1
|
Wang X, Ding J, Chen X, Wang S, Chen Z, Chen Y, Zhang G, Liu J, Shi T, Song J, Sheng S, Wang G, Xu J, Su J, Zhang W, Lian X. Light-activated nanoclusters with tunable ROS for wound infection treatment. Bioact Mater 2024; 41:385-399. [PMID: 39184828 PMCID: PMC11342113 DOI: 10.1016/j.bioactmat.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 08/27/2024] Open
Abstract
Infected wounds pose a significant clinical challenge due to bacterial resistance, recurrent infections, and impaired healing. Reactive oxygen species (ROS)-based strategies have shown promise in eradicating bacterial infections. However, the excess ROS in the infection site after treatments may cause irreversible damage to healthy tissues. To address this issue, we developed bovine serum albumin-iridium oxide nanoclusters (BSA-IrOx NCs) which enable photo-regulated ROS generation and scavenging using near infrared (NIR) laser. Upon NIR laser irradiation, BSA-IrOx NCs exhibit enhanced photodynamic therapy, destroying biofilms and killing bacteria. When the NIR laser is off, the nanoclusters' antioxidant enzyme-like activities prevent inflammation and repair damaged tissue through ROS clearance. Transcriptomic and metabolomic analyses revealed that BSA-IrOx NCs inhibit bacterial nitric oxide synthase, blocking bacterial growth and biofilm formation. Furthermore, the nanoclusters repair impaired skin by strengthening cell junctions and reducing mitochondrial damage in a fibroblast model. In vivo studies using rat infected wound models confirmed the efficacy of BSA-IrOx NCs. This study presents a promising strategy for treating biofilm-induced infected wounds by regulating the ROS microenvironment, addressing the challenges associated with current ROS-based antibacterial approaches.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jianing Ding
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiao Chen
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Zhiheng Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuanyuan Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Guowang Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ji Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Tingwang Shi
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jian Song
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Shihao Sheng
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Guangchao Wang
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Jianguang Xu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jiacan Su
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Wei Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiaofeng Lian
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
2
|
Liu L, Liu W, Sun Y, Dong X. Serum albumin-embedding copper nanoclusters inhibit Alzheimer's β-amyloid fibrillogenesis and neuroinflammation. J Colloid Interface Sci 2024; 672:53-62. [PMID: 38830318 DOI: 10.1016/j.jcis.2024.05.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 06/05/2024]
Abstract
Increasing evidence suggests that the accumulations of reactive oxygen species (ROS), β-amyloid (Aβ), and neuroinflammation are crucial pathological hallmarks for the onset of Alzheimer's disease (AD), yet there are few effective treatment strategies. Therefore, design of nanomaterials capable of simultaneously elimination of ROS and inhibition of Aβ aggregation and neuroinflammation is urgently needed for AD treatment. Herein, we designed human serum albumin (HSA)-embedded ultrasmall copper nanoclusters (CuNCs@HSA) via an HSA-mediated fabrication strategy. The as-prepared CuNCs@HSA exhibited outstanding multiple enzyme-like properties, including superoxide dismutase (>5000 U/mg), catalase, and glutathione peroxidase activities as well as hydroxyl radicals scavenging ability. Besides, CuNCs@HSA prominently inhibited Aβ fibrillization, and its inhibitory potency was 2.5-fold higher than native HSA. Moreover, CuNCs@HSA could significantly increase the viability of Aβ-treated cells from 60 % to over 96 % at 40 μg/mL and mitigate Aβ-induced oxidative stresses. The secretion of neuroinflammatory cytokines by lipopolysaccharide-induced BV-2 cells, including tumor necrosis factor-α and interleukin-6, was alleviated by CuNCs@HSA. In vivo studies manifested that CuNCs@HSA effectively suppressed the formation of plaques in transgenic C. elegans, reduced ROS levels, and extended C. elegans lifespan by 5 d. This work, using HSA as a template to mediate the fabrication of copper nanoclusters with robust ROS scavenging capability, exhibited promising potentials in inhibiting Aβ aggregation and neuroinflammation for AD treatment.
Collapse
Affiliation(s)
- Luqi Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
3
|
Qin Z, Li X, Wang P, Liu Q, Li Y, Gu A, Jiang Q, Gu N. Ultrasmall Prussian Blue Nanozyme Attenuates Osteoarthritis by Scavenging Reactive Oxygen Species and Regulating Macrophage Phenotype. NANO LETTERS 2024; 24:11697-11705. [PMID: 39225479 DOI: 10.1021/acs.nanolett.4c03314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by obscure etiology and unsatisfactory therapeutic outcomes, making the development of new efficient therapies urgent. Superfluous reactive oxygen species (ROS) have historically been considered one of the crucial factors inducing the pathological progression of OA. Ultrasmall Prussian blue nanoparticles (USPBNPs), approximately sub-5 nm in size, are developed by regulating the configuration of polyvinylpyrrolidone chains. USPBNPs display an excellent ROS eliminating capacity and catalase-like activity, capable of decomposing hydrogen peroxide (H2O2) into O2. The anti-inflammatory mechanism of USPBNPs can be attributed to repolarizing macrophages from pro-inflammatory M1 to anti-inflammatory M2 phenotype by decreasing the ROS levels accompanied by O2 improvement. Additionally, USPBNPs exhibit an exciting therapeutic efficiency against OA, comparable to that of hydrocortisone in vivo. This study not only develops a new therapeutic agent for OA but also offers an estimable insight into the application of the nanozyme.
Collapse
Affiliation(s)
- Zhiguo Qin
- Department of Pharmacy, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaofei Li
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
- Department of Sport Medicine, The Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical University, Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222023, China
| | - Peng Wang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yan Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210009, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Ning Gu
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
4
|
Jia H, Gong J, Hu Z, Wen T, Li C, Chen Y, Huang J, He W. Antioxidant Carbon Dots Nanozymes Alleviate Stress-induced Depression by Modulating Gut Microbiota. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19739-19750. [PMID: 39219094 DOI: 10.1021/acs.langmuir.4c02481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Depression is a debilitating mental illness that severely threatens millions of individuals and public health. Because of the multifactorial etiologies, there is currently no cure for depression; thus, it is urgently imperative to find alternative antidepressants and strategies. Growing evidence underscores the prominent role of oxidative stress as key pathological hallmarks of depression, making oxidative stress a potential therapeutic target. In this study, we report a N-doped carbon dot nanozyme (CDzyme) with excellent antioxidant capacity for treating depression by remodeling redox homeostasis and gut microbiota. The CDzymes prepared via microwave-assisted fast polymerization of histidine and glucose exhibit superior biocompatibility. Benefiting from the unique structure, CDzymes can provide abundant electrons, hydrogen atoms, and protons for reducing reactions, as well as catalytic sites to mimic redox enzymes. These mechanisms collaborating endow CDzymes with broad-spectrum antioxidant capacity to scavenge reactive oxygen and nitrogen species (•OH, O2-•, H2O2, ONOO-), and oxygen/nitrogen centered free radicals. A depression animal model was established by chronic unpredictable mild stress (CUMS) to evaluate the therapeutic efficacy of CDzymes from the behavioral, physiological, and biochemical index and intestinal flora assessments. CDzymes can remarkably improve depression-like behaviors and key neurotransmitters produced in hippocampus tissues and restore the gut microbiota compositions and the amino acid metabolic functions, proving the potential in treating depression through the intestinal-brain axis system. This study will facilitate the development of intestinal flora dysbiosis nanomedicines and treatment strategies for depression and other oxidative stress related multifactorial diseases.
