1
|
Weng Z, Wallis R, Wingfield B, Evans P, Baginski P, Kainth J, Nikolaenko AE, Lee LY, Baginska J, Gillin WP, Guiney I, Humphreys CJ, Fenwick O. Memristors with Monolayer Graphene Electrodes Grown Directly on Sapphire Wafers. ACS APPLIED ELECTRONIC MATERIALS 2024; 6:7276-7285. [PMID: 39464195 PMCID: PMC11500406 DOI: 10.1021/acsaelm.4c01208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 10/29/2024]
Abstract
The development of the memristor has generated significant interest due to its non-volatility, simple structure, and low power consumption. Memristors based on graphene offer atomic monolayer thickness, flexibility, and uniformity and have attracted attention as a promising alternative to contemporary field-effect transistor (FET) technology in applications such as logic and memory devices, achieving higher integration density and lower power consumption. The use of graphene as electrodes in memristors could also increase robustness against degradation mechanisms, including oxygen vacancy diffusion to the electrode and unwanted metal ion diffusion. However, to realize this technological transformation, it is necessary to establish a scalable, robust, and cost-effective device fabrication process. Here we report the direct growth of high-quality monolayer graphene on sapphire wafers in a mass-producible, contamination-free, and transfer-free manner, using a commercially available metal-organic chemical vapor deposition (MOCVD) system. By taking advantage of this approach, graphene-electrode based memristors are developed, and all the processes used in the device fabrication incorporating graphene electrodes can be performed at wafer scale. The graphene electrode-based memristor demonstrates promising characteristics in terms of endurance, retention, and ON/OFF ratio. This work presents a possible and viable route to achieving robust graphene-based memristors in a commercially and technologically sustainable manner, paving the way for the realization of more powerful and compact integrated graphene electronics in the future.
Collapse
Affiliation(s)
- Zhichao Weng
- School
of Physical and Chemical Sciences, Queen
Mary University of London, London E1 4NS, United
Kingdom
| | - Robert Wallis
- Paragraf
Limited, 7-8 West Newlands, Somersham PE28 3EB, Cambridgeshire, United Kingdom
| | - Bryan Wingfield
- Paragraf
Limited, 7-8 West Newlands, Somersham PE28 3EB, Cambridgeshire, United Kingdom
| | - Paul Evans
- Paragraf
Limited, 7-8 West Newlands, Somersham PE28 3EB, Cambridgeshire, United Kingdom
| | - Piotr Baginski
- Paragraf
Limited, 7-8 West Newlands, Somersham PE28 3EB, Cambridgeshire, United Kingdom
| | - Jaspreet Kainth
- Paragraf
Limited, 7-8 West Newlands, Somersham PE28 3EB, Cambridgeshire, United Kingdom
| | - Andrey E. Nikolaenko
- Paragraf
Limited, 7-8 West Newlands, Somersham PE28 3EB, Cambridgeshire, United Kingdom
| | - Lok Yi Lee
- Paragraf
Limited, 7-8 West Newlands, Somersham PE28 3EB, Cambridgeshire, United Kingdom
| | - Joanna Baginska
- Paragraf
Limited, 7-8 West Newlands, Somersham PE28 3EB, Cambridgeshire, United Kingdom
| | - William P. Gillin
- School
of Physical and Chemical Sciences, Queen
Mary University of London, London E1 4NS, United
Kingdom
| | - Ivor Guiney
- Paragraf
Limited, 7-8 West Newlands, Somersham PE28 3EB, Cambridgeshire, United Kingdom
| | - Colin J. Humphreys
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, United
Kingdom
| | - Oliver Fenwick
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, United
Kingdom
| |
Collapse
|
2
|
Guan K, Li Y, Liu L, Sun F, Wang Y, Zheng Z, Zhou W, Zhang C, Cai Z, Wang X, Feng S, Zhang T. Atomic Nb-doping of WS 2 for high-performance synaptic transistors in neuromorphic computing. MICROSYSTEMS & NANOENGINEERING 2024; 10:132. [PMID: 39327437 PMCID: PMC11427458 DOI: 10.1038/s41378-024-00779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/20/2024] [Indexed: 09/28/2024]
Abstract
Owing to the controllable growth and large-area synthesis for high-density integration, interest in employing atomically thin two-dimensional (2D) transition-metal dichalcogenides (TMDCs) for synaptic transistors is increasing. In particular, substitutional doping of 2D materials allows flexible modulation of material physical properties, facilitating precise control in defect engineering for eventual synaptic plasticity. In this study, to increase the switch ratio of synaptic transistors, we selectively performed experiments on WS2 and introduced niobium (Nb) atoms to serve as the channel material. The Nb atoms were substitutionally doped at the W sites, forming a uniform distribution across the entire flakes. The synaptic transistor devices exhibited an improved switch ratio of 103, 100 times larger than that of devices prepared with undoped WS2. The Nb atoms in WS2 play crucial roles in trapping and detrapping electrons. The modulation of channel conductivity achieved through the gate effectively simulates synaptic potentiation, inhibition, and repetitive learning processes. The Nb-WS2 synaptic transistor achieves 92.30% recognition accuracy on the Modified National Institute of Standards and Technology (MNIST) handwritten digit dataset after 125 training iterations. This study's contribution extends to a pragmatic and accessible atomic doping methodology, elucidating the strategies underlying doping techniques for channel materials in synaptic transistors.
Collapse
Affiliation(s)
- Kejie Guan
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yinxiao Li
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, China
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Lin Liu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, China
| | - Fuqin Sun
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, China
| | - Yingyi Wang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, China
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, 111 Renai Road, Suzhou, Jiangsu, 215123, China
| | - Zhuo Zheng
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, China
| | - Weifan Zhou
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Cheng Zhang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Zhengyang Cai
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, China.
- Department of Electronic Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Xiaowei Wang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, China.
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Simin Feng
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, China.
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Ting Zhang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, China.
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Nano-X Vacuum Interconnected Workstation, Suzhou Institute of Nano-Tech & Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
3
|
Qin S, Zhu H, Ren Z, Zhai Y, Wang Y, Liu M, Lai W, Rahimi-Iman A, Zhao S, Wu H. Floating-gate memristor based on a MoS 2/h-BN/AuNPs mixed-dimensional heterostructure. NANOTECHNOLOGY 2024; 35:425202. [PMID: 38941985 DOI: 10.1088/1361-6528/ad5cfc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Memristors have recently received substantial attention because of their promising and unique emerging applications in neuromorphic computing, which can achieve gains in computation speed by mimicking the topology of the brain in electronic circuits. Traditional memristors made of bulk MoO3and HfO2, for example, suffer from a low switching ratio and poor durability and stability. In this work, a floating-gate memristor is developed based on a mixed-dimensional heterostructure comprising two-dimensional (2D) molybdenum disulfide (MoS2) and zero-dimensional (0D) Au nanoparticles (AuNPs) separated by an insulating hexagonal boron nitride (h-BN) layer (MoS2/h-BN/AuNPs). We find that under the modulation of back-gate voltages, the MoS2/h-BN/AuNPs device operates reliably between a high-resistance state (HRS) and a low-resistance state (LRS) and shows multiple stable LRS states, demonstrating the excellent potential of our memristor in multibit storage applications. The modulation effect can be attributed to electron quantum tunneling between the AuNP charge-trapping layer and the MoS2channel. Our memristor exhibits excellent durability and stability: the HRS and LRS are retained for more than 104s without obvious degradation and the on/off ratio is >104after more than 3000 switching cycles. We also demonstrate frequency-dependent memory properties upon stimulation with electrical and optical pulses.
Collapse
Affiliation(s)
- Shirong Qin
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, School of Physics, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Haiming Zhu
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, School of Physics, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ziyang Ren
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, School of Physics, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yihui Zhai
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, School of Physics, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yao Wang
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, School of Physics, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Mengjuan Liu
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, School of Physics, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Weien Lai
- National Engineering Laboratory of Special Display Technology, National Key Laboratory of Advanced Display Technology, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Arash Rahimi-Iman
- Physics Institute, Justus Liebig University, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
| | - Sihan Zhao
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, School of Physics, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Huizhen Wu
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, School of Physics, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, People's Republic of China
- Research Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou, Zhejiang 311121, People's Republic of China
| |
Collapse
|
4
|
Huang Z, Song J, Huang S, Wang S, Shen C, Song S, Lian J, Ding Y, Gong Y, Zhang Y, Yuan A, Hu Y, Tan C, Luo Z, Wang L. Phase and Defect Engineering of MoSe 2 Nanosheets for Enhanced NIR-II Photothermal Immunotherapy. NANO LETTERS 2024; 24:7764-7773. [PMID: 38864366 DOI: 10.1021/acs.nanolett.4c01879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Inducing immunogenic cell death (ICD) during photothermal therapy (PTT) has the potential to effectively trigger photothermal immunotherapy (PTI). However, ICD induced by PTT alone is often limited by inefficient PTT, low immunogenicity of tumor cells, and a dysregulated redox microenvironment. Herein, we develop MoSe2 nanosheets with high-percentage metallic 1T phase and rich exposed active Mo centers through phase and defect engineering of MoSe2 as an effective nanoagent for PTI. The metallic 1T phase in MoSe2 nanosheets endows them with strong PTT performance, and the abundant exposed active Mo centers endow them with high activity for glutathione (GSH) depletion. The MoSe2-mediated high-performance PTT synergizing with efficient GSH depletion facilitates the release of tumor-associated antigens to induce robust ICD, thus significantly enhancing checkpoint blockade immunotherapy and activating systemic immune response in mouse models of colorectal cancer and triple-negative metastatic breast cancer.
