1
|
Cheng Y, Liu Z, Wang J, Xu J, Yu L. Deterministic Single-Row-Droplet Catalyst Formation for Uniform Growth Integration of High-Density Silicon Nanowires. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38683183 DOI: 10.1021/acsami.4c03991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Planar silicon nanowires (SiNWs), grown by using low temperature catalytic approaches, are excellent 1D channel materials for developing high-performance logics and sensors. However, a deterministic position and size control of the metallic catalyst droplets, that lead to the growth of SiNWs, remains still a significant challenge for reliable device integration. In this work, we present a convenient but powerful edge-trimming catalyst formation strategy, which can help to produce a rather uniform single-row of indium (In) catalyst droplets of Dcat = 67 ± 5 nm in diameter, with an exact one-droplet-on-one-step arrangement. This approach marks a significant achievement in self-assembled catalyst formation and offers a foundation to attain a reliable and scalable growth of density SiNW channels, via an in-plane solid-liquid-solid (IPSLS) mechanism, with a uniform diameter down to Dnw = 35 ± 4 nm, and do not rely on high-precision lithography techniques. Prototype SiNW-based field effect transistors (FETs) are also fabricated, with a high Ion/Ioff current ratio and small subthreshold swing of >107 and 262 mV·dec-1, respectively, indicating a reliable new routine to integrate a wide range of SiNW-based logic, sensor, and display applications.
Collapse
Affiliation(s)
- Yinzi Cheng
- School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, 210023, Nanjing, China
| | - Zongguang Liu
- College of Physics Science and Technology/Microelectronics Industry Research Institute, Yangzhou University, 225009, Yangzhou, China
| | - Junzhuan Wang
- School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, 210023, Nanjing, China
| | - Jun Xu
- School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, 210023, Nanjing, China
| | - Linwei Yu
- School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, 210023, Nanjing, China
| |
Collapse
|
2
|
Morgan N, Dubrovskii VG, Stief AK, Dede D, Sanglé-Ferrière M, Rudra A, Piazza V, Fontcuberta i Morral A. From Layer-by-Layer Growth to Nanoridge Formation: Selective Area Epitaxy of GaAs by MOVPE. CRYSTAL GROWTH & DESIGN 2023; 23:5083-5092. [PMID: 37426543 PMCID: PMC10326851 DOI: 10.1021/acs.cgd.3c00316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/01/2023] [Indexed: 07/11/2023]
Abstract
Selective area epitaxy at the nanoscale enables fabrication of high-quality nanostructures in regular arrays with predefined geometry. Here, we investigate the growth mechanisms of GaAs nanoridges on GaAs (100) substrates in selective area trenches by metal-organic vapor-phase epitaxy (MOVPE). It is found that pre-growth annealing results in the formation of valley-like structures of GaAs with atomic terraces inside the trenches. MOVPE growth of GaAs nanoridges consists of three distinct stages. Filling the trench in the first stage exhibits a step-flow growth behavior. Once the structure grows above the mask surface, it enters the second stage of growth by forming {101} side facets as the (100) flat top facet progressively shrinks. In the third stage, the fully formed nanoridge begins to overgrow onto the mask with a significantly reduced growth rate. We develop a kinetic model that accurately describes the width-dependent evolution of the nanoridge morphology through all three stages. MOVPE growth of fully formed nanoridges takes only about 1 min, which is 60 times faster than in our set of molecular beam epitaxy (MBE) experiments reported recently, and with a more regular, triangular cross-sectional geometry defined solely by the {101} facets. In contrast to MBE, no material loss due to Ga adatom diffusion onto the mask surface is observed in MOVPE until the third stage of growth. These results are useful for the fabrication of GaAs nanoridges of different dimensions on the same substrate for various applications and can be extended to other material systems.
Collapse
Affiliation(s)
- Nicholas Morgan
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Vladimir G. Dubrovskii
- Faculty
of Physics, Saint Petersburg State University, Universitetskaya Embankment 13B, 199034 St. Petersburg, Russia
| | - Ann-Kristin Stief
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Didem Dede
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marie Sanglé-Ferrière
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alok Rudra
- Laboratory
of Semiconductor Materials, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Valerio Piazza
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Anna Fontcuberta i Morral
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Laboratory
of Semiconductor Materials, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Leshchenko ED, Dubrovskii VG. An Overview of Modeling Approaches for Compositional Control in III-V Ternary Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101659. [PMID: 37242075 DOI: 10.3390/nano13101659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Modeling of the growth process is required for the synthesis of III-V ternary nanowires with controllable composition. Consequently, new theoretical approaches for the description of epitaxial growth and the related chemical composition of III-V ternary nanowires based on group III or group V intermix were recently developed. In this review, we present and discuss existing modeling strategies for the stationary compositions of III-V ternary nanowires and try to systematize and link them in a general perspective. In particular, we divide the existing approaches into models that focus on the liquid-solid incorporation mechanisms in vapor-liquid-solid nanowires (equilibrium, nucleation-limited, and kinetic models treating the growth of solid from liquid) and models that provide the vapor-solid distributions (empirical, transport-limited, reaction-limited, and kinetic models treating the growth of solid from vapor). We describe the basic ideas underlying the existing models and analyze the similarities and differences between them, as well as the limitations and key factors influencing the stationary compositions of III-V nanowires versus the growth method. Overall, this review provides a basis for choosing a modeling approach that is most appropriate for a particular material system and epitaxy technique and that underlines the achieved level of the compositional modeling of III-V ternary nanowires and the remaining gaps that require further studies.
