1
|
Hu H, Zhang C. Conjugation of Multiple Proteins Onto the Surface of PLGA/Lipid Hybrid Nanoparticles. J Biomed Mater Res A 2024. [PMID: 39420678 DOI: 10.1002/jbm.a.37807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
Nanoparticles are increasingly being used in the development of vaccines for disease prevention or treatment. Recent research has demonstrated that conjugating a protein onto the surface of nanoparticles can significantly increase its immunogenicity. Considering various pathogens that threaten human health, multivalent vaccines are often desirable. Up to now, nanoparticle-based vaccines are mostly limited to one protein per nanoparticle. No research has been conducted to explore the possibility of conjugating more than one protein onto the surface of a nanoparticle. Here we developed a specific conjugation strategy to conjugate multiple proteins to the PLGA/lipid hybrid nanoparticle surface. The maleimide-thiol Michael addition, Aizde-DBCO (Dibenzocyclooctyne), and TCO (trans-cycloctene)-Tetrazine click chemistry were employed to conjugate three different proteins, subunit keyhole limpet hemocyanin (sKLH), Ovalbumin (OVA), and cross-reactive material 197 (CRM197), to the surface of PLGA/lipid hybrid nanoparticles (hNPs). The successful results of this study pave the way for developing multivalent vaccines against different pathogens.
Collapse
Affiliation(s)
- He Hu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
2
|
Reddiar SB, Xie Y, Abdallah M, Han S, Hu L, Feeney OM, Gracia G, Anshabo A, Lu Z, Farooq MA, Styles IK, Phillips ARJ, Windsor JA, Porter CJH, Cao E, Trevaskis NL. Intestinal Lymphatic Biology, Drug Delivery, and Therapeutics: Current Status and Future Directions. Pharmacol Rev 2024; 76:1326-1398. [PMID: 39179383 DOI: 10.1124/pharmrev.123.001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Historically, the intestinal lymphatics were considered passive conduits for fluids, immune cells, dietary lipids, lipid soluble vitamins, and lipophilic drugs. Studies of intestinal lymphatic drug delivery in the late 20th century focused primarily on the drugs' physicochemical properties, especially high lipophilicity, that resulted in intestinal lymphatic transport. More recent discoveries have changed our traditional view by demonstrating that the lymphatics are active, plastic, and tissue-specific players in a range of biological and pathological processes, including within the intestine. These findings have, in turn, inspired exploration of lymph-specific therapies for a range of diseases, as well as the development of more sophisticated strategies to actively deliver drugs or vaccines to the intestinal lymph, including a range of nanotechnologies, lipid prodrugs, and lipid-conjugated materials that "hitchhike" onto lymphatic transport pathways. With the increasing development of novel therapeutics such as biologics, there has been interest in whether these therapeutics are absorbed and transported through intestinal lymph after oral administration. Here we review the current state of understanding of the anatomy and physiology of the gastrointestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. We summarize the current state-of-the-art approaches to deliver drugs and quantify their uptake into the intestinal lymphatic system. Finally, and excitingly, we discuss recent examples of significant pharmacokinetic and therapeutic benefits achieved via intestinal lymphatic drug delivery. We also propose approaches to advance the development and clinical application of intestinal lymphatic delivery strategies in the future. SIGNIFICANCE STATEMENT: This comprehensive review details the understanding of the anatomy and physiology of the intestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. It highlights current state-of-the-art approaches to deliver drugs to the intestinal lymphatics and the shift toward the use of these strategies to achieve pharmacokinetic and therapeutic benefits for patients.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Yining Xie
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Abel Anshabo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Zijun Lu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Anthony R J Phillips
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - John A Windsor
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| |
Collapse
|
3
|
Gangavarapu A, Tapia-Lopez LV, Sarkar B, Pena-Zacarias J, Badruddoza AZM, Nurunnabi M. Lipid nanoparticles for enhancing oral bioavailability. NANOSCALE 2024; 16:18319-18338. [PMID: 39291697 DOI: 10.1039/d4nr01487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent studies, lipid nanoparticles have attracted attention as drug delivery systems owing to their preeminent potential in achieving the desired bioavailability of biopharmaceutics (BCS) class II and class IV drugs. The current debate concerns the bioavailability of these poorly absorbed drugs with their simultaneous oral degradation. Lipid nanoparticles, including solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), are lipid-based carrier systems that can effectively encapsulate both lipophilic and hydrophilic drugs, offering versatile drug delivery systems. The unique properties of lipids (biodegradability and biocompatibility) and their transportation pathways enhance the biological availability of drugs. These particles can increase the gastrointestinal absorption and solubilization of minimally bioavailable drugs via a selective lymphatic pathway. This review mainly focuses on providing a brief update on lipid nanoparticles (LNPs) that synergistically increase the bioavailability of limited permeable drugs and highlight the transversal mechanisms of LNPs across the gastrointestinal hurdles, transmembrane absorption, transport kinetics, and computational tools. Finally, the present hurdles and future perspectives of LNPs for oral drug delivery systems are discussed.
Collapse
Affiliation(s)
- Anushareddy Gangavarapu
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS 38677, USA.
| | - Lillian V Tapia-Lopez
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Barnali Sarkar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Jaqueline Pena-Zacarias
- Biological Sciences Program, College of Science, University of Texas at El Paso, El Paso, TX 79965, USA
| | - Abu Zayed Md Badruddoza
- Pharmaceutical Sciences Small Molecule, Pfizer Worldwide Research and Development, Groton, CT 06340, USA.
| | - Md Nurunnabi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS 38677, USA.
| |
Collapse
|
4
|
Heck AG, Medina-Montano C, Zhong Z, Deswarte K, Eigen K, Stickdorn J, Kockelmann J, Scherger M, Sanders NN, Lienenklaus S, Lambrecht BN, Grabbe S, De Geest BG, Nuhn L. PH-Triggered, Lymph Node Focused Immunodrug Release by Polymeric 2-Propionic-3-Methyl-maleic Anhydrides with Cholesteryl End Groups. Adv Healthc Mater 2024:e2402875. [PMID: 39313985 DOI: 10.1002/adhm.202402875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Indexed: 09/25/2024]
Abstract
Gaining spatial control over innate immune activation is of great relevance during vaccine delivery and anticancer therapy, where one aims at activating immune cells at draining lymphoid tissue while avoiding systemic off-target innate immune activation. Lipid-polymer amphiphiles show high tendency to drain to lymphoid tissue upon local administration. Here, pH-sensitive, cholesteryl end group functionalized polymers as stimuli-responsive carriers are introduced for controlled immunoactivation of draining lymph nodes. Methacrylamide-based monomers bearing pendant 2-propionic-3-methylmaleic anhydride groups are polymerized by Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization using a cholesterol chain-transfer agent (chol-CTA). The amine-reactive anhydrides are conjugated with various amines, however, while primary amines afforded irreversible imides, secondary amines provided pH-responsive conjugates that are released upon acidification. This can be applied to fluorescent dyes for irreversibly carrier labeling or immunostimulatory Toll-like receptor (TLR) 7/8 agonists as cargos for pH-responsive delivery. Hydrophilization of remaining anhydride repeating units with short PEG-chains yielded cholesteryl-polymer amphiphiles that showed efficient cellular uptake and increased drug release at endosomal pH. Moreover, reversibly conjugated TLR 7/8 agonist amphiphiles efficiently drained to lymph nodes and increased the number of effectively maturated antigen-presenting cells after subcutaneous injection in vivo. Consequently, cholesteryl-linked methacrylamide-based polymers with pH-sensitive 2-propionic-3-methylmaleic anhydride side groups provide ideal features for immunodrug delivery.
Collapse
Affiliation(s)
- Alina G Heck
- Chair of Macromolecular Chemistry, Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Carolina Medina-Montano
- Department of Dermatology, University Medical Center (UMC) of the Johannes Gutenberg-University Mainz, 55131, Mainz, Germany
| | - Zifu Zhong
- Department of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, 9000, Belgium
| | - Kim Deswarte
- Department of Internal Medicine and Pediatrics, VIB Center for Inflammation Research, Ghent University, Ghent, 9052, Belgium
| | - Katharina Eigen
- Chair of Macromolecular Chemistry, Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
| | - Judith Stickdorn
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Johannes Kockelmann
- Chair of Macromolecular Chemistry, Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
| | | | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, 9820, Belgium
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science and Institute of Immunology, Hannover Medical School, 30625, Hanover, Germany
| | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, VIB Center for Inflammation Research, Ghent University, Ghent, 9052, Belgium
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center (UMC) of the Johannes Gutenberg-University Mainz, 55131, Mainz, Germany
| | - Bruno G De Geest
- Department of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, 9000, Belgium
| | - Lutz Nuhn
- Chair of Macromolecular Chemistry, Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| |
Collapse
|
5
|
Jangid AK, Noh KM, Kim S, Kim K. Engineered inulin-based hybrid biomaterials for augmented immunomodulatory responses. Carbohydr Polym 2024; 340:122311. [PMID: 38858027 DOI: 10.1016/j.carbpol.2024.122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
Modified biopolymers that are based on prebiotics have been found to significantly contribute to immunomodulatory events. In recent years, there has been a growing use of modified biomaterials and polymer-functionalized nanomaterials in the treatment of various tumors by activating immune cells. However, the effectiveness of immune cells against tumors is hindered by several biological barriers, which highlights the importance of harnessing prebiotic-based biopolymers to enhance host defenses against cancer, thus advancing cancer prevention strategies. Inulin, in particular, plays a crucial role in activating immune cells and promoting the secretion of cytokines. Therefore, this mini-review aims to emphasize the importance of inulin in immunomodulatory responses, the development of inulin-based hybrid biopolymers, and the role of inulin in enhancing immunity and modifying cell surfaces. Furthermore, we discuss the various approaches of chemical modification for inulin and their potential use in cancer treatment, particularly in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyung Mu Noh
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
6
|
Kana Veedu A, Panthalattu Parambil A, Manheri MK. Sequential Release of Ibuprofen and the Gasotransmitter Hydrogen sulfide using Oxanorbornane-Based Synthetic Lipids as Carriers. Chempluschem 2024:e202400323. [PMID: 39235160 DOI: 10.1002/cplu.202400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
After understanding the biological signaling roles of hydrogen sulfide and its involvement in various physiological processes, there has been enormous interest in exploring its therapeutic utility in areas such as cancer, inflammation, cardiovascular diseases, etc. There is also growing interest in using suitable H2S donors in combination with other drugs to improve the treatment outcome through the modulation of multiple pathways. The premature release of H2S from small molecule donors and the difficulty in controlling its spatio-temporal distribution are the major challenges during these efforts. Hence the development of appropriate carriers that can release this gasotransmitter along with the therapeutic entity of interest in a controlled manner has high significance. In this regard, this report presents a novel drug delivery system from oxanorbornane-based synthetic lipids that carries a H2S-releasing 1,2-dithiole-3-thione moiety as part of the head group. Nanoaggregates of the resulting conjugate are not only capable of efficiently entrapping a non-steroidal anti-inflammatory drug such as ibuprofen, but also release this drug and H2S in a controlled and sequential manner.
