1
|
Shandyba N, Kirichenko D, Sharov V, Chernenko N, Balakirev S, Solodovnik M. Modulation of GaAs nanowire growth by pre-treatment of Si substrate using a Ga focused ion beam. NANOTECHNOLOGY 2023; 34:465603. [PMID: 37557087 DOI: 10.1088/1361-6528/acee84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023]
Abstract
We reveal a novel phenomenon observed after self-catalytic growth of GaAs nanowires (NWs) on Si(111) substrates treated with a Ga focused ion beam (FIB). Depending on the ion dose, NW arrays with various geometrical parameters can be obtained. A minor treatment of the substrate enables a slight increase in the surface density of NWs relative to an unmodified substrate area. As the ion dose is increased up to ∼0.1 pCμm-2, the growth of GaAs NWs and nanocrystals is suppressed. However, a further increase in the ion dose stimulates the crystal growth leading to the formation of extremely thin NWs (39 ± 5 nm) with a remarkably high surface density of up to 15μm-2. Resting upon an analysis of the surface structure before and after stages of ion-beam treatment, ultra-high vacuum annealing and NW growth, we propose a mechanism underlying the phenomenon observed. We assume that the chemical interaction between embedded Ga ions and a native Si oxide layer leads either to the enhancement of the passivation properties of the oxide layer within FIB-modified areas (at low and middle ion doses), or to the etching of the passivating oxide layer by excess Ga atoms, resulting in the formation of pores (at high ion doses). Due to this behavior, local fabrication of GaAs NW arrays with a diverse range of characteristics can be implemented on the same substrate. This approach opens a new way for self-catalytic growth of GaAs NWs.
Collapse
Affiliation(s)
- Nikita Shandyba
- Laboratory of Epitaxial Technologies, Southern Federal University, Taganrog 347922, Russia
| | - Danil Kirichenko
- Laboratory of Epitaxial Technologies, Southern Federal University, Taganrog 347922, Russia
| | - Vladislav Sharov
- Laboratory of Renewable Energy Sources, Alferov University, Saint Petersburg 194021, Russia
- Laboratory of Surface Optics, Ioffe Institute, Saint Petersburg 194021, Russia
| | - Natalia Chernenko
- Laboratory of Epitaxial Technologies, Southern Federal University, Taganrog 347922, Russia
| | - Sergey Balakirev
- Laboratory of Epitaxial Technologies, Southern Federal University, Taganrog 347922, Russia
| | - Maxim Solodovnik
- Laboratory of Epitaxial Technologies, Southern Federal University, Taganrog 347922, Russia
| |
Collapse
|
2
|
Leshchenko ED, Dubrovskii VG. An Overview of Modeling Approaches for Compositional Control in III-V Ternary Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101659. [PMID: 37242075 DOI: 10.3390/nano13101659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Modeling of the growth process is required for the synthesis of III-V ternary nanowires with controllable composition. Consequently, new theoretical approaches for the description of epitaxial growth and the related chemical composition of III-V ternary nanowires based on group III or group V intermix were recently developed. In this review, we present and discuss existing modeling strategies for the stationary compositions of III-V ternary nanowires and try to systematize and link them in a general perspective. In particular, we divide the existing approaches into models that focus on the liquid-solid incorporation mechanisms in vapor-liquid-solid nanowires (equilibrium, nucleation-limited, and kinetic models treating the growth of solid from liquid) and models that provide the vapor-solid distributions (empirical, transport-limited, reaction-limited, and kinetic models treating the growth of solid from vapor). We describe the basic ideas underlying the existing models and analyze the similarities and differences between them, as well as the limitations and key factors influencing the stationary compositions of III-V nanowires versus the growth method. Overall, this review provides a basis for choosing a modeling approach that is most appropriate for a particular material system and epitaxy technique and that underlines the achieved level of the compositional modeling of III-V ternary nanowires and the remaining gaps that require further studies.
Collapse
Affiliation(s)
- Egor D Leshchenko
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| | - Vladimir G Dubrovskii
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Nebol’sin VA, Swaikat N. About Some Fundamental Aspects of the Growth Mechanism Vapor-Liquid-Solid Nanowires. JOURNAL OF NANOTECHNOLOGY 2023. [DOI: 10.1155/2023/7906045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
This study provides the formation of semiconductor nanowires (NWs) with a singular facet and a curved end surface by the vapor-liquid-solid (VLS) process that is analyzed and explained in details. Given the evidence, it is confirmed that the wettability of a liquid catalyst droplet on a crystal surface and the contact angle between the droplet and crystal play an essential role in the VLS process of NWs development. It is shown that for the VLS mechanism, the formation of NWs depends on the reduction in activation barrier to crystallization caused by the release of surplus-free energy by a spheroidizing drop in the region of the triple junction during the process of lowering surface area. This decreases the necessary supersaturation for the development of NW vertex facets at a fixed growth rate. The source of the extra free energy that drives the catalyst droplet movement during the steady-state development of NWs is the droplet’s outer surface. During the formation of NWs, those angles of inclination of the lateral surface NWs and droplet contact are obtained at which the solid/vapor, solid/liquid, and liquid/vapor interfaces experience the smallest increase in free energy. The wetting hysteresis is demonstrated to occur at the vertex of NWs, and the contact angle of a catalyst droplet may be regarded as an independent and fully-fledged thermodynamic parameter of the system’s state.
Collapse
Affiliation(s)
- Valery A. Nebol’sin
- Voronezh State Technical University, Department of Radio Engineering and Electronics, Voronezh 394006, Russia
| | - Nada Swaikat
- Voronezh State Technical University, Department of Radio Engineering and Electronics, Voronezh 394006, Russia
| |
Collapse
|
4
|
Effect of Si(111) Surface Modification by Ga Focused Ion Beam at 30 kV on GaAs Nanowire Growth. Int J Mol Sci 2022; 24:ijms24010224. [PMID: 36613671 PMCID: PMC9820241 DOI: 10.3390/ijms24010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
This paper presents the results of experimental studies of the effect of Si(111) surface modification by Ga-focused ion beam (FIB) at 30 kV accelerating voltage on the features of the epitaxial GaAs nanowire (NW) growth processes. We experimentally established the regularities of the Ga ions' dose effect during surface modification on the structural characteristics of GaAs NW arrays. Depending on the Ga ion dose value, there is one of three modes on the surface for subsequent GaAs NW growth. At low doses, the NW growth is almost completely suppressed. The growth mode of high-density (up to 6.56 µm-2) GaAs NW arrays with a maximum fraction (up to 70%) of nanowires normally oriented to the substrate is realized in the medium ion doses range. A continuous polycrystalline base with a dense array of misoriented short (up to 0.9 µm) and thin (up to 27 nm) GaAs NWs is formed at high doses. We assume that the key role is played by the interaction of the implanted Ga ions with the surface at various process stages and its influence on the surface structure in the modification region and on GaAs NW growth conditions.
Collapse
|
5
|
Leshchenko ED, Dubrovskii VG. Kinetic modeling of interfacial abruptness in axial nanowire heterostructures. NANOTECHNOLOGY 2022; 34:065602. [PMID: 36356307 DOI: 10.1088/1361-6528/aca1c9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Kinetic modeling of the formation of axial III-V nanowire heterostructures grown by the Au-catalyzed vapor-liquid-solid method is presented. The method is based on a combination of kinetic growth theory for different binaries at the liquid-solid interface and thermodynamics of ternary liquid and solid alloys. Non-stationary treatment of the compositional change obtained by swapping material fluxes allows us to compute the interfacial abruptness across nanowire heterostructures and leads to the following results. At high enough supersaturation in liquid, there is no segregation of dissimilar binaries in solid even for materials with strong interactions between III and V pairs, such as InGaAs. This leads to the suppression of the miscibility gaps by kinetic factors. Increasing the Au concentration widens the heterointerface at low Au content and narrows it at high Au content in a catalyst droplet. The model fits quite well the data on the compositional profiles across nanowire heterostructures based on both group III and group V interchange. Very sharp heterointerfaces in double of InAs/InP/InAs nanowire heterostructures is explained by a reduced reservoir effect due to low solubility of group V elements in liquid.
Collapse
Affiliation(s)
- E D Leshchenko
- Submicron Heterostructures for Microelectronics, Research & Engineering Center, RAS, 26 Politekhnicheskaya, 194021, St. Petersburg, Russia
| | - V G Dubrovskii
- Faculty of Physics, St. Petersburg State University, Universitetskaya Embankment 13B, 199034 St. Petersburg, Russia
| |
Collapse
|
6
|
Becdelievre J, Guan X, Dudko I, Regreny P, Chauvin N, Patriarche G, Gendry M, Danescu A, Penuelas J. Growing self-assisted GaAs nanowires up to 80 μm long by molecular beam epitaxy. NANOTECHNOLOGY 2022; 34:045603. [PMID: 36270200 DOI: 10.1088/1361-6528/ac9c6b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Ultralong GaAs nanowires were grown by molecular beam epitaxy using the vapor-liquid-solid method. In this ultralong regime we show the existence of two features concerning the growth kinetic and the structural properties. Firstly, we observed a non-classical growth mode, where the axial growth rate is attenuated. Secondly, we observed structural defects at the surface of Wurtzite segments located at the bottom part of the nanowires. We explain these two phenomena as arising from a particular pathway of the group V species, specific to ultralong nanowires. Finally, the optical properties of such ultralong nanowires are studied by photoluminescence experiments.
Collapse
Affiliation(s)
- Jeanne Becdelievre
- Univ Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon, CPE Lyon, INL, UMR5270, F69130 Ecully, France
| | - Xin Guan
- Univ Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon, CPE Lyon, INL, UMR5270, F69130 Ecully, France
| | - I Dudko
- Univ Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon, CPE Lyon, INL, UMR5270, F69130 Ecully, France
- School of Engineering, RMIT University, Melbourne 3001, Victoria, Australia
- Functional Materials and Microsystems, Research Group and Micro Nano Research Facility, RMIT University, Melbourne 3001, Victoria, Australia
| | - Philippe Regreny
- Univ Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon, CPE Lyon, INL, UMR5270, F69130 Ecully, France
| | - Nicolas Chauvin
- Univ Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon, CPE Lyon, INL, UMR5270, F69130 Ecully, France
| | - Gilles Patriarche
- Centre de Nanosciences et de Nanotechnologies-C2N, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91120 Palaiseau, France
| | - Michel Gendry
- Univ Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon, CPE Lyon, INL, UMR5270, F69130 Ecully, France
| | - Alexandre Danescu
- Univ Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon, CPE Lyon, INL, UMR5270, F69130 Ecully, France
| | - José Penuelas
- Univ Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon, CPE Lyon, INL, UMR5270, F69130 Ecully, France
| |
Collapse
|
7
|
Dhungana DS, Mallet N, Fazzini PF, Larrieu G, Cristiano F, Plissard SR. Self-catalyzed InAs nanowires grown on Si: the key role of kinetics on their morphology. NANOTECHNOLOGY 2022; 33:485601. [PMID: 35998566 DOI: 10.1088/1361-6528/ac8bdb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Integrating self-catalyzed InAs nanowires on Si(111) is an important step toward building vertical gate-all-around transistors. The complementary metal oxide semiconductor (CMOS) compatibility and the nanowire aspect ratio are two crucial parameters to consider. In this work, we optimize the InAs nanowire morphology by changing the growth mode from Vapor-Solid to Vapor-Liquid-Solid in a CMOS compatible process. We study the key role of the Hydrogen surface preparation on nanowire growths and bound it to a change of the chemical potential and adatoms diffusion length on the substrate. We transfer the optimized process to patterned wafers and adapt both the surface preparation and the growth conditions. Once group III and V fluxes are balances, aspect ratio can be improved by increasing the system kinetics. Overall, we propose a method for large scale integration of CMOS compatible InAs nanowire on silicon and highlight the major role of kinetics on the growth mechanism.