Collapse
Affiliation(s)
- Egor D Leshchenko
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| | - Vladimir G Dubrovskii
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Scheil V, Holzinger R, Moreno-Cardoner M, Ritsch H. Optical Properties of Concentric Nanorings of Quantum Emitters. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050851. [PMID: 36903728 PMCID: PMC10005549 DOI: 10.3390/nano13050851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 05/04/2023]
Abstract
A ring of sub-wavelength spaced dipole-coupled quantum emitters features extraordinary optical properties when compared to a one-dimensional chain or a random collection of emitters. One finds the emergence of extremely subradiant collective eigenmodes similar to an optical resonator, which features strong 3D sub-wavelength field confinement near the ring. Motivated by structures commonly appearing in natural light-harvesting complexes (LHCs), we extend these studies to stacked multi-ring geometries. We predict that using double rings allows us to engineer significantly darker and better confined collective excitations over a broader energy band compared to the single-ring case. These enhance weak field absorption and low-loss excitation energy transport. For the specific geometry of the three rings appearing in the natural LH2 light-harvesting antenna, we show that the coupling between the lower double-ring structure and the higher energy blue-shifted single ring is very close to a critical value for the actual size of the molecule. This creates collective excitations with contributions from all three rings, which is a vital ingredient for efficient and fast coherent inter-ring transport. This geometry thus should also prove useful for the design of sub-wavelength weak field antennae.
Collapse
Affiliation(s)
- Verena Scheil
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstr. 21a, 6020 Innsbruck, Austria
| | - Raphael Holzinger
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstr. 21a, 6020 Innsbruck, Austria
| | - Maria Moreno-Cardoner
- Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Helmut Ritsch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstr. 21a, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
5
|
Dede D, Glas F, Piazza V, Morgan N, Friedl M, Güniat L, Nur Dayi E, Balgarkashi A, Dubrovskii VG, Fontcuberta I Morral A. Selective area epitaxy of GaAs: the unintuitive role of feature size and pitch. NANOTECHNOLOGY 2022; 33:485604. [PMID: 35952545 DOI: 10.1088/1361-6528/ac88d9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Selective area epitaxy (SAE) provides the path for scalable fabrication of semiconductor nanostructures in a device-compatible configuration. In the current paradigm, SAE is understood as localized epitaxy, and is modelled by combining planar and self-assembled nanowire growth mechanisms. Here we use GaAs SAE as a model system to provide a different perspective. First, we provide evidence of the significant impact of the annealing stage in the calculation of the growth rates. Then, by elucidating the effect of geometrical constraints on the growth of the semiconductor crystal, we demonstrate the role of adatom desorption and resorption beyond the direct-impingement and diffusion-limited regime. Our theoretical model explains the effect of these constraints on the growth, and in particular why the SAE growth rate is highly sensitive to the pattern geometry. Finally, the disagreement of the model at the largest pitch points to non-negligible multiple adatom recycling between patterned features. Overall, our findings point out the importance of considering adatom diffusion, adsorption and desorption dynamics in designing the SAE pattern to create pre-determined nanoscale structures across a wafer. These results are fundamental for the SAE process to become viable in the semiconductor industry.
Collapse
Affiliation(s)
- Didem Dede
- Laboratory of Semiconductor Materials, Faculty of Engineering, Institute of Materials, EPFL, Lausanne, Switzerland
| | - Frank Glas
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| | - Valerio Piazza
- Laboratory of Semiconductor Materials, Faculty of Engineering, Institute of Materials, EPFL, Lausanne, Switzerland
| | - Nicholas Morgan
- Laboratory of Semiconductor Materials, Faculty of Engineering, Institute of Materials, EPFL, Lausanne, Switzerland
| | - Martin Friedl
- Laboratory of Semiconductor Materials, Faculty of Engineering, Institute of Materials, EPFL, Lausanne, Switzerland
| | - Lucas Güniat
- Laboratory of Semiconductor Materials, Faculty of Engineering, Institute of Materials, EPFL, Lausanne, Switzerland
| | - Elif Nur Dayi
- Laboratory of Semiconductor Materials, Faculty of Engineering, Institute of Materials, EPFL, Lausanne, Switzerland
| | - Akshay Balgarkashi
- Laboratory of Semiconductor Materials, Faculty of Engineering, Institute of Materials, EPFL, Lausanne, Switzerland
| | | | - Anna Fontcuberta I Morral
- Laboratory of Semiconductor Materials, Faculty of Engineering, Institute of Materials, EPFL, Lausanne, Switzerland
- Faculty of Basic Sciences, Institute of Physics, EPFL, Lausanne, Switzerland
| |
Collapse
|
6
|
Moreno-Cardoner M, Holzinger R, Ritsch H. Efficient nano-photonic antennas based on dark states in quantum emitter rings. OPTICS EXPRESS 2022; 30:10779-10791. [PMID: 35473037 DOI: 10.1364/oe.437396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Nanoscopic arrays of quantum emitters can feature highly sub-radiant collective excitations with a lifetime exponentially growing with emitter number. Adding an absorptive impurity as an energy dump in the center of a ring shaped polygon allows to exploit this feature to create highly efficient single photon antennas. Here among regular polygons with an identical center absorbing emitter, a nonagon exhibits a distinct optimum of the absorption efficiency. This special enhancement originates from the unique emergence of a subradiant eigenstate with dominant center occupation. Only for nine emitters the sum of coupling strengths of each emitter to all others matches the center to the ring coupling. Analogous to a parabolic mirror the antenna ring then concentrates incoming radiation at its center without being significantly excited itself. Similar large efficiency enhancements, which even prevail for broadband excitation, can also be engineered for other antenna sizes by tailoring the frequency and magnitude of the central absorber. Interestingly, for very small structures a quantum treatment predicts an even stronger enhancement for the single photon absorption enhancement than a classical dipole model. As natural light harvesting structures are often based on ring shaped structures, the underlying principle might be exploited there as well.
