interactions of oppositely charged polyelectrolytes. The tunable phase behavior and viscoelasticity are unique in studying liquid macrophase separation because the slow polymer relaxation comes primarily from charge interactions. Studies of bio-inspired polymer self-assembly significantly impact how we optimize user-defined materials on a molecular level.
Collapse
|
9
|
Encapsulation behavior of curcumin in heteroprotein complex coacervates and precipitates fabricated from β-conglycinin and lysozyme. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Zhang C, Wang W, Zhang P, Yang S. Thermodynamic analysis of hydrogen-bonded polymer complexation with isothermal titration calorimetry. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Durmaz EN, Sahin S, Virga E, de Beer S, de Smet LCPM, de Vos WM. Polyelectrolytes as Building Blocks for Next-Generation Membranes with Advanced Functionalities. ACS APPLIED POLYMER MATERIALS 2021; 3:4347-4374. [PMID: 34541543 PMCID: PMC8438666 DOI: 10.1021/acsapm.1c00654] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 05/06/2023]
Abstract
The global society is in a transition, where dealing with climate change and water scarcity are important challenges. More efficient separations of chemical species are essential to reduce energy consumption and to provide more reliable access to clean water. Here, membranes with advanced functionalities that go beyond standard separation properties can play a key role. This includes relevant functionalities, such as stimuli-responsiveness, fouling control, stability, specific selectivity, sustainability, and antimicrobial activity. Polyelectrolytes and their complexes are an especially promising system to provide advanced membrane functionalities. Here, we have reviewed recent work where advanced membrane properties stem directly from the material properties provided by polyelectrolytes. This work highlights the versatility of polyelectrolyte-based membrane modifications, where polyelectrolytes are not only applied as single layers, including brushes, but also as more complex polyelectrolyte multilayers on both porous membrane supports and dense membranes. Moreover, free-standing membranes can also be produced completely from aqueous polyelectrolyte solutions allowing much more sustainable approaches to membrane fabrication. The Review demonstrates the promise that polyelectrolytes and their complexes hold for next-generation membranes with advanced properties, while it also provides a clear outlook on the future of this promising field.
Collapse
Affiliation(s)
- Elif Nur Durmaz
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| | - Sevil Sahin
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Ettore Virga
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
- Wetsus, European
Centre of Excellence for Sustainable Water
Technology, Oostergoweg
9, 8911 MA Leeuwarden, The Netherlands
| | - Sissi de Beer
- Sustainable
Polymer Chemistry Group, Department of Molecules and Materials MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Louis C. P. M. de Smet
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Wiebe M. de Vos
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| |
Collapse
|
12
|
Neitzel A, Fang YN, Yu B, Rumyantsev AM, de Pablo JJ, Tirrell MV. Polyelectrolyte Complex Coacervation across a Broad Range of Charge Densities. Macromolecules 2021; 54:6878-6890. [PMID: 34334816 PMCID: PMC8320234 DOI: 10.1021/acs.macromol.1c00703] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Indexed: 01/02/2023]
Abstract
Polyelectrolyte complex coacervates of homologous (co)polyelectrolytes with a near-ideally random distribution of a charged and neutral ethylene oxide comonomer were synthesized. The unique platform provided by these building blocks enabled an investigation of the phase behavior across charge fractions 0.10 ≤ f ≤ 1.0. Experimental phase diagrams for f = 0.30-1.0 were obtained from thermogravimetric analysis of complex and supernatant phases and contrasted with molecular dynamics simulations and theoretical scaling laws. At intermediate to high f, a dependence of polymer weight fraction in the salt-free coacervate phase (w P,c) of w P,c ∼ f 0.37±0.01 was extracted; this trend was in good agreement with accompanying simulation predictions. Below f = 0.50, w P,c was found to decrease more dramatically, qualitatively in line with theory and simulations predicting an exponent of 2/3 at f ≤ 0.25. Preferential salt partitioning to either coacervate or supernatant was found to be dictated by the chemistry of the constituent (co)polyelectrolytes.