Collapse
Affiliation(s)
- Daya S Dhungana
- CNRS, LAAS-CNRS, Université de Toulouse, F-31400, Toulouse, France
| | - Nicolas Mallet
- CNRS, LAAS-CNRS, Université de Toulouse, F-31400, Toulouse, France
| | | | - Guilhem Larrieu
- CNRS, LAAS-CNRS, Université de Toulouse, F-31400, Toulouse, France
| | - Fuccio Cristiano
- CNRS, LAAS-CNRS, Université de Toulouse, F-31400, Toulouse, France
| | | |
Collapse
|
8
|
Dubrovskii VG. Theory of MOCVD Growth of III-V Nanowires on Patterned Substrates. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2632. [PMID: 35957064 PMCID: PMC9370533 DOI: 10.3390/nano12152632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023]
Abstract
An analytic model for III-V nanowire growth by metal organic chemical vapor deposition (MOCVD) in regular arrays on patterned substrates is presented. The model accounts for some new features that, to the author's knowledge, have not yet been considered. It is shown that MOCVD growth is influenced by an additional current into the nanowires originating from group III atoms reflected from an inert substrate and the upper limit for the group III current per nanowire given by the total group III flow and the array pitch. The model fits the data on the growth kinetics of Au-catalyzed and catalyst-free III-V nanowires quite well and should be useful for understanding and controlling the MOCVD nanowire growth in general.
Collapse
Affiliation(s)
- Vladimir G Dubrovskii
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| |
Collapse
|
9
|
Modeling the Radial Growth of Self-Catalyzed III-V Nanowires. NANOMATERIALS 2022; 12:nano12101698. [PMID: 35630920 PMCID: PMC9142916 DOI: 10.3390/nano12101698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 11/16/2022]
Abstract
A new model for the radial growth of self-catalyzed III-V nanowires on different substrates is presented, which describes the nanowire morphological evolution without any free parameters. The model takes into account the re-emission of group III atoms from a mask surface and the shadowing effect in directional deposition techniques such as molecular beam epitaxy. It is shown that radial growth is faster for larger pitches of regular nanowire arrays or lower surface density, and can be suppressed by increasing the V/III flux ratio or decreasing re-emission. The model describes quite well the data on the morphological evolution of Ga-catalyzed GaP and GaAs nanowires on different substrates, where the nanowire length increases linearly and the radius enlarges sub-linearly with time. The obtained analytical expressions and numerical data should be useful for morphological control over different III-V nanowires in a wide range of growth conditions.
Collapse
|
10
|
Dubrovskii VG. Theory of MBE Growth of Nanowires on Adsorbing Substrates: The Role of the Shadowing Effect on the Diffusion Transport. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1064. [PMID: 35407180 PMCID: PMC9000702 DOI: 10.3390/nano12071064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023]
Abstract
A new model for nanowire growth by molecular beam epitaxy is proposed which extends the earlier approaches treating an isolated nanowire to the case of ensembles of nanowires. I consider an adsorbing substrate on which the arriving growth species (group III adatoms for III-V nanowires) may diffuse to the nanowire base and subsequently to the top without desorption. Analytical solution for the nanowire length evolution at a constant radius shows that the shadowing of the substrate surface is efficient and affects the growth kinetics from the very beginning of growth in dense enough ensembles of nanowires. The model fits quite well the kinetic data on different Au-catalyzed and self-catalyzed III-V nanowires. This approach should work equally well for vapor-liquid-solid and catalyst-free nanowires grown by molecular beam epitaxy and related deposition techniques on unpatterned or masked substrates.
Collapse
Affiliation(s)
- Vladimir G Dubrovskii
- Faculty of Physics, St. Petersburg State University, Universitetskaya Embankment 13B, 199034 St. Petersburg, Russia
| |
Collapse
|
11
|
Hu R, Yu L. Review on 3D growth engineering and integration of nanowires for advanced nanoelectronics and sensor applications. NANOTECHNOLOGY 2022; 33:222002. [PMID: 35148520 DOI: 10.1088/1361-6528/ac547a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Recent years have witnessed increasing efforts devoted to the growth, assembly and integration of quasi-one dimensional (1D) nanowires (NWs), as fundamental building blocks in advanced three-dimensional (3D) architecture, to explore a series of novel nanoelectronic and sensor applications. An important motivation behind is to boost the integration density of the electronic devices by stacking more functional units in theout-of-plane z-direction, where the NWs are supposed to be patterned or grown as vertically standing or laterally stacked channels to minimize their footprint area. The other driving force is derived from the unique possibility of engineering the 1D NWs into more complex, as well as more functional, 3D nanostructures, such as helical springs and kinked probes, which are ideal nanostructures for developping advanced nanoelectromechanical system (NEMS), bio-sensing and manipulation applications. This Review will first examine the recent progresses made in the construction of 3D nano electronic devices, as well as the new fabrication and growth technologies established to enable an efficient 3D integration of the vertically standing or laterally stacked NW channels. Then, the different approaches to produce and tailor more sophisticated 3D helical springs or purposely-designed nanoprobes will be revisited, together with their applications in NEMS resonators, bio sensors and stimulators in neural system.
Collapse
Affiliation(s)
- Ruijin Hu
- National Laboratory of Solid-State Microstructures/School of Electronics Science and Engineering/ Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, People's Republic of China
| | - Linwei Yu
- National Laboratory of Solid-State Microstructures/School of Electronics Science and Engineering/ Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, People's Republic of China
| |
Collapse
|
12
|
Dubrovskii VG. Theory of MBE Growth of Nanowires on Reflecting Substrates. NANOMATERIALS 2022; 12:nano12020253. [PMID: 35055270 PMCID: PMC8781942 DOI: 10.3390/nano12020253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023]
Abstract
Selective area growth (SAG) of III-V nanowires (NWs) by molecular beam epitaxy (MBE) and related epitaxy techniques offer several advantages over growth on unpatterned substrates. Here, an analytic model for the total flux of group III atoms impinging NWs is presented, which accounts for specular re-emission from the mask surface and the shadowing effect in the absence of surface diffusion from the substrate. An expression is given for the shadowing length of NWs corresponding to the full shadowing of the mask. Axial and radial NW growths are considered in different stages, including the stage of purely axial growth, intermediate stage with radial growth, and asymptotic stage, where the NWs receive the maximum flux determined by the array pitch. The model provides good fits with the data obtained for different vapor-liquid-solid and catalyst-free III-V NWs.
Collapse
Affiliation(s)
- Vladimir G Dubrovskii
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| |
Collapse
|
13
|
Leshchenko ED, Johansson J. Interfacial profile of axial nanowire heterostructures in the nucleation limited regime. CrystEngComm 2022. [DOI: 10.1039/d2ce01337a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report thermodynamic modeling of the formation of axial III–V nanowire heterostructures grown by the self-catalyzed and Au-catalyzed vapor–liquid–solid methods.
Collapse
Affiliation(s)
- E. D. Leshchenko
- Solid State Physics and NanoLund, Lund University, P O Box 118, SE-221 00 Lund, Sweden
| | - J. Johansson
- Solid State Physics and NanoLund, Lund University, P O Box 118, SE-221 00 Lund, Sweden
| |
Collapse
|
14
|
Dubrovskii VG. Reconsideration of Nanowire Growth Theory at Low Temperatures. NANOMATERIALS 2021; 11:nano11092378. [PMID: 34578691 PMCID: PMC8470243 DOI: 10.3390/nano11092378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
We present a growth model that describes the nanowire length and radius versus time in the absence of evaporation or scattering of semiconductor atoms (group III atoms in the case of III-V NWs) from the substrate, nanowire sidewalls or catalyst nanoparticle. The model applies equally well to low-temperature metal-catalyzed or selective area growth of elemental or III-V nanowires on patterned substrates. Surface diffusion transport and radial growth on the nanowire sidewalls are carefully considered under the constraint of the total material balance, yielding some new effects. The nanowire growth process is shown to proceed in two steps. In the first step, the nanowire length increases linearly with time and is inversely proportional to the nanowire radius squared and the nanowire surface density, without radial growth. In the second step, the nanowire length obeys the Chini equation, resulting in a non-linear increase in length with time and radial growth. The nanowire radii converge to a stationary value in the large time limit, showing a kind of size-narrowing effect. The model fits the data on the growth kinetics of a single self-catalyzed GaAs nanowire on a Si substrate well.
Collapse
Affiliation(s)
- Vladimir G Dubrovskii
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| |
Collapse
|
15
|
Geng B, Shi Z, Chen C, Zhang W, Yang L, Deng C, Yang X, Miao L, Peng C. Enable a Facile Size Re-distribution of MBE-Grown Ga-Droplets via In Situ Pulsed Laser Shooting. NANOSCALE RESEARCH LETTERS 2021; 16:126. [PMID: 34347177 PMCID: PMC8339181 DOI: 10.1186/s11671-021-03583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
A MBE-prepared Gallium (Ga)-droplet surface on GaAs (001) substrate is in situ irradiated by a single shot of UV pulsed laser. It demonstrates that laser shooting can facilely re-adjust the size of Ga-droplet and a special Ga-droplet of extremely broad size-distribution with width from 16 to 230 nm and height from 1 to 42 nm are successfully obtained. Due to the energetic inhomogeneity across the laser spot, the modification of droplet as a function of irradiation intensity (IRIT) can be straightly investigated on one sample and the correlated mechanisms are clarified. Systematically, the laser resizing can be perceived as: for low irradiation level, laser heating only expands droplets to make mergences among them, so in this stage, the droplet size distribution is solely shifted to the large side; for high irradiation level, laser irradiation not only causes thermal expansion but also thermal evaporation of Ga atom which makes the size-shift move to both sides. All of these size-shifts on Ga-droplets can be strongly controlled by applying different laser IRIT that enables a more designable droplet epitaxy in the future.
Collapse
Affiliation(s)
- Biao Geng
- School of Optoelectronic Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China
| | - Zhenwu Shi
- School of Optoelectronic Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China.