Collapse
|
7
|
Hu R, Yu L. Review on 3D growth engineering and integration of nanowires for advanced nanoelectronics and sensor applications. NANOTECHNOLOGY 2022; 33:222002. [PMID: 35148520 DOI: 10.1088/1361-6528/ac547a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Recent years have witnessed increasing efforts devoted to the growth, assembly and integration of quasi-one dimensional (1D) nanowires (NWs), as fundamental building blocks in advanced three-dimensional (3D) architecture, to explore a series of novel nanoelectronic and sensor applications. An important motivation behind is to boost the integration density of the electronic devices by stacking more functional units in theout-of-plane z-direction, where the NWs are supposed to be patterned or grown as vertically standing or laterally stacked channels to minimize their footprint area. The other driving force is derived from the unique possibility of engineering the 1D NWs into more complex, as well as more functional, 3D nanostructures, such as helical springs and kinked probes, which are ideal nanostructures for developping advanced nanoelectromechanical system (NEMS), bio-sensing and manipulation applications. This Review will first examine the recent progresses made in the construction of 3D nano electronic devices, as well as the new fabrication and growth technologies established to enable an efficient 3D integration of the vertically standing or laterally stacked NW channels. Then, the different approaches to produce and tailor more sophisticated 3D helical springs or purposely-designed nanoprobes will be revisited, together with their applications in NEMS resonators, bio sensors and stimulators in neural system.
Collapse
Affiliation(s)
- Ruijin Hu
- National Laboratory of Solid-State Microstructures/School of Electronics Science and Engineering/ Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, People's Republic of China
| | - Linwei Yu
- National Laboratory of Solid-State Microstructures/School of Electronics Science and Engineering/ Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, People's Republic of China
| |
Collapse
|
8
|
Dubrovskii VG, Kim W, Piazza V, Güniat L, Fontcuberta I Morral A. Simultaneous Selective Area Growth of Wurtzite and Zincblende Self-Catalyzed GaAs Nanowires on Silicon. NANO LETTERS 2021; 21:3139-3145. [PMID: 33818097 DOI: 10.1021/acs.nanolett.1c00349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Selective area epitaxy constitutes a mainstream method to obtain reproducible nanomaterials. As a counterpart, self-assembly allows their growth without costly substrate preparation, with the drawback of uncontrolled positioning. We propose a mixed approach in which self-assembly is limited to reduced regions on a patterned silicon substrate. While nanowires grow with a wide distribution of diameters, we note a mostly binary occurrence of crystal phases. Self-catalyzed GaAs nanowires form in either a wurtzite or zincblende phase in the same growth run. Quite surprisingly, thicker nanowires are wurtzite and thinner nanowires are zincblende, while the common view predicts the reverse trend. We relate this phenomenon to the influx of Ga adatoms by surface diffusion, which results in different contact angles of Ga droplets. We demonstrate the wurtzite phase of thick GaAs NWs up to 200 nm in diameter in the Au-free approach, which has not been achieved so far to our knowledge.
Collapse
Affiliation(s)
- Vladimir G Dubrovskii
- Faculty of Physics, St. Petersburg State University, Universitetskaya Embankment 13B, 199034 St. Petersburg, Russia
| | - Wonjong Kim
- Laboratory of Semiconductor Materials, Institute of Materials, Faculty of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Valerio Piazza
- Laboratory of Semiconductor Materials, Institute of Materials, Faculty of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Lucas Güniat
- Laboratory of Semiconductor Materials, Institute of Materials, Faculty of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Anna Fontcuberta I Morral
- Laboratory of Semiconductor Materials, Institute of Materials, Faculty of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Institute of Physics, Faculty of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Wilson DP, Dubrovskii VG, LaPierre RR. Improving the yield of GaAs nanowires on silicon by Ga pre-deposition. NANOTECHNOLOGY 2021; 32:265301. [PMID: 33730697 DOI: 10.1088/1361-6528/abef93] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
GaAs nanowire (NW) arrays were grown by molecular beam epitaxy using the self-assisted vapor-liquid-solid method with Ga droplets as seed particles. A Ga pre-deposition step is examined to control NW yield and diameter. The NW yield can be increased with suitable duration of a Ga pre-deposition step but is highly dependent on oxide hole diameter and surface conditions. The NW diameter was determined by vapor-solid growth on the NW sidewalls, rather than Ga pre-deposition. The maximum NW yield with a Ga pre-deposition step was very close to 100%, established at shorter Ga deposition durations and for larger holes. This trend was explained within a model where maximum yield is obtained when the Ga droplet volume approximately equals the hole volume.
