1
|
Chiang CH, Yu CH, Lu YS, Yang YC, Lin YC, Chen HA, Ho SZ, Chen YC, Kumatani A, Chang C, Kuo PC, Shiue J, Li SS, Chiu PW, Chen CW. Polarization-Switchable Electrochemistry of 2D Layered Bi 2O 2Se Bifunctional Microreactors by Ferroelectric Modulation. NANO LETTERS 2024; 24:11012-11019. [PMID: 39186248 PMCID: PMC11378338 DOI: 10.1021/acs.nanolett.4c03128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Ferroelectric catalysts are known for altering surface catalytic activities by changing the direction of their electric polarizations. This study demonstrates polarization-switchable electrochemistry using layered bismuth oxyselenide (L-Bi2O2Se) bifunctional microreactors through ferroelectric modulation. A selective-area ionic liquid gating is developed with precise control over the spatial distribution of the dipole orientation of L-Bi2O2Se. On-chip microreactors with upward polarization favor the oxygen evolution reaction, whereas those with downward polarization prefer the hydrogen evolution reaction. The microscopic origin behind polarization-switchable electrochemistry primarily stems from enhanced surface adsorption and reduced energy barriers for reactions, as examined by nanoscale scanning electrochemical cell microscopy. Integrating a pair of L-Bi2O2Se microreactors consisting of upward or downward polarizations demonstrates overall water splitting in a full-cell configuration based on a bifunctional catalyst. The ability to modulate surface polarizations on a single catalyst via ferroelectric polarization switching offers a pathway for designing catalysts for water splitting.
Collapse
Affiliation(s)
- Chun-Hao Chiang
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chun-Hung Yu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yang-Sheng Lu
- Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei, 10608 Taiwan
| | - Yueh-Chiang Yang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yin-Cheng Lin
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsin-An Chen
- Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei, 10608 Taiwan
| | - Sheng-Zhu Ho
- Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Chun Chen
- Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Akichika Kumatani
- Department of Electrical and Electronic Engineering, Chiba Institute of Technology, Chiba, 275-0016, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
- WPI-Advanced Institute for Materials Research (AIMR) and Center for Science and Innovation in Spintronics (CSIS), Tohoku University, Sendai, 980-8577, Japan
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Chen Chang
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Pai-Chia Kuo
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei, 10617, Taiwan
| | - Jessie Shiue
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei, 10617, Taiwan
| | - Shao-Sian Li
- Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei, 10608 Taiwan
| | - Po-Wen Chiu
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei, 10617, Taiwan
| | - Chun-Wei Chen
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
2
|
Mariappan VK, Krishnamoorthy K, Pazhamalai P, Swaminathan R, Kim SJ. Stimulus of Work Function on Electron Transfer Process of Intermetallic Nickel-Antimonide Toward Bifunctional Electrocatalyst for Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402355. [PMID: 38751066 DOI: 10.1002/smll.202402355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Indexed: 10/04/2024]
Abstract
Engineering the intermetallic nanostructures as an effective bifunctional electrocatalyst for hydrogen and oxygen evolution reactions (HER and OER) is of great interest in green hydrogen production. However, a few non-noble metals act as bifunctional electrocatalysts, exhibiting terrific HER and OER processes reported to date. Herein the intermetallic nickel-antimonide (Ni─Sb) dendritic nanostructure via cost-effective electro-co-deposition method is designed and their bifunctional electrocatalytic property toward HER and OER is unrevealed. The designed Ni─Sb delivers a superior bifunctional activity in 1 m KOH electrolyte, with a shallow overpotential of ≈119 mV at -10 mA for HER and ≈200 mV at 50 mA for OER. The mechanism behind the excellent bifunctional property of Ni─Sb is discussed via "interfacial descriptor" with the aid of Kelvin probe force microscopy (KPFM). This study reveals the rate of electrocatalytic reaction depends on the energy required for electron and proton transfer from the catalyst's surface. It is noteworthy that the assembled Ni─Sb-90 electrolyzer requires only a minuscule cell voltage of ≈1.46 V for water splitting, which is far superior to the art of commercial catalysts.