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China.
| | - Chen Chen
- School of Optoelectronic Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China
| | - Wei Zhang
- AVIC Huadong Photo-electronics Co., Ltd, Wuhu, 241002, China
| | - Linyun Yang
- School of Optoelectronic Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China
| | - Changwei Deng
- School of Optoelectronic Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China
| | - Xinning Yang
- School of Optoelectronic Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China
| | - Lili Miao
- School of Optoelectronic Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China
| | - Changsi Peng
- School of Optoelectronic Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China.
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China.
- Institute of Research for Applicable Computing, University of Bedfordshire, Park Square, Luton, LU1 3JU, UK.
| |
Collapse
|
16
|
Mostafavi Kashani SM. Low growth rate synthesis of GaAs nanowires with uniform size. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abeac8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The growth of nanowires (NWs) with uniform sizes is crucial for future NW-based electronics. In this work, an efficient one-step process is introduced for the growth of uniform gallium arsenide NWs on the native oxide surface of Si, which could be even considered as an alternative for expensive and sophisticated patterning approaches. The proposed strategy considers a Ga pre-deposition step leading to the formation of droplets with homogeneous sizes. That is followed by controlled nucleation of gallium arsenide from those droplets only. Our key to controlling the nucleation of gallium arsenide is to perform the NW growth at temperatures above 580 ± 10 °C and low Ga fluxes. By this method, the statistical distribution of the length and diameter of the vertically grown NWs decreased to about 3%–6% of their averaged values. Moreover, 100% epitaxial growth was realized. Besides, the growth of undesired parasitic islands is addressed and accordingly suppressed. Our study focuses on NW low growth rates, which is so far not investigated in the literature and, could be of great interest e.g. for in situ growth studies.
Collapse
|
17
|
Gil E, Andre Y. Growth of long III-As NWs by hydride vapor phase epitaxy. NANOTECHNOLOGY 2021; 32:162002. [PMID: 33434903 DOI: 10.1088/1361-6528/abdb14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this review paper, we focus on the contribution of hydride vapor phase epitaxy (HVPE) to the growth of III-As nanowires (NWs). HVPE is the third epitaxial technique involving gaseous precursors together with molecular beam epitaxy (MBE) and metal-organic VPE (MOVPE) to grow III-V semiconductor compounds. Although a pioneer in the growth of III-V epilayers, HVPE arrived on the scene of NW growth the very last. Yet, HVPE brought different and interesting insights to the topic since HVPE is a very reactive growth system, exhibiting fast growth property, while growth is governed by the temperature-dependent kinetics of surface mechanisms. After a brief review of the specific attributes of HVPE growth, we first feature the innovative polytypism-free crystalline quality of cubic GaAs NWs grown by Au-assisted vapor-liquid-solid (VLS) epitaxy, on exceptional length and for radii down to 6 nm. We then move to the integration of III-V NWs with silicon. Special emphasis is placed on the nucleation issue experienced by both Au-assisted VLS MOVPE and HVPE, and a model demonstrates that the presence of Si atoms in the liquid droplets suppresses nucleation of NWs unless a high Ga concentation is reached in the catalyst droplet. The second known issue is the amphoteric behavior of Si when it is used as doping element for GaAs. On the basis of compared MBE and HVPE experimental data, a model puts forward the role of the As concentration in the liquid Au-Ga-As-Si droplets to yield p-type (low As content) or n-type (high As content) GaAs:Si NWs. We finally describe how self-catalysed VLS growth and condensation growth are implemented by HVPE for the growth of GaAs and InAs NWs on Si.
Collapse
Affiliation(s)
- Evelyne Gil
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
- ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
| | - Yamina Andre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
- ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
- Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S4L7, Canada
| |
Collapse
|
18
|
Dubrovskii VG, Kim W, Piazza V, Güniat L, Fontcuberta I Morral A. Simultaneous Selective Area Growth of Wurtzite and Zincblende Self-Catalyzed GaAs Nanowires on Silicon. NANO LETTERS 2021; 21:3139-3145. [PMID: 33818097 DOI: 10.1021/acs.nanolett.1c00349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Selective area epitaxy constitutes a mainstream method to obtain reproducible nanomaterials. As a counterpart, self-assembly allows their growth without costly substrate preparation, with the drawback of uncontrolled positioning. We propose a mixed approach in which self-assembly is limited to reduced regions on a patterned silicon substrate. While nanowires grow with a wide distribution of diameters, we note a mostly binary occurrence of crystal phases. Self-catalyzed GaAs nanowires form in either a wurtzite or zincblende phase in the same growth run. Quite surprisingly, thicker nanowires are wurtzite and thinner nanowires are zincblende, while the common view predicts the reverse trend. We relate this phenomenon to the influx of Ga adatoms by surface diffusion, which results in different contact angles of Ga droplets. We demonstrate the wurtzite phase of thick GaAs NWs up to 200 nm in diameter in the Au-free approach, which has not been achieved so far to our knowledge.
Collapse
Affiliation(s)
- Vladimir G Dubrovskii
- Faculty of Physics, St. Petersburg State University, Universitetskaya Embankment 13B, 199034 St. Petersburg, Russia
| | - Wonjong Kim
- Laboratory of Semiconductor Materials, Institute of Materials, Faculty of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Valerio Piazza
- Laboratory of Semiconductor Materials, Institute of Materials, Faculty of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Lucas Güniat
- Laboratory of Semiconductor Materials, Institute of Materials, Faculty of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Anna Fontcuberta I Morral
- Laboratory of Semiconductor Materials, Institute of Materials, Faculty of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Institute of Physics, Faculty of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Dubrovskii VG, Sibirev NV, Sokolovskii AS. Kinetic broadening of size distribution in terms of natural versus invariant variables. Phys Rev E 2021; 103:012112. [PMID: 33601594 DOI: 10.1103/physreve.103.012112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/23/2020] [Indexed: 11/07/2022]
Abstract
We study theoretically the size distributions of nanoparticles (islands, droplets, nanowires) whose time evolution obeys the kinetic rate equations with size-dependent condensation and evaporation rates. Different effects are studied which contribute to the size distribution broadening, including kinetic fluctuations, evaporation, nucleation delay, and size-dependent growth rates. Under rather general assumptions, an analytic form of the size distribution is obtained in terms of the natural variable s which equals the number of monomers in the nanoparticle. Green's function of the continuum rate equation is shown to be Gaussian, with the size-dependent variance. We consider particular examples of the size distributions in either linear growth systems (at a constant supersaturation) or classical nucleation theory with pumping (at a time-dependent supersaturation) and compare the spectrum broadening in terms of s versus the invariant variable ρ for which the regular growth rate is size independent. For the growth rate scaling with s as s^{α} (with the growth index α between 0 and 1), the size distribution broadens for larger α in terms of s, while it narrows with α if presented in terms of ρ. We establish the conditions for obtaining a time-invariant size distribution over a given variable for different growth laws. This result applies for a wide range of systems and shows how the growth method can be optimized to narrow the size distribution over a required variable, for example, the volume, surface area, radius or length of a nanoparticle. An analysis of some concrete growth systems is presented from the viewpoint of the obtained results.
Collapse
Affiliation(s)
- Vladimir G Dubrovskii
- St. Petersburg State University, Universitetskaya Embankment 13B, 199034 St. Petersburg, Russia
| | - Nickolay V Sibirev
- St. Petersburg State University, Universitetskaya Embankment 13B, 199034 St. Petersburg, Russia
| | | |
Collapse
|
20
|
Wilson DP, Sokolovskii AS, LaPierre RR, Panciera F, Glas F, Dubrovskii VG. Modeling the dynamics of interface morphology and crystal phase change in self-catalyzed GaAs nanowires. NANOTECHNOLOGY 2020; 31:485602. [PMID: 32931461 DOI: 10.1088/1361-6528/abb106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The droplet contact angle and morphology of the growth interface (vertical, tapered or truncated facets) are known to affect the zincblende (ZB) or wurtzite (WZ) crystal phase of III-V nanowires (NWs) grown by the vapor-liquid-solid method. Here, we present a model which describes the dynamics of the morphological evolution in self-catalyzed III-V NWs in terms of the time-dependent (or length-dependent) contact angle or top nanowire radius under varying material fluxes. The model fits quite well the contact angle dynamics obtained by in situ growth monitoring of self-catalyzed GaAs NWs in a transmission electron microscope. These results can be used for modeling the interface dynamics and the related crystal phase switching and for obtaining ZB-WZ heterostructures in III-V.
Collapse
Affiliation(s)
- D P Wilson
- Department of Engineering Physics, Centre for Emerging Device Technologies, McMaster University, Hamilton ON L8S 4L7, Canada. ITMO University, Kronverkskiy pr. 49, 197101, St. Petersburg, Russia
| | | | | | | | | | | |
Collapse
|
21
|
Sarkar K, Devi P, Kim KH, Kumar P. III-V nanowire-based ultraviolet to terahertz photodetectors: Device strategies, recent developments, and future possibilities. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Isik Goktas N, Sokolovskii A, Dubrovskii VG, LaPierre RR. Formation Mechanism of Twinning Superlattices in Doped GaAs Nanowires. NANO LETTERS 2020; 20:3344-3351. [PMID: 32239956 DOI: 10.1021/acs.nanolett.0c00240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent investigations of III-V semiconductor nanowires have revealed periodic zinc-blende twins, known as twinning superlattices, that are often induced by a high-impurity dopant concentration. In the present study, the relationship between the nanowire morphology, crystal structure, and impurity dopant concentration (Te and Be) of twinning superlattices has been studied in GaAs nanowires grown by molecular beam epitaxy using the self-assisted (with a Ga droplet) vapor-liquid-solid process. The contact angle between the Ga droplet and the nanowire top facet decreased linearly with the dopant concentration, whereas the period of the twinning superlattices increased with the doping concentration and was proportional to the nanowire radius. Our model, which is based entirely on surface energetics, is able to explain a unified formation mechanism of twinning superlattices in doped semiconductor nanowires.
Collapse
Affiliation(s)
- Nebile Isik Goktas
- Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | | | - Vladimir G Dubrovskii
- St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| | - Ray R LaPierre
- Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
23
|
Bahrami D, Mostafavi Kashani SM, Al Hassan A, Davtyan A, Pietsch U. High yield of self-catalyzed GaAs nanowire growth on silicon (111) substrate templated by focused ion beam patterning. NANOTECHNOLOGY 2020; 31:185302. [PMID: 31958783 DOI: 10.1088/1361-6528/ab6d99] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report and detail a lithography-free method to pattern Si substrates. In particular, a focused Ga ion beam is used to create regular patterns of holes which serve as a template for the growth of vertically aligned GaAs nanowires (NW)s on Si(111) substrates using self-catalyzed molecular beam epitaxy. We show that the hole diameter plays a crucial role in the growth of the NWs at the drilled holes. The critical parameters defining the width of the holes are: ion dose quantities, wet etching procedures, and high-temperature steps at the process of growth. As a result, we obtained a yield of more than 80% for vertically aligned NW. Compared to other methods of patterning our approach provides the following advantages: (i) it is a lithography-free procedure, (ii) allows for quick patterning process and hole diameter optimization within a small window of trial and error, (iii) and provides potential applicability for different material systems.