Collapse
Affiliation(s)
- Zhusheng Huang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
- Faculty of Health Sciences and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, People's Republic of China
| | - Jingrun Song
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Shiqian Huang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Shengheng Wang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Chuang Shen
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Simin Song
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Jianhui Lian
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Yankui Ding
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Yue Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Ying Zhang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing 210093, People's Republic of China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR 999077, People's Republic of China
| | - Zhimin Luo
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| |
Collapse
|
5
|
Lee Y, Huang Y, Chang YF, Yang SJ, Ignacio ND, Kutagulla S, Mohan S, Kim S, Lee J, Akinwande D, Kim S. Programmable Retention Characteristics in MoS 2-Based Atomristors for Neuromorphic and Reservoir Computing Systems. ACS NANO 2024; 18:14327-14338. [PMID: 38767980 DOI: 10.1021/acsnano.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In this study, we investigate the coexistence of short- and long-term memory effects owing to the programmable retention characteristics of a two-dimensional Au/MoS2/Au atomristor device and determine the impact of these effects on synaptic properties. This device is constructed using bilayer MoS2 in a crossbar structure. The presence of both short- and long-term memory characteristics is proposed by using a filament model within the bilayer transition-metal dichalcogenide. Short- and long-term properties are validated based on programmable multilevel retention tests. Moreover, we confirm various synaptic characteristics of the device, demonstrating its potential use as a synaptic device in a neuromorphic system. Excitatory postsynaptic current, paired-pulse facilitation, spike-rate-dependent plasticity, and spike-number-dependent plasticity synaptic applications are implemented by operating the device at a low-conductance level. Furthermore, long-term potentiation and depression exhibit symmetrical properties at high-conductance levels. Synaptic learning and forgetting characteristics are emulated using programmable retention properties and composite synaptic plasticity. The learning process of artificial neural networks is used to achieve high pattern recognition accuracy, thereby demonstrating the suitability of the use of the device in a neuromorphic system. Finally, the device is used as a physical reservoir with time-dependent inputs to realize reservoir computing by using short-term memory properties. Our study reveals that the proposed device can be applied in artificial intelligence-based computing applications by utilizing its programmable retention properties.
Collapse
Affiliation(s)
- Yoonseok Lee
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul, Seoul 04620, Korea
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Yifu Huang
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Yao-Feng Chang
- Intel Corporation, Hillsboro, Oregon 97124, United States
| | - Sung Jin Yang
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Nicholas D Ignacio
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Shanmukh Kutagulla
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Sivasakthya Mohan
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Sunghun Kim
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul, Seoul 04620, Korea
| | - Jungwoo Lee
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul, Seoul 04620, Korea
| | - Deji Akinwande
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Sungjun Kim
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul, Seoul 04620, Korea
| |
Collapse
|
6
|
Ağırcan H, Convertino D, Rossi A, Martini L, Pace S, Mishra N, Küster K, Starke U, Kartal Şireli G, Coletti C, Forti S. Determination and investigation of defect domains in multi-shape monolayer tungsten disulfide. NANOSCALE ADVANCES 2024; 6:2850-2859. [PMID: 38817435 PMCID: PMC11134227 DOI: 10.1039/d4na00125g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Single-layer tungsten disulfide (WS2) is among the most widely investigated two-dimensional materials. Synthesizing it over large areas would enable the exploitation of its appealing optical and electronic properties in industrial applications. However, defects of different nature, concentration and distribution profoundly affect the optical as well as the electronic properties of this crystal. Controlling the defect density distribution can be an effective way to tailor the local dielectric environment and therefore the electronic properties of the system. In this work we investigate the defects in single-layer WS2, grown in different shapes by liquid phase chemical vapor deposition, where the concentration of certain defect species can be controlled by the growth conditions. The properties of the material are surveyed by means of optical spectroscopy, photoelectron spectroscopy and Kelvin probe force microscopy. We determine the chemical nature of the defects and study their influence on the optical and electronic properties of WS2. This work contributes to the understanding of the microscopic nature of the intrinsic defects in WS2, helping the development of defect-based technologies which rely on the control and engineering of defects in dielectric 2D crystals.
Collapse
Affiliation(s)
- H Ağırcan
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia Piazza San Silvestro 12 I-56127 Pisa Italy
- Department of Metallurgical & Materials Engineering Istanbul Technical University 34469 Maslak Istanbul Turkey
| | - D Convertino
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia Piazza San Silvestro 12 I-56127 Pisa Italy
| | - A Rossi
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia Piazza San Silvestro 12 I-56127 Pisa Italy
- Graphene Labs, Istituto Italiano di Tecnologia Via Morego 30 16163 Genova Italy
| | - L Martini
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia Piazza San Silvestro 12 I-56127 Pisa Italy
| | - S Pace
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia Piazza San Silvestro 12 I-56127 Pisa Italy
- Graphene Labs, Istituto Italiano di Tecnologia Via Morego 30 16163 Genova Italy
| | - N Mishra
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia Piazza San Silvestro 12 I-56127 Pisa Italy
- Graphene Labs, Istituto Italiano di Tecnologia Via Morego 30 16163 Genova Italy
| | - K Küster
- Max-Planck-Institut für Festkörperforschung Heisenbergstr. 1 70569 Stuttgart Germany
| | - U Starke
- Max-Planck-Institut für Festkörperforschung Heisenbergstr. 1 70569 Stuttgart Germany
| | - G Kartal Şireli
- Department of Metallurgical & Materials Engineering Istanbul Technical University 34469 Maslak Istanbul Turkey
| | - C Coletti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia Piazza San Silvestro 12 I-56127 Pisa Italy
- Graphene Labs, Istituto Italiano di Tecnologia Via Morego 30 16163 Genova Italy
| | - S Forti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia Piazza San Silvestro 12 I-56127 Pisa Italy
| |
Collapse
|
7
|
Dai Y, He Q, Huang Y, Duan X, Lin Z. Solution-Processable and Printable Two-Dimensional Transition Metal Dichalcogenide Inks. Chem Rev 2024; 124:5795-5845. [PMID: 38639932 DOI: 10.1021/acs.chemrev.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) with layered crystal structures have been attracting enormous research interest for their atomic thickness, mechanical flexibility, and excellent electronic/optoelectronic properties for applications in diverse technological areas. Solution-processable 2D TMD inks are promising for large-scale production of functional thin films at an affordable cost, using high-throughput solution-based processing techniques such as printing and roll-to-roll fabrications. This paper provides a comprehensive review of the chemical synthesis of solution-processable and printable 2D TMD ink materials and the subsequent assembly into thin films for diverse applications. We start with the chemical principles and protocols of various synthesis methods for 2D TMD nanosheet crystals in the solution phase. The solution-based techniques for depositing ink materials into solid-state thin films are discussed. Then, we review the applications of these solution-processable thin films in diverse technological areas including electronics, optoelectronics, and others. To conclude, a summary of the key scientific/technical challenges and future research opportunities of solution-processable TMD inks is provided.
Collapse
Affiliation(s)
- Yongping Dai
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 99907, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Qin J, Pei F, Wang R, Wu L, Han Y, Xiao P, Shen Y, Yuan L, Huang Y, Wang D. Sulfur Vacancies and 1T Phase-Rich MoS 2 Nanosheets as an Artificial Solid Electrolyte Interphase for 400 Wh kg -1 Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312773. [PMID: 38349072 DOI: 10.1002/adma.202312773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Constructing large-area artificial solid electrolyte interphase (SEI) to suppress Li dendrites growth and electrolyte consumption is essential for high-energy-density Li metal batteries (LMBs). Herein, chemically exfoliated ultrathin MoS2 nanosheets (EMoS2) as an artificial SEI are scalable transfer-printed on Li-anode (EMoS2@Li). The EMoS2 with a large amount of sulfur vacancies and 1T phase-rich acts as a lithiophilic interfacial ion-transport skin to reduce the Li nucleation overpotential and regulate Li+ flux. With favorable Young's modulus and homogeneous continuous layered structure, the proposed EMoS2@Li effectively suppresses the growth of Li dendrites and repeat breaking/reforming of the SEI. As a result, the assembled EMoS2@Li||LiFePO4 and EMoS2@Li||LiNi0.8Co0.1Mn0.1O2 batteries demonstrate high-capacity retention of 93.5% and 92% after 1000 cycles and 300 cycles, respectively, at ultrahigh cathode loading of 20 mg cm-2. Ultrasonic transmission technology confirms the admirable ability of EMoS2@Li to inhibit Li dendrites in practical pouch batteries. Remarkably, the Ah-class EMoS2@Li||LiNi0.8Co0.1Mn0.1O2 pouch battery exhibits an energy density of 403 Wh kg-1 over 100 cycles with the low negative/positive capacity ratio of 1.8 and electrolyte/capacity ratio of 2.1 g Ah-1. The strategy of constructing an artificial SEI by sulfur vacancies-rich and 1T phase-rich ultrathin MoS2 nanosheets provides new guidance to realize high-energy-density LMBs with long cycling stability.
Collapse
Affiliation(s)
- Jinlei Qin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Fei Pei
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Rui Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Lin Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yan Han
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Pei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yue Shen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Lixia Yuan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yunhui Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
9
|
Sorkin V, Zhou H, Yu ZG, Ang KW, Zhang YW. An Atomically Resolved Schottky Barrier Height Approach for Bridging the Gap between Theory and Experiment at Metal-Semiconductor Heterojunctions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22166-22176. [PMID: 38648115 DOI: 10.1021/acsami.4c02294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We propose an atomically resolved approach to capture the spatial variations of the Schottky barrier height (SBH) at metal-semiconductor heterojunctions. This proposed scheme, based on atom-specific partial density of states (PDOS) calculations, further enables calculation of the effective SBH that aligns with conductance measurements. We apply this approach to study the variations of SBH at MoS2@Au heterojunctions, in which MoS2 contains conducting and semiconducting grain boundaries (GBs). Our results reveal that there are significant variations in SBH at atoms in the defected heterojunctions. Of particular interest is the fact that the SBH in some areas with extended defects approaches zero, indicating Ohmic contact. One important implication of this finding is that the effective SBH should be intrinsically dependent on the defect density and character. Remarkably, the obtained effective SBH values demonstrate good agreement with existing experimental measurements. Thus, the present study addresses two long-standing challenges associated with SBH in MoS2-metal heterojunctions: the wide variation in experimentally measured SBH values at MoS2@metal heterojunctions and the large discrepancy between density-functional-theory-predicted and experimentally measured SBH values. Our proposed approach points out a valuable pathway for understanding and manipulating SBHs at metal-semiconductor heterojunctions.