Collapse
Affiliation(s)
- Huimin Jia
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
- Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, Xuchang University, 88 Bayi Road, Xuchang, Henan 461000, P. R. China
| | - Jiawen Gong
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
| | - Zheyuan Hu
- College of Food and Pharmacy, Xuchang University, Xuchang, Henan 461000, P. R. China
- Food Laboratory of Zhong Yuan, Luohe 462300, China
| | - Tao Wen
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Caixia Li
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
- Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, Xuchang University, 88 Bayi Road, Xuchang, Henan 461000, P. R. China
| | - Yuyang Chen
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
| | - Jihong Huang
- College of Food and Pharmacy, Xuchang University, Xuchang, Henan 461000, P. R. China
| | - Weiwei He
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
- Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, Xuchang University, 88 Bayi Road, Xuchang, Henan 461000, P. R. China
| |
Collapse
|
5
|
Su F, Ye W, Shen Y, Xie Y, Zhang C, Zhang Q, Tang Z, Yu M, Chen Y, He B. Immuno-Nanocomplexes Target Heterogenous Network of Inflammation and Immunity in Myocardial Infarction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402267. [PMID: 39049710 PMCID: PMC11423151 DOI: 10.1002/advs.202402267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/11/2024] [Indexed: 07/27/2024]
Abstract
Despite the proceeds in the management of acute myocardial infarction (AMI), the current therapeutic landscape still suffers from limited success in the clinic. Exaggerated inflammatory immune response and excessive oxidative stress are key pathological features aggravating myocardium damage. Herein, catalytic immunomodulatory nanocomplexes as anti-AMI therapeutics to resolve reactive oxygen species (ROS)-proinflammatory neutrophils-specific-inflammation is engineered. The nanocomplexes contain lyophilic S100A8/9 inhibitor ABR2575 in the core of nanoemulsions, which effectively disrupts the neutrophils-S100A8/A9-inflammation signaling pathway in the AMI microenvironment. Additionally, ROS scavenger ultrasmall CuxO nanoparticles are incorporated into the nanoemulsions via coordinating with SH groups of poly(ethylene glycol) (PEG)-conjugated lipids, which mimic multiple enzymes, dramatically alleviating the oxidative stress damage to myocardial tissue. This combination strategy significantly suppresses the infiltration of pro-inflammatory monocytes, macrophages, and neutrophils, as well as the secretion of inflammatory cytokines. Additionally, it potentially triggers cardiac Tert activation, which promotes myocardial function and decreases infarction size in preclinical murine AMI models. This approach offers a new nanomedicine for treating AMI, resulting in a dramatically enhanced therapeutic outcome.
Collapse
Affiliation(s)
- Fan Su
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Weifan Ye
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yi Shen
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Chong Zhang
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Qianyun Zhang
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Zhengqi Tang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| | - Bin He
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
6
|
Wu H, Zhu X, Shi X, Chai Y, Zhou Y, Yuan R. High-Efficient Electrochemiluminescence of DNA-Au Ag Nanoclusters with Au NPs@Ti 3C 2 as a Novel Coreaction Accelerator for Ultrasensitive Biosensing. Anal Chem 2024; 96:13727-13733. [PMID: 39109530 DOI: 10.1021/acs.analchem.4c02878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
In this work, an ultrasensitive electrochemiluminescence (ECL) biosensor was constructed based on DNA-stabilized Au Ag nanoclusters (DNA-Au Ag NCs) as the efficient luminophore and Au NPs@Ti3C2 as a new coreaction accelerator for determining microRNA-221 (miRNA-221) related to liver cancer. Impressively, DNA-Au Ag NCs were stabilized by the high affinity of the periodic 3C sequence, exhibiting an excellent ECL efficiency of 27% compared with classical BSA-Au Ag NCs (16%). Moreover, the Au NPs@Ti3C2 nanocomposites, as a new coreaction accelerator, were first introduced to accelerate the production of abundant sulfate free radicals (SO4•-) for promoting the ECL efficiency of DNA-Au Ag NCs in the DNA-Au Ag NCs/Au NPs@Ti3C2/S2O82- ternary system due to the energy band of Au NPs@Ti3C2 being well-matched with the frontier orbital of S2O82-. Furthermore, the trace target (miRNA-221) could drive the rolling circle amplification to generate an amount of output DNA with periodic 3C and 10A sequences. Through covalent bonds on the surface of poly A and Au NPs, the distance between the luminophor and the coreaction accelerator could be narrowed to further enhance the detection sensitivity. As a result, the constructed sensor has been applied for the ultrasensitive detection of miRNA-221 with a low detection limit of 50 aM and successfully monitored miRNA-221 in MHCC-97L and HeLa cell lysates. This strategy could be utilized for guiding the synthesis of light-emitting DNA-metal NCs, which has great potential in the construction of ultrasensitive biosensors for the early diagnosis of diseases.
Collapse
Affiliation(s)
- Huiling Wu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xiaochun Zhu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xiaoyu Shi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ying Zhou
- College of Food Science, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
7
|
Tan H, Cao K, Zhao Y, Zhong J, Deng D, Pan B, Zhang J, Zhang R, Wang Z, Chen T, Shi Y. Brain-Targeted Black Phosphorus-Based Nanotherapeutic Platform for Enhanced Hypericin Delivery in Depression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310608. [PMID: 38461532 DOI: 10.1002/smll.202310608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Depression is a significant global health concern that remains inadequately treated due to the limited effectiveness of conventional drug therapies. One potential therapeutic agent, hypericin (HYP), is identified as an effective natural antidepressant. However, its poor water solubility, low bioavailability, and limited ability to penetrate the brain parenchyma have hindered its clinical application. To address these shortcomings and enhance the therapeutic efficacy of HYP, it is loaded onto black phosphorus nanosheets (BP) modified with the neural cell-targeting peptide RVG29 to synthesize a nanoplatform named BP-RVG29@HYP (BRH). This platform served as a nanocarrier for HYP and integrated the advantages of BP with advanced delivery methods and precise targeting strategies. Under the influence of 808 nm near-infrared irradiation (NIR), BRH effectively traversed an in vitro BBB model. In vivo experiments validated these findings, demonstrating that treatment with BRH significantly alleviated depressive-like behaviors and oxidative stress in mice. Importantly, BRH exhibited an excellent safety profile, causing minimal adverse effects, which highlighted its potential as a promising therapeutic agent. In brief, this novel nanocarrier holds great promise in the development of antidepressant drugs and can create new avenues for the treatment of depression.