Collapse
Affiliation(s)
- Angelika
E. Neitzel
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Materials Science Division, Lemont, Illinois 60439, United States
| | - Yan N. Fang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Boyuan Yu
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Artem M. Rumyantsev
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Materials Science Division, Lemont, Illinois 60439, United States
| | - Matthew V. Tirrell
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Materials Science Division, Lemont, Illinois 60439, United States
| |
Collapse
|
13
|
Meng X, Du Y, Liu Y, Coughlin EB, Perry SL, Schiffman JD. Electrospinning Fibers from Oligomeric Complex Coacervates: No Chain Entanglements Needed. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiangxi Meng
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Yifeng Du
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Yalin Liu
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - E. Bryan Coughlin
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Sarah L. Perry
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| |
Collapse
|
14
|
Shah S, Leon L. Structural dynamics, phase behavior, and applications of polyelectrolyte complex micelles. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101424] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Aponte-Rivera C, Rubinstein M. Dynamic Coupling in Unentangled Liquid Coacervates Formed by Oppositely Charged Polyelectrolytes. Macromolecules 2021; 54:1783-1800. [PMID: 33981120 PMCID: PMC8109663 DOI: 10.1021/acs.macromol.0c01393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We develop a scaling theory that predicts the dynamics of symmetric and asymmetric unentangled liquid coacervates formed by solutions of oppositely-charged polyelectrolytes. Symmetric coacervates made from oppositely-charged polyelectrolytes consist of polycations and polyanions with equal and opposite charge densities along their backbones. These symmetric coacervates can be described as mixtures of polyelectrolytes in the quasi-neutral regime with a single correlation length. Asymmetric coacervates are made from polycations and polyanions with unequal charge densities. The difference in charge densities results in a double semidilute structure of asymmetric coacervates with two correlation lengths, one for the high-charge-density and the other for the low-charge-density polyelectrolytes. We predict that the double-semidilute structure in asymmetric coacervates results in a dynamic coupling which increases the friction of the high-charge-density polyelectrolyte. This dynamic coupling increases the contribution to the zero-shear viscosity of the high-charge-density polyelectrolyte. The diffusion coefficient of the high-charge-density polyelectrolyte is predicted to depend on the concentration and degree of polymerization of the low-charge-density polyelectrolyte in the coacervate if the size of the low-charge-density polymer is smaller than the correlation length of the high-charge-density polymer. We also predict a non-monotonic salt concentration dependence of the zero-shear viscosity of asymmetric coacervates.
Collapse
Affiliation(s)
| | - Michael Rubinstein
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University
- Departments of Biomedical Engineering, Physics and Chemistry Department, Duke University
| |
Collapse
|
16
|
Li L, Srivastava S, Meng S, Ting JM, Tirrell MV. Effects of Non-Electrostatic Intermolecular Interactions on the Phase Behavior of pH-Sensitive Polyelectrolyte Complexes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00999] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lu Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Samanvaya Srivastava
- Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Siqi Meng
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey M. Ting
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew V. Tirrell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
17
|
Sing CE, Perry SL. Recent progress in the science of complex coacervation. SOFT MATTER 2020; 16:2885-2914. [PMID: 32134099 DOI: 10.1039/d0sm00001a] [Citation(s) in RCA: 329] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Complex coacervation is an associative, liquid-liquid phase separation that can occur in solutions of oppositely-charged macromolecular species, such as proteins, polymers, and colloids. This process results in a coacervate phase, which is a dense mix of the oppositely-charged components, and a supernatant phase, which is primarily devoid of these same species. First observed almost a century ago, coacervates have since found relevance in a wide range of applications; they are used in personal care and food products, cutting edge biotechnology, and as a motif for materials design and self-assembly. There has recently been a renaissance in our understanding of this important class of material phenomena, bringing the science of coacervation to the forefront of polymer and colloid science, biophysics, and industrial materials design. In this review, we describe the emergence of a number of these new research directions, specifically in the context of polymer-polymer complex coacervates, which are inspired by a number of key physical and chemical insights and driven by a diverse range of experimental, theoretical, and computational approaches.
Collapse
Affiliation(s)
- Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews, Urbana, IL, USA.
| | | |
Collapse
|
18
|
Contreras A, Raxworthy MJ, Wood S, Schiffman JD, Tronci G. Photodynamically Active Electrospun Fibers for Antibiotic-Free Infection Control. ACS APPLIED BIO MATERIALS 2019; 2:4258-4270. [PMID: 35021441 DOI: 10.1021/acsabm.9b00543] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antimicrobial biomaterials are critical to aid in the regeneration of oral soft tissue and prevent or treat localized bacterial infections. With the rising trend in antibiotic resistance, there is a pressing clinical need for new antimicrobial chemistries and biomaterial design approaches enabling on-demand activation of antibiotic-free antimicrobial functionality following an infection that are environment-friendly, flexible and commercially viable. This study explores the feasibility of integrating a bioresorbable electrospun polymer scaffold with localized antimicrobial photodynamic therapy (aPDT) capability. To enable aPDT, we encapsulated a photosensitizer (PS) in polyester fibers in the PS inert state, so that the antibacterial function would be activated on-demand via a visible light source. Fibrous scaffolds were successfully electrospun from FDA-approved polyesters, either poly(ε-caprolactone (PCL) or poly[(rac-lactide)-co-glycolide] (PLGA), with encapsulated PS (either methylene blue (MB) or erythrosin B (ER)). These were prepared and characterized with regards to their loading efficiency (UV-vis spectroscopy), microarchitecture (SEM, porometry, and BET (Brunauer-Emmett-Teller) analysis), tensile properties, hydrolytic behavior (contact angle, dye release capability, degradability), and aPDT effect. The electrospun fibers achieved an ∼100 wt % loading efficiency of PS, which significantly increased their tensile modulus and reduced their average fiber diameter and pore size with respect to PS-free controls. In vitro, PS release varied between a burst release profile to limited release within 100 h, depending on the selected scaffold formulation, while PLGA scaffolds displayed significant macroscopic shrinkage and fiber merging, following incubation in phosphate buffered saline solution. Exposure of PS-encapsulated PCL fibers to visible light successfully led to at least a 1 log reduction in Escherichia coli viability after 60 min of light exposure, whereas PS-free electrospun controls did not inactive microbes. This study successfully demonstrates the significant potential of PS-encapsulated electrospun fibers as photodynamically active biomaterial for antibiotic-free infection control.