Collapse
Affiliation(s)
- Viacheslav Sorkin
- Agency for Science, Technology and Research (A*STAR), Institute of High Performance Computing (IHPC), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Hangbo Zhou
- Agency for Science, Technology and Research (A*STAR), Institute of High Performance Computing (IHPC), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Zhi Gen Yu
- Agency for Science, Technology and Research (A*STAR), Institute of High Performance Computing (IHPC), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Kah-Wee Ang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Republic of Singapore
| | - Yong-Wei Zhang
- Agency for Science, Technology and Research (A*STAR), Institute of High Performance Computing (IHPC), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| |
Collapse
|
10
|
Zhai W, Li Z, Wang Y, Zhai L, Yao Y, Li S, Wang L, Yang H, Chi B, Liang J, Shi Z, Ge Y, Lai Z, Yun Q, Zhang A, Wu Z, He Q, Chen B, Huang Z, Zhang H. Phase Engineering of Nanomaterials: Transition Metal Dichalcogenides. Chem Rev 2024; 124:4479-4539. [PMID: 38552165 DOI: 10.1021/acs.chemrev.3c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Crystal phase, a critical structural characteristic beyond the morphology, size, dimension, facet, etc., determines the physicochemical properties of nanomaterials. As a group of layered nanomaterials with polymorphs, transition metal dichalcogenides (TMDs) have attracted intensive research attention due to their phase-dependent properties. Therefore, great efforts have been devoted to the phase engineering of TMDs to synthesize TMDs with controlled phases, especially unconventional/metastable phases, for various applications in electronics, optoelectronics, catalysis, biomedicine, energy storage and conversion, and ferroelectrics. Considering the significant progress in the synthesis and applications of TMDs, we believe that a comprehensive review on the phase engineering of TMDs is critical to promote their fundamental studies and practical applications. This Review aims to provide a comprehensive introduction and discussion on the crystal structures, synthetic strategies, and phase-dependent properties and applications of TMDs. Finally, our perspectives on the challenges and opportunities in phase engineering of TMDs will also be discussed.
Collapse
Affiliation(s)
- Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Lixin Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Banlan Chi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Jinzhe Liang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zhiying Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
11
|
Li XD, Chen NK, Wang BQ, Niu M, Xu M, Miao X, Li XB. Resistive Memory Devices at the Thinnest Limit: Progress and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307951. [PMID: 38197585 DOI: 10.1002/adma.202307951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/28/2023] [Indexed: 01/11/2024]
Abstract
The Si-based integrated circuits industry has been developing for more than half a century, by focusing on the scaling-down of transistor. However, the miniaturization of transistors will soon reach its physical limits, thereby requiring novel material and device technologies. Resistive memory is a promising candidate for in-memory computing and energy-efficient synaptic devices that can satisfy the computational demands of the future applications. However, poor cycle-to-cycle and device-to-device uniformities hinder its mass production. 2D materials, as a new type of semiconductor, is successfully employed in various micro/nanoelectronic devices and have the potential to drive future innovation in resistive memory technology. This review evaluates the potential of using the thinnest advanced materials, that is, monolayer 2D materials, for memristor or memtransistor applications, including resistive switching behavior and atomic mechanism, high-frequency device performances, and in-memory computing/neuromorphic computing applications. The scaling-down advantages of promising monolayer 2D materials including graphene, transition metal dichalcogenides, and hexagonal boron nitride are presented. Finally, the technical challenges of these atomic devices for practical applications are elaborately discussed. The study of monolayer-2D-material-based resistive memory is expected to play a positive role in the exploration of beyond-Si electronic technologies.
Collapse
Affiliation(s)
- Xiao-Dong Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Nian-Ke Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Bai-Qian Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Meng Niu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Ming Xu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiangshui Miao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xian-Bin Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
12
|
Yu T, Wang D, Liu M, Lei W, Shafie S, Mohtar MN, Jindapetch N, van Paphavee D, Zhao Z. A carbon conductive filament-induced robust resistance switching behavior for brain-inspired computing. MATERIALS HORIZONS 2024; 11:1334-1343. [PMID: 38175571 DOI: 10.1039/d3mh01762a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Memristors have revolutionized the path forward for brain-inspired computing. However, the instability of the nucleation process of conductive filaments based on active metal electrodes leads to the discrete distribution of switching parameters, which hinders the realization of high-performance and low-power devices for neuromorphic computing. In response, a carbon conductive filament-induced robust memristor is demonstrated with variation coefficients as low as 3.9%/-1.18%, a threshold power as low as 10-9 W, and 3 × 106 s retention and 107 cycle endurance behaviors can be maintained. The recognition accuracy for Modified National Institute of Standards and Technology (MNIST) handwriting is as high as 96.87%, attributed to the high linearity of the iterative updating of synaptic weights. The demodulation and storage functions of the American Standard Code for Information Interchange (ASCII) are demonstrated by programmable pulse modulation. Notably, the transmission electron microscopy (TEM) images allow the observation of carbon conductive filament paths formed in the low resistance state. First-principles calculations analyze the energetics of defects involved in the diffusion of carbon atoms into MoTe2 films. This work presents a novel guideline for studying memristor-based neuromorphic computing.
Collapse
Affiliation(s)
- Tianqi Yu
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| | - Dong Wang
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| | - Min Liu
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| | - Wei Lei
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| | - Suhaidi Shafie
- Institute of Nanoscience and Nanotechnology, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Nazim Mohtar
- Institute of Nanoscience and Nanotechnology, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nattha Jindapetch
- Department of Electrical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Dommelen van Paphavee
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai Campus 15 Karnjanavanich, Hat Yai, Kohong District Songkhla, 90110, Thailand
| | - Zhiwei Zhao
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| |
Collapse
|
13
|
Zhou H, Li S, Ang KW, Zhang YW. Recent Advances in In-Memory Computing: Exploring Memristor and Memtransistor Arrays with 2D Materials. NANO-MICRO LETTERS 2024; 16:121. [PMID: 38372805 PMCID: PMC10876512 DOI: 10.1007/s40820-024-01335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/25/2023] [Indexed: 02/20/2024]
Abstract
The conventional computing architecture faces substantial challenges, including high latency and energy consumption between memory and processing units. In response, in-memory computing has emerged as a promising alternative architecture, enabling computing operations within memory arrays to overcome these limitations. Memristive devices have gained significant attention as key components for in-memory computing due to their high-density arrays, rapid response times, and ability to emulate biological synapses. Among these devices, two-dimensional (2D) material-based memristor and memtransistor arrays have emerged as particularly promising candidates for next-generation in-memory computing, thanks to their exceptional performance driven by the unique properties of 2D materials, such as layered structures, mechanical flexibility, and the capability to form heterojunctions. This review delves into the state-of-the-art research on 2D material-based memristive arrays, encompassing critical aspects such as material selection, device performance metrics, array structures, and potential applications. Furthermore, it provides a comprehensive overview of the current challenges and limitations associated with these arrays, along with potential solutions. The primary objective of this review is to serve as a significant milestone in realizing next-generation in-memory computing utilizing 2D materials and bridge the gap from single-device characterization to array-level and system-level implementations of neuromorphic computing, leveraging the potential of 2D material-based memristive devices.
Collapse
Affiliation(s)
- Hangbo Zhou
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Sifan Li
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Republic of Singapore
| | - Kah-Wee Ang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Republic of Singapore.
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Republic of Singapore.
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore.
| |
Collapse
|
14
|
Yang SJ, Liang L, Lee Y, Gu Y, Fatheema J, Kutagulla S, Kim D, Kim M, Kim S, Akinwande D. Volatile and Nonvolatile Resistive Switching Coexistence in Conductive Point Hexagonal Boron Nitride Monolayer. ACS NANO 2024; 18:3313-3322. [PMID: 38226861 DOI: 10.1021/acsnano.3c10068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Recently, we demonstrated the nonvolatile resistive switching effects of metal-insulator-metal (MIM) atomristor structures based on two-dimensional (2D) monolayers. However, there are many remaining combinations between 2D monolayers and metal electrodes; hence, there is a need to further explore 2D resistance switching devices from material selections to future perspectives. This study investigated the volatile and nonvolatile switching coexistence of monolayer hexagonal boron nitride (h-BN) atomristors using top and bottom silver (Ag) metal electrodes. Utilizing an h-BN monolayer and Ag electrodes, we found that the transition between volatile and nonvolatile switching is attributed to the thickness/stiffness of chain-like conductive bridges between h-BN and Ag surfaces based on the current compliance and atomristor area. Computations indicate a "weak" bridge is responsible for volatile switching, while a "strong" bridge is formed for nonvolatile switching. The current compliance determines the number of Ag atoms that undergo dissociation at the electrode, while the atomristor area determines the degree of electric field localization that forms more stable conductive bridges. The findings of this study suggest that the h-BN atomristor using Ag electrodes shows promise as a potential solution to integrate both volatile neurons and nonvolatile synapses in a single neuromorphic crossbar array structure through electrical and dimensional designs.
Collapse
Affiliation(s)
- Sung Jin Yang
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Liangbo Liang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yoonseok Lee
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea
| | - Yuqian Gu
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Jameela Fatheema
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Shanmukh Kutagulla
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Dahyeon Kim
- Department of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Myungsoo Kim
- Department of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Sungjun Kim
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea
| | - Deji Akinwande
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| |
Collapse
|
15
|
Liu H, Wu Y, Wu Z, Liu S, Zhang VL, Yu T. Coexisting Phases in Transition Metal Dichalcogenides: Overview, Synthesis, Applications, and Prospects. ACS NANO 2024; 18:2708-2729. [PMID: 38252696 DOI: 10.1021/acsnano.3c10665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Over the past decade, significant advancements have been made in phase engineering of two-dimensional transition metal dichalcogenides (TMDCs), thereby allowing controlled synthesis of various phases of TMDCs and facile conversion between them. Recently, there has been emerging interest in TMDC coexisting phases, which contain multiple phases within one nanostructured TMDC. By taking advantage of the merits from the component phases, the coexisting phases offer enhanced performance in many aspects compared with single-phase TMDCs. Herein, this review article thoroughly expounds the latest progress and ongoing efforts on the syntheses, properties, and applications of TMDC coexisting phases. The introduction section overviews the main phases of TMDCs (2H, 3R, 1T, 1T', 1Td), along with the advantages of phase coexistence. The subsequent section focuses on the synthesis methods for coexisting phases of TMDCs, with particular attention to local patterning and random formations. Furthermore, on the basis of the versatile properties of TMDC coexisting phases, their applications in magnetism, valleytronics, field-effect transistors, memristors, and catalysis are discussed. Lastly, a perspective is presented on the future development, challenges, and potential opportunities of TMDC coexisting phases. This review aims to provide insights into the phase engineering of 2D materials for both scientific and engineering communities and contribute to further advancements in this emerging field.