Collapse
Affiliation(s)
- Hanxu Tan
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Kerun Cao
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuying Zhao
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jialong Zhong
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Di Deng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bo Pan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Juping Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhiyu Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
8
|
Chen X, Wang Y, Pei C, Li R, Shu W, Qi Z, Zhao Y, Wang Y, Lin Y, Zhao L, Peng D, Wan J. Vacancy-Driven High-Performance Metabolic Assay for Diagnosis and Therapeutic Evaluation of Depression. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312755. [PMID: 38692290 DOI: 10.1002/adma.202312755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/31/2024] [Indexed: 05/03/2024]
Abstract
Depression is one of the most common mental illnesses and is a well-known risk factor for suicide, characterized by low overall efficacy (<50%) and high relapse rate (40%). A rapid and objective approach for screening and prognosis of depression is highly desirable but still awaits further development. Herein, a high-performance metabolite-based assay to aid the diagnosis and therapeutic evaluation of depression by developing a vacancy-engineered cobalt oxide (Vo-Co3O4) assisted laser desorption/ionization mass spectrometer platform is presented. The easy-prepared nanoparticles with optimal vacancy achieve a considerable signal enhancement, characterized by favorable charge transfer and increased photothermal conversion. The optimized Vo-Co3O4 allows for a direct and robust record of plasma metabolic fingerprints (PMFs). Through machine learning of PMFs, high-performance depression diagnosis is achieved, with the areas under the curve (AUC) of 0.941-0.980 and an accuracy of over 92%. Furthermore, a simplified diagnostic panel for depression is established, with a desirable AUC value of 0.933. Finally, proline levels are quantified in a follow-up cohort of depressive patients, highlighting the potential of metabolite quantification in the therapeutic evaluation of depression. This work promotes the progression of advanced matrixes and brings insights into the management of depression.
Collapse
Affiliation(s)
- Xiaonan Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yun Wang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Congcong Pei
- School of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Ziheng Qi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yinbing Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yanhui Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yingying Lin
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Liang Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Daihui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
9
|
Wang J, Wei X, Chen J, Zhang J, Guo Y, Xin Y. Versatile Ce(III)‐Terephthalic Acid@Au Metal Organic Frameworks for ROS Elimination and Photothermal Sterilization. CHEMNANOMAT 2024; 10. [DOI: 10.1002/cnma.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 10/01/2024]
Abstract
AbstractNanozymes have been widely used for treating reactive oxygen species (ROS) caused diseases. However, the ROS‐dependent antibacterial property is inevitably damaged during the process of scavenging ROS, which is unfavorable for the treatment of diseases related to both ROS accumulation and bacterial infections. To address the issues, biomedical materials with both ROS‐elimination ability and ROS‐independent antibacterial capacity are fabricated via in situ depositing spherical Au nanoparticles (Au NPs) on rough surface of metal organic frameworks composed of Ce(III) and terephthalic acid (Ce‐BDC@Au MOFs). The synthesized Ce‐BDC@Au MOFs show multi‐enzymatic activities owing to the reversible conversion between Ce3+ and Ce4+, and can significantly scavenge ROS in cells. The deposition of spherical Au NPs on surface of Ce‐BDC MOFs causes Au NPs to come close proximity for forming plasmon resonance coupling, inducing the resonance wavelength of Au NPs red shifted to NIR region. Based on this, Ce‐BDC@Au MOFs show good photothermal conversion efficiency under NIR laser (808 nm) irradiation. Benefitting from rough surface and photothermal conversion ability, Ce‐BDC@Au MOFs have high antibacterial efficiency against staphylococcus aureus through both mechanically damaging and photothermal destruction. This strategy is biosafety and effectiveness for treating diseases related to both ROS accumulation and bacterial infections.
Collapse
Affiliation(s)
- Jing Wang
- Department of Child and Adolescent Health School of Public Health Zhengzhou University Zhengzhou Henan 450001 P.R. China
| | - Xue Wei
- Henan Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P.R. China
| | - Jian Chen
- Henan Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P.R. China
| | - Jing Zhang
- Henan Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P.R. China
| | - Yanzhen Guo
- Henan Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P.R. China
| | - Yongjuan Xin
- Department of Child and Adolescent Health School of Public Health Zhengzhou University Zhengzhou Henan 450001 P.R. China
| |
Collapse
|
10
|
Nam NN, Tran NKS, Nguyen TT, Trai NN, Thuy NP, Do HDK, Tran NHT, Trinh KTL. Classification and application of metal-based nanoantioxidants in medicine and healthcare. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:396-415. [PMID: 38633767 PMCID: PMC11022389 DOI: 10.3762/bjnano.15.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Antioxidants play an important role in the prevention of oxidative stress and have been widely used in medicine and healthcare. However, natural antioxidants have several limitations such as low stability, difficult long-term storage, and high cost of large-scale production. Along with significant advances in nanotechnology, nanomaterials have emerged as a promising solution to improve the limitations of natural antioxidants because of their high stability, easy storage, time effectiveness, and low cost. Among various types of nanomaterials exhibiting antioxidant activity, metal-based nanoantioxidants show excellent reactivity because of the presence of an unpaired electron in their atomic structure. In this review, we summarize some novel metal-based nanoantioxidants and classify them into two main categories, namely chain-breaking and preventive antioxidant nanomaterials. In addition, the applications of antioxidant nanomaterials in medicine and healthcare are also discussed. This review provides a deeper understanding of the mechanisms of metal-based nanoantioxidants and a guideline for using these nanomaterials in medicine and healthcare.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Applied Biology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Nguyen Khoi Song Tran
- College of Korean Medicine, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Tan Tai Nguyen
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Nguyen Ngoc Trai
- Applied Biology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Nguyen Phuong Thuy
- Applied Biology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Vietnam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
11
|
Gao Y, Zhai L, Chen J, Lin D, Zhang LK, Yang H, Yang R, Mi L, Guan YQ. Focused ultrasound-mediated cerium-based nanoreactor against Parkinson's disease via ROS regulation and microglia polarization. J Control Release 2024; 368:580-594. [PMID: 38467194 DOI: 10.1016/j.jconrel.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Neuronal damage caused by oxidative stress and inflammatory microenvironment dominated by microglia are the main obstacles in the treatment of Parkinson's disease (PD). In this study, we developed an integrated nanoreactor Q@CeBG by encapsulating CeO2 nanozyme and quercetin (Que) into glutathione-modified bovine serum albumin, and then selected focused ultrasound (FUS) to temporarily open the blood-brain barrier (BBB) to enhance the accumulation level of Q@CeBG in the brain. Q@CeBG exhibited superior multi-ROS scavenging activity. Under the assistance of FUS, Q@CeBG nanoreactor can penetrate the BBB and act on neurons as well as microglia, reducing the neuron's oxidative stress level and polarizing microglia's phenotype from proinflammatory M1 to anti-inflammatory M2. In vitro and In vivo experiments demonstrated that Q@CeBG nanoreactor with good biocompatibility exhibit outstanding neuroprotection and immunomodulatory effects. In short, this dual synergetic nanoreactor will become a reliable platform against PD.