Collapse
Affiliation(s)
- Vimal Kumar Mariappan
- Department of Materials Engineering, Indian Institute of Science, Printed Electronics and Nanoionics Lab, Bangalore, 560012, India
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
| | - Karthikeyan Krishnamoorthy
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
- Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju, 63243, South Korea
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh, 462026, India
| | - Parthiban Pazhamalai
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
- Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju, 63243, South Korea
| | - Rajavarman Swaminathan
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
| | - Sang-Jae Kim
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
- Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju, 63243, South Korea
- Nanomaterials & System Lab, Major of Mechanical System Engineering, College of Engineering, Jeju National University, Jeju, 63243, South Korea
| |
Collapse
|
3
|
Chen J, Huang S, Yang Y, Li Z, Liu S, Zhuo Z, Lu N, Zhou X, Liu Y, Li H, Zhai T. Interlayer Delocalized Electrons Activate Basal Plane for Ultrahigh-Current-Density Hydrogen Evolution. NANO LETTERS 2024; 24:8063-8070. [PMID: 38888216 DOI: 10.1021/acs.nanolett.4c01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The basal plane of transition metal dichalcogenides (TMDCs) is inert for the hydrogen evolution reaction (HER) due to its low-efficiency charge transfer kinetics. We propose a strategy of filling the van der Waals (vdW) layer with delocalized electrons to enable vertical penetration of electrons from the collector to the adsorption intermediate vertically. Guided by density functional theory, we achieve this concept by incorporating Cu atoms into the interlayers of tantalum disulfide (TaS2). The delocalized electrons of d-orbitals of the interlayered Cu can constitute the charge transfer pathways in the vertical direction, thus overcoming the hopping migration through vdW gaps. The vertical conductivity of TaS2 increased by 2 orders of magnitude. The TaS2 basal plane HER activity was extracted with an on-chip microcell. Modified by the delocalized electrons, the current density increased by 20 times, reaching an ultrahigh value of 800 mA cm-2 at -0.4 V without iR compensation.
Collapse
Affiliation(s)
- Jianqiang Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Sirui Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Yang Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Zexin Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Shenghong Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Zhiwen Zhuo
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Key Laboratory of Functional Molecular Solids Ministry of Education, and Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Ning Lu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Key Laboratory of Functional Molecular Solids Ministry of Education, and Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Xing Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
4
|
Guo S, Ma M, Wang Y, Wang J, Jiang Y, Duan R, Lei Z, Wang S, He Y, Liu Z. Spatially Confined Microcells: A Path toward TMD Catalyst Design. Chem Rev 2024; 124:6952-7006. [PMID: 38748433 DOI: 10.1021/acs.chemrev.3c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
With the ability to maximize the exposure of nearly all active sites to reactions, two-dimensional transition metal dichalcogenide (TMD) has become a fascinating new class of materials for electrocatalysis. Recently, electrochemical microcells have been developed, and their unique spatial-confined capability enables understanding of catalytic behaviors at a single material level, significantly promoting this field. This Review provides an overview of the recent progress in microcell-based TMD electrocatalyst studies. We first introduced the structural characteristics of TMD materials and discussed their site engineering strategies for electrocatalysis. Later, we comprehensively described two distinct types of microcells: the window-confined on-chip electrochemical microcell (OCEM) and the droplet-confined scanning electrochemical cell microscopy (SECCM). Their setups, working principles, and instrumentation were elucidated in detail, respectively. Furthermore, we summarized recent advances of OCEM and SECCM obtained in TMD catalysts, such as active site identification and imaging, site monitoring, modulation of charge injection and transport, and electrostatic field gating. Finally, we discussed the current challenges and provided personal perspectives on electrochemical microcell research.
Collapse
Affiliation(s)
- Shasha Guo
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Mingyu Ma
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637616, Singapore
| | - Yuqing Wang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Jinbo Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yubin Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ruihuan Duan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 639798, Singapore
| | - Zhendong Lei
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongmin He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 639798, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
| |
Collapse
|
5
|
Chaudhary K, Zulfiqar S, ALOthman ZA, Shakir I, Warsi MF, Cochran EW. Three-dimensional bimodal pore-rich G/MXene sponge amalgamated with vanadium diselenide nanosheets as a high-performance electrode for electrochemical water-oxidation/reduction reactions. Dalton Trans 2024; 53:8177-8190. [PMID: 38683625 DOI: 10.1039/d4dt00602j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Exploring new strategies to design non-precious and efficient electrocatalysts can provide a solution for sluggish electrocatalytic kinetics and sustainable hydrogen energy. Transition metal selenides are potential contenders for bifunctional electrocatalysis owing to their unique layered structure, low band gap, and high intrinsic activities. However, insufficient access to active sites, lethargic water dissociation, and structural degradation of active materials during electrochemical reactions limit their activities, especially in alkaline media. In this article, we report a useful strategy to assemble vanadium diselenide (VSe2) into a 3D MXene/rGO-based sponge-like architecture (VSe2@G/MXe) using hydrothermal and freeze-drying approaches. The 3D hierarchical meso/macro-pore rich sponge-like morphology not only prevents aggregation of VSe2 nanosheets but also offers a kinetics-favorable framework and high robustness to the electrocatalyst. Synergistic coupling of VSe2 and a MXene/rGO matrix yields a heterostructure with a large specific surface area, high conductivity, and multi-dimensional anisotropic pore channels for uninterrupted mass transport and gas diffusion. Consequently, VSe2@G/MXe presented superior electrochemical activity for both the HER and OER compared to its counterparts (VSe2 and VSe2@G), in alkaline media. The overpotentials required to reach a cathodic and anodic current density of 10 mA cm-2 were 153 mV (Tafel slope = 84 mV dec-1) and 241 mV (Tafel slope = 87 mV dec-1), respectively. The Rct values at the open circuit voltage were as low as 9.1 Ω and 1.41 Ω for the HER and OER activity, respectively. Importantly, VSe2@G/MXe withstands a steady current output for a long 24 h operating time. Hence, this work presents a rational design for 3D microstructures with optimum characteristics for efficient bifunctional alkaline water-splitting.