Collapse
Affiliation(s)
- Haiyang Liu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yaping Wu
- School of Physics and Technology, Xiamen University, Xiamen 361005, China
| | - Zhiming Wu
- School of Physics and Technology, Xiamen University, Xiamen 361005, China
| | - Sheng Liu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Vanessa Li Zhang
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ting Yu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
Choi S, Moon T, Wang G, Yang JJ. Filament-free memristors for computing. NANO CONVERGENCE 2023; 10:58. [PMID: 38110639 PMCID: PMC10728429 DOI: 10.1186/s40580-023-00407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Memristors have attracted increasing attention due to their tremendous potential to accelerate data-centric computing systems. The dynamic reconfiguration of memristive devices in response to external electrical stimuli can provide highly desirable novel functionalities for computing applications when compared with conventional complementary-metal-oxide-semiconductor (CMOS)-based devices. Those most intensively studied and extensively reviewed memristors in the literature so far have been filamentary type memristors, which typically exhibit a relatively large variability from device to device and from switching cycle to cycle. On the other hand, filament-free switching memristors have shown a better uniformity and attractive dynamical properties, which can enable a variety of new computing paradigms but have rarely been reviewed. In this article, a wide range of filament-free switching memristors and their corresponding computing applications are reviewed. Various junction structures, switching properties, and switching principles of filament-free memristors are surveyed and discussed. Furthermore, we introduce recent advances in different computing schemes and their demonstrations based on non-filamentary memristors. This Review aims to present valuable insights and guidelines regarding the key computational primitives and implementations enabled by these filament-free switching memristors.
Collapse
Affiliation(s)
- Sanghyeon Choi
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Taehwan Moon
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Gunuk Wang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - J Joshua Yang
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
17
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
18
|
Xia Y, Zha J, Huang H, Wang H, Yang P, Zheng L, Zhang Z, Yang Z, Chen Y, Chan HP, Ho JC, Tan C. Uncovering the Role of Crystal Phase in Determining Nonvolatile Flash Memory Device Performance Fabricated from MoTe 2-Based 2D van der Waals Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35196-35205. [PMID: 37459597 DOI: 10.1021/acsami.3c06316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Although the crystal phase of two-dimensional (2D) transition metal dichalcogenides (TMDs) has been proven to play an essential role in fabricating high-performance electronic devices in the past decade, its effect on the performance of 2D material-based flash memory devices still remains unclear. Here, we report the exploration of the effect of MoTe2 in different phases as the charge-trapping layer on the performance of 2D van der Waals (vdW) heterostructure-based flash memory devices, where a metallic 1T'-MoTe2 or semiconducting 2H-MoTe2 nanoflake is used as the floating gate. By conducting comprehensive measurements on the two kinds of vdW heterostructure-based devices, the memory device based on MoS2/h-BN/1T'-MoTe2 presents much better performance, including a larger memory window, faster switching speed (100 ns), and higher extinction ratio (107), than that of the device based on the MoS2/h-BN/2H-MoTe2 heterostructure. Moreover, the device based on the MoS2/h-BN/1T'-MoTe2 heterostructure also shows a long cycle (>1200 cycles) and retention (>3000 s) stability. Our study clearly demonstrates that the crystal phase of 2D TMDs has a significant impact on the performance of nonvolatile flash memory devices based on 2D vdW heterostructures, which paves the way for the fabrication of future high-performance memory devices based on 2D materials.
Collapse
Affiliation(s)
- Yunpeng Xia
- Department of Electrical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Jiajia Zha
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Haoxin Huang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Huide Wang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Peng Yang
- College of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, Shenzhen 518118, China
| | - Long Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Zhuomin Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Zhengbao Yang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Hau Ping Chan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong SAR, China
| |
Collapse
|
19
|
Zha J, Shi S, Chaturvedi A, Huang H, Yang P, Yao Y, Li S, Xia Y, Zhang Z, Wang W, Wang H, Wang S, Yuan Z, Yang Z, He Q, Tai H, Teo EHT, Yu H, Ho JC, Wang Z, Zhang H, Tan C. Electronic/Optoelectronic Memory Device Enabled by Tellurium-based 2D van der Waals Heterostructure for in-Sensor Reservoir Computing at the Optical Communication Band. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211598. [PMID: 36857506 DOI: 10.1002/adma.202211598] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/16/2023] [Indexed: 05/19/2023]
Abstract
Although 2D materials are widely explored for data storage and neuromorphic computing, the construction of 2D material-based memory devices with optoelectronic responsivity in the short-wave infrared (SWIR) region for in-sensor reservoir computing (RC) at the optical communication band still remains a big challenge. In this work, an electronic/optoelectronic memory device enabled by tellurium-based 2D van der Waals (vdW) heterostructure is reported, where the ferroelectric CuInP2 S6 and tellurium channel endow this device with both the long-term potentiation/depression by voltage pulses and short-term potentiation by 1550 nm laser pulses (a typical wavelength in the conventional fiber optical communication band). Leveraging the rich dynamics, a fully memristive in-sensor RC system that can simultaneously sense, decode, and learn messages transmitted by optical fibers is demonstrated. The reported 2D vdW heterostructure-based memory featuring both the long-term and short-term memory behaviors using electrical and optical pulses in SWIR region has not only complemented the wide spectrum of applications of 2D materials family in electronics/optoelectronics but also paves the way for future smart signal processing systems at the edge.
Collapse
Affiliation(s)
- Jiajia Zha
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Shuhui Shi
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, 999077, P. R. China
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Apoorva Chaturvedi
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
| | - Haoxin Huang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Peng Yang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yunpeng Xia
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhuomin Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Wei Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Huide Wang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Shaocong Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhen Yuan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Zhengbao Yang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Edwin Hang Tong Teo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
- School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hongyu Yu
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhongrui Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
20
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
21
|
Fu T, Fu S, Yao J. Recent progress in bio-voltage memristors working with ultralow voltage of biological amplitude. NANOSCALE 2023; 15:4669-4681. [PMID: 36779566 DOI: 10.1039/d2nr06773k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neuromorphic systems built from memristors that emulate bioelectrical information processing in the brain may overcome the limitations of traditional computing architectures. However, functional emulation alone may still not attain all the merits of bio-computation, which uses action potentials of 50-120 mV at least 10 times lower than signal amplitude in conventional electronics to achieve extraordinary power efficiency and effective functional integration. Reducing the functional voltage in memristors to this biological amplitude can thus advance neuromorphic engineering and bio-emulated integration. This review aims to provide a timely update on the effort and progress in this burgeoning research direction, covering the aspects of device material composition, performance, working mechanism, and potential application.
Collapse
Affiliation(s)
- Tianda Fu
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Shuai Fu
- Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA 01003, USA
| | - Jun Yao
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA 01003, USA.
- Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
22
|
Lanza M, Hui F, Wen C, Ferrari AC. Resistive Switching Crossbar Arrays Based on Layered Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205402. [PMID: 36094019 DOI: 10.1002/adma.202205402] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Resistive switching (RS) devices are metal/insulator/metal cells that can change their electrical resistance when electrical stimuli are applied between the electrodes, and they can be used to store and compute data. Planar crossbar arrays of RS devices can offer a high integration density (>108 devices mm- 2 ) and this can be further enhanced by stacking them three-dimensionally. The advantage of using layered materials (LMs) in RS devices compared to traditional phase-change materials and metal oxides is that their electrical properties can be adjusted with a higher precision. Here, the key figures-of-merit and procedures to implement LM-based RS devices are defined. LM-based RS devices fabricated using methods compatible with industry are identified and discussed. The focus is on small devices (size < 9 µm2 ) arranged in crossbar structures, since larger devices may be affected by artifacts, such as grain boundaries and flake junctions. How to enhance device performance, so to accelerate the development of this technology, is also discussed.
Collapse
Affiliation(s)
- Mario Lanza
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Fei Hui
- School of Materials Science and Engineering, The Key Laboratory of Material, Processing and Mold of the Ministry of Education, Henan Key Laboratory of Advanced, Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chao Wen
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| |
Collapse
|
23
|
Symonowicz J, Polyushkin D, Mueller T, Di Martino G. Fully Optical in Operando Investigation of Ambient Condition Electrical Switching in MoS 2 Nanodevices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209968. [PMID: 36539947 DOI: 10.1002/adma.202209968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
MoS2 nanoswitches have shown superb ultralow switching energies without excessive leakage currents. However, the debate about the origin and volatility of electrical switching is unresolved due to the lack of adequate nanoimaging of devices in operando. Here, three optical techniques are combined to perform the first noninvasive in situ characterization of nanosized MoS2 devices. This study reveals volatile threshold resistive switching due to the intercalation of metallic atoms from electrodes directly between Mo and S atoms, without the assistance of sulfur vacancies. A "semi-memristive" effect driven by an organic adlayer adjacent to MoS2 is observed, which suggests that nonvolatility can be achieved by careful interface engineering. These findings provide a crucial understanding of nanoprocess in vertically biased MoS2 nanosheets, which opens new routes to conscious engineering and optimization of 2D electronics.
Collapse
Affiliation(s)
- Joanna Symonowicz
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge, CB3 0FS, UK
| | - Dmitry Polyushkin
- Vienna University of Technology, Institute of Photonics, Gusshausstrasse 27-29 / 387, Vienna, 1040, Austria
| | - Thomas Mueller
- Vienna University of Technology, Institute of Photonics, Gusshausstrasse 27-29 / 387, Vienna, 1040, Austria
| | - Giuliana Di Martino
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge, CB3 0FS, UK
| |
Collapse
|
24
|
Yu S, Cai Z, Sun D, Wu YN, Chen S. Defect Mo S Misidentified as Mo S2 in Monolayer MoS 2 by Scanning Transmission Electron Microscopy: A First-Principles Prediction. J Phys Chem Lett 2023; 14:1840-1847. [PMID: 36779693 DOI: 10.1021/acs.jpclett.3c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The defect types in layered semiconductors can be identified by matching the scanning transmission electron microscopy (STEM) images with the structures from first-principles simulations. In a PVD-grown MoS2 monolayer, the MoS2 antisite (one Mo replaces two S) is recognized as being dominant, because its calculated structure matches the distortive structure in STEM images. Therefore, MoS2 has received much attention in MoS2-related defect engineering. We reveal that MoS (one Mo replaces one S) may be mistaken for MoS2, because ionized MoS also has similar structural distortion and can easily be ionized under electron irradiation. Unfortunately, the radiation-induced ionization and associated structural distortion of MoS were overlooked in previous studies. Because the formation energy of MoS is much lower than that of MoS2, it is more likely to exist as the dominant defect in MoS2. Our results highlight the necessity of considering the defect ionization and associated structural distortion in STEM identification of defects in layered semiconductors.