Collapse
Affiliation(s)
- D P Wilson
- Department of Engineering Physics, McMaster University, Hamilton, ON L8S4L7, Canada
| | - V G Dubrovskii
- Faculty of Physics, St. Petersburg State University, Universitetskaya Embankment 13B, 199034, St. Petersburg, Russia
| | - R R LaPierre
- Department of Engineering Physics, McMaster University, Hamilton, ON L8S4L7, Canada
| |
Collapse
|
10
|
Wong-Leung J, Yang I, Li Z, Karuturi SK, Fu L, Tan HH, Jagadish C. Engineering III-V Semiconductor Nanowires for Device Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904359. [PMID: 31621966 DOI: 10.1002/adma.201904359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/19/2019] [Indexed: 05/26/2023]
Abstract
III-V semiconductor nanowires offer potential new device applications because of the unique properties associated with their 1D geometry and the ability to create quantum wells and other heterostructures with a radial and an axial geometry. Here, an overview of challenges in the bottom-up approaches for nanowire synthesis using catalyst and catalyst-free methods and the growth of axial and radial heterostructures is given. The work on nanowire devices such as lasers, light emitting nanowires, and solar cells and an overview of the top-down approaches for water splitting technologies is reviewed. The authors conclude with an analysis of the research field and the future research directions.
Collapse
Affiliation(s)
- Jennifer Wong-Leung
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT2601, Australia
| | - Inseok Yang
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT2601, Australia
| | - Ziyuan Li
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT2601, Australia
| | - Siva Krishna Karuturi
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT2601, Australia
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT2601, Australia
| | - Lan Fu
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT2601, Australia
| | - Hark Hoe Tan
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT2601, Australia
| | - Chennupati Jagadish
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT2601, Australia
| |
Collapse
|
11
|
Dubrovskii VG, Barcus J, Kim W, Vukajlovic-Plestina J, I Morral AF. Does desorption affect the length distributions of nanowires? NANOTECHNOLOGY 2019; 30:475604. [PMID: 31416057 DOI: 10.1088/1361-6528/ab3bb6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
State-of-the art models for statistical properties within the nanowire ensembles consider influx of precursors, reflection and surface diffusion of adatoms. These models predict a delay in the nanowire growth start and the evolution toward an asymmetric length distribution. We demonstrate here the effect of desorption of the nanowire material, which has not been considered so far in studies of the nanowire length distributions. We show that at the very beginning of growth the length distribution should be asymmetric due to the slow nucleation of nanowires. At longer times, the length distribution acquires a symmetric Gaussian shape due to the increased weight of desorption. The width of this distribution is larger than Poissonian and increases for higher ratio of desorption over deposition rate. Our model is consistent with the length evolution of organized self-catalyzed GaAs nanowires. We outline that desorption of the nanowire material should be minimized to achieve arrays of highly identical nanowires. These results are relevant for a wide variety of material systems.
Collapse
Affiliation(s)
- V G Dubrovskii
- ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
12
|
Jürgensen C, Mikulik D, Kim W, Ghisalberti L, Bernard G, Friedl M, Carter WC, Fontcuberta I Morral A, Romero-Gomez P. Growth of nanowire arrays from micron-feature templates. NANOTECHNOLOGY 2019; 30:285302. [PMID: 30952155 DOI: 10.1088/1361-6528/ab1699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here, we present a two-step annealing procedure to imprint nanofeatures on SiO2 starting from metallic microfeatures. The first annealing transforms the microfeatures into gold nanoparticles and the second imprints these nanoparticles into the SiO2 layer with nanometric control. The resulting nanohole arrays show a high ensemble uniformity. As a potential application, the nanohole mask is used as a selective mask for the Ga self-assisted growth of GaAs nanowires (NWs). Thus, for the first time, a successful implementation of nano-self-imprinting that links high-throughput microlithography with bottom-up NW growth is shown. The beneficial hole morphology of the SiO2 mask promotes high Ga droplet contact angles with the silicon substrate and the formation of single droplets in the mask holes. This droplet predeposition configuration enables a high vertical yield of NWs. Thus, this article describes a new protocol to grow NW devices that combines simultaneously nanosized holes and parallel processing.
Collapse
Affiliation(s)
- C Jürgensen
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Schroth P, Al Humaidi M, Feigl L, Jakob J, Al Hassan A, Davtyan A, Küpers H, Tahraoui A, Geelhaar L, Pietsch U, Baumbach T. Impact of the Shadowing Effect on the Crystal Structure of Patterned Self-Catalyzed GaAs Nanowires. NANO LETTERS 2019; 19:4263-4271. [PMID: 31150261 DOI: 10.1021/acs.nanolett.9b00380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The growth of regular arrays of uniform III-V semiconductor nanowires is a crucial step on the route toward their application-relevant large-scale integration onto the Si platform. To this end, not only does optimal vertical yield, length, and diameter uniformity have to be engineered, but also, control over the nanowire crystal structure has to be achieved. Depending on the particular application, nanowire arrays with varying area density are required for optimal device efficiency. However, the nanowire area density substantially influences the nanowire growth and presents an additional challenge for nanowire device engineering. We report on the simultaneous in situ X-ray investigation of regular GaAs nanowire arrays with different area density during self-catalyzed vapor-liquid-solid growth on Si by molecular-beam epitaxy. Our results give novel insight into selective-area growth and demonstrate that shadowing of the Ga flux, occurring in dense nanowire arrays, has a crucial impact on the evolution of nanowire crystal structure. We observe that the onset of Ga flux shadowing, dependent on array pitch and nanowire length, is accompanied by an increase of the wurtzite formation rate. Our results moreover reveal the paramount role of the secondary reflected Ga flux for VLS NW growth (specifically, that flux that is reflected directly into the liquid Ga droplet).