Collapse
Affiliation(s)
- Khadija Chaudhary
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Sonia Zulfiqar
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, Ostrava 701 03, Czech Republic
- Department of Chemical and Biological Engineering, Iowa State University, Sweeney Hall, 618 Bissell Road, Ames, Iowa 50011, USA.
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Imran Shakir
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Farooq Warsi
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Eric W Cochran
- Department of Chemical and Biological Engineering, Iowa State University, Sweeney Hall, 618 Bissell Road, Ames, Iowa 50011, USA.
| |
Collapse
|
6
|
Luo W, Yan X, Pan X, Jiao J, Mai L. What Makes On-Chip Microdevices Stand Out in Electrocatalysis? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305020. [PMID: 37875658 DOI: 10.1002/smll.202305020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Indexed: 10/26/2023]
Abstract
Clean and sustainable energy conversion and storage through electrochemistry shows great promise as an alternative to traditional fuel or fossil-consumption energy systems. With regards to practical and high-efficient electrochemistry application, the rational design of active sites and the accurate description of mechanism remain a challenge. Toward this end, in this Perspective, a unique on-chip micro/nano device coupling nanofabrication and low-dimensional electrochemical materials is presented, in which material structure analysis, field-effect regulation, in situ monitoring, and simulation modeling are highlighted. The critical mechanisms that influence electrochemical response are discussed, and how on-chip micro/nano device distinguishes itself is emphasized. The key challenges and opportunities of on-chip electrochemical platforms are also provided through the Perspective.
Collapse
Affiliation(s)
- Wen Luo
- Department of Physics, School of Science, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Xin Yan
- Department of Physics, School of Science, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Xuelei Pan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Jinying Jiao
- Department of Physics, School of Science, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
7
|
Xia H, Sang X, Shu Z, Shi Z, Li Z, Guo S, An X, Gao C, Liu F, Duan H, Liu Z, He Y. The practice of reaction window in an electrocatalytic on-chip microcell. Nat Commun 2023; 14:6838. [PMID: 37891203 PMCID: PMC10611802 DOI: 10.1038/s41467-023-42645-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
To enhance the efficiency of catalysis, it is crucial to comprehend the behavior of individual nanowires/nanosheets. A developed on-chip microcell facilitates this study by creating a reaction window that exposes the catalyst region of interest. However, this technology's potential application is limited due to frequently-observed variations in data between different cells. In this study, we identify a conductance problem in the reaction windows of non-metallic catalysts as the cause of this issue. We investigate this problem using in-situ electronic/electrochemical measurements and atom-thin nanosheets as model catalysts. Our findings show that a full-open window, which exposes the entire catalyst channel, allows for efficient modulation of conductance, which is ten times higher than a half-open window. This often-overlooked factor has the potential to significantly improve the conductivity of non-metallic catalysts during the reaction process. After examining tens of cells, we develop a vertical microcell strategy to eliminate the conductance issue and enhance measurement reproducibility. Our study offers guidelines for conducting reliable microcell measurements on non-metallic single nanowire/nanosheet catalysts.
Collapse
Affiliation(s)
- Hang Xia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiaoru Sang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhiwen Shu
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha, 410082, P. R. China
| | - Zude Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zefen Li
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Shasha Guo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xiuyun An
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Caitian Gao
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China.
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, P. R. China.