Collapse
Affiliation(s)
- Song Yu
- School of Physics and Electronic Sciences, Key Laboratory of Polar Materials and Devices (MOE), East China Normal University, Shanghai 200241, China
| | - Zenghua Cai
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Deyan Sun
- School of Physics and Electronic Sciences, Key Laboratory of Polar Materials and Devices (MOE), East China Normal University, Shanghai 200241, China
| | - Yu-Ning Wu
- School of Physics and Electronic Sciences, Key Laboratory of Polar Materials and Devices (MOE), East China Normal University, Shanghai 200241, China
| | - Shiyou Chen
- School of Physics and Electronic Sciences, Key Laboratory of Polar Materials and Devices (MOE), East China Normal University, Shanghai 200241, China
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| |
Collapse
|
25
|
Zhang Z, Wang Y, Zhao Z, Song W, Zhou X, Li Z. Interlayer Chemical Modulation of Phase Transitions in Two-Dimensional Metal Chalcogenides. Molecules 2023; 28:molecules28030959. [PMID: 36770625 PMCID: PMC9921675 DOI: 10.3390/molecules28030959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Two-dimensional metal chalcogenides (2D-MCs) with complex interactions are usually rich in phase transition behavior, such as superconductivity, charge density wave (CDW), and magnetic transitions, which hold great promise for the exploration of exciting physical properties and functional applications. Interlayer chemical modulation, as a renewed surface modification method, presents congenital advantages to regulate the phase transitions of 2D-MCs due to its confined space, strong guest-host interactions, and local and reversible modulation without destructing the host lattice, whereby new phenomena and functionalities can be produced. Herein, recent achievements in the interlayer chemical modulation of 2D-MCs are reviewed from the aspects of superconducting transition, CDW transition, semiconductor-to-metal transition, magnetic phase transition, and lattice transition. We systematically discuss the roles of charge transfer, spin coupling, and lattice strain on the modulation of phase transitions in the guest-host architectures of 2D-MCs established by electrochemical intercalation, solution-processed intercalation, and solid-state intercalation. New physical phenomena, new insight into the mechanism of phase transitions, and derived functional applications are presented. Finally, a prospectus of the challenges and opportunities of interlayer chemical modulation for future research is pointed out.
Collapse
Affiliation(s)
- Zhi Zhang
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 211189, China
| | - Yi Wang
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 211189, China
| | - Zelin Zhao
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 211189, China
| | - Weijing Song
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 211189, China
| | - Xiaoli Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zejun Li
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 211189, China
- Purple Mountain Laboratories, Nanjing 211111, China
- Correspondence:
| |
Collapse
|
26
|
Moon G, Min SY, Han C, Lee SH, Ahn H, Seo SY, Ding F, Kim S, Jo MH. Atomically Thin Synapse Networks on Van Der Waals Photo-Memtransistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203481. [PMID: 35953281 DOI: 10.1002/adma.202203481] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/30/2022] [Indexed: 06/15/2023]
Abstract
A new type of atomically thin synaptic network on van der Waals (vdW) heterostructures is reported, where each ultrasmall cell (≈2 nm thick) built with trilayer WS2 semiconductor acts as a gate-tunable photoactive synapse, i.e., a photo-memtransistor. A train of UV pulses onto the WS2 memristor generates dopants in atomic-level precision by direct light-lattice interactions, which, along with the gate tunability, leads to the accurate modulation of the channel conductance for potentiation and depression of the synaptic cells. Such synaptic dynamics can be explained by a parallel atomistic resistor network model. In addition, it is shown that such a device scheme can generally be realized in other 2D vdW semiconductors, such as MoS2 , MoSe2 , MoTe2 , and WSe2 . Demonstration of these atomically thin photo-memtransistor arrays, where the synaptic weights can be tuned for the atomistic defect density, provides implications for a new type of artificial neural networks for parallel matrix computations with an ultrahigh integration density.
Collapse
Affiliation(s)
- Gunho Moon
- Center for Van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seok Young Min
- Center for Van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Cheolhee Han
- Center for Van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Suk-Ho Lee
- Center for Van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Heonsu Ahn
- Center for Van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seung-Young Seo
- Center for Van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Feng Ding
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Seyoung Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Moon-Ho Jo
- Center for Van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
27
|
Grünleitner T, Henning A, Bissolo M, Zengerle M, Gregoratti L, Amati M, Zeller P, Eichhorn J, Stier AV, Holleitner AW, Finley JJ, Sharp ID. Real-Time Investigation of Sulfur Vacancy Generation and Passivation in Monolayer Molybdenum Disulfide via in situ X-ray Photoelectron Spectromicroscopy. ACS NANO 2022; 16:20364-20375. [PMID: 36516326 DOI: 10.1021/acsnano.2c06317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Understanding the chemical and electronic properties of point defects in two-dimensional materials, as well as their generation and passivation, is essential for the development of functional systems, spanning from next-generation optoelectronic devices to advanced catalysis. Here, we use synchrotron-based X-ray photoelectron spectroscopy (XPS) with submicron spatial resolution to create sulfur vacancies (SVs) in monolayer MoS2 and monitor their chemical and electronic properties in situ during the defect creation process. X-ray irradiation leads to the emergence of a distinct Mo 3d spectral feature associated with undercoordinated Mo atoms. Real-time analysis of the evolution of this feature, along with the decrease of S content, reveals predominant monosulfur vacancy generation at low doses and preferential disulfur vacancy generation at high doses. Formation of these defects leads to a shift of the Fermi level toward the valence band (VB) edge, introduction of electronic states within the VB, and formation of lateral pn junctions. These findings are consistent with theoretical predictions that SVs serve as deep acceptors and are not responsible for the ubiquitous n-type conductivity of MoS2. In addition, we find that these defects are metastable upon short-term exposure to ambient air. By contrast, in situ oxygen exposure during XPS measurements enables passivation of SVs, resulting in partial elimination of undercoordinated Mo sites and reduction of SV-related states near the VB edge. Correlative Raman spectroscopy and photoluminescence measurements confirm our findings of localized SV generation and passivation, thereby demonstrating the connection between chemical, structural, and optoelectronic properties of SVs in MoS2.
Collapse
Affiliation(s)
- Theresa Grünleitner
- Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4, 85748 Garching, Germany
| | - Alex Henning
- Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4, 85748 Garching, Germany
| | - Michele Bissolo
- Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4, 85748 Garching, Germany
| | - Marisa Zengerle
- Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4, 85748 Garching, Germany
| | - Luca Gregoratti
- Elettra - Sincrotrone Trieste SCpA, AREA Science Park, Strada Statale 14 km 163.5, 34149, Trieste, Italy
| | - Matteo Amati
- Elettra - Sincrotrone Trieste SCpA, AREA Science Park, Strada Statale 14 km 163.5, 34149, Trieste, Italy
| | - Patrick Zeller
- Elettra - Sincrotrone Trieste SCpA, AREA Science Park, Strada Statale 14 km 163.5, 34149, Trieste, Italy
| | - Johanna Eichhorn
- Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4, 85748 Garching, Germany
| | - Andreas V Stier
- Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4, 85748 Garching, Germany
| | - Alexander W Holleitner
- Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4, 85748 Garching, Germany
| | - Jonathan J Finley
- Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4, 85748 Garching, Germany
| | - Ian D Sharp
- Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4, 85748 Garching, Germany
| |
Collapse
|
28
|
Sheng Q, Liu H, Jin B, Li Q, Li L, Cui M, Li Y, Lang X, Jiang Q. 1T-MoS2 grown on amorphous carbon-coated carbon nanotubes for high-performance lithium-sulfur batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Yan X, Qian JH, Sangwan VK, Hersam MC. Progress and Challenges for Memtransistors in Neuromorphic Circuits and Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108025. [PMID: 34813677 DOI: 10.1002/adma.202108025] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Due to the increasing importance of artificial intelligence (AI), significant recent effort has been devoted to the development of neuromorphic circuits that seek to emulate the energy-efficient information processing of the brain. While non-volatile memory (NVM) based on resistive switches, phase-change memory, and magnetic tunnel junctions has shown potential for implementing neural networks, additional multi-terminal device concepts are required for more sophisticated bio-realistic functions. Of particular interest are memtransistors based on low-dimensional nanomaterials, which are capable of electrostatically tuning memory and learning behavior at the device level. Herein, a conceptual overview of the memtransistor is provided in the context of neuromorphic circuits. Recent progress is surveyed for memtransistors and related multi-terminal NVM devices including dual-gated floating-gate memories, dual-gated ferroelectric transistors, and dual-gated van der Waals heterojunctions. The different materials systems and device architectures are classified based on the degree of control and relative tunability of synaptic behavior, with an emphasis on device concepts that harness the reduced dimensionality, weak electrostatic screening, and phase-changes properties of nanomaterials. Finally, strategies for achieving wafer-scale integration of memtransistors and multi-terminal NVM devices are delineated, with specific attention given to the materials challenges for practical neuromorphic circuits.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Justin H Qian
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
30
|
Li M, An H, Kim Y, An JS, Li M, Kim TW. Directional Formation of Conductive Filaments for a Reliable Organic-Based Artificial Synapse by Doping Molybdenum Disulfide Quantum Dots into a Polymer Matrix. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44724-44734. [PMID: 36165455 DOI: 10.1021/acsami.2c08337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The conductive filament (CF) model, as an important means to realize synaptic functions, has received extensive attention and has been the subject of intense research. However, the random and uncontrollable growth of CFs seriously affects the performances of such devices. In this work, we prepared a neural synaptic device based on polyvinyl pyrrolidone-molybdenum disulfide quantum dot (MoS2 QD) nanocomposites. The doping with MoS2 QDs was found to control the growth mode of Ag CFs by providing active centers for the formation of Ag clusters, thus reducing the uncertainty surrounding the growth of Ag CFs. As a result, the device, with a low power consumption of 32.8 pJ/event, could be used to emulate a variety of synaptic functions, including long-term potentiation (LTP), long-term depression (LTD), paired-pulse facilitation, post-tetanic potentiation, short-term memory to long-term memory conversion, and "learning experience" behavior. After having undergone consecutive stimulation with different numbers of pulses, the device stably realized a "multi-level LTP to LTD conversion" function. Moreover, the synaptic characteristics of the device experienced no degradation due to mechanical stress. Finally, the simulation result based on the synaptic characteristics of our devices achieved a high recognition accuracy of 91.77% in learning and inference tests and showed clear digital classification results.