Collapse
Affiliation(s)
- Yifei Gao
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Limin Zhai
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jiapeng Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Danmin Lin
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Hao Yang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Runcai Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510623, China
| | - LinJing Mi
- School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, China
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China.
| |
Collapse
|
12
|
Dai Y, Xu W, Wen X, Fan H, Zhang Q, Zhang J, Zhang H, Zhu W, Hong J. Smartphone-assisted hydrogel platform based on BSA-CeO 2 nanoclusters for dual-mode determination of acetylcholinesterase and organophosphorus pesticides. Mikrochim Acta 2024; 191:185. [PMID: 38451330 DOI: 10.1007/s00604-024-06268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/17/2024] [Indexed: 03/08/2024]
Abstract
A dual-mode sensor was developed for detecting acetylcholinesterase (AChE) and organophosphorus pesticides (OPs) via bifunctional BSA-CeO2 nanoclusters (NCs) with oxidase-mimetic activity and fluorescence property. The dual-mode sensor has the characteristics of self-calibration and self-verification, meeting the needs of different detection conditions and provide more accurate results. The colorimetric sensor and fluorescence sensor have been successfully used for detecting AChE with limit of detection (LOD) of 0.081 mU/mL and 0.056 mU/mL, respectively, while the LOD for OPs were 0.9 ng/mL and 0.78 ng/mL, respectively. The recovery of AChE was 93.9-107.2% and of OPs was 95.8-105.0% in actual samples. A novel strategy was developed to monitor pesticide residues and detect AChE level, which will motivate future work to explore the potential applications of multifunctional nanozymes.
Collapse
Affiliation(s)
- Yin Dai
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Wei Xu
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210004, Jiangsu, China
| | - Xinyi Wen
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Huizhu Fan
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Qing Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jun Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Hongsong Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Junli Hong
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
13
|
Zhang L, Wang H, Qu X. Biosystem-Inspired Engineering of Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211147. [PMID: 36622946 DOI: 10.1002/adma.202211147] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Nanozymes with intrinsic enzyme-mimicking activities have shown great potential to become surrogates of natural enzymes in many fields by virtue of their advantages of high catalytic stability, ease of functionalization, and low cost. However, due to the lack of predictable descriptors, most of the nanozymes reported in the past have been obtained mainly through trial-and-error strategies, and the catalytic efficacy, substrate specificity, as well as practical application effect under physiological conditions, are far inferior to that of natural enzymes. To optimize the catalytic efficacies and functions of nanozymes in biomedical settings, recent studies have introduced biosystem-inspired strategies into nanozyme design. In this review, recent advances in the engineering of biosystem-inspired nanozymes by leveraging the refined catalytic structure of natural enzymes, simulating the behavior changes of natural enzymes in the catalytic process, and mimicking the specific biological processes or living organisms, are introduced. Furthermore, the currently involved biomedical applications of biosystem-inspired nanozymes are summarized. More importantly, the current opportunities and challenges of the design and application of biosystem-inspired nanozymes are discussed. It is hoped that the studies of nanozymes based on bioinspired strategies will be beneficial for constructing the new generation of nanozymes and broadening their biomedical applications.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
14
|
Bai Y, Li Y, Li Y, Tian L. Advanced Biological Applications of Cerium Oxide Nanozymes in Disease Related to Oxidative Damage. ACS OMEGA 2024; 9:8601-8614. [PMID: 38434816 PMCID: PMC10905716 DOI: 10.1021/acsomega.3c03661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/12/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Due to their excellent catalytic activities, cerium oxide nanoparticles have promise as biological nanoenzymes. A redox reaction occurs between Ce3+ ions and Ce4+ ions during which they undergo conversion by acquiring or losing electrons as well as forming oxygen vacancies (or defects) in the lattice structure, which can act as antioxidant enzymes and simulate various enzyme activities. A number of cerium oxide nanoparticles have been engineered with multienzyme activities, including catalase, superoxide oxidase, peroxidase, and oxidase mimetic properties. Cerium oxide nanoparticles have nitric oxide radical clearing and radical scavenging properties and have been widely used in a number of fields of biology, including biomedicine, disease diagnosis, and treatment. This review provides a comprehensive introduction to the catalytic mechanisms and multiple enzyme activities of cerium oxide nanoparticles, along with their potential applications in the treatment of diseases of the brain, bones, nerves, and blood vessels.
Collapse
Affiliation(s)
- Yandong Bai
- Tianjin
Union Medical Center, No. 190 Jieyuan Road, Hongqiao District, Tianjin 300121, China
| | - Yongmei Li
- NHC
Key Laboratory of Hormones and Development, Tianjin Key Laboratory
of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin
Institute of Endocrinology, Tianjin Medical
University, No. 6 Huanrui North Road, Ruijing Street, Beichen District, Tianjin 300134, China
| | - Yuemei Li
- Xiamen
Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital
of Xiamen University, School of Medicine, Xiamen University, Xiamen 361012, China
| | - Lijie Tian
- NHC
Key Laboratory of Hormones and Development, Tianjin Key Laboratory
of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin
Institute of Endocrinology, Tianjin Medical
University, No. 6 Huanrui North Road, Ruijing Street, Beichen District, Tianjin 300134, China
| |
Collapse
|
15
|
Chen H, Fu S, Li X, Shi M, Qian J, Zhao S, Yuan P, Ding L, Xia X, Zheng JC. Microglial glutaminase 1 mediates chronic restraint stress-induced depression-like behaviors and synaptic damages. Signal Transduct Target Ther 2023; 8:452. [PMID: 38097558 PMCID: PMC10721840 DOI: 10.1038/s41392-023-01699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Affiliation(s)
- Huili Chen
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, 200065, Shanghai, China
| | - Shengyang Fu
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, 200065, Shanghai, China
| | - Xiangyu Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, 200065, Shanghai, China
| | - Meng Shi
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, 200065, Shanghai, China
| | - Jiazhen Qian
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, 200065, Shanghai, China
| | - Shu Zhao
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, 200065, Shanghai, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lu Ding
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, 200065, Shanghai, China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, 200065, Shanghai, China.
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, 200434, Shanghai, China.
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, 200065, Shanghai, China.
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, 200434, Shanghai, China.
| |
Collapse
|
16
|
Zhou Y, Chen X, Zhan S, Wang Q, Deng F, Wu Q, Peng J. Stabilized and Controlled Release of Radicals within Copper Formate-Based Nanozymes for Biosensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43431-43440. [PMID: 37674322 PMCID: PMC10520911 DOI: 10.1021/acsami.3c08326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
Fenton-like radical processes are widely utilized to explain catalytic mechanisms of peroxidase-like nanozymes, which exhibit remarkable catalytic activity, cost-effectiveness, and stability. However, there is still a need for a comprehensive understanding of the formation, stabilization, and transformation of such radicals. Herein, a copper formate-based nanozyme (Cuf-TMB) was fabricated via a pre-catalytic strategy under ambient conditions. The as-prepared nanozyme shows comparable catalytic activity (Km, 1.02 × 10-5 mM-1; Kcat, 3.09 × 10-2 s-1) and kinetics to those of natural peroxidase toward H2O2 decomposition. This is attributed to the feasible oxidation by *OH species via the *O intermediate, as indicated by density functional theory calculations. The key ·OH radicals were detected to be stable for over 52 days and can be released in a controlled manner during the catalytic process via in situ electron spin-resonance spectroscopy measurements. Based on the understanding, an ultrasensitive biosensing platform was constructed for the sensitive monitoring of biochemical indicators in clinic settings.