Collapse
Affiliation(s)
- Akshaya Kana Veedu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | | | - Muraleedharan K Manheri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| |
Collapse
|
7
|
Zhang Y, Fan C, Zhang J, Tian X, Zuo W, He K. Lipid-conjugated nucleoside monophosphate and monophosphonate prodrugs: A versatile drug delivery paradigm. Eur J Med Chem 2024; 275:116614. [PMID: 38925014 DOI: 10.1016/j.ejmech.2024.116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Integrating lipid conjugation strategies into the design of nucleoside monophosphate and monophosphonate prodrugs is a well-established approach for discovering potential therapeutics. The unique prodrug design endows nucleoside analogues with strong lipophilicity and structures resembling lysoglycerophospholipids, which improve cellular uptake, oral bioavailability and pharmacological activity. In addition, the metabolic stability, pharmacological activity, pharmacokinetic profiles and biodistribution of lipid prodrugs can be finely optimized by adding biostable caps, incorporating transporter-targeted groups, inserting stimulus-responsive bonds, adjusting chain lengths, and applying proper isosteric replacements. This review summarizes recent advances in the structural features and application fields of lipid-conjugated nucleoside monophosphate and monophosphonate prodrugs. This collection provides deep insights into the increasing repertoire of lipid prodrug development strategies and offers design inspirations for medicinal chemists for the development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Yanhua Zhang
- College of Science, Xichang University, Sichuan, 615000, China.
| | - Conghua Fan
- Xichang People's Hospital, Xichang, Sichuan, 615000, China
| | - Junjie Zhang
- College of Science, Xichang University, Sichuan, 615000, China
| | - Xin Tian
- College of Science, Xichang University, Sichuan, 615000, China
| | - Wen Zuo
- Xichang People's Hospital, Xichang, Sichuan, 615000, China
| | - Kehan He
- College of Science, Xichang University, Sichuan, 615000, China
| |
Collapse
|
8
|
Kasprzyk R, Rieth S, Heid P, Stengel F, Marx A. Cell-Permeable Nicotinamide Adenine Dinucleotides for Exploration of Cellular Protein ADP-Ribosylation. Angew Chem Int Ed Engl 2024:e202411203. [PMID: 39233478 DOI: 10.1002/anie.202411203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024]
Abstract
Posttranslational modifications (PTMs) greatly enhance the functional diversity of proteins, surpassing the number of gene-encoded variations. One intriguing PTM is ADP-ribosylation, which utilizes nicotinamide adenine dinucleotide (NAD+) as a substrate and is essential in cell signaling pathways regulating cellular responses. Here, we report the first cell-permeable NAD+ analogs and demonstrate their utility for investigating cellular ADP-ribosylation. Using a desthiobiotin-labelled analog for affinity enrichment of proteins that are ADP-ribosylated in living cells under oxidative stress, we identified protein targets associated with host-virus interactions, DNA damage and repair, protein biosynthesis, and ribosome biogenesis. Most of these targets have been noted in various literature sources, highlighting the potential of our probes for cellular ADP-ribosylome studies.
Collapse
Affiliation(s)
- Renata Kasprzyk
- Department of Chemistry, University of Konstanz, Universitätstraβe 10, 78464, Konstanz, Germany
| | - Sonja Rieth
- Department of Chemistry, University of Konstanz, Universitätstraβe 10, 78464, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätstraβe 10, 78464, Konstanz, Germany
| | - Peter Heid
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätstraβe 10, 78464, Konstanz, Germany
- Department of Biology, University of Konstanz, Universitätstraβe 10, 78464, Konstanz, Germany
| | - Florian Stengel
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätstraβe 10, 78464, Konstanz, Germany
- Department of Biology, University of Konstanz, Universitätstraβe 10, 78464, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, Universitätstraβe 10, 78464, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätstraβe 10, 78464, Konstanz, Germany
| |
Collapse
|
9
|
Rajendran AT, Vadakkepushpakath AN. Natural Food Components as Biocompatible Carriers: A Novel Approach to Glioblastoma Drug Delivery. Foods 2024; 13:2812. [PMID: 39272576 PMCID: PMC11394703 DOI: 10.3390/foods13172812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
Efficient drug delivery methods are crucial in modern pharmacotherapy to enhance treatment efficacy, minimize adverse effects, and improve patient compliance. Particularly in the context of glioblastoma treatment, there has been a recent surge in interest in using natural dietary components as innovative carriers for drug delivery. These food-derived carriers, known for their safety, biocompatibility, and multifunctional properties, offer significant potential in overcoming the limitations of conventional drug delivery systems. This article thoroughly overviews numerous natural dietary components, such as polysaccharides, proteins, and lipids, used as drug carriers. Their mechanisms of action, applications in different drug delivery systems, and specific benefits in targeting glioblastoma are examined. Additionally, the safety, biocompatibility, and regulatory considerations of employing food components in drug formulations are discussed, highlighting their viability and future prospects in the pharmaceutical field.
Collapse
Affiliation(s)
- Arunraj Tharamelveliyil Rajendran
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Anoop Narayanan Vadakkepushpakath
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, Karnataka, India
| |
Collapse
|
10
|
Ma W, Fu X, Zhao T, Qi Y, Zhang S, Zhao Y. Development and applications of lipid hydrophilic headgroups for nucleic acid therapy. Biotechnol Adv 2024; 74:108395. [PMID: 38906496 DOI: 10.1016/j.biotechadv.2024.108395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/11/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Nucleic acid therapy is currently the most promising method for treating tumors and genetic diseases and for preventing infectious diseases. However, the biggest obstacle to this therapy is delivery of the nucleic acids to the target site, which requires overcoming problems such as capture by the immune system, the need to penetrate biofilms, and degradation of nucleic acid performance. Designing suitable delivery vectors is key to solving these problems. Lipids-which consist of a hydrophilic headgroup, a linker, and a hydrophobic tail-are crucial components for the construction of vectors. The headgroup is particularly important because it affects the drug encapsulation rate, the vector cytotoxicity, and the transfection efficiency. Herein, we focus on various headgroup structures (tertiary amines, quaternary ammonium salts, peptides, piperazines, dendrimers, and several others), and we summarize and classify important lipid-based carriers that have been developed in recent years. We also discuss applications of cationic lipids with various headgroups for delivery of nucleic acid drugs, and we analyze how headgroup structure affects transport efficiency and carrier toxicity. Finally, we briefly describe the challenges of developing novel lipid carriers, as well as their prospects.
Collapse
Affiliation(s)
- Wanting Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Xingxing Fu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Tianyi Zhao
- Key Laboratory of Intelligent Biofabrication of Ministry of Education, School of Bioengineering, Dalian University of Technology, Dalian 116023, China
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
11
|
Sangsuwan W, Taweesablamlert A, Boonkerd A, Isarangkool Na Ayutthaya C, Yoo S, Javid B, Faikhruea K, Vilaivan T, Aonbangkhen C, Chuawong P. A quest for novel antimicrobial targets: Inhibition of Asp-tRNA Asn/Glu-tRNA Gln amidotransferase (GatCAB) by synthetic analogs of aminoacyl-adenosine in vitro and live bacteria. Bioorg Chem 2024; 150:107530. [PMID: 38852310 DOI: 10.1016/j.bioorg.2024.107530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
The Asp-tRNAAsn/Glu-tRNAGln amidotransferase (GatCAB) has been proposed as a novel antibacterial drug target due to its indispensability in prominent human pathogens. While several inhibitors with in vitro activity have been identified, none have been demonstrated to have potent activity against live bacteria. In this work, seven non-hydrolyzable transition state mimics of GatCAB were synthesized and tested as the transamidase inhibitors against GatCAB from the human pathogen Helicobacter pylori. Notably, the methyl sulfone analog of glutamyl-adenosine significantly reduced GatCAB's transamination rate. Additionally, four lipid-conjugates of these mimics displayed antibacterial activity against Bacillus subtilis, likely due to enhanced cell permeability. Inhibitory activity against GatCAB in live bacteria was confirmed using a sensitive gain-of-function dual luciferase reporter in Mycobacterium bovis-BCG. Only the lipid-conjugated methyl sulfone analog exhibited a significant increase in mistranslation rate, highlighting its cell permeability and inhibitory potential. This study provides insights for developing urgently needed novel antibacterial agents amidst emerging antimicrobial drug resistance.
Collapse
Affiliation(s)
- Withsakorn Sangsuwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Amata Taweesablamlert
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Anon Boonkerd
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Chawarat Isarangkool Na Ayutthaya
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Sion Yoo
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Babak Javid
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Kriangsak Faikhruea
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Pitak Chuawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
12
|
Jogadi W, Kshetri MB, Alqarni S, Sharma A, Cheline M, Amin MA, Sheets C, Nsoure-Engohang A, Zheng YR. Engineering Novel Amphiphilic Platinum(IV) Complexes to Co-Deliver Cisplatin and Doxorubicin. Molecules 2024; 29:4095. [PMID: 39274943 PMCID: PMC11397443 DOI: 10.3390/molecules29174095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
In this study, we report a novel platinum-doxorubicin conjugate that demonstrates superior therapeutic indices to cisplatin, doxorubicin, or their combination, which are commonly used in cancer treatment. This new molecular structure (1) was formed by conjugating an amphiphilic Pt(IV) prodrug of cisplatin with doxorubicin. Due to its amphiphilic nature, the Pt(IV)-doxorubicin conjugate effectively penetrates cell membranes, delivering both cisplatin and doxorubicin payloads intracellularly. The intracellular accumulation of these payloads was assessed using graphite furnace atomic absorption spectrometry and fluorescence imaging. Since the therapeutic effects of cisplatin and doxorubicin stem from their ability to target nuclear DNA, we hypothesized that the amphiphilic Pt(IV)-doxorubicin conjugate (1) would effectively induce nuclear DNA damage toward killing cancer cells. To test this hypothesis, we used flow the cytometric analysis of phosphorylated H2AX (γH2AX), a biomarker of nuclear DNA damage. The Pt(IV)-doxorubicin conjugate (1) markedly induced γH2AX in treated MDA-MB-231 breast cancer cells, showing higher levels than cells treated with either cisplatin or doxorubicin alone. Furthermore, MTT cell viability assays revealed that the enhanced DNA-damaging capability of complex 1 resulted in superior cytotoxicity and selectivity against human cancer cells compared to cisplatin, doxorubicin, or their combination. Overall, the development of this amphiphilic Pt(IV)-doxorubicin conjugate represents a new form of combination therapy with improved therapeutic efficacy.
Collapse
Affiliation(s)
- Wjdan Jogadi
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Man B Kshetri
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Suha Alqarni
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
- Department of Chemistry, University of Bisha, Bisha 67714, Saudi Arabia
| | - Arpit Sharma
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - May Cheline
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Md Al Amin
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Cynthia Sheets
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Angele Nsoure-Engohang
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| |
Collapse
|
13
|
Milan A, Mioc M, Mioc A, Gogulescu A, Mardale G, Avram Ș, Maksimović T, Mara B, Șoica C. Cytotoxic Potential of Betulinic Acid Fatty Esters and Their Liposomal Formulations: Targeting Breast, Colon, and Lung Cancer Cell Lines. Molecules 2024; 29:3399. [PMID: 39064977 PMCID: PMC11279467 DOI: 10.3390/molecules29143399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Betulinic acid is a lupane-type pentacyclic triterpene mostly found in birch bark and thoroughly explored for its wide range of pharmacological activities. Despite its impressive biological potential, its low bioavailability has challenged many researchers to develop different formulations for achieving better in vitro and in vivo effects. We previously reported the synthesis of fatty acid esters of betulinic acid using butyric, stearic, and palmitic acids (But-BA, St-BA, and Pal-BA) and included them in surfaced-modified liposomes (But-BA-Lip, St-BA-Lip, Pal-BA-Lip). In the current study, we evaluated the cytotoxic effects of both fatty acid esters and their respective liposomal formulations against MCF-7, HT-29, and NCI-H460 cell line. The cytotoxic assessment of BA derivatives revealed that both the fatty esters and their liposomal formulations acted as cytotoxic agents in a dose- and time-dependent manner. But-BA-Lip exerted stronger cytotoxic effects than the parent compound, BA and its liposomal formulation, and even stronger effects than 5-FU against HT-29 cells (IC50 of 30.57 μM) and NCI-H460 cells (IC50 of 30.74 μM). BA's fatty esters and their respective liposomal formulations facilitated apoptosis in cancer cells by inducing nuclear morphological changes and increasing caspase-3/-7 activity. The HET-CAM assay proved that none of the tested compounds induced any irritative effect, suggesting that they can be used safely for local applications.