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha, 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, P. R. China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | - Yongmin He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, P. R. China.
| |
Collapse
|
8
|
Wang W, Qi J, Wu Z, Zhai W, Pan Y, Bao K, Zhai L, Wu J, Ke C, Wang L, Ding M, He Q. On-chip electrocatalytic microdevices. Nat Protoc 2023; 18:2891-2926. [PMID: 37596356 DOI: 10.1038/s41596-023-00866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/25/2023] [Indexed: 08/20/2023]
Abstract
On-chip electrocatalytic microdevices (OCEMs) are an emerging electrochemical platform specialized for investigating nanocatalysts at the microscopic level. The OCEM platform allows high-precision electrochemical measurements at the individual nanomaterial level and, more importantly, offers unique perspectives inaccessible with conventional electrochemical methods. This protocol describes the critical concepts, experimental standardization, operational principles and data analysis of OCEMs. Specifically, standard protocols for the measurement of the electrocatalytic hydrogen evolution reaction of individual 2D nanosheets are introduced with data validation, interpretation and benchmarking. A series of factors (e.g., the exposed area of material, the choice of passivation layer and current leakage) that could have effects on the accuracy and reliability of measurement are discussed. In addition, as an example of the high adaptability of OCEMs, the protocol for in situ electrical transport measurement is detailed. We believe that this protocol will promote the general adoption of the OCEM platform and inspire further development in the near future. This protocol requires essential knowledge in chemical synthesis, device fabrication and electrochemistry.
Collapse
Affiliation(s)
- Wenbin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Junlei Qi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zongxiao Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yanghang Pan
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Kai Bao
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jingkun Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Chengxuan Ke
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lingzhi Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
9
|
Laghrissi A, Es-Souni M. Au-Nanorods Supporting Pd and Pt Nanocatalysts for the Hydrogen Evolution Reaction: Pd Is Revealed to Be a Better Catalyst than Pt. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2007. [PMID: 37446522 DOI: 10.3390/nano13132007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Ordered thin films of Au nanorods (NRs) on Ti/Au/Si heterostructure substrates are electrodeposited in thin film aluminum oxide templates and, after template removal, serve as supports for Pd and Pt nanocatalysts. Based on previous work which showed a better electrocatalytic performance for layered Au/Pd nanostructures than monolithic Pd, electrodeposited 20 nm Pd discs on Au-NRs are first investigated in terms of their catalytic activity for the hydrogen evolution reaction (HER) and compared to monolithic 20 nm Pd and Pt discs. To further boost performance, the interfacial interaction area between the Au-NRs supports and the active metals (Pt and Pd) was increased via magnetron sputtering an extremely thin layer of Pt and Pd (20 nm overall sputtered thickness) on the Au-NRs after template removal. In this way, the whole NR surface (top and lateral) was covered with Pt and Pd nanoparticles, ensuring a maximum interfacial contact between the support and the active metal. The HER performance obtained was substantially higher than that of the other nanostructures. A Salient result of the present work, however, is the superior activity obtained for sputtered Pd on Au in comparison to that of sputtered Pt on Au. The results also show that increasing the Au-NR length translates in a strong increase in performance. Density functional theory calculations show that the interfacial electronic interactions between Au and Pd lead to suitable values of hydrogen adsorption energy on all possible sites, thus promoting faster (barrier-free diffusion) hydrogen adsorption and its recombination to H2. A Volmer-Heyrovsky mechanism for HER is proposed, and a volcano plot is suggested based on the results of the Tafel plots and the calculated hydrogen adsorption energies.
Collapse
Affiliation(s)
- Ayoub Laghrissi
- Currently with the Technical Faculty, Mads Clausen Institute, University of Southern Denmark, 6400 Sonderborg, Denmark
| | - Mohammed Es-Souni
- Formerly with Kiel University of Applied Sciences, Grenzstrasse 3, D-24149 Kiel, Germany
| |
Collapse
|
10
|
Wang Y, Meng C, Zhao L, Zhang J, Chen X, Zhou Y. Surface and near-surface engineering design of transition metal catalysts for promoting water splitting. Chem Commun (Camb) 2023. [PMID: 37334928 DOI: 10.1039/d3cc01593a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Transition metal catalysts are widely used in the field of hydrogen production via water electrolysis. The surface state and near-surface environment of the catalysts greatly affect the efficiency of hydrogen production. Therefore, the rational design of surface engineering and near-surface engineering of transition metal catalysts can significantly improve the performance of water electrolysis. This review systematically introduces surface engineering strategies, including heteroatom doping, vacancy engineering, strain regulation, heterojunction effect, and surface reconstruction. These strategies optimize the surface electronic structure of the catalysts, expose more active sites, and promote the formation of highly active species, ultimately enhancing water electrolysis performance. Furthermore, near-surface engineering strategies, such as surface wettability, three-dimensional structure, high-curvature structure, external field assistance, and extra ion addition, are thoroughly discussed. These strategies expedite the mass transfer of reactants and gas products, improve the local chemical environment near the catalyst surface, and contribute toward achieving an industrial-level current density for overall water splitting. Finally, the key challenges faced by surface engineering and near-surface engineering of transition metal catalysts are highlighted and potential solutions are proposed. This review offers essential guidelines for the design and development of efficient transition metal catalysts for water electrolysis.