Collapse
Affiliation(s)
- Philipp Schroth
- Solid State Physics, Department of Physics , University of Siegen , Adolf-Reichwein-Straße 2 , D-57068 Siegen , Germany
- Laboratory for Applications of Synchrotron Radiation , Karlsruhe Institute of Technology , Kaiserstraße 12 , D-76131 Karlsruhe , Germany
- Institute for Photon Science and Synchrotron Radiation , Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany
| | - Mahmoud Al Humaidi
- Solid State Physics, Department of Physics , University of Siegen , Adolf-Reichwein-Straße 2 , D-57068 Siegen , Germany
| | - Ludwig Feigl
- Institute for Photon Science and Synchrotron Radiation , Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany
| | - Julian Jakob
- Laboratory for Applications of Synchrotron Radiation , Karlsruhe Institute of Technology , Kaiserstraße 12 , D-76131 Karlsruhe , Germany
- Institute for Photon Science and Synchrotron Radiation , Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany
| | - Ali Al Hassan
- Solid State Physics, Department of Physics , University of Siegen , Adolf-Reichwein-Straße 2 , D-57068 Siegen , Germany
| | - Arman Davtyan
- Solid State Physics, Department of Physics , University of Siegen , Adolf-Reichwein-Straße 2 , D-57068 Siegen , Germany
| | - Hanno Küpers
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V. , Hausvogteiplatz 5-7 , 10117 Berlin , Germany
| | - Abbes Tahraoui
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V. , Hausvogteiplatz 5-7 , 10117 Berlin , Germany
| | - Lutz Geelhaar
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V. , Hausvogteiplatz 5-7 , 10117 Berlin , Germany
| | - Ullrich Pietsch
- Solid State Physics, Department of Physics , University of Siegen , Adolf-Reichwein-Straße 2 , D-57068 Siegen , Germany
| | - Tilo Baumbach
- Laboratory for Applications of Synchrotron Radiation , Karlsruhe Institute of Technology , Kaiserstraße 12 , D-76131 Karlsruhe , Germany
- Institute for Photon Science and Synchrotron Radiation , Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany
| |
Collapse
|
14
|
Vettori M, Piazza V, Cattoni A, Scaccabarozzi A, Patriarche G, Regreny P, Chauvin N, Botella C, Grenet G, Penuelas J, Fave A, Tchernycheva M, Gendry M. Growth optimization and characterization of regular arrays of GaAs/AlGaAs core/shell nanowires for tandem solar cells on silicon. NANOTECHNOLOGY 2019; 30:084005. [PMID: 30524074 DOI: 10.1088/1361-6528/aaf3fe] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With a band gap value of 1.7 eV, Al0.2Ga0.8As is one of the ideal III-V alloys for the development of nanowire-based Tandem Solar Cells on silicon. Nevertheless, growing self-catalysed AlGaAs nanowires on silicon by solid-source molecular beam epitaxy is a very difficult task due to the oxidation of Al adatoms by the SiO2 layer present on the surface. Here we propose a nanowire structure including a p.i.n radial junction inside an Al0.2Ga0.8As shell grown on a p-GaAs core. The crystalline structure of such self-catalysed nanowires grown on an epi-ready Si(111) substrate (with a thin native SiO2 layer) was investigated by transmission electronic microscopy and photoluminescence. I(V) measurements performed on single nanowires have shown a diode-like behaviour corresponding to the radial p.i.n junction inside the Al0.2Ga0.8As shell. Moreover, a current generation under the electron beam was evidenced over the entire radial junction along the nanowires by means of electron beam induced current (EBIC) microscopy. The same structure was reproduced on patterned substrates with a SiO2 mask, producing an ordered hexagonal array. High and uniform yields from 83% to 87% of vertical nanowires were obtained on 0.9 × 0.9 cm2 patterned areas. EBIC mapping performed on these nanowires confirmed the good electrical properties of the radial junction within the nanowires.
Collapse
Affiliation(s)
- M Vettori
- INL, UMR 5270 CNRS, University of Lyon, Ecole Centrale de Lyon, F-69134, Ecully, France. INL, UMR 5270 CNRS, University of Lyon, INSA de Lyon, F-69621, Villeurbanne, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fundamental aspects to localize self-catalyzed III-V nanowires on silicon. Nat Commun 2019; 10:869. [PMID: 30787305 PMCID: PMC6382777 DOI: 10.1038/s41467-019-08807-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/25/2019] [Indexed: 11/19/2022] Open
Abstract
III-V semiconductor nanowires deterministically placed on top of silicon electronic platform would open many avenues in silicon-based photonics, quantum technologies and energy harvesting. For this to become a reality, gold-free site-selected growth is necessary. Here, we propose a mechanism which gives a clear route for maximizing the nanowire yield in the self-catalyzed growth fashion. It is widely accepted that growth of nanowires occurs on a layer-by-layer basis, starting at the triple-phase line. Contrary to common understanding, we find that vertical growth of nanowires starts at the oxide-substrate line interface, forming a ring-like structure several layers thick. This is granted by optimizing the diameter/height aspect ratio and cylindrical symmetry of holes, which impacts the diffusion flux of the group V element through the well-positioned group III droplet. This work provides clear grounds for realistic integration of III-Vs on silicon and for the organized growth of nanowires in other material systems. The ability to place perfectly aligned vertical nanowires at chosen positions on a silicon substrate is an important challenge in device fabrication. Here, the authors propose a mechanism to explain self-catalyzed III-V nanowire growth on silicon, providing valuable insights for growing high yield nanowire arrays.