Collapse
Affiliation(s)
- Yue Zhou
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, and School of Chemistry, Chemical Engineering and Life
Science, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaohua Chen
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 51015, China
| | - Shaoqi Zhan
- Department
of Chemistry—BMC, Uppsala University, BMC Box 576, Uppsala S-751
23, Sweden
| | - Qiang Wang
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Deng
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qingzhi Wu
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, and School of Chemistry, Chemical Engineering and Life
Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jian Peng
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, and School of Chemistry, Chemical Engineering and Life
Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
17
|
Wu Q, Yang L, Zou L, Yang W, Liu Q, Zhang A, Cao J, Shi G, He J, Yang X. Small Ceria Nanoclusters with High ROS Scavenging Activity and Favorable Pharmacokinetic Parameters for the Amelioration of Chronic Kidney Disease. Adv Healthc Mater 2023; 12:e2300632. [PMID: 37167626 DOI: 10.1002/adhm.202300632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The over production of reactive oxygen species (ROS) plays a critical role in the progression of chronic kidney disease (CKD). Organic ROS scavengers currently used for CKD treatment do not satisfy low dosage and high efficiency requirements. Ceria nanomaterials featured with renewable ROS scavenging activity are potential candidates for CKD treatment. Herein, a method for the synthesis of ceria nanoclusters (NCs) featured with small size of ≈1.2 nm is reported. The synthesized NCs are modified by three hydrophilic ligands with different molecular weights, including succinic acid (SA), polyethylene glycol diacid 600 (PEG600), and polyethylene glycol diacid 2000 (PEG2000). The surface modified NCs exhibit excellent ROS scavenging activity due to the high Ce3+ /Ce4+ ratio in their crystal structures. Compared with bigger-sized ceria nanoparticles (NPs) (≈45 nm), NCs demonstrate smoother blood concentration-time curve, lower organ accumulation, and faster metabolic rate superiorities. The administration of NCs to CKD mice, especially PEG600 and PEG2000 modified NCs, can effectively inhibit oxidative stress, inflammation, renal fibrosis, and apoptosis in their kidneys. Due to these benefits, the constructed NCs can ameliorate the progression of CKD. These findings suggest that NCs is a potential redox nanomedicine for future clinical treatment of CKD.
Collapse
Affiliation(s)
- Qianqian Wu
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Lu Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Ling Zou
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Wang Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Qingshan Liu
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Anwei Zhang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Jiang Cao
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Guangyou Shi
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Jian He
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Xiaochao Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
18
|
Fu S, Li C, Yang W, Chen H, Wang Y, Zhu Y, Zhu J, Zhang B, Xia X, Zheng JC. Insulin-incubated palladium clusters alleviate Alzheimer's disease-like phenotypes in a preclinical mouse model. MedComm (Beijing) 2023; 4:e272. [PMID: 37337580 PMCID: PMC10276888 DOI: 10.1002/mco2.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 06/21/2023] Open
Affiliation(s)
- Shengyang Fu
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital Affiliated to Tongji University School of MedicineShanghaiChina
| | - Congcong Li
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital Affiliated to Tongji University School of MedicineShanghaiChina
| | - Weitao Yang
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital Affiliated to Tongji University School of MedicineShanghaiChina
- Shanghai Frontiers Science Center of Nanocatalytic MedicineTongji University School of MedicineShanghaiChina
| | - Huili Chen
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital Affiliated to Tongji University School of MedicineShanghaiChina
| | - Yi Wang
- Translational Research CenterShanghai Yangzhi Rehabilitation Hospital affiliated to Tongji University School of MedicineShanghaiChina
| | - Yingbo Zhu
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital Affiliated to Tongji University School of MedicineShanghaiChina
| | - Jie Zhu
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital Affiliated to Tongji University School of MedicineShanghaiChina
| | - Bingbo Zhang
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital Affiliated to Tongji University School of MedicineShanghaiChina
- Shanghai Frontiers Science Center of Nanocatalytic MedicineTongji University School of MedicineShanghaiChina
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital Affiliated to Tongji University School of MedicineShanghaiChina
- Shanghai Frontiers Science Center of Nanocatalytic MedicineTongji University School of MedicineShanghaiChina
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital Affiliated to Tongji University School of MedicineShanghaiChina
- Shanghai Frontiers Science Center of Nanocatalytic MedicineTongji University School of MedicineShanghaiChina
| |
Collapse
|
19
|
Wang Y, Zhu Y, Tian M, Wang Y, Pei X, Jiang J, He Y, Gong Y. Recent advances in the study of sepsis-induced depression. JOURNAL OF INTENSIVE MEDICINE 2023; 3:239-243. [PMID: 37533814 PMCID: PMC10391568 DOI: 10.1016/j.jointm.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 08/04/2023]
Abstract
Progress in medicine such as the use of anti-infective drugs and development of the advanced life support equipment has greatly improved the survival rate of patients with sepsis. However, the incidence of sepsis-related diseases is increasing. These include severe neurologic and psychologic disorders, cognitive decline, anxiety, depression, and post-traumatic stress disorder. Cerebral dysfunction occurs via multiple interacting mechanisms, with different causative pathogens having distinct effects. Because sepsis-related diseases place a substantial burden on patients and their families, it is important to elucidate the underlying pathophysiologic mechanisms to develop effective treatments.