Collapse
Affiliation(s)
- Andreea Milan
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania; (A.M.); (M.M.); (A.M.); (G.M.); (Ș.A.); (T.M.); (B.M.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania; (A.M.); (M.M.); (A.M.); (G.M.); (Ș.A.); (T.M.); (B.M.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania; (A.M.); (M.M.); (A.M.); (G.M.); (Ș.A.); (T.M.); (B.M.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Armand Gogulescu
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Gabriel Mardale
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania; (A.M.); (M.M.); (A.M.); (G.M.); (Ș.A.); (T.M.); (B.M.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Ștefana Avram
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania; (A.M.); (M.M.); (A.M.); (G.M.); (Ș.A.); (T.M.); (B.M.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Tamara Maksimović
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania; (A.M.); (M.M.); (A.M.); (G.M.); (Ș.A.); (T.M.); (B.M.); (C.Ș.)
| | - Bogdan Mara
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania; (A.M.); (M.M.); (A.M.); (G.M.); (Ș.A.); (T.M.); (B.M.); (C.Ș.)
- Institute of Chemistry Coriolan Drăgulescu, 24 Mihai Viteazu Ave, 300223 Timișoara, Romania
| | - Codruța Șoica
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania; (A.M.); (M.M.); (A.M.); (G.M.); (Ș.A.); (T.M.); (B.M.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| |
Collapse
|
14
|
Rampazzo R, Vavasori A, Ronchin L, Riello P, Marchiori M, Saorin G, Beghetto V. Enhanced Antibacterial Activity of Vancomycin Loaded on Functionalized Polyketones. Polymers (Basel) 2024; 16:1890. [PMID: 39000745 PMCID: PMC11244503 DOI: 10.3390/polym16131890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
Today, polymeric drug delivery systems (DDS) appear as an interesting solution against bacterial resistance, having great advantages such as low toxicity, biocompatibility, and biodegradability. In this work, two polyketones (PK) have been post-functionalized with sodium taurinate (PKT) or potassium sulfanilate (PKSK) and employed as carriers for Vancomycin against bacterial infections. Modified PKs were easily prepared by the Paal-Knorr reaction and loaded with Vancomycin at a variable pH. All polymers were characterized by FT-IR, DSC, TGA, SEM, and elemental analysis. Antimicrobial activity was tested against Gram-positive Staphylococcus aureus ATCC 25923 and correlated to the different pHs used for its loading (between 2.3 and 8.8). In particular, the minimum inhibitory concentrations achieved with PKT and PKSK loaded with Vancomycin were similar, at 0.23 μg/mL and 0.24 μg/mL, respectively, i.e., six times lower than that with Vancomycin alone. The use of post-functionalized aliphatic polyketones has thus been demonstrated to be a promising way to obtain very efficient polymeric DDS.
Collapse
Affiliation(s)
- Rachele Rampazzo
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
- Department of Architecture and Industrial Design, University of Campania “Luigi Vanvitelli”, 81031 Aversa, Italy
| | - Andrea Vavasori
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
| | - Lucio Ronchin
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
| | - Pietro Riello
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
| | - Martina Marchiori
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
| | - Gloria Saorin
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
| | - Valentina Beghetto
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
- Crossing S.r.l., Viale della Repubblica 193/b, 31100 Treviso, Italy
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), Via C. Ulpiani 27, 701268 Bari, Italy
| |
Collapse
|
15
|
Gao Y, Huang Y, Ren C, Chou P, Wu C, Pan X, Quan G, Huang Z. Looking back, moving forward: protein corona of lipid nanoparticles. J Mater Chem B 2024; 12:5573-5588. [PMID: 38757190 DOI: 10.1039/d4tb00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Lipid nanoparticles (LNPs) are commonly employed for drug delivery owing to their considerable drug-loading capacity, low toxicity, and excellent biocompatibility. Nevertheless, the formation of protein corona (PC) on their surfaces significantly influences the drug's in vivo fate (such as absorption, distribution, metabolism, and elimination) upon administration. PC denotes the phenomenon wherein one or multiple strata of proteins adhere to the external interface of nanoparticles (NPs) or microparticles within the biological milieu, encompassing ex vivo fluids (e.g., serum-containing culture media) and in vivo fluids (such as blood and tissue fluids). Hence, it is essential to claim the PC formation behaviors and mechanisms on the surface of LNPs. This overview provided a comprehensive examination of crucial aspects related to such issues, encompassing time evolution, controllability, and their subsequent impacts on LNPs. Classical studies of PC generation on the surface of LNPs were additionally integrated, and its decisive role in shaping the in vivo fate of LNPs was explored. The mechanisms underlying PC formation, including the adsorption theory and alteration theory, were introduced to delve into the formation process. Subsequently, the existing experimental outcomes were synthesized to offer insights into the research and application facets of PC, and it was concluded that the manipulation of PC held substantial promise in the realm of targeted delivery.
Collapse
Affiliation(s)
- Yue Gao
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Yeqi Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Chuanyu Ren
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Peiwen Chou
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| |
Collapse
|
16
|
Shin HS, Kim S, Jin SM, Yoo YJ, Heo JH, Lim YT. Molecular Masking of Synthetic Immunomodulator Evokes Antitumor Immunity With Reduced Immune Tolerance and Systemic Toxicity by Temporal Activity Recovery and Sustained Stimulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309039. [PMID: 37903320 DOI: 10.1002/adma.202309039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Activation of the innate immune system counteracts tumor-induced immunosuppression. Hence, small molecule-based toll-like receptor 7/8 agonists (TLR7/8a), which can modulate immunosuppression in the tumor microenvironment along with the activation of innate immunity, are emerging as essential components of cancer immunotherapy. However, the clinical application of synthetic TLR7/8a therapies is limited by systemic immune-associated toxicity and immune tolerance induced by uncontrolled stimulatory activities and repeated treatments. To address these limitations, a dynamic immunomodulation strategy incorporating masking and temporal recovery of the activity of TLR7/8a through prodrug-like TLR7/8a (pro-TLR7/8a) at the molecular level and a sustained and controlled release of active TLR7/8a from nanoliposome (pro-TLR7/8a) (NL(pro-TLR7/8)) in a macroscale depot are designed. Immunization with cationic NL(pro-TLR7/8) and anionic antigens triggers robust activation of innate immune cells as well as antigen-specific T cell responses, eliciting reprogramming of immunosuppressive cells into tumor-suppressive cells, with decreased systemic adverse effects and immune tolerance. Combination treatment with NL(pro-TLR7/8a) and immune checkpoint inhibitors (anti-CTLA-4 plus anti-PD-L1) or nanoliposomes (Doxorubicin) has synergistic effects on antitumor immunity in various tumor models. The concept of pro-TLR7/8a suggested herein may facilitate the advancement of small-molecule-based immunomodulators for clinical translation and safe and effective cancer immunotherapy.
Collapse
Affiliation(s)
- Hong Sik Shin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sohyun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Seung Mo Jin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yeon Jeong Yoo
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jang Hun Heo
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
17
|
Kabil MF, Badary OA, Bier F, Mousa SA, El-Sherbiny IM. A comprehensive review on lipid nanocarrier systems for cancer treatment: fabrication, future prospects and clinical trials. J Liposome Res 2024; 34:135-177. [PMID: 37144339 DOI: 10.1080/08982104.2023.2204372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 04/02/2023] [Indexed: 05/06/2023]
Abstract
Over the last few decades, cancer has been considered a clinical challenge, being among the leading causes of mortality all over the world. Although many treatment approaches have been developed for cancer, chemotherapy is still the most utilized in the clinical setting. However, the available chemotherapeutics-based treatments have several caveats including their lack of specificity, adverse effects as well as cancer relapse and metastasis which mainly explains the low survival rate of patients. Lipid nanoparticles (LNPs) have been utilized as promising nanocarrier systems for chemotherapeutics to overcome the challenges of the currently applied therapeutic strategies for cancer treatment. Loading chemotherapeutic agent(s) into LNPs improves drug delivery at different aspects including specific targeting of tumours, and enhancing the bioavailability of drugs at the tumour site through selective release of their payload, thus reducing their undesired side effects on healthy cells. This review article delineates an overview of the clinical challenges in many cancer treatments as well as depicts the role of LNPs in achieving optimal therapeutic outcomes. Moreover, the review contains a comprehensive description of the many LNPs categories used as nanocarriers in cancer treatment to date, as well as the potential of LNPs for future applications in other areas of medicine and research.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Osama A Badary
- Clinical Pharmacy Department, Faculty of Pharmacy, The British University in Egypt, El-Shorouk City, Egypt
| | - Frank Bier
- AG Molekulare Bioanalytik und Bioelektronik, Institut für Biochemie und Biologie, Universität Potsdam Karl-Liebknecht-Straße 24/25, Potsdam (OT Golm), Germany
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
18
|
Wnętrzak A, Szymczuk D, Chachaj-Brekiesz A, Dynarowicz-Latka P, Lupa D, Lipiec EW, Laszuk P, Petelska AD, Markiewicz KH, Wilczewska AZ. Lithocholic acid-based oligomers as drug delivery candidates targeting model of lipid raft. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184294. [PMID: 38316379 DOI: 10.1016/j.bbamem.2024.184294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
This study presents a new approach to designing a lithocholic acid functionalized oligomer (OLithocholicAA-X) that can be used as a drug carrier with additional, beneficial activity. Namely, this novel oligomer can incorporate an anti-cancer drug due to the application of an effective backbone as its component (lithocholic acid) alone is known to have anticancer activity. The oligomer was synthesized and characterized in detail by nuclear magnetic resonance, attenuated total reflectance Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, thermal analysis, and mass spectrometry analysis. We selected lipid rafts as potential drug carrier-membrane binding sites. In this respect, we investigated the effects of OLithocholicAA-X on model lipid raft of normal and altered composition, containing an increased amount of cholesterol (Chol) or sphingomyelin (SM), using Langmuir monolayers and liposomes. The surface topography of the studied monolayers was additionally investigated by atomic force microscopy (AFM). The obtained results showed that the investigated oligomer has affinity for a system that mimics a normal lipid raft (SM:Chol 2:1). On the other hand, for systems with an excess of SM or Chol, thermodynamically unfavorable fluidization of the films occurs. Moreover, AFM topographies showed that the amount of SM determines the bioavailability of the oligomer, causing fragmentation of its lattice.