Collapse
|
24
|
Sawato T, Yamaguchi M. Sequential self‐catalytic reactions in the formation of hetero‐double‐helix and their self‐assembled gels by pseudoenantiomer mixtures of ethynylhelicene oligomers. Chirality 2020; 32:824-832. [DOI: 10.1002/chir.23224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Tsukasa Sawato
- Department of Organic Chemistry, Graduate School of Pharmaceutical SciencesTohoku University Sendai Japan
| | - Masahiko Yamaguchi
- Department of Organic Chemistry, Graduate School of Pharmaceutical SciencesTohoku University Sendai Japan
| |
Collapse
|
25
|
Arif O, Zannier V, Dubrovskii VG, Shtrom IV, Rossi F, Beltram F, Sorba L. Growth of Self-Catalyzed InAs/InSb Axial Heterostructured Nanowires: Experiment and Theory. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:nano10030494. [PMID: 32164178 PMCID: PMC7153585 DOI: 10.3390/nano10030494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The growth mechanisms of self-catalyzed InAs/InSb axial nanowire heterostructures are thoroughly investigated as a function of the In and Sb line pressures and growth time. Some interesting phenomena are observed and analyzed. In particular, the presence of In droplet on top of InSb segment is shown to be essential for forming axial heterostructures in the self-catalyzed vapor-liquid-solid mode. Axial versus radial growth rates of InSb segment are investigated under different growth conditions and described within a dedicated model containing no free parameters. It is shown that widening of InSb segment with respect to InAs stem is controlled by the vapor-solid growth on the nanowire sidewalls rather than by the droplet swelling. The In droplet can even shrink smaller than the nanowire facet under Sb-rich conditions. These results shed more light on the growth mechanisms of self-catalyzed heterostructures and give clear route for engineering the morphology of InAs/InSb axial nanowire heterostructures for different applications.
Collapse
Affiliation(s)
- Omer Arif
- NEST, Istituto Nanoscienze—CNR and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy; (O.A.); (F.B.); (L.S.)
| | - Valentina Zannier
- NEST, Istituto Nanoscienze—CNR and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy; (O.A.); (F.B.); (L.S.)
| | - Vladimir G. Dubrovskii
- School of Photonics, ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
| | - Igor V. Shtrom
- The Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia;
| | - Francesca Rossi
- IMEM—CNR, Parco Area delle Scienze 37/A, I-43124 Parma, Italy
| | - Fabio Beltram
- NEST, Istituto Nanoscienze—CNR and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy; (O.A.); (F.B.); (L.S.)
| | - Lucia Sorba
- NEST, Istituto Nanoscienze—CNR and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy; (O.A.); (F.B.); (L.S.)
| |
Collapse
|
26
|
Dubrovskii VG, Barcus J, Kim W, Vukajlovic-Plestina J, I Morral AF. Does desorption affect the length distributions of nanowires? NANOTECHNOLOGY 2019; 30:475604. [PMID: 31416057 DOI: 10.1088/1361-6528/ab3bb6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
State-of-the art models for statistical properties within the nanowire ensembles consider influx of precursors, reflection and surface diffusion of adatoms. These models predict a delay in the nanowire growth start and the evolution toward an asymmetric length distribution. We demonstrate here the effect of desorption of the nanowire material, which has not been considered so far in studies of the nanowire length distributions. We show that at the very beginning of growth the length distribution should be asymmetric due to the slow nucleation of nanowires. At longer times, the length distribution acquires a symmetric Gaussian shape due to the increased weight of desorption. The width of this distribution is larger than Poissonian and increases for higher ratio of desorption over deposition rate. Our model is consistent with the length evolution of organized self-catalyzed GaAs nanowires. We outline that desorption of the nanowire material should be minimized to achieve arrays of highly identical nanowires. These results are relevant for a wide variety of material systems.
Collapse
Affiliation(s)
- V G Dubrovskii
- ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
27
|
Vettori M, Danescu A, Guan X, Regreny P, Penuelas J, Gendry M. Impact of the Ga flux incidence angle on the growth kinetics of self-assisted GaAs nanowires on Si(111). NANOSCALE ADVANCES 2019; 1:4433-4441. [PMID: 36134421 PMCID: PMC9418788 DOI: 10.1039/c9na00443b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/06/2019] [Indexed: 06/12/2023]
Abstract
In this work we show that the incidence angle of group-III element fluxes plays a significant role in the diffusion-controlled growth of III-V nanowires (NWs) by molecular beam epitaxy (MBE). We present a thorough experimental study on the self-assisted growth of GaAs NWs by using a MBE reactor equipped with two Ga cells located at different incidence angles with respect to the surface normal of the substrate, so as to ascertain the impact of such a parameter on the NW growth kinetics. The as-obtained results show a dramatic influence of the Ga flux incidence angle on the NW length and diameter, as well as on the shape and size of the Ga droplets acting as catalysts. In order to interpret the results we developed a semi-empirical analytical model inspired by those already developed for MBE-grown Au-catalyzed GaAs NWs. Numerical simulations performed with the model allow us to reproduce thoroughly the experimental results (in terms of NW length and diameter and of droplet size and wetting angle), putting in evidence that under formally the same experimental conditions the incidence angle of the Ga flux is a key parameter which can drastically affect the growth kinetics of the NWs grown by MBE.
Collapse
Affiliation(s)
- Marco Vettori
- Université de Lyon, Institut des Nanotechnologies de Lyon - INL, Ecole Centrale de Lyon UMR CNRS 5270 69134 Ecully France
| | - Alexandre Danescu
- Université de Lyon, Institut des Nanotechnologies de Lyon - INL, Ecole Centrale de Lyon UMR CNRS 5270 69134 Ecully France
| | - Xin Guan
- Université de Lyon, Institut des Nanotechnologies de Lyon - INL, Ecole Centrale de Lyon UMR CNRS 5270 69134 Ecully France
| | - Philippe Regreny
- Université de Lyon, Institut des Nanotechnologies de Lyon - INL, Ecole Centrale de Lyon UMR CNRS 5270 69134 Ecully France
| | - José Penuelas
- Université de Lyon, Institut des Nanotechnologies de Lyon - INL, Ecole Centrale de Lyon UMR CNRS 5270 69134 Ecully France
| | - Michel Gendry
- Université de Lyon, Institut des Nanotechnologies de Lyon - INL, Ecole Centrale de Lyon UMR CNRS 5270 69134 Ecully France
| |
Collapse
|
28
|
Díaz Álvarez A, Peric N, Franchina Vergel NA, Nys JP, Berthe M, Patriarche G, Harmand JC, Caroff P, Plissard S, Ebert P, Xu T, Grandidier B. Importance of point defect reactions for the atomic-scale roughness of III-V nanowire sidewalls. NANOTECHNOLOGY 2019; 30:324002. [PMID: 30995632 DOI: 10.1088/1361-6528/ab1a4e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The surface morphology of III-V semiconductor nanowires (NWs) protected by an arsenic cap and subsequently evaporated in ultrahigh vacuum is investigated with scanning tunneling microscopy and scanning transmission electron microscopy. We show that the changes of the surface morphology as a function of the NW composition and the nature of the seed particles are intimately related to the formation and reaction of surface point defects. Langmuir evaporation close to the congruent evaporation temperature causes the formation of vacancies which nucleate and form vacancy islands on {110} sidewalls of self-catalyzed InAs NWs. However, for annealing temperatures much smaller than the congruent temperature, a new phenomenon occurs: group III vacancies form and are filled by excess As atoms, leading to surface AsGa antisites. The resulting Ga adatoms nucleate with excess As atoms at the NW edges, producing monoatomic-step islands on the {110} sidewalls of GaAs NWs. Finally, when gold atoms diffuse from the seed particle onto the {110} sidewalls during evaporation of the protective As cap, Langmuir evaporation does not take place, leaving the sidewalls of InAsSb NWs atomically flat.
Collapse
Affiliation(s)
- Adrian Díaz Álvarez
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Schroth P, Al Humaidi M, Feigl L, Jakob J, Al Hassan A, Davtyan A, Küpers H, Tahraoui A, Geelhaar L, Pietsch U, Baumbach T. Impact of the Shadowing Effect on the Crystal Structure of Patterned Self-Catalyzed GaAs Nanowires. NANO LETTERS 2019; 19:4263-4271. [PMID: 31150261 DOI: 10.1021/acs.nanolett.9b00380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The growth of regular arrays of uniform III-V semiconductor nanowires is a crucial step on the route toward their application-relevant large-scale integration onto the Si platform. To this end, not only does optimal vertical yield, length, and diameter uniformity have to be engineered, but also, control over the nanowire crystal structure has to be achieved. Depending on the particular application, nanowire arrays with varying area density are required for optimal device efficiency. However, the nanowire area density substantially influences the nanowire growth and presents an additional challenge for nanowire device engineering. We report on the simultaneous in situ X-ray investigation of regular GaAs nanowire arrays with different area density during self-catalyzed vapor-liquid-solid growth on Si by molecular-beam epitaxy. Our results give novel insight into selective-area growth and demonstrate that shadowing of the Ga flux, occurring in dense nanowire arrays, has a crucial impact on the evolution of nanowire crystal structure. We observe that the onset of Ga flux shadowing, dependent on array pitch and nanowire length, is accompanied by an increase of the wurtzite formation rate. Our results moreover reveal the paramount role of the secondary reflected Ga flux for VLS NW growth (specifically, that flux that is reflected directly into the liquid Ga droplet).