Collapse
Affiliation(s)
- Yanmin Wang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Chao Meng
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Lei Zhao
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Jialin Zhang
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Xuemin Chen
- College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yue Zhou
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
11
|
Chen D, Zhao Z, Chen G, Li T, Chen J, Ye Z, Lu J. Metal selenides for energy storage and conversion: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Alahmadi M, BEN AOUN S. One-Pot In-Situ Hydrothermal Synthesis of VSe2/MoSe2 Nanocomposite for Enhanced Hydrogen Evolution Reaction. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
13
|
Wang Y, Wang Y, Frisbie CD. Electrochemistry at Back-Gated, Ultrathin ZnO Electrodes: Field-Effect Modulation of Heterogeneous Electron Transfer Rate Constants by 30× with Enhanced Gate Capacitance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9554-9562. [PMID: 36780640 DOI: 10.1021/acsami.2c18549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We report steady-state voltammetry of outer-sphere redox species at back-gated ultrathin ZnO working electrodes in order to determine electron transfer rate constants kET as a function of independently controlled gate bias, VG. We demonstrate that kET can be modulated as much as 30-fold by application of VG ≤ 8 V. The key to this demonstration was integrating the ultrathin (5 nm) ZnO on a high dielectric constant (k) insulator, HfO2 (30 nm), which was grown on a Pd metal gate. The high-k HfO2 dramatically decreased the required VG values and increased the gate-induced charge in ZnO compared to previous studies. Importantly, the enhanced gating power of the Pd/HfO2/ZnO stack meant it was possible to observe a nonmonotonic dependence of kET on VG, which reflects the inherent density of redox acceptor states in solution. This work adds to the growing body of literature demonstrating that electrochemical kinetics (i.e., rate constants and overpotentials) at ultrathin working electrodes can be tuned by VG, independent of the conventional electrochemical working electrode potential.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Yan Wang
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - C Daniel Frisbie
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
14
|
Recent advances in understanding and design of efficient hydrogen evolution electrocatalysts for water splitting: A comprehensive review. Adv Colloid Interface Sci 2023; 311:102811. [PMID: 36436436 DOI: 10.1016/j.cis.2022.102811] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
An unsustainable reliance on fossil fuels is the primary cause of the vast majority of greenhouse gas emissions, which in turn lead to climate change. Green hydrogen (H2), which may be generated by electrolyzing water with renewable power sources, is a possible substitute for fossil fuels. On the other hand, the increasing intricacy of hydrogen evolution electrocatalysts that are presently being explored makes it more challenging to integrate catalytic theories, catalytic fabrication procedures, and characterization techniques. This review will initially present the thermodynamics, kinetics, and associated electrical and structural characteristics for HER electrocatalysts before highlighting design approaches for the electrocatalysts. Secondly, an in-depth discussion regarding the rational design, synthesis, mechanistic insight, and performance improvement of electrocatalysts is centered on both the intrinsic and extrinsic influences. Thirdly, the most recent technological advances in electrocatalytic water-splitting approaches are described. Finally, the difficulties and possibilities associated with generating extremely effective HER electrocatalysts for water-splitting applications are discussed.