Collapse
Affiliation(s)
- Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Dawid Szymczuk
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Anna Chachaj-Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Dawid Lupa
- Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Ewelina W Lipiec
- Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Paulina Laszuk
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Aneta D Petelska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Karolina H Markiewicz
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Agnieszka Z Wilczewska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| |
Collapse
|
19
|
Naeini AH, Mahdavipour K, Rastegari A, Aghsami M, Montazeri H, Faghihi H, Mohammadi Z. Chitosan and its amphiphilic derivative nanoparticles loaded with Minoxidil for induction of hair growth: In vitro and in vivo evaluation. Int J Biol Macromol 2024; 259:129122. [PMID: 38159704 DOI: 10.1016/j.ijbiomac.2023.129122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Minoxidil is widely used for treating Androgenic Alopecia, but its low hydrophilicity promotes the use of co-solvents in commercial formulations, which could then cause skin irritations. Nano-drug delivery systems have been developed to improve the solubility of lipophilic molecules and increase the concentration of drugs in hair follicles, thereby minimizing side effects. Chitosan (CS) and Methylated Aminobenzyl Carboxymethyl Chitosan (MCS) nanoparticles containing Minoxidil were prepared and evaluated for their physicochemical properties, drug release profile, skin permeation, cytotoxicity, and animal hair growth. The results showed that MCS nanoparticles had a 60 % drug release compared to CS nanoparticles, with almost complete release in 2 h. MCS nanoparticles also showed a 20 % drug permeation from skin compared to 70 % for CS nanoparticles in 24 h. In 48 and 72 h, CS and MCS nanoparticles didn't exhibit any significant cytotoxicity. Animal study revealed a significant increase in hair growth from MCS nanoparticles compared to the commercial formulation in fourteen days. However, MCS nanoparticles were less efficient compared to CS nanoparticles. The use of MCS in nano-drug delivery systems is expected to continue to gain importance due to its ability to enhance the solubility of hydrophobic drugs, particularly in the treatment of skin diseases.
Collapse
Affiliation(s)
- Amin Haghighat Naeini
- Department of Pharmaceutics and pharmaceutical nanotechnology, School of pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Kosar Mahdavipour
- Department of Pharmaceutics and pharmaceutical nanotechnology, School of pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rastegari
- Department of Pharmaceutics and pharmaceutical nanotechnology, School of pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Aghsami
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Montazeri
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Homa Faghihi
- Department of Pharmaceutics and pharmaceutical nanotechnology, School of pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Mohammadi
- Department of Pharmaceutics and pharmaceutical nanotechnology, School of pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
An L, De Bruyn T, Pang J, Ubhayakar S, Salphati L, Zhang X, Liu L, Li R, Chan B, Dey A, Levy ES. Early Stage Preclinical Formulation Strategies to Alter the Pharmacokinetic Profile of Two Small Molecule Therapeutics. Pharmaceuticals (Basel) 2024; 17:179. [PMID: 38399394 PMCID: PMC10892288 DOI: 10.3390/ph17020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Early stage chemical development presents numerous challenges, and achieving a functional balance is a major hurdle, with many early compounds not meeting the clinical requirements for advancement benchmarks due to issues like poor oral bioavailability. There is a need to develop strategies for achieving the desired systemic concentration for these compounds. This will enable further evaluation of the biological response upon a compound-target interaction, providing deeper insight into the postulated biological pathways. Our study elucidates alternative drug delivery paradigms by comparing formulation strategies across oral (PO), intraperitoneal (IP), subcutaneous (SC), and intravenous (IV) routes. While each modality boasts its own set of merits and constraints, it is the drug's formulation that crucially influences its pharmacokinetic (PK) trajectory and the maintenance of its therapeutic levels. Our examination of model compounds G7883 and G6893 highlighted their distinct physio-chemical attributes. By harnessing varied formulation methods, we sought to fine-tune their PK profiles. PK studies showcased G7883's extended half-life using an SC oil formulation, resulting in a 4.5-fold and 2.5-fold enhancement compared with the IP and PO routes, respectively. In contrast, with G6893, we achieved a prolonged systemic coverage time above the desired target concentration through a different approach using an IV infusion pump. These outcomes underscore the need for tailored formulation strategies, which are dictated by the compound's innate properties, to reach the optimal in vivo systemic concentrations. Prioritizing formulation and delivery optimization early on is pivotal for effective systemic uptake, thereby facilitating a deeper understanding of biological pathways and expediting the overall clinical drug development timeline.
Collapse
Affiliation(s)
- Le An
- Small Molecules Pharmaceutics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA;
| | - Tom De Bruyn
- Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (T.D.B.); (J.P.); (S.U.); (L.S.); (X.Z.); (L.L.); (R.L.)
| | - Jodie Pang
- Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (T.D.B.); (J.P.); (S.U.); (L.S.); (X.Z.); (L.L.); (R.L.)
| | - Savita Ubhayakar
- Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (T.D.B.); (J.P.); (S.U.); (L.S.); (X.Z.); (L.L.); (R.L.)
| | - Laurent Salphati
- Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (T.D.B.); (J.P.); (S.U.); (L.S.); (X.Z.); (L.L.); (R.L.)
| | - Xing Zhang
- Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (T.D.B.); (J.P.); (S.U.); (L.S.); (X.Z.); (L.L.); (R.L.)
| | - Liling Liu
- Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (T.D.B.); (J.P.); (S.U.); (L.S.); (X.Z.); (L.L.); (R.L.)
| | - Ruina Li
- Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (T.D.B.); (J.P.); (S.U.); (L.S.); (X.Z.); (L.L.); (R.L.)
| | - Bryan Chan
- Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA;
| | - Anwesha Dey
- Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA;
| | - Elizabeth S. Levy
- Small Molecules Pharmaceutics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA;
| |
Collapse
|
21
|
Wang K, Liao PY, Chang WC, Yang CR, Su YT, Wu PC, Wu YC, Hung YC, Akhtar N, Lai HC, Ma WL. Linoleate-pazopanib conjugation as active pharmacological ingredient to abolish hepatocellular carcinoma growth. Front Pharmacol 2024; 14:1281067. [PMID: 38293667 PMCID: PMC10824963 DOI: 10.3389/fphar.2023.1281067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Small molecule compounds targeting multiple kinases involved in neoangiogenesis have shown survival benefits in patients with unresectable hepatocellular carcinoma (HCC). Nonetheless, despite the beneficial effects of multikinase inhibitors (MKIs), a lack of boosting adjuvant limits their objective response rate. Lipid conjugates have been used to improve delivery efficacy or pharmaceutical benefits for decades. However, the feasibility of utilizing lipid-drug conjugates (LDCs) in HCC regimens remains untested. In this study, oral feeding of linoleate-fluorescein isothiocyanate conjugates showed that the compound was well distributed in a spontaneous HCC mouse model. Therefore, a rationale design was developed for chemically synthesizing a linoleate-pazopanib conjugate (LAPC). The LAPC showed a significantly improved cytotoxicity compared to the parental drug pazopanib. Pazopanib's angiogenic suppressing signals were not observed in LAPC-treated HCC cells, potentially suggesting an altered mechanism of action (MOA). In an efficacy trial comparing placebo, oral pazopanib, and LAPC treatments in the hepatitis B virus transgene-related spontaneous HCC mouse model (HBVtg-HCC), the LAPC treatment demonstrated superior tumor ablating capacity in comparison to both placebo and pazopanib treatments, without any discernible systemic toxicity. The LAPC exposure is associated with an apoptosis marker (Terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL]) and an enhanced ferroptosis (glutathione peroxidase 4 [GPX4]) potential in HBVtg-HCC tumors. Therefore, the LAPC showed excellent HCC ablative efficacy with altered MOA. The molecular mechanisms of the LAPC and LDCs for HCC therapeutics are of great academic interest. Further comprehensive preclinical trials (e.g., chemical-manufacture-control, toxicity, distribution, and pharmacokinetics/pharmacodynamics) are expected.
Collapse
Affiliation(s)
- Ke Wang
- Graduate Institute of Biomedical Sciences, and Ph.D. Program for Health Science and Industry, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Chinese Medicine Research and Development Center, and Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Pei-Yin Liao
- Graduate Institute of Biomedical Sciences, and Ph.D. Program for Health Science and Industry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chun Chang
- Department of Medical Research, Chinese Medicine Research and Development Center, and Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Cian-Ru Yang
- Graduate Institute of Biomedical Sciences, and Ph.D. Program for Health Science and Industry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Ting Su
- Graduate Institute of Biomedical Sciences, and Ph.D. Program for Health Science and Industry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ping-Ching Wu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Institute of Oral Medicine and Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, Taiwan Innovation Center of Medical Devices and Technology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yao-Ching Hung
- Department of Medical Research, Chinese Medicine Research and Development Center, and Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Asia University Hospital, Taichung, Taiwan
| | - Najim Akhtar
- Graduate Institute of Biomedical Sciences, and Ph.D. Program for Health Science and Industry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Department of Medical Research, Chinese Medicine Research and Development Center, and Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Lung Ma
- Graduate Institute of Biomedical Sciences, and Ph.D. Program for Health Science and Industry, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Chinese Medicine Research and Development Center, and Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
22
|
Deshpande S, Yang Y, Zauscher S, Chilkoti A. Enzymatic Synthesis of Aptamer-Polynucleotide Nanoparticles with High Anticancer Drug Loading for Targeted Delivery. Biomacromolecules 2024; 25:155-164. [PMID: 38051194 PMCID: PMC11495896 DOI: 10.1021/acs.biomac.3c00888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
We report a targeted prodrug delivery platform that can deliver a cytostatic nucleobase analog with high drug loading. We chose fluorouracil (5FU), a drug used to treat various cancers, whose active metabolite 5-fluorodeoxyuridine monophosphate (5-FdUMP) is the antineoplastic agent. We use terminal deoxynucleotidyl transferase (TdT) to polymerize 5-fluorodeoxyuridine triphosphate (5-FdUTP) onto the 3'-end of an aptamer. We find that (i) addition of hydrophobic, unnatural nucleotides at the 3'-end of the 5-FdU polynucleotide by TdT leads to their spontaneous self-assembly into nuclease resistant micelles, (ii) aptamers presented on the micelle corona retain specificity for their cognate receptor on tumor cells, and (iii) the micelles deliver 5FU to tumor cells and exhibit greater cytotoxicity than the free drug. The modular design of our platform, consisting of a targeting moiety, a polynucleotide drug, and a self-assembly domain, can be adapted to encompass a range of polymerizable therapeutic nucleotides and targeting units.