Collapse
Affiliation(s)
- Philipp Schroth
- Solid State Physics, Department of Physics , University of Siegen , Adolf-Reichwein-Straße 2 , D-57068 Siegen , Germany
- Laboratory for Applications of Synchrotron Radiation , Karlsruhe Institute of Technology , Kaiserstraße 12 , D-76131 Karlsruhe , Germany
- Institute for Photon Science and Synchrotron Radiation , Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany
| | - Mahmoud Al Humaidi
- Solid State Physics, Department of Physics , University of Siegen , Adolf-Reichwein-Straße 2 , D-57068 Siegen , Germany
| | - Ludwig Feigl
- Institute for Photon Science and Synchrotron Radiation , Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany
| | - Julian Jakob
- Laboratory for Applications of Synchrotron Radiation , Karlsruhe Institute of Technology , Kaiserstraße 12 , D-76131 Karlsruhe , Germany
- Institute for Photon Science and Synchrotron Radiation , Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany
| | - Ali Al Hassan
- Solid State Physics, Department of Physics , University of Siegen , Adolf-Reichwein-Straße 2 , D-57068 Siegen , Germany
| | - Arman Davtyan
- Solid State Physics, Department of Physics , University of Siegen , Adolf-Reichwein-Straße 2 , D-57068 Siegen , Germany
| | - Hanno Küpers
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V. , Hausvogteiplatz 5-7 , 10117 Berlin , Germany
| | - Abbes Tahraoui
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V. , Hausvogteiplatz 5-7 , 10117 Berlin , Germany
| | - Lutz Geelhaar
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V. , Hausvogteiplatz 5-7 , 10117 Berlin , Germany
| | - Ullrich Pietsch
- Solid State Physics, Department of Physics , University of Siegen , Adolf-Reichwein-Straße 2 , D-57068 Siegen , Germany
| | - Tilo Baumbach
- Laboratory for Applications of Synchrotron Radiation , Karlsruhe Institute of Technology , Kaiserstraße 12 , D-76131 Karlsruhe , Germany
- Institute for Photon Science and Synchrotron Radiation , Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany
| |
Collapse
|
30
|
Akiyama T, Nakamura K, Ito T. Effects of surface and twinning energies on twining-superlattice formation in group III-V semiconductor nanowires: a first-principles study. NANOTECHNOLOGY 2019; 30:234002. [PMID: 30759424 DOI: 10.1088/1361-6528/ab06d0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The formation of twin plane superlattices in group III-V semiconductor nanowires (NWs) is analyzed by considering two dimensional nucleation using surface and twinning energies, obtained by performing electronic structure calculations within density functional theory. The calculations for GaP, GaAs, InP, and InAs demonstrate that surface energies strongly depend on the growth conditions such as temperature and pressure during the epitaxial growth. Furthermore, the calculated twinning energies are found to be much smaller than previously estimated values by the dissociation width of edge dislocations, which lead to smaller segment lengths. We also find that the nonlinear relationship between segment length and NW diameter depending on constituent elements is due to the difference in twinning energies. These results imply that twinning formation as well as surface stability are crucial for the formation of twin plane superlattices in group III-V semiconductor NWs.
Collapse
Affiliation(s)
- Toru Akiyama
- Department of Physics Engineering, Mie University, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | | | | |
Collapse
|
31
|
Sonner MM, Sitek A, Janker L, Rudolph D, Ruhstorfer D, Döblinger M, Manolescu A, Abstreiter G, Finley JJ, Wixforth A, Koblmüller G, Krenner HJ. Breakdown of Corner States and Carrier Localization by Monolayer Fluctuations in Radial Nanowire Quantum Wells. NANO LETTERS 2019; 19:3336-3343. [PMID: 31013103 DOI: 10.1021/acs.nanolett.9b01028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a comprehensive study of the impact of the structural properties in radial GaAs-Al0.3Ga0.7As nanowire-quantum well heterostructures on the optical recombination dynamics and electrical transport properties, emphasizing particularly the role of the commonly observed variations of the quantum well thickness at different facets. Typical thickness fluctuations of the radial quantum well observed by transmission electron microscopy lead to pronounced localization. Our optical data exhibit clear spectral shifts and a multipeak structure of the emission for such asymmetric ring structures resulting from spatially separated, yet interconnected quantum well systems. Charge carrier dynamics induced by a surface acoustic wave are resolved and prove efficient carrier exchange on native, subnanosecond time scales within the heterostructure. Experimental findings are corroborated by theoretical modeling, which unambiguously show that electrons and holes localize on facets where the quantum well is the thickest and that even minute deviations of the perfect hexagonal shape strongly perturb the commonly assumed 6-fold symmetric ground state.
Collapse
Affiliation(s)
- Maximilian M Sonner
- Lehrstuhl für Experimentalphysik 1, Institut für Physik and Augsburg Centre for Innovative Technologies (ACIT) , Universität Augsburg , Universitätsstr. 1 , 86159 Augsburg , Germany
- Nanosystems Initiative Munich (NIM) , Schellingstr. 4 , 80799 München , Germany
| | - Anna Sitek
- School of Science and Engineering , Reykjavik University , Menntavegur 1 , 101 Reykjavik , Iceland
- Department of Theoretical Physics, Faculty of Fundamental Problems of Technology , Wroclaw University of Science and Technology , Wybrzeże Wyspiańskiego 27 , 50-370 Wroclaw , Poland
| | - Lisa Janker
- Lehrstuhl für Experimentalphysik 1, Institut für Physik and Augsburg Centre for Innovative Technologies (ACIT) , Universität Augsburg , Universitätsstr. 1 , 86159 Augsburg , Germany
- Nanosystems Initiative Munich (NIM) , Schellingstr. 4 , 80799 München , Germany
| | - Daniel Rudolph
- Nanosystems Initiative Munich (NIM) , Schellingstr. 4 , 80799 München , Germany
- Walter Schottky Institut and Physik Department , Technische Universität München , Am Coulombwall 4 , 85748 Garching , Germany
| | - Daniel Ruhstorfer
- Nanosystems Initiative Munich (NIM) , Schellingstr. 4 , 80799 München , Germany
- Walter Schottky Institut and Physik Department , Technische Universität München , Am Coulombwall 4 , 85748 Garching , Germany
| | - Markus Döblinger
- Nanosystems Initiative Munich (NIM) , Schellingstr. 4 , 80799 München , Germany
- Department of Chemistry , Ludwig-Maximilians-Universität München , Butenandtstr. 5-13(E) , 81377 München , Germany
| | - Andrei Manolescu
- School of Science and Engineering , Reykjavik University , Menntavegur 1 , 101 Reykjavik , Iceland
| | - Gerhard Abstreiter
- Nanosystems Initiative Munich (NIM) , Schellingstr. 4 , 80799 München , Germany
- Walter Schottky Institut and Physik Department , Technische Universität München , Am Coulombwall 4 , 85748 Garching , Germany
| | - Jonathan J Finley
- Nanosystems Initiative Munich (NIM) , Schellingstr. 4 , 80799 München , Germany
- Walter Schottky Institut and Physik Department , Technische Universität München , Am Coulombwall 4 , 85748 Garching , Germany
| | - Achim Wixforth
- Lehrstuhl für Experimentalphysik 1, Institut für Physik and Augsburg Centre for Innovative Technologies (ACIT) , Universität Augsburg , Universitätsstr. 1 , 86159 Augsburg , Germany
- Nanosystems Initiative Munich (NIM) , Schellingstr. 4 , 80799 München , Germany
| | - Gregor Koblmüller
- Nanosystems Initiative Munich (NIM) , Schellingstr. 4 , 80799 München , Germany
- Walter Schottky Institut and Physik Department , Technische Universität München , Am Coulombwall 4 , 85748 Garching , Germany
| | - Hubert J Krenner
- Lehrstuhl für Experimentalphysik 1, Institut für Physik and Augsburg Centre for Innovative Technologies (ACIT) , Universität Augsburg , Universitätsstr. 1 , 86159 Augsburg , Germany
- Nanosystems Initiative Munich (NIM) , Schellingstr. 4 , 80799 München , Germany
| |
Collapse
|
32
|
Hallberg RT, Messing ME, Dick KA. Nanowire morphology and particle phase control by tuning the In concentration of the foreign metal nanoparticle. NANOTECHNOLOGY 2019; 30:054005. [PMID: 30511656 DOI: 10.1088/1361-6528/aaefbe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Controllable particle assisted growth (PAG) of III-V nanowires is today almost exclusively done with Au, Ga or In nanoparticles, whereas other metals often yield nanowires with uncontrolled growth directions. To improve the control of the initial growth direction in PAG, independent of choice of metal, we propose to initiate nanowire growth from a group-III-rich foreign metal particle. For III-V nanowire growth, the group III concentration of the particle can be made to increase or decrease with the relative supply of group III and group V material, which can be used to promote the liquid phase that is necessary for vapor-liquid-solid growth. In this paper, 30 nm Pd nanoparticles are used to develop growth conditions for In-rich PAG of InAs nanowires. The particle size evolution for different growth times and V/III ratios is correlated with changes in nanowire density and morphology. In addition, we demonstrate In-rich Co, Pd, Pt and Rh nanoparticles and optimized In-rich PAG from Au and Pd seeds. The Au and Pd seeded nanowires are remarkably similar and by tuning the particle composition we trigger a morphological change. The vertical nanowire morphology is associated with In-rich nanoparticles that contain a liquid phase. The curly nanowire morphology, with random growth directions have an In concentration less than or equal to that of the most In rich compound of the seed metal-In system.
Collapse
|
33
|
García Núñez C, Braña AF, López N, García BJ. A Novel Growth Method To Improve the Quality of GaAs Nanowires Grown by Ga-Assisted Chemical Beam Epitaxy. NANO LETTERS 2018; 18:3608-3615. [PMID: 29739187 DOI: 10.1021/acs.nanolett.8b00702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The successful synthesis of high crystalline quality and high aspect ratio GaAs nanowires (NWs) with a uniform diameter is needed to develop advanced applications beyond the limits established by thin film and bulk material properties. Vertically aligned GaAs NWs have been extensively grown by Ga-assisted vapor-liquid-solid (VLS) mechanism on Si(111) substrates, and they have been used as building blocks in photovoltaics, optoelectronics, electronics, and so forth. However, the nucleation of parasitic species such as traces and nanocrystals on the Si substrate surface during the NW growth could affect significantly the controlled nucleation of those NWs, and therefore the resulting performance of NW-based devices. Preventing the nucleation of parasitic species on the Si substrate is a matter of interest, because they could act as traps for gaseous precursors and/or chemical elements during VLS growth, drastically reducing the maximum length of grown NWs, affecting their morphology and structure, and reducing the NW density along the Si substrate surface. This work presents a novel and easy to develop growth method (i.e., without using advanced nanolithography techniques) to prevent the nucleation of parasitic species, while preserving the quality of GaAs NWs even for long duration growths. GaAs NWs are grown by Ga-assisted chemical beam epitaxy on oxidized Si(111) substrates using triethylgallium and tertiarybutylarsine precursors by a two-step-based growth method presented here; this method includes a growth interruption for an oxidation on air between both steps of growth, reducing the nucleation of parasitic crystals on the thicker SiO x capping layer during the second and longer growth step. VLS conditions are preserved overtime, resulting in a stable NW growth rate of around 6 μm/h for growth times up to 1 h. Resulting GaAs NWs have a high aspect ratio of 85 and average radius of 35 nm. We also report on the existence of characteristic reflection high-energy electron diffraction patterns associated with the epitaxial growth of GaAs NWs on Si(111) substrates, which have been analyzed and compared to the morphological characterization of GaAs NWs grown for different times under different conditions.