Collapse
|
15
|
Chiang CH, Yang YC, Lin JW, Lin YC, Chen PT, Dong CL, Lin HM, Chan KM, Kao YT, Suenaga K, Chiu PW, Chen CW. Bifunctional Monolayer WSe 2/Graphene Self-Stitching Heterojunction Microreactors for Efficient Overall Water Splitting in Neutral Medium. ACS NANO 2022; 16:18274-18283. [PMID: 36305475 DOI: 10.1021/acsnano.2c05986] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Developing efficient bifunctional electrocatalysts in neutral media to avoid the deterioration of electrodes or catalysts under harsh environments has become the ultimate goal in electrochemical water splitting. This work demonstrates the fabrication of an on-chip bifunctional two-dimensional (2D) monolayer (ML) WSe2/graphene heterojunction microreactor for efficient overall water splitting in a neutral medium (pH = 7). Through the synergistic atomic growth of the metallic Cr dopant and graphene stitching contact on the 2D ML WSe2, the bifunctional WSe2/graphene heterojunction microreactor consisting of a full-cell configuration demonstrates excellent performance for overall water splitting in a neutral medium. Atomic doping of metallic Cr atoms onto the 2D ML WSe2 effectively facilitates the charge transfer at the solid-liquid interface. In addition, the direct growth of the self-stitching graphene contact with the 2D WSe2 catalyst largely reduces the contact resistance of the microreactor and further improves the overall water splitting efficiency. A significant reduction of the overpotential of nearly 1000 mV at 10 mA cm-2 at the Cr-doped WSe2/graphene heterojunction microreactor compared to the ML pristine WSe2 counterpart is achieved. The bifunctional WSe2/graphene self-stitching heterojunction microreactor is an ideal platform to investigate the fundamental mechanism of emerging bifunctional 2D catalysts for overall water splitting in a neutral medium.
Collapse
Affiliation(s)
- Chun-Hao Chiang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yueh-Chiang Yang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jia-Wei Lin
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Yung-Chang Lin
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Po-Tuan Chen
- Department of Vehicle Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Hung-Min Lin
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kwun Man Chan
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Ting Kao
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kazu Suenaga
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
- The Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka 567-0047, Japan
| | - Po-Wen Chiu
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Chun-Wei Chen
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
16
|
Friedensen S, Yasini P, Keneipp R, Castan A, Drndić M. Solvent-Induced Degradation of Electrochemically Exfoliated Vanadium Selenide Visualized by Electron Microscopy. ACS OMEGA 2022; 7:42146-42154. [PMID: 36440127 PMCID: PMC9685602 DOI: 10.1021/acsomega.2c04749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Recently discovered two-dimensional ferromagnetic materials (2DFMs) have rapidly gained much interest in the fields of spintronics and computing, where they may prove powerful tools for miniaturizing devices such as magnetic tunnel junctions and spin-transfer torque memory bits. In addition, heterojunctions and twisted bilayer stacks of such materials may yield exotic spin textures. However, preparation of such devices is complicated by the air sensitivity of many 2DFMs. Here, we report details on the preparation of few-to-monolayer flakes of vanadium selenide (VSe2) using electrochemical exfoliation in propylene carbonate. We also present a detailed study of the effects of air on the structure and magnetic properties of bare and passivated VSe2 after different concentrations of surface passivation treatment. We characterized the microstructure of holes in the VSe2 flakes and the formation of new compounds arising from air exposure, solvent exposure during the exfoliating process, and deliberate electron beam irradiation (sculpting). We sculpt VSe2 flakes while retaining the 1T-VSe2 lattice structure, opening the door for top-down patterned high-resolution 2DFM nanostructures. Additionally, investigation of the magnetic response of nanosheets using magnetic force microscopy (MFM) showed that the oxidation-induced damage only affects the surface fields locally and does not quench large-scale magnetic signal. The findings of this study pave the way toward practical incorporation of 2D ferromagnetic materials in nanoelectronics.
Collapse
Affiliation(s)
| | | | - Rachael Keneipp
- Department of Physics and
Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alice Castan
- Department of Physics and
Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marija Drndić
- Department of Physics and
Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
17
|
Sim Y, Chae Y, Kwon SY. Recent advances in metallic transition metal dichalcogenides as electrocatalysts for hydrogen evolution reaction. iScience 2022; 25:105098. [PMID: 36157572 PMCID: PMC9490594 DOI: 10.1016/j.isci.2022.105098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Layered metallic transition metal dichalcogenides (MTMDs) exhibit distinctive electrical and catalytic properties to drive basal plane activity, and, therefore, they have emerged as promising alternative electrocatalysts for sustainable hydrogen evolution reactions (HERs). A key challenge for realizing MTMDs-based electrocatalysts is the controllable and scalable synthesis of high-quality MTMDs and the development of engineering strategies that allow tuning their electronic structures. However, the lack of a method for the direct synthesis of MTMDs retaining the structural stability limits optimizing the structural design for the next generation of robust electrocatalysts. In this review, we highlight recent advances in the synthesis of MTMDs comprising groups VB and VIB and various routes for structural engineering to enhance the HER catalytic performance. Furthermore, we provide insight into the potential future directions and the development of MTMDs with high durability as electrocatalysts to generate green hydrogen through water-splitting technology.