Collapse
Affiliation(s)
- Sonal Deshpande
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Yunqi Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Stefan Zauscher
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
23
|
Sanati M, Afshari AR, Ahmadi SS, Kesharwani P, Sahebkar A. Advances in liposome-based delivery of RNA therapeutics for cancer treatment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:177-218. [PMID: 38458738 DOI: 10.1016/bs.pmbts.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Liposomal drug delivery systems stand as versatile therapeutic platforms for precisely targeting related elements in cancerous tissues owing to their intrinsic passive and acquired active targeting capabilities and exceptional compatibility with physiologic environments. When the capacity of liposomes as nanocarriers is combined with the revolutionary potential of RNA therapies in affecting undruggable targets, the outcome would be promising drug candidates as game-changers in the cancer treatment arena. However, optimizing liposome composition, physicochemical properties, and surface chemistry is paramount to maximizing their pharmacokinetic and pharmacodynamic attributes. This review highlighted the potential of liposomes as nanovehicles for RNA therapeutics through a literature review and looked at the most recent preclinical and clinical advancements in utilizing liposomal RNA therapeutics for cancer management. Notably, the discovery of novel targets, advancements in liposome engineering, and organizing well-planned clinical trials would help uncover the incredible potential of these nanotherapeutics in cancer patients.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Mohamed SMA, Schofield P, McCalmont H, Moles E, Friedrich KH, Kavallaris M, Christ D, Bayat N, Lock RB. An antibody fragment-decorated liposomal conjugate targets Philadelphia-like acute lymphoblastic leukemia. Int J Biol Macromol 2024; 254:127596. [PMID: 37898250 DOI: 10.1016/j.ijbiomac.2023.127596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/28/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL) is an aggressive B-ALL malignancy associated with high rates of relapse and inferior survival rate. While targeted treatments against the cell surface proteins CD22 or CD19 have been transformative in the treatment of refractory B-ALL, patients may relapse due to antigen loss, necessitating targeting alternative antigens. Cytokine receptor-like factor 2 (CRLF2) is overexpressed in half of Ph-like ALL cases conferring chemoresistance and enhancement of leukemia cell survival. Therefore, targeting CRLF2 may reduce the likelihood of relapse associated with antigen loss. We developed a CRLF2-targeting single-chain variable fragment modified by the fragment crystallizable region (CRLF2 scFv-Fc) conjugated to a drug maytansinoid 1 (DM1)-DOPC liposomal conjugate, creating homogeneous CRLF2-targeted liposomes (CRLF2-DM1 LIP). Cellular association and internalization studies in a Ph-like ALL cell line, MHH-CALL-4, compared to its lentivirally transduced CRLF2-knockdown counterpart (KD-CALL-4) revealed excellent CRLF2-targeting efficiency of CRLF2-DM1 LIP. Moreover, CRLF2-DM1 LIP showed selective association and internalization ex vivo using Ph-like ALL patient-derived xenograft (PDX) cells with minimal reactivity with non-target cells. Cell apoptosis assays demonstrated the CRLF2-dependent potency of CRLF2-DM1 LIP in Ph-like ALL cell lines. This study is the first to highlight the therapeutic potential of a CRLF2-directed scFv-Fc-liposomal conjugate for targeting Ph-like ALL.
Collapse
Affiliation(s)
- Sara M A Mohamed
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia; UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Peter Schofield
- Garvan Institute of Medical Research, Sydney, NSW, Australia; St.Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Hannah McCalmont
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Ernest Moles
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia; UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia; Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW, Australia; UNSW RNA Institute, UNSW Sydney, NSW, Australia
| | | | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia; UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia; Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW, Australia; UNSW RNA Institute, UNSW Sydney, NSW, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, NSW, Australia; St.Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Narges Bayat
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia; UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia; UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
25
|
Teodori L, Omer M, Kjems J. RNA nanostructures for targeted drug delivery and imaging. RNA Biol 2024; 21:1-19. [PMID: 38555519 PMCID: PMC10984137 DOI: 10.1080/15476286.2024.2328440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
The RNA molecule plays a pivotal role in many biological processes by relaying genetic information, regulating gene expression, and serving as molecular machines and catalyzers. This inherent versatility of RNA has fueled significant advancements in the field of RNA nanotechnology, driving the engineering of complex nanoscale architectures toward biomedical applications, including targeted drug delivery and bioimaging. RNA polymers, serving as building blocks, offer programmability and predictability of Watson-Crick base pairing, as well as non-canonical base pairing, for the construction of nanostructures with high precision and stoichiometry. Leveraging the ease of chemical modifications to protect the RNA from degradation, researchers have developed highly functional and biocompatible RNA architectures and integrated them into preclinical studies for the delivery of payloads and imaging agents. This review offers an educational introduction to the use of RNA as a biopolymer in the design of multifunctional nanostructures applied to targeted delivery in vivo, summarizing physical and biological barriers along with strategies to overcome them. Furthermore, we highlight the most recent progress in the development of both small and larger RNA nanostructures, with a particular focus on imaging reagents and targeted cancer therapeutics in pre-clinical models and provide insights into the prospects of this rapidly evolving field.
Collapse
Affiliation(s)
- Laura Teodori
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
- Center for RNA Therapeutics towards Metabolic Diseases (RNA-META), Aarhus University, Aarhus, Denmark
| | - Marjan Omer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
- Center for RNA Therapeutics towards Metabolic Diseases (RNA-META), Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
26
|
Sherif AY, Harisa GI, Alanazi FK. The Chimera of TPGS and Nanoscale Lipid Carriers as Lymphatic Drug Delivery Vehicles to Fight Metastatic Cancers. Curr Drug Deliv 2024; 21:525-543. [PMID: 37183467 DOI: 10.2174/1567201820666230512122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 05/16/2023]
Abstract
The lymphatic system (LS) plays a crucial role in fluid balance, transportation of macromolecules, and immune response. Moreover, LS is a channel for microbial invasion and cancer metastasis. Particularly, solid tumors, including lung, breast, melanoma, and prostate cancers, are metastasized across highways of LS. Subsequently, the fabrication of chimeric lymphatic drug delivery systems (LDDS) is a promising strategy to fight cancer metastasis and control microbial pandemics. In this regard, LDDS, in terms of PEG-nanoscaled lipid carriers, elicited a revolution during the COVID-19 pandemic as cargoes for mRNA vaccines. The drug delivered by the lymphatic pathway escapes first-pass metabolism and enhances the drug's bioavailability. Ample approaches, including synthesis of prodrugs, trigging of chylomicron biosynthesis, and fabrication of nanocarriers, facilitate lymphatic drug delivery. Specifically, nanoscales lipid cargoes have the propensity to lymphatic trafficking. Interestingly, TPGSengineered nanoscale lipid cargoes enhance lymphatic trafficking, increase tissue permeation, and, specifically, uptake. Moreover, they overcome biological barriers, control biodistribution, and enhance organelles localization. Most anticancer agents are non-specific, have low bioavailability, and induced drug resistance. Therefore, TPGS-engineered nanoscale lipid chimeras improve the therapeutic impact of anticancer agents. This review highlights lymphatic cancer metastasis, nanoscales lipid cargoes as LDDS, and their influence on lymphatic trafficking, besides the methods of LDD studies.
Collapse
Affiliation(s)
- Abdelrahman Y Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Rezaee Y, Rezaee E, Karami L, Torshabi M, Haeri A. Crocin-Phospholipid Complex: Molecular Docking, Molecular Dynamics Simulation, Preparation, Characterization, and Antioxidant Activity. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e144041. [PMID: 39005730 PMCID: PMC11246643 DOI: 10.5812/ijpr-144041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 02/17/2024] [Indexed: 07/16/2024]
Abstract
Background Crocin is a water-soluble carotenoid compound present in saffron (Crocus sativus L.), known for its wide range of pharmacological activities, including cardioprotective, hepatoprotective, anti-tumorigenic, anti-atherosclerosis, and anti-inflammatory effects. Objectives The instability of crocin, its low miscibility with oils, and poor bioavailability pose challenges for its pharmaceutical applications. This study aimed to design and prepare a crocin-phospholipid complex (CPC) and assess its physicochemical properties. Methods The study investigated the formation of the complex and its binding affinity through molecular docking. Molecular dynamics (MD) simulations were conducted to find the optimal molar ratio of crocin to phospholipid for the complex's preparation. The CPC was produced using the solvent evaporation method. Techniques such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FE-SEM), nuclear magnetic resonance (NMR), and solubility studies were utilized to characterize and confirm the formation of CPC. Additionally, the in vitro antioxidant activity of crocin and CPC was evaluated. Results Molecular dynamic simulations explored molar ratios of 1: 1, 1: 1.5, and 1: 2 for crocin to phospholipid. The ratio of 1: 2 was found to be the most stable, exhibiting the highest probability of hydrogen bond formation. Molecular docking, FTIR, and NMR studies indicated hydrogen bond interactions between crocin and phospholipid, confirming CPC's formation. XRD and FE-SEM analyses showed a decrease in crocin's crystallinity within the phospholipid complex. Furthermore, the solubility of crocin in n-octanol was enhanced post-complexation, indicating an increase in crocin's lipophilic nature. Conclusions Phospholipid complexation emerges as a promising technique for enhancing the physicochemical characteristics of crocin.
Collapse
Affiliation(s)
- Yasaman Rezaee
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Karami
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Athalye M, Teli D, Chorawala M, Sharma A, Patel R, Dua K, Singh SK, Gupta G, Patel M. Apolipoprotein E3 functionalized lipid-drug conjugated nanoparticles of Levetiracetam for enhanced delivery to the brain: In-vitro cell line studies and in-vivo study. Int J Biol Macromol 2024; 254:127799. [PMID: 37923037 DOI: 10.1016/j.ijbiomac.2023.127799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
A significant portion of brain-tumor patients suffer from 'brain-tumor-related epilepsy (BTE)' which results in depression, anxiety and hampered quality of life. Conventional anti-epileptic drugs indicate negative interaction with other drugs augmenting the poor outcome of overall therapy. Levetiracetam (LVM) has evidenced effectiveness for BTE but its hydrophilicity restricts the passage into blood-brain barrier. The majority of lipid nanoparticles fails to load hydrophilic drug sufficiently. Therefore, lipid-drug conjugates (LDC) were synthesized using stearic acid via amide bond formation confirmed by FTIR and NMR. The nanoparticles of synthesized LDC were prepared by solvent injection method followed by functionalization with Apolipoprotein E3 (ApoE3@LDC-NP). The nanoparticles were characterized by DSC, XRD, particle size (131.6 ± 1.24 nm), zeta potential (-15.6 ± 0.09 mV), and for storage stability. In-vitro release study indicated initial burst release of 20 ± 0.63 % followed by sustained release up to 30 h (66 ± 1.40 %) for ApoE3@LDC-NP. The cell-line study on HEK293 indicated no significant cytotoxic effect and greater cell uptake through U87MG cell line. The pharmacokinetic and bio-distribution study indicated 2.5-fold greater brain-targeting of ApoE3@LDC-NP as compared to LVM solution. It proved safe in the haemolysis study and exhibited the absence of tissue necrosis. Thus, ApoE3@LDC-NP might be a promising approach for effective brain-targeting of LVM for improved clinical response in BTE.