Collapse
|
20
|
Zhang Y, Lei H, Wang P, Zhou Q, Yu J, Leng X, Ma R, Wang D, Dong K, Xing J, Dong Y. Restoration of dysregulated intestinal barrier and inflammatory regulation through synergistically ameliorating hypoxia and scavenging reactive oxygen species using ceria nanozymes in ulcerative colitis. Biomater Res 2023; 27:75. [PMID: 37507801 PMCID: PMC10375752 DOI: 10.1186/s40824-023-00412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) overproduction and excessive hypoxia play pivotal roles in the initiation and progression of ulcerative colitis (UC). Synergistic ROS scavenging and generating O2 could be a promising strategy for UC treatment. METHODS Ceria nanozymes (PEG-CNPs) are fabricated using a modified reverse micelle method. We investigate hypoxia attenuating and ROS scavenging of PEG-CNPs in intestinal epithelial cells and RAW 264.7 macrophages and their effects on pro-inflammatory macrophages activation. Subsequently, we investigate the biodistribution, pharmacokinetic properties and long-term toxicity of PEG-CNPs in mice. PEG-CNPs are administered intravenously to mice with 2,4,6-trinitrobenzenesulfonic acid-induced colitis to test their colonic tissue targeting and assess their anti-inflammatory activity and mucosal healing properties in UC. RESULTS PEG-CNPs exhibit multi-enzymatic activity that can scavenge ROS and generate O2, promote intestinal epithelial cell healing and inhibit pro-inflammatory macrophage activation, and have good biocompatibility. After intravenous administration of PEG-CNPs to colitis mice, they can enrich at the site of colonic inflammation, and reduce hypoxia-induced factor-1α expression in intestinal epithelial cells by scavenging ROS to generate O2, thus further promoting disrupted intestinal mucosal barrier restoration. Meanwhile, PEG-CNPs can effectively scavenge ROS in impaired colon tissues and relieve colonic macrophage hypoxia to suppress the pro-inflammatory macrophages activation, thereby preventing UC occurrence and development. CONCLUSION This study has provided a paradigm to utilize metallic nanozymes, and suggests that further materials engineering investigations could yield a facile method based on the pathological characteristics of UC for clinically managing UC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hengyu Lei
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Pengchong Wang
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Qinyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jie Yu
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xue Leng
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ruirui Ma
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Danyang Wang
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kai Dong
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Jianfeng Xing
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
21
|
Huang Q, Jiang C, Xia X, Wang Y, Yan C, Wang X, Lei T, Yang X, Yang W, Cheng G, Gao H. Pathological BBB Crossing Melanin-Like Nanoparticles as Metal-Ion Chelators and Neuroinflammation Regulators against Alzheimer's Disease. RESEARCH (WASHINGTON, D.C.) 2023; 6:0180. [PMID: 37363131 PMCID: PMC10289297 DOI: 10.34133/research.0180] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Inflammatory responses, manifested in excessive oxidative stress and microglia overactivation, together with metal ion-triggered amyloid-beta (Aβ) deposition, are critical hallmarks of Alzheimer's disease (AD). The intricate pathogenesis causes severe impairment of neurons, which, in turn, exacerbates Aβ aggregation and facilitates AD progression. Herein, multifunctional melanin-like metal ion chelators and neuroinflammation regulators (named PDA@K) were constructed for targeted treatment of AD. In this platform, intrinsically bioactive material polydopamine nanoparticles (PDA) with potent metal ion chelating and ROS scavenging effects were decorated with the KLVFF peptide, endowing the system with the capacity of enhanced pathological blood-brain barrier (BBB) crossing and lesion site accumulation via Aβ hitchhiking. In vitro and in vivo experiment revealed that PDA@K had high affinity toward Aβ and were able to hitch a ride on Aβ to achieve increased pathological BBB crossing. The engineered PDA@K effectively mitigated Aβ aggregate and alleviated neuroinflammation. The modulated inflammatory microenvironment by PDA@K promoted microglial polarization toward the M2-like phenotype, which restored their critical functions for neuron care and plaque removal. After 3-week treatment of PDA@K, spatial learning and memory deficit as well as neurologic changes of FAD4T transgenic mice were largely rescued. Transcriptomics analysis further revealed the therapeutic mechanism of PDA@K. Our study provided an appealing paradigm for directly utilizing intrinsic properties of nanomaterials as therapeutics for AD instead of just using them as nanocarriers, which largely widen the application of nanomaterials in AD therapy.
Collapse
Affiliation(s)
- Qianqian Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Chaoqing Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Yufan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Chenxing Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Xiaorong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Xiaotong Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital,
Sichuan University, Chengdu 610041, P.R. China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
22
|
Thao NTM, Do HDK, Nam NN, Tran NKS, Dan TT, Trinh KTL. Antioxidant Nanozymes: Mechanisms, Activity Manipulation, and Applications. MICROMACHINES 2023; 14:1017. [PMID: 37241640 PMCID: PMC10220853 DOI: 10.3390/mi14051017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase play important roles in the inhibition of oxidative-damage-related pathological diseases. However, natural antioxidant enzymes face some limitations, including low stability, high cost, and less flexibility. Recently, antioxidant nanozymes have emerged as promising materials to replace natural antioxidant enzymes for their stability, cost savings, and flexible design. The present review firstly discusses the mechanisms of antioxidant nanozymes, focusing on catalase-, superoxide dismutase-, and glutathione peroxidase-like activities. Then, we summarize the main strategies for the manipulation of antioxidant nanozymes based on their size, morphology, composition, surface modification, and modification with a metal-organic framework. Furthermore, the applications of antioxidant nanozymes in medicine and healthcare are also discussed as potential biological applications. In brief, this review provides useful information for the further development of antioxidant nanozymes, offering opportunities to improve current limitations and expand the application of antioxidant nanozymes.
Collapse
Affiliation(s)
- Nguyen Thi My Thao
- School of Medicine and Pharmacy, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Nguyen Khoi Song Tran
- College of Korean Medicine, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | | | - Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
23
|
Xia X, Li H, Xu X, Wu C, Wang Z, Yi J, Zhao G, Du M. LYC loaded ferritin nanoparticles for intracerebral delivery and the attenuation of neurodegeneration in D-gal-induced mice. BIOMATERIALS ADVANCES 2023; 151:213419. [PMID: 37148595 DOI: 10.1016/j.bioadv.2023.213419] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 05/08/2023]
Abstract
Recombinant human H-ferritin nanocage (rHuHF) loaded with natural antioxidative lycopene molecules (LYC) was successfully constructed for the first time, aiming to enrich LYC in the brain and explore the regulation mechanism of this nanoparticles on neurodegeneration. Here, the mouse model was constructed via D-galactose-induced neurodegeneration based on behavioural analysis, histological observation, immunostaining analysis, Fourier transform infrared microscopy, and Western blotting analysis for the regulation of rHuHF-LYC. rHuHF-LYC improved the behaviour of mice in a dose-dependent manner. Besides, rHuHF-LYC can attenuate neuronal damage, maintain the number of Nissl body, increase the level of unsaturated fat, inhibit the activation of glial cells, and prevent excessive accumulation of neurotoxic proteins in the hippocampus of mice. More importantly, synaptic plasticity was activated in response to the regulation of rHuHF-LYC with excellent biocompatibility and biosafety. This study proved the validity of the direct use of natural antioxidant nano drugs for treating neurodegeneration, providing a promising therapeutic option against further imbalances in the degenerative brain microenvironment.