Collapse
Affiliation(s)
- Mingjun Li
- Department of Electronics and Computer Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Haoqun An
- Department of Electronics and Computer Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Youngjin Kim
- Department of Electronics and Computer Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jun Seop An
- Department of Electronics and Computer Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Ming Li
- Department of Electronics and Computer Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Tae Whan Kim
- Department of Electronics and Computer Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
31
|
Liang X, Hao J, Zhang P, Hou C, Tai G. Freestanding α-rhombohedral borophene nanosheets: preparation and memory device application. NANOTECHNOLOGY 2022; 33:505601. [PMID: 36067735 DOI: 10.1088/1361-6528/ac8f9a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Borophene has attracted extensive interests owing to its distinct structural, electronic and optical properties for promising potential applications. However, the structural instability and need of metal substrate for deposition of borophene seriously restrict the exploration of its exceptional physical and chemical properties and further hamper its extensive applications towards high-performance electronic and optoelectronic devices. Here, we reported the synthesis of high-quality freestandingα-rhombohedral borophene nanosheets by a facile probe ultrasonic approach in different organic solvents. The results show that the nanosheets have high-quality in ethanol solution and have an average lateral size of 0.54μm and a thickness of around 1.2 nm. Photoluminescence spectra indicate that a strong quantum confinement effect occurs in the nanosheets, which caused the increase of the band gap from 1.80 eV for boron powders and 2.52 eV for the nanosheets s. A nonvolatile memory device based on the nanosheets mixed with polyvinylpyrrolidone was fabricated, which exhibited a good rewriteable nonvolatile memory behavior and good stability.
Collapse
Affiliation(s)
- Xinchao Liang
- The State Key Laboratory of Mechanics and Control of Mechanical Structures, Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Jinqian Hao
- The State Key Laboratory of Mechanics and Control of Mechanical Structures, Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Pengyu Zhang
- The State Key Laboratory of Mechanics and Control of Mechanical Structures, Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Chuang Hou
- The State Key Laboratory of Mechanics and Control of Mechanical Structures, Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Guoan Tai
- The State Key Laboratory of Mechanics and Control of Mechanical Structures, Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| |
Collapse
|
32
|
Huang S, Gong B, Jin Y, Sit PHL, Lam JCH. The Structural Phase Effect of MoS 2 in Controlling the Reaction Selectivity between Electrocatalytic Hydrogenation and Dimerization of Furfural. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuquan Huang
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| | - Bo Gong
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yangxin Jin
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| | - Patrick H.-L. Sit
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| | - Jason Chun-Ho Lam
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| |
Collapse
|
33
|
Duan H, Cheng S, Qin L, Zhang X, Xie B, Zhang Y, Jie W. Low-Power Memristor Based on Two-Dimensional Materials. J Phys Chem Lett 2022; 13:7130-7138. [PMID: 35900941 DOI: 10.1021/acs.jpclett.2c01962] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The memristor is an excellent candidate for nonvolatile memory and neuromorphic computing. Recently, two-dimensional (2D) materials have been developed for use in memristors with high-performance resistive switching characteristics, such as high on/off ratios, low SET/RESET voltages, good retention and endurance, fast switching speed, and low power and energy consumption. Low-power memristors are highly desired for recent fast-speed and energy-efficient artificial neuromorphic networks. This Perspective focuses on the recent progress of low-power memristors based on 2D materials, providing a condensed overview of relevant developments in memristive performance, physical mechanism, material modification, and device assembly as well as potential applications. The detailed research status of memristors has been reviewed based on different 2D materials from insulating hexagonal boron nitride, semiconducting transition metal dichalcogenides, to some newly developed 2D materials. Furthermore, a brief summary introducing the perspectives and challenges is included, with the aim of providing an insightful guide for this research field.
Collapse
Affiliation(s)
- Huan Duan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Siqi Cheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Ling Qin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Xuelian Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Bingyang Xie
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Yang Zhang
- Institute of Modern Optics & Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300071, China
| | - Wenjing Jie
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| |
Collapse
|
34
|
Cao J, Zhou J, Li M, Chen J, Zhang Y, Liu X. Insightful understanding of three-phase interface behaviors in 1T-2H MoS2/CFP electrode for hydrogen evolution improvement. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Liu B, Xu W, Long X, Cao J. Atomic mechanism of lithium intercalation induced phase transition in layered MoS 2. Phys Chem Chem Phys 2022; 24:18777-18782. [PMID: 35904004 DOI: 10.1039/d2cp02210a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phase transition in layered MoS2 has attracted wide attention but the detailed phase transition process is still unclear. Here, the H → T' phase transition mechanism of single- and bilayer MoS2 induced by lithium intercalation has been systematically studied using first principles. The results indicated that the lithium intercalation can effectively reduce the sliding barrier of the S atom layer. Moreover, we demonstrated that the phase transition process in bilayer MoS2 is induced by S atom transition one by one instead of the collective behavior of the S atoms. Importantly, we found that the phase transition process in bilayer MoS2 consists of the formation, diffusion and recombination of S vacancies, and the phase transition originates from interlayer lithium defects. In addition, the lithium defects cannot induce phase transition in monolayer MoS2 due to the larger sliding barrier of the S atom.
Collapse
Affiliation(s)
- Bingmei Liu
- Department of Physics & Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Wangping Xu
- Department of Physics & Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Xia Long
- Department of Physics & Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Juexian Cao
- Department of Physics & Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, P. R. China.
| |
Collapse
|
36
|
Chen S, Zhu S, Lin Z, Peng J. Transforming Polymorphs via Meniscus-Assisted Solution-Shearing Conjugated Polymers for Organic Field-Effect Transistors. ACS NANO 2022; 16:11194-11203. [PMID: 35776757 DOI: 10.1021/acsnano.2c04049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability to tune polymorphs of conjugated polymers affords a robust platform for investigating the processing-structure-property relationship. However, simple and generalizable routes to polymorphs have yet to be realized. Herein, we report a viable meniscus-assisted solution-shearing (MASS) strategy to effectively modulate polymorphs (i.e., polymorphs I and II) of poly(3-butylthiophene) (P3BT) and scrutinize the correlation between the two different polymorphs and charge transport characteristics. Specifically, polymorph II exists solely in drop-cast P3BT films. Intriguingly, confined shearing of P3BT renders efficient transformation of polymorph II to I. The kinetics of polymorph transformation associated with the changes in molecular packing and thus photophysical properties are elucidated. The resulting organic field-effect transistors reveal a strong correlation of device performance to attained polymorphs and crystal orientations of P3BT. Such polymorph transformation via the convenient MASS technique can be readily extended to other conjugated polymers of interest. This study highlights the robustness of MASS in regulating polymorphs of conjugated polymers to interrogate their interdependence of processing, structure, and property for a wide range of optoelectronic applications.
Collapse
Affiliation(s)
- Shuwen Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Shuyin Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
37
|
Pam ME, Li S, Su T, Chien YC, Li Y, Ang YS, Ang KW. Interface-Modulated Resistive Switching in Mo-Irradiated ReS 2 for Neuromorphic Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202722. [PMID: 35610176 DOI: 10.1002/adma.202202722] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Coupling charge impurity scattering effects and charge-carrier modulation by doping can offer intriguing opportunities for atomic-level control of resistive switching (RS). Nonetheless, such effects have remained unexplored for memristive applications based on 2D materials. Here a facile approach is reported to transform an RS-inactive rhenium disulfide (ReS2 ) into an effective switching material through interfacial modulation induced by molybdenum-irradiation (Mo-i) doping. Using ReS2 as a model system, this study unveils a unique RS mechanism based on the formation/dissolution of metallic β-ReO2 filament across the defective ReS2 interface during the set/reset process. Through simple interfacial modulation, ReS2 of various thicknesses are switchable by modulating the Mo-irradiation period. Besides, the Mo-irradiated ReS2 (Mo-ReS2 ) memristor further exhibits a bipolar non-volatile switching ratio of nearly two orders of magnitude, programmable multilevel resistance states, and long-term synaptic plasticity. Additionally, the fabricated device can achieve a high MNIST learning accuracy of 91% under a non-identical pulse train. The study's findings demonstrate the potential for modulating RS in RS-inactive 2D materials via the unique doping-induced charged impurity scattering property.
Collapse
Affiliation(s)
- Mei Er Pam
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Sifan Li
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Tong Su
- Science, Mathematics and Technology (SMT), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore, 487372, Singapore
| | - Yu-Chieh Chien
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Yesheng Li
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Yee Sin Ang
- Science, Mathematics and Technology (SMT), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore, 487372, Singapore
| | - Kah-Wee Ang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis, Singapore, 138634, Singapore
| |
Collapse
|
38
|
Liu Z, Wang K, Huang G, Yu S, Li X, Li N, Yu K. Unveiling the relationship between the multilayer structure of metallic MoS 2 and the cycling performance for lithium ion batteries. NANOSCALE 2022; 14:8621-8627. [PMID: 35587576 DOI: 10.1039/d2nr00967f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Molybdenum disulfide (MoS2) with a layered structure is a desirable substitute for the graphite anode in lithium ion storage. Compared with the semiconducting phase (2H-MoS2), the metallic polymorph (1T-MoS2) usually shows much better cycling stability. Nevertheless, the origin of this remarkable cycling stability is still ambiguous, hindering further development of MoS2-based anodes. Herein, we assembled multilayered 1T-MoS2 nanosheets directly on Ti foil to investigate the Li+ storage mechanism. Based on experimental observation and computational simulation, we found that the cycling stability correlates with the layer number of MoS2. Multilayered 1T-MoS2 can accommodate inserted Li+ in a ternary compound Li-Mo-S through a reversible reaction, which is favorable for retaining a substantial number of MoS2 nanodomains upon Li intercalation. These residual MoS2 nanodomains can serve as an anchor to adhere LixS species, thereby suppressing the "shuttle effect" of polysulfides and enhancing cycling stability. This work sheds light on the development of high-performance anodes based on metallic MoS2 for LIBs.