Collapse
Affiliation(s)
- Mansi Athalye
- L. M. College of Pharmacy, Opposite Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India; Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT - Campus, Changa, 388421 Anand, Gujarat, India
| | - Divya Teli
- L. M. College of Pharmacy, Opposite Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Mehul Chorawala
- L. M. College of Pharmacy, Opposite Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India; Intas Pharmaceuticals Ltd., Corporate House, Near Sola Bridge, S. G. Highway, Thaltej, Ahmedabad 380054, Gujarat, India
| | - Abhilasha Sharma
- Department of Life science, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Rashmin Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT - Campus, Changa, 388421 Anand, Gujarat, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Mrunali Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT - Campus, Changa, 388421 Anand, Gujarat, India.
| |
Collapse
|
29
|
Fernandes LDR, Lopes JR, Bonjorno AF, Prates JLB, Scarim CB, Dos Santos JL. The Application of Prodrugs as a Tool to Enhance the Properties of Nucleoside Reverse Transcriptase Inhibitors. Viruses 2023; 15:2234. [PMID: 38005911 PMCID: PMC10675571 DOI: 10.3390/v15112234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Antiretroviral Therapy (ART) is an effective treatment for human immunodeficiency virus (HIV) which has transformed the highly lethal disease, acquired immunodeficiency syndrome (AIDS), into a chronic and manageable condition. However, better methods need to be developed for enhancing patient access and adherence to therapy and for improving treatment in the long term to reduce adverse effects. From the perspective of drug discovery, one promising strategy is the development of anti-HIV prodrugs. This approach aims to enhance the efficacy and safety of treatment, promoting the development of more appropriate and convenient systems for patients. In this review, we discussed the use of the prodrug approach for HIV antiviral agents and emphasized nucleoside reverse transcriptase inhibitors. We comprehensively described various strategies that are used to enhance factors such as water solubility, bioavailability, pharmacokinetic parameters, permeability across biological membranes, chemical stability, drug delivery to specific sites/organs, and tolerability. These strategies might help researchers conduct better studies in this field. We also reported successful examples from the primary therapeutic classes while discussing the advantages and limitations. In this review, we highlighted the key trends in the application of the prodrug approach for treating HIV/AIDS.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (L.d.R.F.); (J.R.L.); (A.F.B.); (J.L.B.P.); (C.B.S.)
| |
Collapse
|
30
|
Yang F, Fan Z, Zhang L, He Y, Hu R, Xiang J, Fu S, Wang G, Wang J, Tao X, Zhang P. Preparation and anti-triple-negative breast cancer cell effect of a nanoparticle for the codelivery of paclitaxel and gemcitabine. DISCOVER NANO 2023; 18:119. [PMID: 37735318 PMCID: PMC10513990 DOI: 10.1186/s11671-023-03899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Amphiphilic polymers (HA-ANI) were prepared by grafting hyaluronic acid (HA) and 6-(2-nitroimidazole)hexylamine (ANI) and then self-assemble in water to form nanoparticles (NPs) that could be loaded with paclitaxel (PTX) and gemcitabine (GEM) by dialysis. Infrared spectroscopy and 1H-NMR indicated the successful synthesis of HA-ANI. Three different ratios of NPs were prepared by adjusting the ratios of hydrophilic and hydrophobic materials, and the particle size decreased as the ratio of hydrophilic materials increased. When HA:ANI = 2.0:1, the nanoparticles had the smallest size distribution, good stability and near spherical shape and had high drug loading and encapsulation rates. In vitro release experiments revealed that NADPH could accelerate the drug release from NPs. Cellular uptake rate reached 86.50% at 6 h. The toxic effect of dual drug-loaded nanoparticles (P/G NPs) on MDA-MB-231 cells at 48 h was stronger than that of the free drug. The AO/EB double-staining assay revealed that a large number of late apoptotic cells appeared in the P/G NPs group, and the degree of cell damage was significantly stronger than that of the free drug group. In the cell migration assay, the 24 h-cell migration rate of the P/G NPs group was 5.99%, which was much lower than that of the free group (13.87% and 17.00%). In conclusion, MDA-MB-231 cells could effectively take up P/G NPs, while the introduction of the nano-codelivery system could significantly enhance the toxicity of the drug to MDA-MB-231 cells as well as the migration inhibition effect.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Zehui Fan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Lixia Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yanjuan He
- Department of Pediatrics, The Fourth Hospital of Changsha, 70 Lushan Road, Changsha, 410006, Hunan, China
| | - Run Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jinkun Xiang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Shiyang Fu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Guowei Wang
- Department of Spine Surgery and Department of Infection, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jianlong Wang
- Department of Spine Surgery and Department of Infection, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xiaojun Tao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Pan Zhang
- Department of Spine Surgery and Department of Infection, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
31
|
Chatterjee K, Lakdawala S, Quadir SS, Puri D, Mishra DK, Joshi G, Sharma S, Choudhary D. siRNA-Based Novel Therapeutic Strategies to Improve Effectiveness of Antivirals: An Insight. AAPS PharmSciTech 2023; 24:170. [PMID: 37566146 DOI: 10.1208/s12249-023-02629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Since the ground-breaking discovery of RNA interference (RNAi), scientists have made significant progress in the field of small interfering RNA (siRNA) treatments. Due to severe barriers to the therapeutic application of siRNA, nanoparticle technologies for siRNA delivery have been designed. For pathological circumstances such as viral infection, toxic RNA abnormalities, malignancies, and hereditary diseases, siRNAs are potential therapeutic agents. However, systemic administration of siRNAs in vivo remains a substantial issue due to a lack of "drug-likeness" (siRNA are relatively larger than drugs and have low hydrophobicity), physiological obstacles, and possible toxicities. This write-up covers important accomplishment in the field of clinical trials and patents specially based of siRNAs using targeting viruses. Furthermore, it offers deep insight of nanoparticle applied for siRNA delivery and strategies to improve the effectiveness of antivirals.
Collapse
Affiliation(s)
- Krittika Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, 400056, India
| | - Sagheerah Lakdawala
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, 400056, India
| | - Sheikh Shahnawaz Quadir
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Dinesh Puri
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, 248001, India
| | - Dinesh Kumar Mishra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur (C.G.), 495009, India
| | - Garima Joshi
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, 400056, India.
| | - Deepak Choudhary
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
32
|
Sharma R, Yadav S, Yadav V, Akhtar J, Katari O, Kuche K, Jain S. Recent advances in lipid-based long-acting injectable depot formulations. Adv Drug Deliv Rev 2023; 199:114901. [PMID: 37257756 DOI: 10.1016/j.addr.2023.114901] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Long-acting injectable (LAIs) delivery systems sustain the drug therapeutic action in the body, resulting in reduced dosage regimen, toxicity, and improved patient compliance. Lipid-based depots are biocompatible, provide extended drug release, and improve drug stability, making them suitable for systemic and localized treatment of various chronic ailments, including psychosis, diabetes, hormonal disorders, arthritis, ocular diseases, and cancer. These depots include oil solutions, suspensions, oleogels, liquid crystalline systems, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, phospholipid phase separation gel, vesicular phospholipid gel etc. This review summarizes recent advancements in lipid-based LAIs for delivering small and macromolecules, and their potential in managing chronic diseases. It also provides an overview of the lipid depots available in market or clinical phase, as well as patents for lipid-based LAIs. Furthermore, this review critically discusses the current scenario of using in vitro release methods to establish IVIVC and highlights the challenges involved in developing lipid-based LAIs.
Collapse
Affiliation(s)
- Reena Sharma
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Sheetal Yadav
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Vivek Yadav
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Junia Akhtar
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Oly Katari
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Kaushik Kuche
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Sanyog Jain
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India.
| |
Collapse
|
33
|
Zhang Z, Zhang H, Cui L, Wang X, Wang D, Liu Z, Zhang X, Tang Z. An MMAE-loaded PDL1 active targeting nanomedicine for the precision treatment of colon cancer. Biomater Sci 2023. [PMID: 37337707 DOI: 10.1039/d3bm00664f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Tumor-active-targeting drugs such as antibody-drug conjugates have emerged as promising accurate therapeutic agents. However, their complex preparations risk compromising the targeting ability of the fragment antigen binding (Fab) region and promote aggregation over long-term storage. Here, we propose a tumor-active-targeting nanomedicine, aPDL1-PLG-MMAE, that effectively targets programmed death-ligand 1 (PDL1) high-expressing tumors and delivers monomethyl auristatin E (MMAE). aPDL1-PLG-MMAE consists of an anti-PDL1 monoclonal antibody (aPDL1) and poly(L-glutamic acid) (PLG) grafted Fc-III-4C peptide/Val-Cit-PAB-MMAE (Fc-PLG-MMAE). Fc-PLG-MMAE was obtained by conjugating the Fc-III-4C peptide and Val-Cit-PAB-MMAE to PLG via amide condensation. The strong affinity between the fragment crystallizable (Fc) region of aPDL1 and the Fc-III-4C peptide enabled aPDL1 and Fc-PLG-MMAE to self-assemble into aPDL1-PLG-MMAE after four hours of coincubation in PBS. As this nanomedicine can be quickly prepared for immediate use, the required antibodies can be stored separately from the Fc-PLG-MMAE portion for extended periods, which also facilitates transport. Moreover, aPDL1-PLG-MMAE demonstrated robust tumor recognition and targeting effects on MC38 colon cancer cells, resulting in potent therapeutic efficacy without significant toxicities.
Collapse
Affiliation(s)
- Zhenqian Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China.
| | - Honglei Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China.
| | - Linjie Cui
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoshuang Wang
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun 130033, China
| | - Di Wang
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun 130033, China
| | - Zhilin Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xuefei Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China.
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
34
|
Synthesis and anti-SARS-CoV-2 evaluation of lipid prodrugs of β-D- N4-hydroxycytidine (NHC) and a 3′-fluoro-substituted analogue of NHC. Bioorg Chem 2023; 135:106527. [PMID: 37031504 PMCID: PMC10076076 DOI: 10.1016/j.bioorg.2023.106527] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
β-D-N4-hydroxycytidine (NHC, EIDD-1931) is a nucleoside analogue that exhibits broad spectrum antiviral activity against a variety of RNA viruses. Herein, we report the synthesis of a series of lipid prodrugs of NHC and a novel 3′-fluoro modified NHC analogue, and evaluation of their antiviral activity against five variants of SARS-CoV-2. All lipid prodrugs showed potent antiviral activity against the tested SARS-CoV-2 variants with EC50 values in the range of 0.31–3.51 μM, which were comparable to those of NHC or higher than those of remdesivir and molnupiravir. An increase in the cytostatic activity of the lipid prodrugs was found, but prodrug 2d proved equally selective as molnupinavir. The 3′-F analogue of NHC (6) only displayed minor antiviral activity against the SARS-CoV-2 Omicron variant (EC50 = 29.91 μM), while no activity was found for other variants at the highest concentration tested. The promising antiviral data of the lipid prodrugs of NHC suggest that they deserve further investigation as new anti-SARS-CoV-2 drugs.
Collapse
|
35
|
Majrashi TA, Sabt A, Abd El Salam HA, Al-Ansary GH, Hamissa MF, Eldehna WM. An updated review of fatty acid residue-tethered heterocyclic compounds: synthetic strategies and biological significance. RSC Adv 2023; 13:13655-13682. [PMID: 37152561 PMCID: PMC10157362 DOI: 10.1039/d3ra01368e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Abstract
Heterocyclic compounds have been featured as the key building blocks for the development of biologically active molecules. In addition to being derived from renewable raw materials, fatty acids possess a variety of biological properties. The two bioactive ingredients are being combined by many researchers to produce hybrid molecules that have a number of desirable properties. Biological activities and significance of heterocyclic derivatives of fatty acids have been demonstrated in a new class of heterocyclic compounds called heterocyclic fatty acid hybrid derivatives. The significance of heterocyclic-fatty acid hybrid derivatives has been emphasized in numerous research articles over the past few years. In this review, we emphasize the development of synthetic methods and their biological evaluation for heterocyclic fatty acid derivatives. These reports, combined with the upcoming compilation, are expected to serve as comprehensive foundations and references for synthetic, preparative, and applicable methods in medicinal chemistry.