Collapse
Affiliation(s)
- Xiaoyu Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Han Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xianbing Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Chao Wu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
24
|
Zhou F, Li M, Chen M, Chen M, Chen X, Luo Z, Cai K, Hu Y. Redox Homeostasis Strategy for Inflammatory Macrophage Reprogramming in Rheumatoid Arthritis Based on Ceria Oxide Nanozyme-Complexed Biopolymeric Micelles. ACS NANO 2023; 17:4358-4372. [PMID: 36847819 DOI: 10.1021/acsnano.2c09127] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The synovial tissues under rheumatoid arthritis conditions are usually infiltrated by inflammatory cells, particularly M1 macrophages with aberrant redox homeostasis, which causes rapid deterioration of articular structure and function. Herein, we created an ROS-responsive micelle (HA@RH-CeOX) through the in situ host-guest complexation between ceria oxide nanozymes and hyaluronic acid biopolymers, which precisely delivered nanozyme and clinically approved rheumatoid arthritis drug Rhein (RH) to proinflammatory M1 macrophage populations in inflamed synovial tissues. The abundant cellular ROS could cleave the thioketal linker to trigger the release of RH and Ce. Specifically, the Ce3+/Ce4+ redox pair could present SOD-like enzymatic activity to rapidly decompose ROS and alleviate the oxidative stress in M1 macrophages, while RH could inhibit the TLR4 signaling in M1 macrophages, both of which could act in a concerted manner to induce their repolarization into anti-inflammatory M2 phenotype to ameliorate local inflammation and promote cartilage repair. Notably, rats bearing rheumatoid arthritis showed a drastic increase in the M1-to-M2 macrophage ratio from 1:0.48 to 1:1.91 in the inflamed tissue and significantly reduced inflammatory cytokine levels including TNF-α and IL-6 following the intra-articular injection of HA@RH-CeOX, accompanied by efficient cartilage regeneration and restored articular function. Overall, this study revealed an approach to in situ modulate the redox homeostasis in inflammatory macrophages and reprogram their polarization states through micelle-complexed biomimetic enzymes, which offers alternative opportunities for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Fei Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Maohua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Maowen Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xiaodong Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
25
|
Yang L, Rathnam C, Hidaka T, Hou Y, Conklin B, Pandian GN, Sugiyama H, Lee KB. Nanoparticle-Based Artificial Mitochondrial DNA Transcription Regulator: MitoScript. NANO LETTERS 2023; 23:2046-2055. [PMID: 36688839 DOI: 10.1021/acs.nanolett.2c03958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The growing knowledge of the links between aberrant mitochondrial gene transcription and human diseases necessitates both an effective and dynamic approach to control mitochondrial DNA (mtDNA) transcription. To address this challenge, we developed a nanoparticle-based synthetic mitochondrial transcription regulator (MitoScript). MitoScript provides great colloidal stability, excellent biocompatibility, efficient cell uptake, and selective mitochondria targeting and can be monitored in live cells using near-infrared fluorescence. Notably, MitoScript controlled mtDNA transcription in a human cell line in an effective and selective manner. MitoScript targeting the light strand promoter region of mtDNA resulted in the downregulation of ND6 gene silencing, which eventually affected cell redox status, with considerably increased reactive oxygen species (ROS) generation. In summary, we developed MitoScript for the efficient, nonviral modification of mitochondrial DNA transcription. Our platform technology can potentially contribute to understanding the fundamental mechanisms of mitochondrial disorders and developing effective treatments for mitochondrial diseases.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Takuya Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Ganesh N Pandian
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
26
|
Zhao J, Chen Y, Xiong T, Han S, Li C, He Y, He Y, Zhao G, Wang T, Wang L, Cheng T, Wang C, Wang J. Clustered Cobalt Nanodots Initiate Ferroptosis by Upregulating Heme Oxygenase 1 for Radiotherapy Sensitization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206415. [PMID: 36627264 DOI: 10.1002/smll.202206415] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/18/2022] [Indexed: 06/17/2023]
Abstract
High cobalt (Co) levels in tumors are associated with good clinical prognosis. An anticancer regimen that increases intratumoral Co through targeted nanomaterial delivery is proposed in this study. Bovine serum albumin and cobalt dichloride are applied to prepare cobaltous oxide nanodots using a facile biomineralization strategy. After iRGD peptide conjugation, the nanodots are loaded into dendritic mesoporous silica nanoparticles, generating a biocompatible product iCoDMSN. This nanocomposite accumulates in tumors after intravenous injection by deep tissue penetration and can be used for photoacoustic imaging. Proteomics research and molecular biology experiments reveal that iCoDMSN is a potent ferroptosis inducer in cancer cells. Mechanistically, iCoDMSNs upregulate heme oxygenase 1 (HMOX1), which increases transferrin receptors and reduces solute carrier family 40 member 1 (SLC40A1), resulting in Fe2+ accumulation and ferroptosis initiation. Furthermore, upregulated nuclear factor erythroid 2-related factor 2 (NRF2), arising from the reduction in Kelch-like ECH-associated protein 1 (KEAP1) expression, is responsible for HMOX1 enhancement after iCoDMSN treatment. Owing to intensified ferroptosis, iCoDMSN acts as an efficient radiotherapy enhancer to eliminate cancer cells in vitro and in vivo. This study demonstrates a versatile Co-based nanomaterial that primes ferroptosis by expanding the labile iron pool in cancer cells, providing a promising tumor radiotherapy sensitizer.
Collapse
Affiliation(s)
- Jianqi Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Yin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Tainong Xiong
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Songling Han
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Chenwenya Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Yingjuan He
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Yongwu He
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Gaomei Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Tao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Liting Wang
- Biomedical Analysis Center, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Tianmin Cheng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Cheng Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| |
Collapse
|
27
|
Li D, Guo Z, Zhao R, Yin N, Xu Q, Yao X. A simple method for the preparation of CeO 2with high antioxidant activity and wide application range. NANOTECHNOLOGY 2022; 34:105706. [PMID: 36562515 DOI: 10.1088/1361-6528/aca982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Cerium oxide (CeO2) is a well-known antioxidant with the ability to scavenge reactive oxygen species due to its unique electronic structure and chemical properties. Although many methods to enhance the antioxidant activity of CeO2have been reported, its antioxidant activity is still not high enough, and some enhancement effects are limited by the material concentration. There are also some CeO2obtained with high antioxidant activity at high concentrations, which is not conducive to the application of biomedicine. Therefore, it is urgent to obtain CeO2material with low cell cytotoxicity, high antioxidant activity and wide application range. In this work, rod-like metal organic framework derived CeO2(CeO2-MOF) was prepared by a simple method. Compared with the CeO2nanorods prepared by hydrothermal method, it shows better antioxidant activity compared with the CeO2nanorods prepared by hydrothermal method. Moreover, the advantage of CeO2-MOF's antioxidant activity is not affected by the hydroxyl radical and material concentrations The reason why CeO2-MOF has higher antioxidant activity should be attributed to its higher Ce3+content and larger specific surface area. In addition, CeO2-MOF also exhibits low cytotoxicity to HeLa cells and PC12 cellsin vitro. The strategy of using MOF as a structural and compositional material to create CeO2provides a new method to explore highly efficient and biocompatible CeO2for practical applications.