Collapse
Affiliation(s)
- Carlos García Núñez
- Electronics and Semiconductors Group (ELySE), Department of Applied Physics , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Alejandro F Braña
- Electronics and Semiconductors Group (ELySE), Department of Applied Physics , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Nair López
- Electronics and Semiconductors Group (ELySE), Department of Applied Physics , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Basilio J García
- Electronics and Semiconductors Group (ELySE), Department of Applied Physics , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| |
Collapse
|
34
|
Leshchenko ED, Kuyanov P, LaPierre RR, Dubrovskii VG. Tuning the morphology of self-assisted GaP nanowires. NANOTECHNOLOGY 2018; 29:225603. [PMID: 29509146 DOI: 10.1088/1361-6528/aab47b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Patterned arrays of self-assisted GaP nanowires (NWs) were grown on a Si substrate by gas source molecular beam epitaxy using various V/III flux ratios from 1-6, and various pitches from 360-1000 nm. As the V/III flux ratio was increased from 1-6, the NWs showed a change in morphology from outward tapering to straight, and eventually to inward tapering. The morphologies of the self-assisted GaP NWs are well described by a simple kinetic equation for the NW radius versus the position along the NW axis. The most important growth parameter that governs the NW morphology is the V/III flux ratio. Sharpened NWs with a stable radius equal to only 12 nm at a V/III flux of 6 were achieved, demonstrating their suitability for the insertion of quantum dots.
Collapse
Affiliation(s)
- E D Leshchenko
- ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia. Solid State Physics and NanoLund, Lund University, Box 118, SE-22100 Lund, Sweden
| | | | | | | |
Collapse
|
35
|
Zhang G, Tateno K, Sogawa T, Gotoh H. Diameter-tailored telecom-band luminescence in InP/InAs heterostructure nanowires grown on InP (111)B substrate with continuously-modulated diameter from microscale to nanoscale. NANOTECHNOLOGY 2018; 29:155202. [PMID: 29376842 DOI: 10.1088/1361-6528/aaab17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report diameter-tailored luminescence in telecom band of InP/InAs multi-heterostructure nanowires with continuously-modulated diameter from microscale to nanoscale. By using the self-catalyzed vapor-solid-liquid approach, we tune the indium particle size, and consequently the InP/InAs nanowire diameter, during growth by modulating the flow rate of the indium source material. This technique allows a high degree of continuous tuning in a wide scale from microscale to nanoscale. Hence it offers an original way to bridge the gap between microscale-featured photolithographic and nanoscale-featured nanolithographic processes and to incorporate InAs quantum disks with tunable diameters into a single InP/InAs quantum heterostructure nanowire. We realized site-defined nanowires with nanoscale diameters initiated from site-defined microscale-diameter particles made with a conventional photolithographic process. The luminescence wavelength from InAs quantum disks is directly connected to the nanowire diameter, by which the strain in the InAs quantum disks is tailored. This work provides new opportunities in the fabrication and design of nanowire devices that extends beyond what is achievable with the current technologies and enables the nanowire shape to be engineered thus offering the potential to broaden the application range of nanowire devices.
Collapse
Affiliation(s)
- Guoqiang Zhang
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, Japan. NTT Nanophotonics Center, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| | | | | | | |
Collapse
|
36
|
Oehler F, Cattoni A, Scaccabarozzi A, Patriarche G, Glas F, Harmand JC. Measuring and Modeling the Growth Dynamics of Self-Catalyzed GaP Nanowire Arrays. NANO LETTERS 2018; 18:701-708. [PMID: 29257888 DOI: 10.1021/acs.nanolett.7b03695] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The bottom-up fabrication of regular nanowire (NW) arrays on a masked substrate is technologically relevant, but the growth dynamic is rather complex due to the superposition of severe shadowing effects that vary with array pitch, NW diameter, NW height, and growth duration. By inserting GaAsP marker layers at a regular time interval during the growth of a self-catalyzed GaP NW array, we are able to retrieve precisely the time evolution of the diameter and height of a single NW. We then propose a simple numerical scheme which fully computes shadowing effects at play in infinite arrays of NWs. By confronting the simulated and experimental results, we infer that re-emission of Ga from the mask is necessary to sustain the NW growth while Ga migration on the mask must be negligible. When compared to random cosine or random uniform re-emission from the mask, the simple case of specular reflection on the mask gives the most accurate account of the Ga balance during the growth.
Collapse
Affiliation(s)
- Fabrice Oehler
- Centre for Nanoscience and Nanotechnology, CNRS, Université Paris-Sud, Université Paris-Saclay , Route de Nozay, 91460 Marcoussis, France
| | - Andrea Cattoni
- Centre for Nanoscience and Nanotechnology, CNRS, Université Paris-Sud, Université Paris-Saclay , Route de Nozay, 91460 Marcoussis, France
| | - Andrea Scaccabarozzi
- Centre for Nanoscience and Nanotechnology, CNRS, Université Paris-Sud, Université Paris-Saclay , Route de Nozay, 91460 Marcoussis, France
- Institut Photovoltaïque d'Ile-de-France , 92160 Antony, France
| | - Gilles Patriarche
- Centre for Nanoscience and Nanotechnology, CNRS, Université Paris-Sud, Université Paris-Saclay , Route de Nozay, 91460 Marcoussis, France
| | - Frank Glas
- Centre for Nanoscience and Nanotechnology, CNRS, Université Paris-Sud, Université Paris-Saclay , Route de Nozay, 91460 Marcoussis, France
| | - Jean-Christophe Harmand
- Centre for Nanoscience and Nanotechnology, CNRS, Université Paris-Sud, Université Paris-Saclay , Route de Nozay, 91460 Marcoussis, France
| |
Collapse
|
37
|
Kim W, Dubrovskii VG, Vukajlovic-Plestina J, Tütüncüoglu G, Francaviglia L, Güniat L, Potts H, Friedl M, Leran JB, Fontcuberta I Morral A. Bistability of Contact Angle and Its Role in Achieving Quantum-Thin Self-Assisted GaAs nanowires. NANO LETTERS 2018; 18:49-57. [PMID: 29257895 DOI: 10.1021/acs.nanolett.7b03126] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Achieving quantum confinement by bottom-up growth of nanowires has so far been limited to the ability of obtaining stable metal droplets of radii around 10 nm or less. This is within reach for gold-assisted growth. Because of the necessity to maintain the group III droplets during growth, direct synthesis of quantum sized structures becomes much more challenging for self-assisted III-V nanowires. In this work, we elucidate and solve the challenges that involve the synthesis of gallium-assisted quantum-sized GaAs nanowires. We demonstrate the existence of two stable contact angles for the gallium droplet on top of GaAs nanowires. Contact angle around 130° fosters a continuous increase in the nanowire radius, while 90° allows for the stable growth of ultrathin tops. The experimental results are fully consistent with our model that explains the observed morphological evolution under the two different scenarios. We provide a generalized theory of self-assisted III-V nanowires that describes simultaneously the droplet shape relaxation and the NW radius evolution. Bistability of the contact angle described here should be the general phenomenon that pertains for any vapor-liquid-solid nanowires and significantly refines our picture of how nanowires grow. Overall, our results suggest a new path for obtaining ultrathin one-dimensional III-V nanostructures for studying lateral confinement of carriers.
Collapse
Affiliation(s)
- Wonjong Kim
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | | | - Jelena Vukajlovic-Plestina
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Gözde Tütüncüoglu
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Luca Francaviglia
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Lucas Güniat
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Heidi Potts
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Martin Friedl
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Jean-Baptiste Leran
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Anna Fontcuberta I Morral
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| |
Collapse
|
38
|
Schroth P, Jakob J, Feigl L, Mostafavi Kashani SM, Vogel J, Strempfer J, Keller TF, Pietsch U, Baumbach T. Radial Growth of Self-Catalyzed GaAs Nanowires and the Evolution of the Liquid Ga-Droplet Studied by Time-Resolved in Situ X-ray Diffraction. NANO LETTERS 2018; 18:101-108. [PMID: 29283268 DOI: 10.1021/acs.nanolett.7b03486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report on a growth study of self-catalyzed GaAs nanowires based on time-resolved in situ X-ray structure characterization during molecular-beam-epitaxy in combination with ex situ scanning-electron-microscopy. We reveal the evolution of nanowire radius and polytypism and distinguish radial growth processes responsible for tapering and side-wall growth. We interpret our results using a model for diameter self-stabilization processes during growth of self-catalyzed GaAs nanowires including the shape of the liquid Ga-droplet and its evolution during growth.
Collapse
Affiliation(s)
- Philipp Schroth
- Solid State Physics, Department of Physics, University of Siegen , Walter-Flex Straße 3, D-57068 Siegen, Germany
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology , Kaiserstraße 12, D-76131 Karlsruhe, Germany
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Julian Jakob
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology , Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Ludwig Feigl
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | | | - Jonas Vogel
- Solid State Physics, Department of Physics, University of Siegen , Walter-Flex Straße 3, D-57068 Siegen, Germany
- Deutsches Elektronen-Synchrotron DESY , Notkestraße 85, D-22607 Hamburg, Germany
| | - Jörg Strempfer
- Deutsches Elektronen-Synchrotron DESY , Notkestraße 85, D-22607 Hamburg, Germany
| | - Thomas F Keller
- Deutsches Elektronen-Synchrotron DESY , Notkestraße 85, D-22607 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg , Jungiusstraße 9, D-20355 Hamburg, Germany
| | - Ullrich Pietsch
- Solid State Physics, Department of Physics, University of Siegen , Walter-Flex Straße 3, D-57068 Siegen, Germany
| | - Tilo Baumbach
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology , Kaiserstraße 12, D-76131 Karlsruhe, Germany
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
39
|
Zhang Y, Sun Z, Sanchez AM, Ramsteiner M, Aagesen M, Wu J, Kim D, Jurczak P, Huo S, Lauhon LJ, Liu H. Doping of Self-Catalyzed Nanowires under the Influence of Droplets. NANO LETTERS 2018; 18:81-87. [PMID: 29206466 DOI: 10.1021/acs.nanolett.7b03366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Controlled and reproducible doping is essential for nanowires (NWs) to realize their functions. However, for the widely used self-catalyzed vapor-liquid-solid (VLS) growth mode, the doping mechanism is far from clear, as the participation of the nanoscale liquid phase makes the doping environment highly complex and significantly different from that of the thin film growth. Here, the doping mechanism of self-catalyzed NWs and the influence of self-catalytic droplets on the doping process are systematically studied using beryllium (Be) doped GaAs NWs. Be atoms are found for the first time to be incorporated into NWs predominantly through the Ga droplet that is observed to be beneficial for setting up thermodynamic equilibrium at the growth front. Be dopants are thus substitutional on Ga sites and redundant Be atoms are accumulated inside the Ga droplets when NWs are saturated, leading to the change of the Ga droplet properties and causing the growth of phase-pure zincblende NWs. This study is an essential step toward the design and fabrication of nanowire devices.