Collapse
Affiliation(s)
- Taghreed A Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University Asir 61421 Saudi Arabia
| | - Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo Egypt
| | | | - Ghada H Al-Ansary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University Cairo P.O. Box 11566 Egypt
| | - Mohamed Farouk Hamissa
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618) 33 El Bohouth St., P.O. 12622, Dokki Giza Egypt
- Department of Biomolecular Spectroscopy, Institute of Organic Chemistry and Biochemistry, Academy of Sciences Prague Czech Republic
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University Kafrelsheikh P.O. Box 33516 Egypt
- School of Biotechnology, Badr University in Cairo Cairo 11829 Egypt
| |
Collapse
|
36
|
Li F, Yang F, Guan C, Wei P, He D, Li Q, Wang L, Yuan M. Preparation and Cytotoxicity Evaluation of Folic Acid-Modified YF8-OA Self-Assembled Lipid Prodrug Nanoparticles. Pharm Dev Technol 2023; 28:452-459. [PMID: 37104639 DOI: 10.1080/10837450.2023.2206487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
This study aimed to improve the use of YF8, a matrine derivative obtained through chemical transformation of matrine extracted from Sophora alopecuroides. YF8 has demonstrated improved cytotoxicity compared to matrine, but its hydrophobic nature hinders its application. To overcome this, the lipid prodrug YF8-OA was synthesized by linking oleic acid (OA) to YF8 through an ester bond. Although YF8-OA could self-assemble into unique nanostructures in water, it was not sufficiently stable. To enhance the stability of YF8-OA lipid prodrug nanoparticles (LPs), we employed the strategy of PEGylation using DSPE-mPEG2000 or DSPE-mPEG2000 conjugated with folic acid (FA). This resulted in the formation of uniform spherical nanoparticles with greatly improved stability and a maximum drug load capacity upto 58.63%. Cytotoxicity was evaluated in A549, HeLa, and HepG2 cell lines. The results showed that in HeLa cells, the IC50 value of YF8-OA/LPs with FA-modified PEGylation was significantly lower than that of YF8-OA/LPs modified by PEGylation alone. However, no significant enhancement was observed in A549 and HepG2 cells. In conclusion, the lipid prodrug YF8-OA can form nanoparticles in aqueous solution to address its poor water solubility. Modification with FA resulted in further enhanced cytotoxicity, providing a potential avenue for exerting the antitumor activity of matrine analogs.
Collapse
Affiliation(s)
- Fu Li
- School of Medicine, Guangxi University, Nanning, China
| | - Fangfang Yang
- Guangxi - ASEAN Food Inspection and Testing Center, Nanning, China
| | - Chenxi Guan
- School of Medicine, Guangxi University, Nanning, China
| | - Pengcheng Wei
- School of Medicine, Guangxi University, Nanning, China
| | - Dongqiong He
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Qingwen Li
- Zhejiang Jingxin Pharmaceutical Co., Ltd., Xinchang, China
| | - Lisheng Wang
- School of Medicine, Guangxi University, Nanning, China
| | - Mingqing Yuan
- School of Medicine, Guangxi University, Nanning, China
| |
Collapse
|
37
|
Gao F, Zhao X, Si Q, Niu X, Hou S, Liu S, Guo J, Wang L, Zhang F. Gemini surfactant-like peptide-based nanocages with β-sheet-enhanced stability and encapsulation efficiency of hydrophobic anticancer drugs. RSC Adv 2023; 13:12863-12868. [PMID: 37114030 PMCID: PMC10126818 DOI: 10.1039/d3ra01950k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Peptide-based scaffolds have been widely applied to drug delivery because of their ease and high yields of synthesis, well-defined structure, biocompatibility, diversity, tunability of properties, and molecular recognition abilities. However, the stability of peptide-based nanostructures highly depends on the intermolecular assembling manner, e.g., α-helix based coiled coils, β-sheet. Inspired by the robust protein fibril structures in amyloidosis, herein we constructed a β-sheet-forming gemini surfactant-like peptide to self-assemble into nanocages with the help of molecular dynamics simulation. As expected, the experimental results showed that nanocages can be formed with the inner diameter of up to ∼400 nm, which were robust enough even under both transmission electron microscopy and atomic force microscopy, indicating the significant contribution of β-sheet conformation. The β-nanocages can load hydrophobic anticancer drugs, e.g., paclitaxel with a very high encapsulation efficiency, which holds great potential for clinic drug delivery due to the improved anticancer effect as compared with paclitaxel alone.
Collapse
Affiliation(s)
- Feng Gao
- School of Life Science, Inner Mongolia Agricultural University Hohhot 010010 China
| | - Xinmin Zhao
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Qiankang Si
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xingkun Niu
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Shaojie Hou
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
| | - Shihao Liu
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
| | - Jun Guo
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
| | - Liping Wang
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
| | - Feng Zhang
- School of Life Science, Inner Mongolia Agricultural University Hohhot 010010 China
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
| |
Collapse
|
38
|
Husni P, Lim C, Taek Oh K. Tumor microenvironment stimuli-responsive lipid-drug conjugates for cancer treatment. Int J Pharm 2023; 639:122942. [PMID: 37037397 DOI: 10.1016/j.ijpharm.2023.122942] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Lipid drug conjugates (LDCs) have attracted considerable attention in the fields of drug delivery and pharmacology due to their ability to target specific cells, increase drug solubility, reduce toxicity, and improve therapeutic efficacy. These unique features make LDCs promising candidates for the treatment cancer, inflammation, and infectious diseases. In fact, by choosing specific linkers between the lipid and drug molecules, stimuli-responsive LDCs can be designed to target cancer cells based on the unique properties of the tumor microenvironment. Despite the fact that many reviews have described LDCs, few articles have focused on tumor microenvironmental stimuli-responsive LDCs for cancer treatment. Therefore, the key elements of these types of LDCs in cancer treatment will be outlined and discussed in this paper. Our paper goes into detail on the concepts and benefits of LDCs, the various types of tumor microenvironment stimuli-responsive LDCs (such as pH, redox, enzyme, or reactive oxygen species-responsive LDCs), and the current status of LDCs in clinical trials.
Collapse
Affiliation(s)
- Patihul Husni
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, 221, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chaemin Lim
- College of Pharmacy, Chung-Ang University, 221, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Kyung Taek Oh
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, 221, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
39
|
Jin SM, Yoo YJ, Shin HS, Kim S, Lee SN, Lee CH, Kim H, Kim JE, Bae YS, Hong J, Noh YW, Lim YT. A nanoadjuvant that dynamically coordinates innate immune stimuli activation enhances cancer immunotherapy and reduces immune cell exhaustion. NATURE NANOTECHNOLOGY 2023; 18:390-402. [PMID: 36635335 DOI: 10.1038/s41565-022-01296-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Although conventional innate immune stimuli contribute to immune activation, they induce exhausted immune cells, resulting in suboptimal cancer immunotherapy. Here we suggest a kinetically activating nanoadjuvant (K-nanoadjuvant) that can dynamically integrate two waves of innate immune stimuli, resulting in effective antitumour immunity without immune cell exhaustion. The combinatorial code of K-nanoadjuvant is optimized in terms of the order, duration and time window between spatiotemporally activating Toll-like receptor 7/8 agonist and other Toll-like receptor agonists. K-nanoadjuvant induces effector/non-exhausted dendritic cells that programme the magnitude and persistence of interleukin-12 secretion, generate effector/non-exhausted CD8+ T cells, and activate natural killer cells. Treatment with K-nanoadjuvant as a monotherapy or in combination therapy with anti-PD-L1 or liposomes (doxorubicin) results in strong antitumour immunity in murine models, with minimal systemic toxicity, providing a strategy for synchronous and dynamic tailoring of innate immunity for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Seung Mo Jin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yeon Jeong Yoo
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hong Sik Shin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sohyun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Nam Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chang Hoon Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyunji Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung-Eun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Department of Biological Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - JungHyub Hong
- Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Department of Biological Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Young-Woock Noh
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
40
|
Karimi H, Rabbani S, Babadi D, Dadashzadeh S, Haeri A. Piperine Liposome-Embedded in Hyaluronan Hydrogel as an Effective Platform for Prevention of Postoperative Peritoneal Adhesion. J Microencapsul 2023; 40:279-301. [PMID: 36948888 DOI: 10.1080/02652048.2023.2194415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
This study aimed to prepare piperine (PIP) loaded liposomes in hyaluronic acid (HA) hydrogel to provide a hybrid superstructure for postoperative adhesion prevention. Liposomes were prepared using thin-film hydration method. The optimised formulation was characterised by size, SEM, TEM, FTIR, encapsulation efficiency (EE)% (w/w), and release pattern. Liposome-in-hydrogel formulation was investigated by rheology, SEM, and release studies. The efficacy was evaluated in a rat peritoneal abrasion model. EE% (w/w) increased with increasing lipid concentration from 10 to 30; however, a higher percentage of Chol reduced EE% (w/w). The optimised liposome (EE: 68.10 ± 4.18% (w/w), average diameter: 513 ± 14.67 nm, PDI: 0.15 ± 0.04) was used for hydrogel embedding. No sign of adhesion in 5/8 rats and no collagen deposition confirmed the in vivo effectiveness of the optimised formulation. Overall, providing a sustained delivery of PIP, the developed liposome-in-hydrogel formulation can be a promising carrier to prevent postoperative adhesion.
Collapse
Affiliation(s)
- Hanieh Karimi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Delaram Babadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Zhang Q, Li S, He L, Feng X. A brief review of polysialic acid-based drug delivery systems. Int J Biol Macromol 2023; 230:123151. [PMID: 36610578 DOI: 10.1016/j.ijbiomac.2023.123151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Polysialic acid (PSA) is a straight-chain homoglycan linked by N-acetylneuraminic acid monomers via α-2, 8- or α-2, 9-glycosidic bonds. As a negatively charged non-glycosaminoglycan, PSA has the remarkable characteristics of non-immunogenicity and biodegradation. Although different in class, PSA is similar to poly(ethylene glycol), and was originally used to increase the stability of the delivery system in circulation to prolong the half-life. As research continues, PSA's application potential in the pharmaceutical field becomes increasingly prominent. It can be used as a biomaterial for protein polysialylation and tissue engineering, and it can be used alone or with other materials to develop multifunctional drug delivery systems. In this article, the results of the bioproduction and biofunction of PSA are introduced, the common strategies for chemical modification of PSA are summarized, and the application progress of PSA-based drug delivery systems is reviewed.
Collapse
Affiliation(s)
- Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610000, China
| | - Lin He
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xueting Feng
- College of Pharmacy, Southwest Minzu University, Chengdu 610000, China
| |
Collapse
|
42
|
Lee MF, Poh CL. Strategies to improve the physicochemical properties of peptide-based drugs. Pharm Res 2023; 40:617-632. [PMID: 36869247 DOI: 10.1007/s11095-023-03486-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
Peptides are a rapid-growing class of therapeutics with unique and desirable physicochemical properties. Due to disadvantages such as low membrane permeability and susceptibility to proteolytic degradation, peptide-based drugs have limited bioavailability, a short half-life, and rapid in vivo elimination. Various strategies can be applied to improve the physicochemical properties of peptide-based drugs to overcome limitations such as limited tissue residence time, metabolic instability, and low permeability. Applied strategies including backbone modifications, side chain modifications, conjugation with polymers, modification of peptide termini, fusion to albumin, conjugation with the Fc portion of antibodies, cyclization, stapled peptides, pseudopeptides, cell-penetrating peptide conjugates, conjugation with lipids, and encapsulation in nanocarriers are discussed.