Collapse
Affiliation(s)
- Dongxiao Li
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Zhimin Guo
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Ruihuan Zhao
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Nan Yin
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Qingling Xu
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Xin Yao
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing 100049, People's Republic of China
- Binzhou Institute of Technology, Binzhou 256601, People's Republic of China
| |
Collapse
|
28
|
Wang W, Zhang Z, Liu Y, Kong L, Li W, Hu W, Wang Y, Liu X. Nano-integrated cascade antioxidases opsonized by albumin bypass the blood-brain barrier for treatment of ischemia-reperfusion injury. Biomater Sci 2022; 10:7103-7116. [PMID: 36341569 DOI: 10.1039/d2bm01401g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Potent antioxidative drugs are urgently needed to treat ischemia-reperfusion (I/R) induced reactive oxygen species (ROS)-mediated cerebrovascular and neural injury during ischemia strokes. However, current antioxidative agents have limited application in such disease due to low blood-brain barrier (BBB) penetration. We herein designed a "neutrophil piggybacking" strategy based on albumin opsonized nanoparticles co-encapsulated with antioxidases catalase (CAT) and superoxide dismutase 1 (SOD1). The system utilized the natural potential of neutrophils to target inflamed tissues to deliver antioxidases to injured sites in the brain. In addition, the system was integrated with a selenium (Se)-containing crosslinker to inhibit ferroptosis. We showed that the nanoparticles opsonized in the hybrid form rather than with an albumin-shell structure exhibited enhanced neutrophil targeting and efficient BBB penetration in vitro and in vivo. We further showed that the neutrophil-mediated delivery of antioxidases effectively reduced oxidative damage and apoptosis of neurons in brain tissue in a transient middle cerebral artery occlusion (tMCAO) mouse model. Moreover, the successful delivery of Se with the nanoparticles increased the expression of glutathione peroxidase 4 (GPX4) and effectively inhibited neuronal ferroptosis, achieving a satisfactory neuroprotective effect in I/R injury mice. Our study demonstrated that the rationally designed nanomedicines using the "neutrophil piggybacking" strategy can efficiently penetrate the BBB, greatly expanding the application of nanomedicines in the treatment of central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Wuxuan Wang
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China.
| | - Zheng Zhang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences University of Science and Technology of China, Hefei, Anhui 230027, China. .,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Yi Liu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Lingqi Kong
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China.
| | - Wenyu Li
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China.
| | - Wei Hu
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China.
| | - Yucai Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Xinfeng Liu
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China.
| |
Collapse
|
29
|
Liang S, Tian X, Wang C. Nanozymes in the Treatment of Diseases Caused by Excessive Reactive Oxygen Specie. J Inflamm Res 2022; 15:6307-6328. [PMID: 36411826 PMCID: PMC9675353 DOI: 10.2147/jir.s383239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/11/2022] [Indexed: 10/29/2023] Open
Abstract
Excessive reactive oxygen species (ROS) may generate deleterious effects on biomolecules, such as DNA damage, protein oxidation and lipid peroxidation, causing cell and tissue damage and eventually leading to the pathogenesis of diseases, such as neurodegenerative diseases, ischemia/reperfusion ((I/R)) injury, and inflammatory diseases. Therefore, the modulation of ROS can be an efficient means to relieve the aforementioned diseases. Several studies have verified that antioxidants such as Mitoquinone (a mitochondrial-targeted coenzyme Q10 derivative) can scavenge ROS and attenuate related diseases. Nanozymes, defined as nanomaterials with intrinsic enzyme-like properties that also possess antioxidant properties, are hence expected to be promising alternatives for the treatment of ROS-related diseases. This review introduces the types of nanozymes with inherent antioxidant activities, elaborates on various strategies (eg, controlling the size or shape of nanozymes, regulating the composition of nanozymes and environmental factors) for modulating their catalytic activities, and summarizes their performances in treating ROS-induced diseases.
Collapse
Affiliation(s)
- Shufeng Liang
- Department of Molecular Biology, Shanxi Province Cancer Hospital/Shanxi Hospital, Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
- Institute of Environmental Sciences, Shanxi University, Taiyuan, People’s Republic of China
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, People’s Republic of China
| | - Chunyan Wang
- Department of Transfusion, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
30
|
Nie T, Zou W, Meng Z, Wang L, Ying T, Cai X, Wu J, Zheng Y, Hu B. Bioactive Iridium Nanoclusters with Glutathione Depletion Ability for Enhanced Sonodynamic-Triggered Ferroptosis-Like Cancer Cell Death. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206286. [PMID: 36134532 DOI: 10.1002/adma.202206286] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Ferroptosis is a regulated form of necrotic cell death that involves the accumulation of lipid peroxide (LPO) species in an iron- and reactive oxygen species (ROS)-dependent manner. Previous investigations have reported that ferroptosis-based cancer therapy can overcome the limitations of traditional therapeutics targeting the apoptosis pathway. However, it is still challenging to enhance the antitumor efficacy of ferroptosis due to intrinsic cellular regulation. In this study, a ferroptosis-inducing agent, i.e., chlorin e6 (Ce6)-conjugated human serum albumin-iridium oxide (HSA-Ce6-IrO2 , HCIr) nanoclusters, is developed to achieve sonodynamic therapy (SDT)-triggered ferroptosis-like cancer cell death. The sonosensitizing role of both Ce6 and IrO2 within the HCIr nanoclusters exhibits highly efficient 1 O2 generation capacity upon ultrasound stimulation, which promotes the accumulation of LPO and subsequently induces ferroptosis. Meanwhile, the HCIr can deplete glutathione (GSH) by accelerating Ir (IV)-Ir (III) transition, which further suppresses the activity of glutathione peroxidase 4 (GPX4) to enhance the ferroptosis efficacy. Through in vitro and in vivo experiments, it is demonstrated that HCIr possesses tremendous capacity to reduce the intracellular GSH content, which enhances SDT-triggered ferroptosis-like cancer cell death. Thus, an iridium-nanoclusters-based ferroptosis-inducing agent is developed, providing a promising strategy for inducing ferroptosis-like cancer cell death.
Collapse
Affiliation(s)
- Tongtong Nie
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Weijuan Zou
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Zheying Meng
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Longchen Wang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Tao Ying
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Jianrong Wu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Bing Hu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| |
Collapse
|
31
|
Qiao C, Yang Z, Liu X, Zhang R, Xia Y, Wang L, Chen Z, Jia Q, Wang R, Yang Y, Wang Z. Post-Remedial Oxygen Supply: A New Perspective on Photodynamic Therapy to Suppress Tumor Metastasis. NANO LETTERS 2022; 22:8250-8257. [PMID: 36218311 DOI: 10.1021/acs.nanolett.2c02983] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Photodynamic therapy (PDT) holds great promise in tumor therapy due to high safety, efficacy, and specificity. However, the risk of increased metastasis in hypoxic tumors after oxygen-dependent PDT remains underestimated. Here, we propose a post-PDT oxygen supply (POS) strategy to reduce the risk of metastasis. Herein, biocompatible and tumor-targeting Ce6@BSA and PFC@BSA nanoparticles were constructed for PDT and POS in a 4T1-orthotropic breast cancer model. PDT with Ce6@BSA nanoparticles increased tumor metastasis via the HIF-1α signaling pathway, whereas POS significantly reduced the PDT-triggered metastasis by blocking this pathway. Furthermore, POS, with clinical protocols and an FDA-approved photosensitizer (hypericin), and oxygen inhalation reduced PDT-induced metastasis. Our study findings indicate that PDT may increase the risk of tumor metastasis and that POS may solve this problem. POS can reduce the metastasis resulting not only from PDT but also from other oxygen-dependent treatments such as radiotherapy and sonodynamic therapy.
Collapse
Affiliation(s)
- Chaoqiang Qiao
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Zuo Yang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Xuelan Liu
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Ruili Zhang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Yuqiong Xia
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Lexuan Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Zhuang Chen
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Qian Jia
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Ruhao Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P.R. China
| | - Zhongliang Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xidian University, Xi'an, Shaanxi 710126, P.R. China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi 710071, P.R. China
| |
Collapse
|