Collapse
Affiliation(s)
- Yunyan Zhang
- Department of Electronic and Electrical Engineering, University College London , London WC1E 7JE, United Kingdom
| | - Zhiyuan Sun
- Department of Materials Science and Engineering, Northwestern University , 2220 Campus Drive, Evanston, Illinois 60208-3108, United States
| | - Ana M Sanchez
- Department of Physics, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Manfred Ramsteiner
- Paul-Drude-Institut für Festkörperelektronik , Hausvogteiplatz 5-7, 10117 Berlin, Germany
| | - Martin Aagesen
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen , Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Jiang Wu
- Department of Electronic and Electrical Engineering, University College London , London WC1E 7JE, United Kingdom
| | - Dongyoung Kim
- Department of Electronic and Electrical Engineering, University College London , London WC1E 7JE, United Kingdom
| | - Pamela Jurczak
- Department of Electronic and Electrical Engineering, University College London , London WC1E 7JE, United Kingdom
| | - Suguo Huo
- London Centre for Nanotechnology, University College London , London WC1H 0AH, United Kingdom
| | - Lincoln J Lauhon
- Department of Materials Science and Engineering, Northwestern University , 2220 Campus Drive, Evanston, Illinois 60208-3108, United States
| | - Huiyun Liu
- Department of Electronic and Electrical Engineering, University College London , London WC1E 7JE, United Kingdom
| |
Collapse
|
40
|
Leshchenko ED, Ghasemi M, Dubrovskii VG, Johansson J. Nucleation-limited composition of ternary III–V nanowires forming from quaternary gold based liquid alloys. CrystEngComm 2018. [DOI: 10.1039/c7ce02201h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Analytically calculated liquid–solid composition dependencies for self- and gold-catalyzed InSbxAs1–x nanowires.
Collapse
Affiliation(s)
| | - Masoomeh Ghasemi
- Solid State Physics and NanoLund
- Lund University
- 221 00 Lund
- Sweden
- Physics Department
| | | | - Jonas Johansson
- Solid State Physics and NanoLund
- Lund University
- 221 00 Lund
- Sweden
| |
Collapse
|
41
|
Koivusalo E, Hakkarainen T, Guina M. Structural Investigation of Uniform Ensembles of Self-Catalyzed GaAs Nanowires Fabricated by a Lithography-Free Technique. NANOSCALE RESEARCH LETTERS 2017; 12:192. [PMID: 28314359 PMCID: PMC5355414 DOI: 10.1186/s11671-017-1989-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/09/2017] [Indexed: 05/14/2023]
Abstract
Structural analysis of self-catalyzed GaAs nanowires (NWs) grown on lithography-free oxide patterns is described with insight on their growth kinetics. Statistical analysis of templates and NWs in different phases of the growth reveals extremely high-dimensional uniformity due to a combination of uniform nucleation sites, lack of secondary nucleation of NWs, and self-regulated growth under the effect of nucleation antibunching. Consequently, we observed the first evidence of sub-Poissonian GaAs NW length distributions. The high phase purity of the NWs is demonstrated using complementary transmission electron microscopy (TEM) and high-resolution X-ray diffractometry (HR-XRD). It is also shown that, while NWs are to a large extent defect-free with up to 2-μm-long twin-free zincblende segments, low-temperature micro-photoluminescence spectroscopy reveals that the proportion of structurally disordered sections can be detected from their spectral properties.
Collapse
Affiliation(s)
- Eero Koivusalo
- Optoelectronics Research Centre, Tampere University of Technology, Korkeakoulunkatu 3, FI-33720, Tampere, Finland.
| | - Teemu Hakkarainen
- Optoelectronics Research Centre, Tampere University of Technology, Korkeakoulunkatu 3, FI-33720, Tampere, Finland
| | - Mircea Guina
- Optoelectronics Research Centre, Tampere University of Technology, Korkeakoulunkatu 3, FI-33720, Tampere, Finland
| |
Collapse
|
42
|
Koivusalo ES, Hakkarainen TV, Guina MD, Dubrovskii VG. Sub-Poissonian Narrowing of Length Distributions Realized in Ga-Catalyzed GaAs Nanowires. NANO LETTERS 2017; 17:5350-5355. [PMID: 28782958 DOI: 10.1021/acs.nanolett.7b01766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein, we present experimental data on the record length uniformity within the ensembles of semiconductor nanowires. The length distributions of Ga-catalyzed GaAs nanowires obtained by cost-effective lithography-free technique on silicon substrates systematically feature a pronounced sub-Poissonian character. For example, nanowires with the mean length ⟨L⟩ of 2480 nm show a length distribution variance of only 367 nm2, which is more than twice smaller than the Poisson variance h⟨L⟩ of 808 nm2 for this mean length (with h = 0.326 nm as the height of GaAs monolayer). For 5125 nm mean length, the measured variance is 1200 nm2 against 1671 nm2 for Poisson distribution. A supporting model to explain the experimental findings is proposed. We speculate that the fluctuation-induced broadening of the length distribution is suppressed by nucleation antibunching, the effect which is commonly observed in individual vapor-liquid-solid nanowires but has never been seen for their ensembles. Without kinetic fluctuations, the two remaining effects contributing to the length distribution width are the nucleation randomness for nanowires emerging from the substrate and the shadowing effect on long enough nanowires. This explains an interesting time evolution of the variance that saturates after a short incubation stage but then starts increasing again due to shadowing, remaining, however, smaller than the Poisson value for a sufficiently long time.
Collapse
Affiliation(s)
- Eero S Koivusalo
- Optoelectronics Research Centre, Tampere University of Technology , Korkeakoulunkatu 3, FI 33720 Tampere, Finland
| | - Teemu V Hakkarainen
- Optoelectronics Research Centre, Tampere University of Technology , Korkeakoulunkatu 3, FI 33720 Tampere, Finland
| | - Mircea D Guina
- Optoelectronics Research Centre, Tampere University of Technology , Korkeakoulunkatu 3, FI 33720 Tampere, Finland
| | - Vladimir G Dubrovskii
- ITMO University , Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
- St. Petersburg Academic University , Khlopina 8/3, 194021 St. Petersburg, Russia
- Ioffe Physical Technical Institute of the Russian Academy of Sciences , Politekhnicheskaya 26, 194021 St. Petersburg, Russia
| |
Collapse
|
43
|
Vukajlovic-Plestina J, Kim W, Dubrovski VG, Tütüncüoğlu G, Lagier M, Potts H, Friedl M, Fontcuberta I Morral A. Engineering the Size Distributions of Ordered GaAs Nanowires on Silicon. NANO LETTERS 2017; 17:4101-4108. [PMID: 28613909 DOI: 10.1021/acs.nanolett.7b00842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Reproducible integration of III-V semiconductors on silicon can open new path toward CMOS compatible optoelectronics and novel design schemes in next generation solar cells. Ordered arrays of nanowires could accomplish this task, provided they are obtained in high yield and uniformity. In this work, we provide understanding on the physical factors affecting size uniformity in ordered GaAs arrays grown on silicon. We show that the length and diameter distributions in the initial stage of growth are not much influenced by the Poissonian fluctuation-induced broadening, but rather are determined by the long incubation stage. We also show that the size distributions are consistent with the double exponential shapes typical for macroscopic nucleation with a large critical length after which the nanowires grow irreversibly. The size uniformity is dramatically improved by increasing the As4 flux, suggesting a new path for obtaining highly uniform arrays of GaAs nanowires on silicon.
Collapse
Affiliation(s)
- Jelena Vukajlovic-Plestina
- Laboratoire des Matériaux Semiconducteurs, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Wonjong Kim
- Laboratoire des Matériaux Semiconducteurs, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Vladimir G Dubrovski
- St. Petersburg Academic University , Khlopina 8/3, 194021 St. Petersburg, Russia
- Ioffe Physical Technical Institute of the Russian Academy of Sciences , Politekhnicheskaya 26, 194021 St. Petersburg, Russia
- ITMO University , Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
| | - Gözde Tütüncüoğlu
- Laboratoire des Matériaux Semiconducteurs, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Maxime Lagier
- Laboratoire des Matériaux Semiconducteurs, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Heidi Potts
- Laboratoire des Matériaux Semiconducteurs, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Martin Friedl
- Laboratoire des Matériaux Semiconducteurs, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Anna Fontcuberta I Morral
- Laboratoire des Matériaux Semiconducteurs, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| |
Collapse
|
44
|
Dong Z, André Y, Dubrovskii VG, Bougerol C, Leroux C, Ramdani MR, Monier G, Trassoudaine A, Castelluci D, Gil E. Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy. NANOTECHNOLOGY 2017; 28:125602. [PMID: 28140362 DOI: 10.1088/1361-6528/aa5c6b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gold-free GaAs nanowires on silicon substrates can pave the way for monolithic integration of photonic nanodevices with silicon electronic platforms. It is extensively documented that the self-catalyzed approach works well in molecular beam epitaxy but is much more difficult to implement in vapor phase epitaxies. Here, we report the first gallium-catalyzed hydride vapor phase epitaxy growth of long (more than 10 μm) GaAs nanowires on Si(111) substrates with a high integrated growth rate up to 60 μm h-1 and pure zincblende crystal structure. The growth is achieved by combining a low temperature of 600 °C with high gaseous GaCl/As flow ratios to enable dechlorination and formation of gallium droplets. GaAs nanowires exhibit an interesting bottle-like shape with strongly tapered bases, followed by straight tops with radii as small as 5 nm. We present a model that explains the peculiar growth mechanism in which the gallium droplets nucleate and rapidly swell on the silicon surface but then are gradually consumed to reach a stationary size. Our results unravel the necessary conditions for obtaining gallium-catalyzed GaAs nanowires by vapor phase epitaxy techniques.
Collapse
Affiliation(s)
- Zhenning Dong
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Vukajlovic-Plestina J, Dubrovskii VG, Tütüncuoǧlu G, Potts H, Ricca R, Meyer F, Matteini F, Leran JB, I Morral AF. Molecular beam epitaxy of InAs nanowires in SiO 2 nanotube templates: challenges and prospects for integration of III-Vs on Si. NANOTECHNOLOGY 2016; 27:455601. [PMID: 27698287 DOI: 10.1088/0957-4484/27/45/455601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Guided growth of semiconductor nanowires in nanotube templates has been considered as a potential platform for reproducible integration of III-Vs on silicon or other mismatched substrates. Herein, we report on the challenges and prospects of molecular beam epitaxy of InAs nanowires in SiO2/Si nanotube templates. We show how and under which conditions the nanowire growth is initiated by In-assisted vapor-liquid-solid growth enabled by the local conditions inside the nanotube template. The conditions for high yield of vertical nanowires are investigated in terms of the nanotube depth, diameter and V/III flux ratios. We present a model that further substantiates our findings. This work opens new perspectives for monolithic integration of III-Vs on the silicon platform enabling new applications in the electronics, optoelectronics and energy harvesting arena.
Collapse
Affiliation(s)
- Jelena Vukajlovic-Plestina
- Laboratory of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dubrovskii VG, Sibirev NV, Berdnikov Y, Gomes UP, Ercolani D, Zannier V, Sorba L. Length distributions of Au-catalyzed and In-catalyzed InAs nanowires. NANOTECHNOLOGY 2016; 27:375602. [PMID: 27501469 DOI: 10.1088/0957-4484/27/37/375602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We present experimental data on the length distributions of InAs nanowires grown by chemical beam epitaxy with Au catalyst nanoparticles obtained by thermal dewetting of Au film, Au colloidal nanoparticles and In droplets. Poissonian length distributions are observed in the first case. Au colloidal nanoparticles produce broader and asymmetric length distributions of InAs nanowires. However, the distributions can be strongly narrowed by removing the high temperature annealing step. The length distributions for the In-catalyzed growth are instead very broad. We develop a generic model that is capable of describing the observed behaviors by accounting for both the incubation time for nanowire growth and secondary nucleation of In droplets. These results allow us to formulate some general recipes for obtaining more uniform length distributions of III-V nanowires.