Collapse
|
16
|
Yan X, Gong L, Ai L, Wei W, Zhang X, Ren X. Enhanced photovoltaic performance of nanowire array solar cells with multiple diameters. OPTICS EXPRESS 2018; 26:A974-A983. [PMID: 30650865 DOI: 10.1364/oe.26.00a974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
A multi-diameter p-i-n junction GaAs nanowire (NW) array architecture is proposed for high-performance solar cells. Coupled three-dimensional optoelectronic simulations are performed to investigate the photovoltaic properties. The NW diameters are randomly selected within the range of 220-400 nm, following the Gaussian distribution. The results show that the absorption strongly depends on the diameter, and the multi-diameter NW array exhibits higher optical absorption, in comparison with the uniform-diameter counterpart. This is because of the superposition of multiple absorption peaks. Moreover, the multi-diameter NW array can efficiently enhance the effective absorption; that is, the depletion region absorption, which directly leads to increased photocurrent. A remarkable efficiency of 17% is obtained for a 16-diameter NW array solar cell with a full width at half maximum of the diameter distribution of 75 nm, higher than the best value (16.1%) of uniform-diameter device with an optimum diameter of 310 nm. This work demonstrates that the native diameter nonuniformity of self-organized nanowires is beneficial for high-performance photovoltaics with low cost and a simple fabrication process.
Collapse
|
17
|
Tauchnitz T, Berdnikov Y, Dubrovskii VG, Schneider H, Helm M, Dimakis E. A simple route to synchronized nucleation of self-catalyzed GaAs nanowires on silicon for sub-Poissonian length distributions. NANOTECHNOLOGY 2018; 29:504004. [PMID: 30240362 DOI: 10.1088/1361-6528/aae361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We demonstrate a simple route to grow ensembles of self-catalyzed GaAs nanowires with a remarkably narrow statistical distribution of lengths on natively oxidized Si(111) substrates. The fitting of the nanowire length distribution (LD) with a theoretical model reveals that the key requirements for narrow LDs are the synchronized nucleation of all nanowires on the substrate and the absence of beam shadowing from adjacent nanowires. Both requirements are fulfilled by controlling the size and number density of the openings in SiO x , where the nanowires nucleate. This is achieved by using a pre-growth treatment of the substrate with Ga droplets and two annealing cycles. The narrowest nanowire LDs are markedly sub-Poissonian, which validates the theoretical predictions about temporally anti-correlated nucleation events in individual nanowires, the so-called nucleation antibunching. Finally, the reproducibility of sub-Poissonian LDs attests the reliability of our growth method.
Collapse
Affiliation(s)
- Tina Tauchnitz
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany. Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, D-01062 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
18
|
García Núñez C, Braña AF, López N, García BJ. A Novel Growth Method To Improve the Quality of GaAs Nanowires Grown by Ga-Assisted Chemical Beam Epitaxy. NANO LETTERS 2018; 18:3608-3615. [PMID: 29739187 DOI: 10.1021/acs.nanolett.8b00702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The successful synthesis of high crystalline quality and high aspect ratio GaAs nanowires (NWs) with a uniform diameter is needed to develop advanced applications beyond the limits established by thin film and bulk material properties. Vertically aligned GaAs NWs have been extensively grown by Ga-assisted vapor-liquid-solid (VLS) mechanism on Si(111) substrates, and they have been used as building blocks in photovoltaics, optoelectronics, electronics, and so forth. However, the nucleation of parasitic species such as traces and nanocrystals on the Si substrate surface during the NW growth could affect significantly the controlled nucleation of those NWs, and therefore the resulting performance of NW-based devices. Preventing the nucleation of parasitic species on the Si substrate is a matter of interest, because they could act as traps for gaseous precursors and/or chemical elements during VLS growth, drastically reducing the maximum length of grown NWs, affecting their morphology and structure, and reducing the NW density along the Si substrate surface. This work presents a novel and easy to develop growth method (i.e., without using advanced nanolithography techniques) to prevent the nucleation of parasitic species, while preserving the quality of GaAs NWs even for long duration growths. GaAs NWs are grown by Ga-assisted chemical beam epitaxy on oxidized Si(111) substrates using triethylgallium and tertiarybutylarsine precursors by a two-step-based growth method presented here; this method includes a growth interruption for an oxidation on air between both steps of growth, reducing the nucleation of parasitic crystals on the thicker SiO x capping layer during the second and longer growth step. VLS conditions are preserved overtime, resulting in a stable NW growth rate of around 6 μm/h for growth times up to 1 h. Resulting GaAs NWs have a high aspect ratio of 85 and average radius of 35 nm. We also report on the existence of characteristic reflection high-energy electron diffraction patterns associated with the epitaxial growth of GaAs NWs on Si(111) substrates, which have been analyzed and compared to the morphological characterization of GaAs NWs grown for different times under different conditions.