Collapse
Affiliation(s)
- Yeoseon Sim
- Department of Materials Science and Engineering & Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Yujin Chae
- Department of Materials Science and Engineering & Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Soon-Yong Kwon
- Department of Materials Science and Engineering & Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
18
|
Sun F, Tang Q, Jiang DE. Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - De-en Jiang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
19
|
Singh AK, Shukla N, Kavita, Verma DK, Kumar B, Mandal KD, Rastogi RB. Reinforcement of nanoporous lanthanum-doped zinc borate by vanadium selenide nanosheets for improved tribological activity. RSC Adv 2022; 12:18685-18696. [PMID: 35873343 PMCID: PMC9230111 DOI: 10.1039/d2ra02806a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 12/05/2022] Open
Abstract
Nanoporous zinc borate (ZB) and 10% lanthanum-doped porous zinc borate (LZB) were synthesized to explore the role of porosity and doping in zinc borate during lubrication. HR-SEM, TEM, and HR-TEM authenticated nanoporous structures. The tribological properties of their blends with paraffin oil (PO) were compared by employing ASTM D4172 and ASTM D5183 norms on a four-ball tester. Vanadium selenide nanosheets (VSe2) were used to reinforce the structure of LZB for further advancement of the tribological properties. The superiority of the LZB/VSe2 over LZB and VSe2 nanosheets could be adjudged by tribological data. The porosity and lanthanum doping have yielded commendable tribological activity. The VSe2 nanosheets have strengthened the LZB matrix. The other constituent oxides of tribofilm from the LZB matrix, based on EDX analysis and XPS studies of the worn surface, ZnO, B2O3, La2O3, and V2O5, have abetted lubrication. The AFM and SEM investigations of wear track corroborated the tribological results.
Collapse
Affiliation(s)
- Alok K Singh
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India
| | - Nivedita Shukla
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India
| | - Kavita
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India
| | - Dinesh K Verma
- Department of Chemistry, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study & Research, V.B.S. Purvanchal University Jaunpur-222003 U.P India
| | - Bharat Kumar
- Intellectual Property Office Mumbai 400037 the government of India
| | - K D Mandal
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India
| | - Rashmi B Rastogi
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India
| |
Collapse
|
20
|
Pan Y, Wang X, Zhang W, Tang L, Mu Z, Liu C, Tian B, Fei M, Sun Y, Su H, Gao L, Wang P, Duan X, Ma J, Ding M. Boosting the performance of single-atom catalysts via external electric field polarization. Nat Commun 2022; 13:3063. [PMID: 35654804 PMCID: PMC9163078 DOI: 10.1038/s41467-022-30766-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Single-atom catalysts represent a unique catalytic system with high atomic utilization and tunable reaction pathway. Despite current successes in their optimization and tailoring through structural and synthetic innovations, there is a lack of dynamic modulation approach for the single-atom catalysis. Inspired by the electrostatic interaction within specific natural enzymes, here we show the performance of model single-atom catalysts anchored on two-dimensional atomic crystals can be systematically and efficiently tuned by oriented external electric fields. Superior electrocatalytic performance have been achieved in single-atom catalysts under electrostatic modulations. Theoretical investigations suggest a universal "onsite electrostatic polarization" mechanism, in which electrostatic fields significantly polarize charge distributions at the single-atom sites and alter the kinetics of the rate determining steps, leading to boosted reaction performances. Such field-induced on-site polarization offers a unique strategy for simulating the catalytic processes in natural enzyme systems with quantitative, precise and dynamic external electric fields.
Collapse
Affiliation(s)
- Yanghang Pan
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Xinzhu Wang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Weiyang Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, Jiangsu, China
| | - Lingyu Tang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Zhangyan Mu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Cheng Liu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Bailin Tian
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Muchun Fei
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Yamei Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Huanhuan Su
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, Jiangsu, China
| | - Libo Gao
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, Jiangsu, China
| | - Peng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, Jiangsu, China
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China.
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China.
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China.
| |
Collapse
|
21
|
Xiang H, Zheng Y, Chen Y, Xu Y, Hu TS, Feng Y, Zhou Y, Liu S, Chen X. Self-gating enhanced carrier transfer in semiconductor electrocatalyst verified in microdevice. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Quadrupling the stored charge by extending the accessible density of states. Chem 2022. [DOI: 10.1016/j.chempr.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Liu F, Shi C, Guo X, He Z, Pan L, Huang Z, Zhang X, Zou J. Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200307. [PMID: 35435329 PMCID: PMC9218766 DOI: 10.1002/advs.202200307] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/07/2022] [Indexed: 05/05/2023]
Abstract
The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed.