Collapse
Affiliation(s)
- V G Dubrovskii
- St. Petersburg Academic University, Khlopina 8/3, 194021, St. Petersburg, Russia. Ioffe Physical Technical Institute RAS, Politekhnicheskaya 26, 194021, St. Petersburg, Russia. ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
| | | | | | | | | | | | | |
Collapse
|
47
|
Gao Q, Dubrovskii VG, Caroff P, Wong-Leung J, Li L, Guo Y, Fu L, Tan HH, Jagadish C. Simultaneous Selective-Area and Vapor-Liquid-Solid Growth of InP Nanowire Arrays. NANO LETTERS 2016; 16:4361-7. [PMID: 27253040 DOI: 10.1021/acs.nanolett.6b01461] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Selective-area epitaxy is highly successful in producing application-ready size-homogeneous arrays of III-V nanowires without the need to use metal catalysts. Previous works have demonstrated excellent control of nanowire properties but the growth mechanisms remain rather unclear. Herein, we report a detailed growth study revealing that fundamental growth mechanisms of pure wurtzite InP ⟨111⟩A nanowires can indeed differ significantly from the simple picture of a facet-limited selective-area growth process. A dual growth regime with and without metallic droplet is found to coexist under the same growth conditions for different diameter nanowires. Incubation times and highly nonmonotonous growth rate behaviors are revealed and explained within a dedicated kinetic model.
Collapse
Affiliation(s)
- Qian Gao
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University , Canberra, Australian Capital Territory 2601, Australia
| | - Vladimir G Dubrovskii
- St. Petersburg Academic University , Khlopina 8/3, 194021 St. Petersburg, Russia
- Ioffe Physical Technical Institute of the Russian Academy of Sciences , Politekhnicheskaya 26, 194021 St. Petersburg, Russia
- ITMO University , Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
| | - Philippe Caroff
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University , Canberra, Australian Capital Territory 2601, Australia
| | - Jennifer Wong-Leung
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University , Canberra, Australian Capital Territory 2601, Australia
| | - Li Li
- Australian National Fabrication Facility, Research School of Physics and Engineering, The Australian National University , Canberra, Australian Capital Territory 2601, Australia
| | - Yanan Guo
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University , Canberra, Australian Capital Territory 2601, Australia
| | - Lan Fu
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University , Canberra, Australian Capital Territory 2601, Australia
| | - Hark Hoe Tan
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University , Canberra, Australian Capital Territory 2601, Australia
| | - Chennupati Jagadish
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University , Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
48
|
Balaghi L, Tauchnitz T, Hübner R, Bischoff L, Schneider H, Helm M, Dimakis E. Droplet-Confined Alternate Pulsed Epitaxy of GaAs Nanowires on Si Substrates down to CMOS-Compatible Temperatures. NANO LETTERS 2016; 16:4032-4039. [PMID: 27351336 DOI: 10.1021/acs.nanolett.6b00527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We introduce droplet-confined alternate pulsed epitaxy for the self-catalyzed growth of GaAs nanowires on Si(111) substrates in the temperature range from 550 °C down to 450 °C. This unconventional growth mode is a modification of the migration-enhanced epitaxy, where alternating pulses of Ga and As4 are employed instead of a continuous supply. The enhancement of the diffusion length of Ga adatoms on the {11̅0} nanowire sidewalls allows for their targeted delivery to the Ga droplets at the top of the nanowires and, thus, for a highly directional growth along the nanowire axis even at temperatures as low as 450 °C. We demonstrate that the axial growth can be simply and abruptly interrupted at any time without the formation of any defects, whereas the growth rate can be controlled with high accuracy down to the monolayer scale, being limited only by the stochastic nature of nucleation. Taking advantage of these unique possibilities, we were able to probe and describe quantitatively the population dynamics of As inside the Ga droplets in specially designed experiments. After all, our growth method combines all necessary elements for precise growth control, in-depth investigation of the growth mechanisms and compatibility with fully processed Si-CMOS substrates.
Collapse
Affiliation(s)
- Leila Balaghi
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf , DE 01328 Dresden, Germany
- cfaed, Technische Universität Dresden , DE 01062 Dresden, Germany
| | - Tina Tauchnitz
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf , DE 01328 Dresden, Germany
- cfaed, Technische Universität Dresden , DE 01062 Dresden, Germany
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf , DE 01328 Dresden, Germany
| | - Lothar Bischoff
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf , DE 01328 Dresden, Germany
| | - Harald Schneider
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf , DE 01328 Dresden, Germany
| | - Manfred Helm
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf , DE 01328 Dresden, Germany
- cfaed, Technische Universität Dresden , DE 01062 Dresden, Germany
| | - Emmanouil Dimakis
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf , DE 01328 Dresden, Germany
| |
Collapse
|
49
|
Gomes UP, Ercolani D, Zannier V, David J, Gemmi M, Beltram F, Sorba L. Nucleation and growth mechanism of self-catalyzed InAs nanowires on silicon. NANOTECHNOLOGY 2016; 27:255601. [PMID: 27171601 DOI: 10.1088/0957-4484/27/25/255601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report on the nucleation and growth mechanism of self-catalyzed InAs nanowires (NWs) grown on Si (111) substrates by chemical beam epitaxy. Careful choices of the growth parameters lead to In-rich conditions such that the InAs NWs nucleate from an In droplet and grow by the vapor-liquid-solid mechanism while sustaining an In droplet at the tip. As the growth progresses, new NWs continue to nucleate on the Si (111) surface causing a spread in the NW size distribution. The observed behavior in NW nucleation and growth is described within a suitable existing theoretical model allowing us to extract relevant growth parameters. We argue that these results provide useful guidelines to rationally control the growth of self-catalyzed InAs NWs for various applications.
Collapse
Affiliation(s)
- U P Gomes
- NEST Scuola Normale Superiore and Istituto di Nanoscienze-CNR, Piazza S. Silvestro 12, I-56127 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Guan X, Becdelievre J, Meunier B, Benali A, Saint-Girons G, Bachelet R, Regreny P, Botella C, Grenet G, Blanchard NP, Jaurand X, Silly MG, Sirotti F, Chauvin N, Gendry M, Penuelas J. GaAs Core/SrTiO3 Shell Nanowires Grown by Molecular Beam Epitaxy. NANO LETTERS 2016; 16:2393-2399. [PMID: 27008537 DOI: 10.1021/acs.nanolett.5b05182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We have studied the growth of a SrTiO3 shell on self-catalyzed GaAs nanowires grown by vapor-liquid-solid assisted molecular beam epitaxy on Si(111) substrates. To control the growth of the SrTiO3 shell, the GaAs nanowires were protected using an arsenic capping/decapping procedure in order to prevent uncontrolled oxidation and/or contamination of the nanowire facets. Reflection high energy electron diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were performed to determine the structural, chemical, and morphological properties of the heterostructured nanowires. Using adapted oxide growth conditions, it is shown that most of the perovskite structure SrTiO3 shell appears to be oriented with respect to the GaAs lattice. These results are promising for achieving one-dimensional epitaxial semiconductor core/functional oxide shell nanostructures.
Collapse
Affiliation(s)
- X Guan
- Institut des Nanotechnologies de Lyon, Université de Lyon, UMR 5270-CNRS, Ecole Centrale de Lyon , 36 avenue Guy de Collongue, F-69134 Ecully Cedex, France
| | - J Becdelievre
- Institut des Nanotechnologies de Lyon, Université de Lyon, UMR 5270-CNRS, Ecole Centrale de Lyon , 36 avenue Guy de Collongue, F-69134 Ecully Cedex, France
| | - B Meunier
- Institut des Nanotechnologies de Lyon, Université de Lyon, UMR 5270-CNRS, Ecole Centrale de Lyon , 36 avenue Guy de Collongue, F-69134 Ecully Cedex, France
| | - A Benali
- Institut des Nanotechnologies de Lyon, Université de Lyon, UMR 5270-CNRS, Ecole Centrale de Lyon , 36 avenue Guy de Collongue, F-69134 Ecully Cedex, France
| | - G Saint-Girons
- Institut des Nanotechnologies de Lyon, Université de Lyon, UMR 5270-CNRS, Ecole Centrale de Lyon , 36 avenue Guy de Collongue, F-69134 Ecully Cedex, France
| | - R Bachelet
- Institut des Nanotechnologies de Lyon, Université de Lyon, UMR 5270-CNRS, Ecole Centrale de Lyon , 36 avenue Guy de Collongue, F-69134 Ecully Cedex, France
| | - P Regreny
- Institut des Nanotechnologies de Lyon, Université de Lyon, UMR 5270-CNRS, Ecole Centrale de Lyon , 36 avenue Guy de Collongue, F-69134 Ecully Cedex, France
| | - C Botella
- Institut des Nanotechnologies de Lyon, Université de Lyon, UMR 5270-CNRS, Ecole Centrale de Lyon , 36 avenue Guy de Collongue, F-69134 Ecully Cedex, France
| | - G Grenet
- Institut des Nanotechnologies de Lyon, Université de Lyon, UMR 5270-CNRS, Ecole Centrale de Lyon , 36 avenue Guy de Collongue, F-69134 Ecully Cedex, France
| | - N P Blanchard
- Institut Lumière Matière (ILM), UMR5306 Université Lyon 1-CNRS Université de Lyon , 69622 Villeurbanne Cedex, France
| | - X Jaurand
- Centre Technologique des Microstructures, Université Claude Bernard Lyon 1 , 5 rue Raphael Dubois-Bâtiment Darwin B, F-69622, Villeurbanne Cedex, France
| | - M G Silly
- Synchrotron SOLEIL (TEMPO Beamline), l'Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - F Sirotti
- Synchrotron SOLEIL (TEMPO Beamline), l'Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - N Chauvin
- Institut des Nanotechnologies de Lyon, Université de Lyon, UMR 5270-CNRS, INSA-Lyon , 7 avenue Jean Capelle, 69621 Villeurbanne, France
| | - M Gendry
- Institut des Nanotechnologies de Lyon, Université de Lyon, UMR 5270-CNRS, Ecole Centrale de Lyon , 36 avenue Guy de Collongue, F-69134 Ecully Cedex, France
| | - J Penuelas
- Institut des Nanotechnologies de Lyon, Université de Lyon, UMR 5270-CNRS, Ecole Centrale de Lyon , 36 avenue Guy de Collongue, F-69134 Ecully Cedex, France
| |
Collapse
|