Collapse
Affiliation(s)
- Carlos García Núñez
- Electronics and Semiconductors Group (ELySE), Department of Applied Physics , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Alejandro F Braña
- Electronics and Semiconductors Group (ELySE), Department of Applied Physics , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Nair López
- Electronics and Semiconductors Group (ELySE), Department of Applied Physics , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Basilio J García
- Electronics and Semiconductors Group (ELySE), Department of Applied Physics , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| |
Collapse
|
19
|
Timofeeva M, Lang L, Timpu F, Renaut C, Bouravleuv A, Shtrom I, Cirlin G, Grange R. Anapoles in Free-Standing III-V Nanodisks Enhancing Second-Harmonic Generation. NANO LETTERS 2018; 18:3695-3702. [PMID: 29771127 DOI: 10.1021/acs.nanolett.8b00830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nonradiating electromagnetic configurations in nanostructures open new horizons for applications due to two essential features: a lack of energy losses and invisibility to the propagating electromagnetic field. Such radiationless configurations form a basis for new types of nanophotonic devices, in which a strong electromagnetic field confinement can be achieved together with lossless interactions between nearby components. In our work, we present a new design of free-standing disk nanoantennas with nonradiating current distributions for the optical near-infrared range. We show a novel approach to creating nanoantennas by slicing III-V nanowires into standing disks using focused ion-beam milling. We experimentally demonstrate the suppression of the far-field radiation and the associated strong enhancement of the second-harmonic generation from the disk nanoantennas. With a theoretical analysis of the electromagnetic field distribution using multipole expansions in both spherical and Cartesian coordinates, we confirm that the demonstrated nonradiating configurations are anapoles. We expect that the presented procedure of designing and producing disk nanoantennas from nanowires becomes one of the standard approaches to fabricating controlled chains of standing nanodisks with different designs and configurations. These chains can be essential building blocks for new types of lasers and sensors with low power consumption.
Collapse
Affiliation(s)
- Maria Timofeeva
- ETH Zurich , Optical Nanomaterial Group, Institute for Quantum Electronics, Department of Physics , Auguste-Piccard Hof 1 , 8093 Zurich , Switzerland
| | - Lukas Lang
- ETH Zurich , Optical Nanomaterial Group, Institute for Quantum Electronics, Department of Physics , Auguste-Piccard Hof 1 , 8093 Zurich , Switzerland
| | - Flavia Timpu
- ETH Zurich , Optical Nanomaterial Group, Institute for Quantum Electronics, Department of Physics , Auguste-Piccard Hof 1 , 8093 Zurich , Switzerland
| | - Claude Renaut
- ETH Zurich , Optical Nanomaterial Group, Institute for Quantum Electronics, Department of Physics , Auguste-Piccard Hof 1 , 8093 Zurich , Switzerland
| | - Alexei Bouravleuv
- Saint Petersburg Academic University , Ul. Khlopina 8/3 , 194021 Saint Petersburg , Russia
| | - Igor Shtrom
- Saint Petersburg Academic University , Ul. Khlopina 8/3 , 194021 Saint Petersburg , Russia
| | - George Cirlin
- ITMO University , Kronverkskiy 49 , 197101 Saint Petersburg , Russia
| | - Rachel Grange
- ETH Zurich , Optical Nanomaterial Group, Institute for Quantum Electronics, Department of Physics , Auguste-Piccard Hof 1 , 8093 Zurich , Switzerland
| |
Collapse
|
20
|
Francaviglia L, Giunto A, Kim W, Romero-Gomez P, Vukajlovic-Plestina J, Friedl M, Potts H, Güniat L, Tütüncüoglu G, Fontcuberta I Morral A. Anisotropic-Strain-Induced Band Gap Engineering in Nanowire-Based Quantum Dots. NANO LETTERS 2018; 18:2393-2401. [PMID: 29578722 DOI: 10.1021/acs.nanolett.7b05402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tuning light emission in bulk and quantum structures by strain constitutes a complementary method to engineer functional properties of semiconductors. Here, we demonstrate the tuning of light emission of GaAs nanowires and their quantum dots up to 115 meV by applying strain through an oxide envelope. We prove that the strain is highly anisotropic and clearly results in a component along the NW longitudinal axis, showing good agreement with the equations of uniaxial stress. We further demonstrate that the strain strongly depends on the oxide thickness, the oxide intrinsic strain, and the oxide microstructure. We also show that ensemble measurements are fully consistent with characterizations at the single-NW level, further elucidating the general character of the findings. This work provides the basic elements for strain-induced band gap engineering and opens new avenues in applications where a band-edge shift is necessary.