Collapse
Affiliation(s)
- Zhipeng Liu
- Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
| | - Kaiwen Wang
- Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
| | - Guoqing Huang
- Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
| | - Shuyi Yu
- Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
| | - Xiaotian Li
- Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
| | - Nan Li
- Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
| | - Kaifeng Yu
- Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
| |
Collapse
|
39
|
Ranjan P, Gaur S, Yadav H, Urgunde AB, Singh V, Patel A, Vishwakarma K, Kalirawana D, Gupta R, Kumar P. 2D materials: increscent quantum flatland with immense potential for applications. NANO CONVERGENCE 2022; 9:26. [PMID: 35666392 PMCID: PMC9170864 DOI: 10.1186/s40580-022-00317-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/22/2022] [Indexed: 05/08/2023]
Abstract
Quantum flatland i.e., the family of two dimensional (2D) quantum materials has become increscent and has already encompassed elemental atomic sheets (Xenes), 2D transition metal dichalcogenides (TMDCs), 2D metal nitrides/carbides/carbonitrides (MXenes), 2D metal oxides, 2D metal phosphides, 2D metal halides, 2D mixed oxides, etc. and still new members are being explored. Owing to the occurrence of various structural phases of each 2D material and each exhibiting a unique electronic structure; bestows distinct physical and chemical properties. In the early years, world record electronic mobility and fractional quantum Hall effect of graphene attracted attention. Thanks to excellent electronic mobility, and extreme sensitivity of their electronic structures towards the adjacent environment, 2D materials have been employed as various ultrafast precision sensors such as gas/fire/light/strain sensors and in trace-level molecular detectors and disease diagnosis. 2D materials, their doped versions, and their hetero layers and hybrids have been successfully employed in electronic/photonic/optoelectronic/spintronic and straintronic chips. In recent times, quantum behavior such as the existence of a superconducting phase in moiré hetero layers, the feasibility of hyperbolic photonic metamaterials, mechanical metamaterials with negative Poisson ratio, and potential usage in second/third harmonic generation and electromagnetic shields, etc. have raised the expectations further. High surface area, excellent young's moduli, and anchoring/coupling capability bolster hopes for their usage as nanofillers in polymers, glass, and soft metals. Even though lab-scale demonstrations have been showcased, large-scale applications such as solar cells, LEDs, flat panel displays, hybrid energy storage, catalysis (including water splitting and CO2 reduction), etc. will catch up. While new members of the flatland family will be invented, new methods of large-scale synthesis of defect-free crystals will be explored and novel applications will emerge, it is expected. Achieving a high level of in-plane doping in 2D materials without adding defects is a challenge to work on. Development of understanding of inter-layer coupling and its effects on electron injection/excited state electron transfer at the 2D-2D interfaces will lead to future generation heterolayer devices and sensors.
Collapse
Affiliation(s)
- Pranay Ranjan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India.
| | - Snehraj Gaur
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Himanshu Yadav
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Ajay B Urgunde
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Vikas Singh
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Avit Patel
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Kusum Vishwakarma
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Deepak Kalirawana
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Ritu Gupta
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India.
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
40
|
Li H, Xie F, Snyders R, Bittencourt C, Li W. Structural engineering of nitrogen‐doped MoS2 anchored on nitrogen‐doped carbon nanotubes towards enhanced hydrogen evolution reaction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- He Li
- Hengshui University Department of Chemistry CHINA
| | - Fei Xie
- Tianjin University of Technology School of Materials Science and Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Rony Snyders
- Universite de Mons Chimie des Interactions Plasma-Surface BELGIUM
| | | | - Wenjiang Li
- Tianjin University of Technology Binshuixidao 391Materials Science and EngineeringLiqizhuangXiqing 300384 Tianjin CHINA
| |
Collapse
|
41
|
MoS2 as a Co-Catalyst for Photocatalytic Hydrogen Production: A Mini Review. Molecules 2022; 27:molecules27103289. [PMID: 35630769 PMCID: PMC9145188 DOI: 10.3390/molecules27103289] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Molybdenum disulfide (MoS2), with a two-dimensional (2D) structure, has attracted huge research interest due to its unique electrical, optical, and physicochemical properties. MoS2 has been used as a co-catalyst for the synthesis of novel heterojunction composites with enhanced photocatalytic hydrogen production under solar light irradiation. In this review, we briefly highlight the atomic-scale structure of MoS2 nanosheets. The top-down and bottom-up synthetic methods of MoS2 nanosheets are described. Additionally, we discuss the formation of MoS2 heterostructures with titanium dioxide (TiO2), graphitic carbon nitride (g-C3N4), and other semiconductors and co-catalysts for enhanced photocatalytic hydrogen generation. This review addresses the challenges and future perspectives for enhancing solar hydrogen production performance in heterojunction materials using MoS2 as a co-catalyst.
Collapse
|
42
|
Batool S, Idrees M, Zhang SR, Han ST, Zhou Y. Novel charm of 2D materials engineering in memristor: when electronics encounter layered morphology. NANOSCALE HORIZONS 2022; 7:480-507. [PMID: 35343522 DOI: 10.1039/d2nh00031h] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The family of two-dimensional (2D) materials composed of atomically thin layers connected via van der Waals interactions has attracted much curiosity due to a variety of intriguing physical, optical, and electrical characteristics. The significance of analyzing statistics on electrical devices and circuits based on 2D materials is seldom underestimated. Certain requirements must be met to deliver scientific knowledge that is beneficial in the field of 2D electronics: synthesis and fabrication must occur at the wafer level, variations in morphology and lattice alterations must be visible and statistically verified, and device dimensions must be appropriate. The authors discussed the most recent significant concerns of 2D materials in the provided prose and attempted to highlight the prerequisites for synthesis, yield, and mechanism behind device-to-device variability, reliability, and durability benchmarking under memristors characteristics; they also indexed some useful approaches that have already been reported to be advantageous in large-scale production. Commercial applications, on the other hand, will necessitate further effort.
Collapse
Affiliation(s)
- Saima Batool
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Muhammad Idrees
- Additive Manufacturing Institute, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Shi-Rui Zhang
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Su-Ting Han
- College of Electronics Science & Technology, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
43
|
Chen F, Tang Q, Ma T, Zhu B, Wang L, He C, Luo X, Cao S, Ma L, Cheng C. Structures, properties, and challenges of emerging
2D
materials in bioelectronics and biosensors. INFOMAT 2022. [DOI: 10.1002/inf2.12299] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Qing Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Bihui Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Liyun Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Sujiao Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
- Department of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| |
Collapse
|
44
|
Krishnaprasad A, Dev D, Han SS, Shen Y, Chung HS, Bae TS, Yoo C, Jung Y, Lanza M, Roy T. MoS 2 Synapses with Ultra-low Variability and Their Implementation in Boolean Logic. ACS NANO 2022; 16:2866-2876. [PMID: 35143159 DOI: 10.1021/acsnano.1c09904] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Brain-inspired computing enabled by memristors has gained prominence over the years due to the nanoscale footprint and reduced complexity for implementing synapses and neurons. The demonstration of complex neuromorphic circuits using conventional materials systems has been limited by high cycle-to-cycle and device-to-device variability. Two-dimensional (2D) materials have been used to realize transparent, flexible, ultra-thin memristive synapses for neuromorphic computing, but with limited knowledge on the statistical variation of devices. In this work, we demonstrate ultra-low-variability synapses using chemical vapor deposited 2D MoS2 as the switching medium with Ti/Au electrodes. These devices, fabricated using a transfer-free process, exhibit ultra-low variability in SET voltage, RESET power distribution, and synaptic weight update characteristics. This ultra-low variability is enabled by the interface rendered by a Ti/Au top contact on Si-rich MoS2 layers of mixed orientation, corroborated by transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and X-ray photoelectron spectroscopy (XPS). TEM images further confirm the stability of the device stack even after subjecting the device to 100 SET-RESET cycles. Additionally, we implement logic gates by monolithic integration of MoS2 synapses with MoS2 leaky integrate-and-fire neurons to show the viability of these devices for non-von Neumann computing.
Collapse
Affiliation(s)
- Adithi Krishnaprasad
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Durjoy Dev
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Sang Sub Han
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Yaqing Shen
- Institute of Functional Nano & Soft Materials, Soochow University, Suzhou 215123, China
| | - Hee-Suk Chung
- Analytical Research Division, Korea Basic Science Institute, Jeonju, Jeollabuk-do 54907, South Korea
| | - Tae-Sung Bae
- Analytical Research Division, Korea Basic Science Institute, Jeonju, Jeollabuk-do 54907, South Korea
| | - Changhyeon Yoo
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Yeonwoong Jung
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Mario Lanza
- Department of Material Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Tania Roy
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
45
|
Kwon KC, Baek JH, Hong K, Kim SY, Jang HW. Memristive Devices Based on Two-Dimensional Transition Metal Chalcogenides for Neuromorphic Computing. NANO-MICRO LETTERS 2022; 14:58. [PMID: 35122527 PMCID: PMC8818077 DOI: 10.1007/s40820-021-00784-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/03/2021] [Indexed: 05/21/2023]
Abstract
Two-dimensional (2D) transition metal chalcogenides (TMC) and their heterostructures are appealing as building blocks in a wide range of electronic and optoelectronic devices, particularly futuristic memristive and synaptic devices for brain-inspired neuromorphic computing systems. The distinct properties such as high durability, electrical and optical tunability, clean surface, flexibility, and LEGO-staking capability enable simple fabrication with high integration density, energy-efficient operation, and high scalability. This review provides a thorough examination of high-performance memristors based on 2D TMCs for neuromorphic computing applications, including the promise of 2D TMC materials and heterostructures, as well as the state-of-the-art demonstration of memristive devices. The challenges and future prospects for the development of these emerging materials and devices are also discussed. The purpose of this review is to provide an outlook on the fabrication and characterization of neuromorphic memristors based on 2D TMCs.
Collapse
Affiliation(s)
- Ki Chang Kwon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826 Republic of Korea
- Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34133 Republic of Korea
| | - Ji Hyun Baek
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826 Republic of Korea
| | - Kootak Hong
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826 Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, Seoul, 02841 Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826 Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229 Korea
| |
Collapse
|
46
|
Guan MX, Liu XB, Chen DQ, Li XY, Qi YP, Yang Q, You PW, Meng S. Optical Control of Multistage Phase Transition via Phonon Coupling in MoTe_{2}. PHYSICAL REVIEW LETTERS 2022; 128:015702. [PMID: 35061482 DOI: 10.1103/physrevlett.128.015702] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The temporal characters of laser-driven phase transition from 2H to 1T^{'} has been investigated in the prototype MoTe_{2} monolayer. This process is found to be induced by fundamental electron-phonon interactions, with an unexpected phonon excitation and coupling pathway closely related to the nonequilibrium relaxation of photoexcited electrons. The order-to-order phase transformation is dissected into three substages, involving energy and momentum scattering processes from optical (A_{1}^{'} and E^{'}) to acoustic phonon modes [LA(M)] in subpicosecond timescale. An intermediate metallic state along the nonadiabatic transition pathway is also identified. These results have profound implications on nonequilibrium phase engineering strategies.