Collapse
Affiliation(s)
- Michelle Felicia Lee
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Selangor 47500, Bandar Sunway, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Selangor 47500, Bandar Sunway, Malaysia.
| |
Collapse
|
43
|
Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications. Pharmaceutics 2023; 15:pharmaceutics15020656. [PMID: 36839978 PMCID: PMC9967415 DOI: 10.3390/pharmaceutics15020656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Skin delivery is an exciting and challenging field. It is a promising approach for effective drug delivery due to its ease of administration, ease of handling, high flexibility, controlled release, prolonged therapeutic effect, adaptability, and many other advantages. The main associated challenge, however, is low skin permeability. The skin is a healthy barrier that serves as the body's primary defence mechanism against foreign particles. New advances in skin delivery (both topical and transdermal) depend on overcoming the challenges associated with drug molecule permeation and skin irritation. These limitations can be overcome by employing new approaches such as lipid nanosystems. Due to their advantages (such as easy scaling, low cost, and remarkable stability) these systems have attracted interest from the scientific community. However, for a successful formulation, several factors including particle size, surface charge, components, etc. have to be understood and controlled. This review provided a brief overview of the structure of the skin as well as the different pathways of nanoparticle penetration. In addition, the main factors influencing the penetration of nanoparticles have been highlighted. Applications of lipid nanosystems for dermal and transdermal delivery, as well as regulatory aspects, were critically discussed.
Collapse
|
44
|
Morla S, Ravikumar O, O’Hara C, Boothello R, Vera A, Abdelfadiel EI, Fayyad R, Afosah DK, Sharon C, Fernandez L, Shah SA, Patel BB, Desai UR. Designing Synthetic, Sulfated Glycosaminoglycan Mimetics That Are Orally Bioavailable and Exhibiting In Vivo Anticancer Activity. J Med Chem 2023; 66:1321-1338. [PMID: 36634271 PMCID: PMC9884082 DOI: 10.1021/acs.jmedchem.2c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/13/2023]
Abstract
Sulfated glycosaminoglycans (GAGs), or synthetic mimetics thereof, are not favorably viewed as orally bioavailable drugs owing to their high number of anionic sulfate groups. Devising an approach for oral delivery of such highly sulfated molecules would be very useful. This work presents the concept that conjugating cholesterol to synthetic sulfated GAG mimetics enables oral delivery. A focused library of sulfated GAG mimetics was synthesized and found to inhibit the growth of a colorectal cancer cell line under spheroid conditions with a wide range of potencies ( 0.8 to 46 μM). Specific analogues containing cholesterol, either alone or in combination with clinical utilized drugs, exhibited pronounced in vivo anticancer potential with intraperitoneal as well as oral administration, as assessed by ex vivo tertiary and quaternary spheroid growth, cancer stem cell (CSC) markers, and/or self-renewal factors. Overall, cholesterol derivatization of highly sulfated GAG mimetics affords an excellent approach for engineering oral activity.
Collapse
Affiliation(s)
- Shravan Morla
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Ongolu Ravikumar
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Connor O’Hara
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rio Boothello
- Division
of Hematology, Oncology and Palliative Care, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Alberto Vera
- Hunter
Holmes McGuire VA Medical Center, Richmond, Virginia 23249, United States
| | - Elsamani I. Abdelfadiel
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rawan Fayyad
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Daniel K. Afosah
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Chetna Sharon
- Hunter
Holmes McGuire VA Medical Center, Richmond, Virginia 23249, United States
| | - Leopoldo Fernandez
- Hunter
Holmes McGuire VA Medical Center, Richmond, Virginia 23249, United States
- Massey
Cancer Center, Richmond, Virginia 23298, United States
- Division
of Surgical Oncology, Department of Surgery, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia 23249, United States
| | - Syed Ammer Shah
- Hunter
Holmes McGuire VA Medical Center, Richmond, Virginia 23249, United States
- Massey
Cancer Center, Richmond, Virginia 23298, United States
- Division
of Surgical Oncology, Department of Surgery, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia 23249, United States
| | - Bhaumik B. Patel
- Division
of Hematology, Oncology and Palliative Care, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Hunter
Holmes McGuire VA Medical Center, Richmond, Virginia 23249, United States
- Massey
Cancer Center, Richmond, Virginia 23298, United States
| | - Umesh R. Desai
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
45
|
Dopierała K, Weiss M, Krajewska M, Błońska J. Towards understanding the binding affinity of lipid drug carriers to serum albumin. Chem Phys Lipids 2023; 250:105271. [PMID: 36509110 DOI: 10.1016/j.chemphyslip.2022.105271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/07/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
In the past several years there has been a rapid rise in the use of lipid-based drug formulations. In the case of intravenous drug administration the interaction of lipid carrier with serum albumin is crucial for the distribution of the bioactive molecules in the bloodstream and reaching the target tissue. In this work, we have explored the interaction of serum albumin with three-component lipid monolayer build of palmitoyloleoylphosphatidylcholine (POPC), sphingomyelin (SM), and cholesterol (Chol). Using wide range of lipid compositions and various concentrations of serum albumin we identified the factors governing the lipid-protein binding. Our study revealed that albumin can penetrate selectively the monolayers of POPC/SM/Chol depending on the lipid composition in the mixture. Moreover, the interaction of albumin with monolayer can be controlled by the molecular density of the film and the concentration of protein. The adsorbed albumin exists in the film on the top of lipid monolayer. This behavior may lead to the increase of the size and charge of the lipid carrier and affect the drug transport throughout the bloodstream. The results of this work provide essential physicochemical data that can be used for predicting the pharmacokinetic profile of lipid-based formulations.
Collapse
Affiliation(s)
- Katarzyna Dopierała
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| | - Marek Weiss
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
| | - Martyna Krajewska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Justyna Błońska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| |
Collapse
|
46
|
Kaur M, Nagpal M, Aggarwal G. Nanotechnology for Targeted Drug Delivery to Treat Osteoporosis. Curr Drug Targets 2023; 24:2-12. [PMID: 36200208 DOI: 10.2174/1389450123666221004124040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022]
Abstract
Bone diseases such as rheumatoid arthritis, Paget's disease, and osteoporosis cause mortality and mobility limits. Nanomedicine and nano delivery systems have been utilised to deliver active drug moiety to the precisely targeted site in a controlled manner, and it serves as a means of diagnostic tools. The utilisation of nanomedicine is expanding vigorously for assured targeting and efficient drug delivery. Nanotechnology offers various advantages, such as site-specific targeting, precise drug release kinetics, and improved bone mineral density. Recent medications available for osteoporosis are not viable due to the adverse effects associated with them and low patient compliance. There is an urgent need to develop biocompatible and appropriate drug delivery nanocarriers such as nanoparticles, liposomes, hydrogels, dendrimers, micelles, mesoporous particles, etc. These carriers enhance drug delivery and therapeutic effectiveness in bone tissues. The use of nanotechnology is also associated with toxicity. This article presents the review of various reports on nanocarrier systems and biologics for the treatment of osteoporosis. It aims to provide researchers with a clue for inventing a new drug delivery system with site-specific targeting for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Malkiet Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| |
Collapse
|
47
|
LogP of N-acyl-gemcitabine and lectin-corona emerge as key parameters in nanoparticulate intravesical cancer therapy. Eur J Pharm Sci 2023; 180:106330. [PMID: 36379358 DOI: 10.1016/j.ejps.2022.106330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/15/2022]
Abstract
After surgical removal of the tumour tissue, bladder cancer is treated by intravesical instillation of cytotoxic drugs such as gemcitabine. Gemcitabine, however, is highly hydrophilic and possesses a short half-life due to fast enzymatic deamination. Additionally, continuous dilution by urine, a hardly permeable urothelial barrier and rapid excretion by urination make therapy difficult. To modify lipophilicity of the drug, N-acyl-gemcitabine derivatives with quite different solubility and logP were synthesized, purified and characterized. The loading of PLGA nanoparticles with the N-acyl-gemcitabine derivatives followed by release in artificial urine, revealed that the drug content increases but the subsequent release decreases with lipophilicity. Additionally, acylation increased cytotoxicity and opened passive diffusion as an additional pathway into cancer cells. To address physiological constraints, the surface of the monodisperse nanoparticles was grafted with bioadhesive wheat germ agglutinin. Cytoadhesion to artificial bladder cancer tissue and even uptake into the cells as indicated by microscopic imaging are expected to prolong the retention time in the bladder cavity as well as to promote uptake into the cells. By using N-caprylic-gemcitabine as most appropriate gemcitabine-derivative for drug loading and making use of the bioadhesive characteristics of wheat germ agglutinin for grafting the corona of PLGA-nanoparticles, an innovative strategy towards smart drug delivery for instillative therapy of bladder cancer is proposed.
Collapse
|
48
|
Bone-Targeted Dual Functional Lipid-coated Drug Delivery System for Osteosarcoma Therapy. Pharm Res 2023; 40:231-243. [PMID: 36380167 PMCID: PMC9666974 DOI: 10.1007/s11095-022-03430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE OR OBJECTIVE Osteosarcoma is well-known for its high incidence in children and adolescents and long-term bone pain, which seriously reduces the life quality of patients. Cisplatin (CDDP), as the first-line anti-osteosarcoma drug, has been used in many anticancer treatments. At the same time, the serious side effects of platinum (Pt) drugs have also attracted widespread attention. To accurately deliver Pt drugs to the lesion site and realize controlled release of Pt drugs, certain modified delivery systems have been extensively studied. METHODS Among them, liposomes have been approved for clinical cancer treatment due to their highly biocompatibility and superior modifiability. Here, we developed a bone-targeted dual functional lipid-coated drug delivery system, lipid-coated CDDP alendronate nanoparticles (LCA NPs) to target the bone and precisely deliver the drugs to the tumor site. Cell toxicity, apoptosis and cellular uptake were detected to evaluate the anticancer effect for LCA NPs. Furthermore, transwell assay and wound healing assay were conducted to estimate the osteosarcoma cell migration and invasion. Hemolysis assay was utilized to assess the biocapitibility of the kind of NPs. RESULTS With the aim of bone-targeted unit alendronate (ALD), LCA NPs serve as a rich bone homing Pt delivery system to exert efficient anticancer effects and synergistically reduce bone resorption and bone loss potentially. CONCLUSIONS By providing a highly biocompatible platform for osteosarcoma therapy, LCA NPs may help to significantly enhance the anticancer effect of Pt and greatly reduce the systemic toxicity and side effects of Pt towards osteosarcoma.
Collapse
|
49
|
Kurtzhals P, Østergaard S, Nishimura E, Kjeldsen T. Derivatization with fatty acids in peptide and protein drug discovery. Nat Rev Drug Discov 2023; 22:59-80. [PMID: 36002588 DOI: 10.1038/s41573-022-00529-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 01/28/2023]
Abstract
Peptides and proteins are widely used to treat a range of medical conditions; however, they often have to be injected and their effects are short-lived. These shortcomings of the native structure can be addressed by molecular engineering, but this is a complex undertaking. A molecular engineering technology initially applied to insulin - and which has now been successfully applied to several biopharmaceuticals - entails the derivatization of peptides and proteins with fatty acids. Various protraction mechanisms are enabled by the specific characteristics and positions of the attached fatty acid. Furthermore, the technology can ensure a long half-life following oral administration of peptide drugs, can alter the distribution of peptides and may hold potential for tissue targeting. Due to the inherent safety and well-defined chemical nature of the fatty acids, this technology provides a versatile approach to peptide and protein drug discovery.
Collapse
|
50
|
Pinelli F, Saadati M, Rossetti A, Rossi F, Sacchetti A. On the influence of polyethyleneimine modification in nanogel-driven drug delivery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|