Collapse
Affiliation(s)
- Luca Francaviglia
- Laboratoire des Matériaux Semiconducteurs, Institut des Matériaux , Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| | - Andrea Giunto
- Laboratoire des Matériaux Semiconducteurs, Institut des Matériaux , Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| | - Wonjong Kim
- Laboratoire des Matériaux Semiconducteurs, Institut des Matériaux , Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| | - Pablo Romero-Gomez
- Laboratoire des Matériaux Semiconducteurs, Institut des Matériaux , Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| | - Jelena Vukajlovic-Plestina
- Laboratoire des Matériaux Semiconducteurs, Institut des Matériaux , Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| | - Martin Friedl
- Laboratoire des Matériaux Semiconducteurs, Institut des Matériaux , Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| | - Heidi Potts
- Laboratoire des Matériaux Semiconducteurs, Institut des Matériaux , Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| | - Lucas Güniat
- Laboratoire des Matériaux Semiconducteurs, Institut des Matériaux , Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| | - Gözde Tütüncüoglu
- Laboratoire des Matériaux Semiconducteurs, Institut des Matériaux , Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| | - Anna Fontcuberta I Morral
- Laboratoire des Matériaux Semiconducteurs, Institut des Matériaux , Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| |
Collapse
|
21
|
Oehler F, Cattoni A, Scaccabarozzi A, Patriarche G, Glas F, Harmand JC. Measuring and Modeling the Growth Dynamics of Self-Catalyzed GaP Nanowire Arrays. NANO LETTERS 2018; 18:701-708. [PMID: 29257888 DOI: 10.1021/acs.nanolett.7b03695] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The bottom-up fabrication of regular nanowire (NW) arrays on a masked substrate is technologically relevant, but the growth dynamic is rather complex due to the superposition of severe shadowing effects that vary with array pitch, NW diameter, NW height, and growth duration. By inserting GaAsP marker layers at a regular time interval during the growth of a self-catalyzed GaP NW array, we are able to retrieve precisely the time evolution of the diameter and height of a single NW. We then propose a simple numerical scheme which fully computes shadowing effects at play in infinite arrays of NWs. By confronting the simulated and experimental results, we infer that re-emission of Ga from the mask is necessary to sustain the NW growth while Ga migration on the mask must be negligible. When compared to random cosine or random uniform re-emission from the mask, the simple case of specular reflection on the mask gives the most accurate account of the Ga balance during the growth.
Collapse
Affiliation(s)
- Fabrice Oehler
- Centre for Nanoscience and Nanotechnology, CNRS, Université Paris-Sud, Université Paris-Saclay , Route de Nozay, 91460 Marcoussis, France
| | - Andrea Cattoni
- Centre for Nanoscience and Nanotechnology, CNRS, Université Paris-Sud, Université Paris-Saclay , Route de Nozay, 91460 Marcoussis, France
| | - Andrea Scaccabarozzi
- Centre for Nanoscience and Nanotechnology, CNRS, Université Paris-Sud, Université Paris-Saclay , Route de Nozay, 91460 Marcoussis, France
- Institut Photovoltaïque d'Ile-de-France , 92160 Antony, France
| | - Gilles Patriarche
- Centre for Nanoscience and Nanotechnology, CNRS, Université Paris-Sud, Université Paris-Saclay , Route de Nozay, 91460 Marcoussis, France
| | - Frank Glas
- Centre for Nanoscience and Nanotechnology, CNRS, Université Paris-Sud, Université Paris-Saclay , Route de Nozay, 91460 Marcoussis, France
| | - Jean-Christophe Harmand
- Centre for Nanoscience and Nanotechnology, CNRS, Université Paris-Sud, Université Paris-Saclay , Route de Nozay, 91460 Marcoussis, France
| |
Collapse
|
22
|
Kim W, Dubrovskii VG, Vukajlovic-Plestina J, Tütüncüoglu G, Francaviglia L, Güniat L, Potts H, Friedl M, Leran JB, Fontcuberta I Morral A. Bistability of Contact Angle and Its Role in Achieving Quantum-Thin Self-Assisted GaAs nanowires. NANO LETTERS 2018; 18:49-57. [PMID: 29257895 DOI: 10.1021/acs.nanolett.7b03126] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Achieving quantum confinement by bottom-up growth of nanowires has so far been limited to the ability of obtaining stable metal droplets of radii around 10 nm or less. This is within reach for gold-assisted growth. Because of the necessity to maintain the group III droplets during growth, direct synthesis of quantum sized structures becomes much more challenging for self-assisted III-V nanowires. In this work, we elucidate and solve the challenges that involve the synthesis of gallium-assisted quantum-sized GaAs nanowires. We demonstrate the existence of two stable contact angles for the gallium droplet on top of GaAs nanowires. Contact angle around 130° fosters a continuous increase in the nanowire radius, while 90° allows for the stable growth of ultrathin tops. The experimental results are fully consistent with our model that explains the observed morphological evolution under the two different scenarios. We provide a generalized theory of self-assisted III-V nanowires that describes simultaneously the droplet shape relaxation and the NW radius evolution. Bistability of the contact angle described here should be the general phenomenon that pertains for any vapor-liquid-solid nanowires and significantly refines our picture of how nanowires grow. Overall, our results suggest a new path for obtaining ultrathin one-dimensional III-V nanostructures for studying lateral confinement of carriers.
Collapse
Affiliation(s)
- Wonjong Kim
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | | | - Jelena Vukajlovic-Plestina
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Gözde Tütüncüoglu
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Luca Francaviglia
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Lucas Güniat
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Heidi Potts
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Martin Friedl
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Jean-Baptiste Leran
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Anna Fontcuberta I Morral
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| |
Collapse
|