Collapse
Affiliation(s)
- Meng-Xue Guan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xin-Bao Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Da-Qiang Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xuan-Yi Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ying-Peng Qi
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Pei-Wei You
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
47
|
Lanza M, Waser R, Ielmini D, Yang JJ, Goux L, Suñe J, Kenyon AJ, Mehonic A, Spiga S, Rana V, Wiefels S, Menzel S, Valov I, Villena MA, Miranda E, Jing X, Campabadal F, Gonzalez MB, Aguirre F, Palumbo F, Zhu K, Roldan JB, Puglisi FM, Larcher L, Hou TH, Prodromakis T, Yang Y, Huang P, Wan T, Chai Y, Pey KL, Raghavan N, Dueñas S, Wang T, Xia Q, Pazos S. Standards for the Characterization of Endurance in Resistive Switching Devices. ACS NANO 2021; 15:17214-17231. [PMID: 34730935 DOI: 10.1021/acsnano.1c06980] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Resistive switching (RS) devices are emerging electronic components that could have applications in multiple types of integrated circuits, including electronic memories, true random number generators, radiofrequency switches, neuromorphic vision sensors, and artificial neural networks. The main factor hindering the massive employment of RS devices in commercial circuits is related to variability and reliability issues, which are usually evaluated through switching endurance tests. However, we note that most studies that claimed high endurances >106 cycles were based on resistance versus cycle plots that contain very few data points (in many cases even <20), and which are collected in only one device. We recommend not to use such a characterization method because it is highly inaccurate and unreliable (i.e., it cannot reliably demonstrate that the device effectively switches in every cycle and it ignores cycle-to-cycle and device-to-device variability). This has created a blurry vision of the real performance of RS devices and in many cases has exaggerated their potential. This article proposes and describes a method for the correct characterization of switching endurance in RS devices; this method aims to construct endurance plots showing one data point per cycle and resistive state and combine data from multiple devices. Adopting this recommended method should result in more reliable literature in the field of RS technologies, which should accelerate their integration in commercial products.
Collapse
Affiliation(s)
- Mario Lanza
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rainer Waser
- Peter-Grünberg-Institut (PGI-7), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Peter-Grünberg-Institut (PGI-10), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institut für Werkstoffe der Elektrotechnik 2 (IWE2), RWTH Aachen University, Aachen 52074, Germany
| | - Daniele Ielmini
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Piazza L. da Vinci 32, Milano, 20133, Italy
| | - J Joshua Yang
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | | | - Jordi Suñe
- Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Anthony Joseph Kenyon
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - Adnan Mehonic
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - Sabina Spiga
- CNR-IMM, Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza (MB) 20864, Italy
| | - Vikas Rana
- Peter-Grünberg-Institut (PGI-10), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Stefan Wiefels
- Peter-Grünberg-Institut (PGI-7), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Stephan Menzel
- Peter-Grünberg-Institut (PGI-7), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Ilia Valov
- Peter-Grünberg-Institut (PGI-7), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Marco A Villena
- Applied Materials Inc., Via Ruini, Reggio Emilia 74L 42122, Italy
| | - Enrique Miranda
- Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Xu Jing
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Francesca Campabadal
- Institut de Microelectrònica de Barcelona-Centre Nacional de Microelectrònica, Consejo Superior de Investigaciones Científicas, Bellaterra 08193, Spain
| | - Mireia B Gonzalez
- Institut de Microelectrònica de Barcelona-Centre Nacional de Microelectrònica, Consejo Superior de Investigaciones Científicas, Bellaterra 08193, Spain
| | - Fernando Aguirre
- Unidad de Investigación y Desarrollo de las Ingenierías-CONICET, Facultad Regional Buenos Aires, Universidad Tecnológica Nacional (UIDI-CONICET/FRBA-UTN), Buenos Aires, Medrano 951(C1179AAQ), Argentina
| | - Felix Palumbo
- Unidad de Investigación y Desarrollo de las Ingenierías-CONICET, Facultad Regional Buenos Aires, Universidad Tecnológica Nacional (UIDI-CONICET/FRBA-UTN), Buenos Aires, Medrano 951(C1179AAQ), Argentina
| | - Kaichen Zhu
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Juan Bautista Roldan
- Departamento de Electrónica y Tecnología de Computadores, Facultad de Ciencias, Universidad de Granada, Avd. Fuentenueva s/n, Granada 18071, Spain
| | - Francesco Maria Puglisi
- Dipartimento di Ingegneria "Enzo Ferrari", Università di Modena e Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy
| | - Luca Larcher
- Applied Materials Inc., Via Ruini, Reggio Emilia 74L 42122, Italy
| | - Tuo-Hung Hou
- Department of Electronics Engineering and Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Themis Prodromakis
- Centre for Electronics Frontiers, University of Southampton, Southampton SO171BJ, United Kingdom
| | - Yuchao Yang
- Key Laboratory of Microelectronic Devices and Circuits (MOE), Department of Micro/nanoelectronics, Peking University, Beijing 100871, China
| | - Peng Huang
- Key Laboratory of Microelectronic Devices and Circuits (MOE), Department of Micro/nanoelectronics, Peking University, Beijing 100871, China
| | - Tianqing Wan
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kin Leong Pey
- Engineering Product Development, Singapore University of Technology and Design (SUTD), 8 Somapah Road, 487372 Singapore
| | - Nagarajan Raghavan
- Engineering Product Development, Singapore University of Technology and Design (SUTD), 8 Somapah Road, 487372 Singapore
| | - Salvador Dueñas
- Department of Electronics, University of Valladolid, Paseo de Belén 15, Valladolid E-47011, Spain
| | - Tao Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University 199 Ren-Ai Road, Suzhou 215123, China
| | - Qiangfei Xia
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, Massachusetts 01003-9292, United States
| | - Sebastian Pazos
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
48
|
Sun B, Zhou G, Sun L, Zhao H, Chen Y, Yang F, Zhao Y, Song Q. ABO 3 multiferroic perovskite materials for memristive memory and neuromorphic computing. NANOSCALE HORIZONS 2021; 6:939-970. [PMID: 34652346 DOI: 10.1039/d1nh00292a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The unique electron spin, transfer, polarization and magnetoelectric coupling characteristics of ABO3 multiferroic perovskite materials make them promising candidates for application in multifunctional nanoelectronic devices. Reversible ferroelectric polarization, controllable defect concentration and domain wall movement originated from the ABO3 multiferroic perovskite materials promotes its memristive effect, which further highlights data storage, information processing and neuromorphic computing in diverse artificial intelligence applications. In particular, ion doping, electrode selection, and interface modulation have been demonstrated in ABO3-based memristive devices for ultrahigh data storage, ultrafast information processing, and efficient neuromorphic computing. These approaches presented today including controlling the dopant in the active layer, altering the oxygen vacancy distribution, modulating the diffusion depth of ions, and constructing the interface-dependent band structure were believed to be efficient methods for obtaining unique resistive switching (RS) behavior for various applications. In this review, internal physical dynamics, preparation technologies, and modulation methods are systemically examined as well as the progress, challenges, and possible solutions are proposed for next generation emerging ABO3-based memristive application in artificial intelligence.
Collapse
Affiliation(s)
- Bai Sun
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
- Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Guangdong Zhou
- School of Artificial Intelligence and School of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Linfeng Sun
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing, General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Yuanzheng Chen
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Feng Yang
- Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yong Zhao
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
- Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Qunliang Song
- School of Artificial Intelligence and School of Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
49
|
Hernandez Ruiz K, Wang Z, Ciprian M, Zhu M, Tu R, Zhang L, Luo W, Fan Y, Jiang W. Chemical Vapor Deposition Mediated Phase Engineering for 2D Transition Metal Dichalcogenides: Strategies and Applications. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100047] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Karla Hernandez Ruiz
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Institute of Functional Materials College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Ziqian Wang
- Department of Materials Science and Engineering Johns Hopkins University Baltimore MD 21218 USA
| | - Matteo Ciprian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Institute of Functional Materials College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Institute of Functional Materials College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Rong Tu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China
| | - Lianmeng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Institute of Functional Materials College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Yuchi Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Institute of Functional Materials College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Institute of Functional Materials College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| |
Collapse
|
50
|
Abnavi A, Ahmadi R, Hasani A, Fawzy M, Mohammadzadeh MR, De Silva T, Yu N, Adachi MM. Free-Standing Multilayer Molybdenum Disulfide Memristor for Brain-Inspired Neuromorphic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45843-45853. [PMID: 34542262 DOI: 10.1021/acsami.1c11359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, atomically thin two-dimensional (2D) transition-metal dichalcogenides (TMDs) have attracted great interest in electronic and opto-electronic devices for high-integration-density applications such as data storage due to their small vertical dimension and high data storage capability. Here, we report a memristor based on free-standing multilayer molybdenum disulfide (MoS2) with a high current on/off ratio of ∼103 and a stable retention for at least 3000 s. Through light modulation of the carrier density in the suspended MoS2 channel, the on/off ratio can be further increased to ∼105. Moreover, the essential photosynaptic functions with short- and long-term memory (STM and LTM) behaviors are successfully mimicked by such devices. These results also indicate that STM can be transferred to LTM by increasing the light stimuli power, pulse duration, and number of pulses. The electrical measurements performed under vacuum and ambient air conditions propose that the observed resistive switching is due to adsorbed oxygen and water molecules on both sides of the MoS2 channel. Thus, our free-standing 2D multilayer MoS2-based memristors propose a simple approach for fabrication of a low-power-consumption and reliable resistive switching device for neuromorphic applications.
Collapse
Affiliation(s)
- Amin Abnavi
- School of Engineering Science, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | - Ribwar Ahmadi
- School of Engineering Science, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | - Amirhossein Hasani
- School of Engineering Science, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | - Mirette Fawzy
- Department of Physics, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | | | - Thushani De Silva
- School of Engineering Science, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | - Niannian Yu
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Michael M Adachi
- School of Engineering Science, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| |
Collapse
|