Collapse
Affiliation(s)
- Amy Contreras
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, LS2 9JT U.K
| | - Michael J Raxworthy
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, LS2 9JT U.K.,Neotherix Ltd., The Hiscox Building, Peasholme Green, York, YO1 7PR U.K
| | - Simon Wood
- School of Dentistry, University of Leeds, Leeds, LS2 9JT U.K
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, 240 Thatcher Road, Amherst Massachusetts 01003-9364, United States
| | - Giuseppe Tronci
- School of Dentistry, University of Leeds, Leeds, LS2 9JT U.K.,School of Design, University of Leeds, Leeds, LS2 9JT U.K
| |
Collapse
|
19
|
Kurtz IS, Sui S, Hao X, Huang M, Perry SL, Schiffman JD. Bacteria-Resistant, Transparent, Free-Standing Films Prepared from Complex Coacervates. ACS APPLIED BIO MATERIALS 2019; 2:3926-3933. [PMID: 31579306 PMCID: PMC6774644 DOI: 10.1021/acsabm.9b00502] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the fabrication, properties, and bacteria-resistance of polyelectrolyte complex (PEC) coatings and free-standing films. Poly(4-styrenesulfonic acid), poly(diallyldimethyl-ammonium chloride), and salt were spin-coated into PEC films. After thermal annealing in a humid environment, highly transparent, mechanically strong, and chemically robust films were formed. Notably, we demonstrate that PEC coatings significantly reduce the attachment of Escherichia coli K12 without killing the micro-organisms. We suggest that forming bacteria-resistant surface coatings from commercially available polymers holds the potential for use across a wide range of applications including high-touch surfaces in medical settings.
Collapse
Affiliation(s)
| | | | | | - Mengfei Huang
- Department of Chemical Engineering, Institute of Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Sarah L. Perry
- Department of Chemical Engineering, Institute of Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jessica D. Schiffman
- Department of Chemical Engineering, Institute of Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
20
|
Sadman K, Wang Q, Shull KR. Guanidinium Can Break and Form Strongly Associating Ion Complexes. ACS Macro Lett 2019; 8:117-122. [PMID: 35619418 DOI: 10.1021/acsmacrolett.8b00824] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Guanidinium is one of nature's strongest denaturants and is also a motif that appears in several interfacial contexts such as the RGD sequence involved in cell adhesion, cell penetrating peptides, and antimicrobial molecules. It is important to quantify the origin of guanidinium's ion-specific interactions so that its unique behavior may be exploited in synthetic applications. The present work demonstrates that guanidinium ions can both break and form strongly associating ion complexes in a context-dependent way. These insights into guanidinium's behavior are elucidated using polyelectrolyte complexes (PECs), where interpolymer ion pairs between oppositely charged polymers play an important role in determining material stability. Different polycation-polyanion combinations can span a large range of association affinities, where more strongly associating complexes can remain insoluble in concentrated salt solutions and in extreme pH conditions. This high stability is desirable in several application contexts for PECs, but also renders them challenging to process and, therefore, to study since they cannot be dissolved into polymer solutions. Here we demonstrate that guanidinium salts are very effective in dissolving the poly(styrenesulfonate)/poly(allylamine) (PSS:PAH) complex, which has one of the highest reported polycation-polyanion association affinities. We also demonstrate the importance of charge identity in complexation phenomena by functionalizing guanidinium directly into poly(allylamine), resulting in a complex that remains stable under highly denaturing conditions. The model system of PSS:PAH is used to glean insights into guanidinium's denaturing activity, as well as to broadly comment on the nature of ion-specific interactions in charged macromolecules.
Collapse
Affiliation(s)
- Kazi Sadman
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Qifeng Wang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kenneth R. Shull
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
21
|
|