Collapse
Affiliation(s)
- Fan Liu
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Xiaolei Guo
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Zexing He
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Zhen‐Feng Huang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Ji‐Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| |
Collapse
|
24
|
K A SR, Adhikari S, Radhakrishnan S, Johari P, Rout CS. Effect of cobalt doping on the enhanced energy storage performance of 2D vanadium diselenide: experimental and theoretical investigations. NANOTECHNOLOGY 2022; 33:295703. [PMID: 35417889 DOI: 10.1088/1361-6528/ac66ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Vanadium Diselenide (VSe2) is a prominent candidate in the 2D transition metal dichalcogenides family for energy storage applications. Herein, we report the experimental and theoretical investigations on the effect of cobalt doping in 1T-VSe2. The energy storage performance in terms of specific capacitance, stability and energy and power density is studied. It is observed that 3% Co doped VSe2exhibits better energy storage performance as compared to other concentrations, with a specific capacitance of ∼193 F g-1in a two-electrode symmetric configuration. First-principles Density Functional Theory based simulations support the experimental findings by suggesting an enhanced quantum capacitance value after the Co doping in the 1T-VSe2. By making use of the advantages of the specific electrode materials, a solid state asymmetric supercapacitor (SASC) is also assembled with MoS2as the negative electrode. The assembled Co-VSe2//MoS2SASC device shows excellent energy storage performance with a maximum energy density of 33.36 Wh kg-1and a maximum power density of 5148 W kg-1with a cyclic stability of 90% after 5000 galvano static charge discharge cycles.
Collapse
Affiliation(s)
- Sree Raj K A
- Centre for Nano and Material Science, Jain University, Jain global campus, Jakkasandra, Ramanagaram, Banglore-562112, India
| | - Surajit Adhikari
- Department of Physics, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh-201314, India
| | - Sithara Radhakrishnan
- Centre for Nano and Material Science, Jain University, Jain global campus, Jakkasandra, Ramanagaram, Banglore-562112, India
| | - Priya Johari
- Department of Physics, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh-201314, India
| | - Chandra Sekhar Rout
- Centre for Nano and Material Science, Jain University, Jain global campus, Jakkasandra, Ramanagaram, Banglore-562112, India
| |
Collapse
|
25
|
Cai L, Huo J, Zou P, Li G, Liu J, Xu W, Gao M, Zhang S, Wang JQ. Key Role of Lorentz Excitation in the Electromagnetic-Enhanced Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15243-15249. [PMID: 35382552 DOI: 10.1021/acsami.2c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alternating magnetic fields (AMFs) are recently demonstrated as a promising strategy to promote the electrochemical catalytic reactions. However, the underlying mechanisms are still an open question. In this work, we systematically investigated the influence of AMFs on the hydrogen evolution reaction (HER) by using a Fe-Co-Ni-P-B magnetic catalyst. The HER catalytic efficiency is boosted significantly by AMFs, with 27% increase in current density at 20 mT. This is attributed to the enhancement of charge-transfer efficiency by Lorentz interaction with a minor contribution from the heating effect. The high magnetic permeability and skin effect of electromagnetic eddy current for the Fe-Co-Ni-P-B electrode can magnify the Lorentz effect. These findings clarify the mechanism of AMF-enhanced HER catalytic activities and open a door for designing a high-efficiency electrocatalysis system.
Collapse
Affiliation(s)
- Liang Cai
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Juntao Huo
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zou
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guowei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jian Liu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wei Xu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Meng Gao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Shuzhi Zhang
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jun-Qiang Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Ma H, Qian Q, Qin B, Wan Z, Wu R, Zhao B, Zhang H, Zhang Z, Li J, Zhang Z, Li B, Wang L, Duan X. Controlled Synthesis of Ultrathin PtSe 2 Nanosheets with Thickness-Tunable Electrical and Magnetoelectrical Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103507. [PMID: 34713628 PMCID: PMC8728827 DOI: 10.1002/advs.202103507] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Thickness-dependent chemical and physical properties have gained tremendous interest since the emergence of two-dimensional (2D) materials. Despite attractive prospects, the thickness-controlled synthesis of ultrathin nanosheets remains an outstanding challenge. Here, a chemical vapor deposition (CVD) route is reported to controllably synthesize high-quality PtSe2 nanosheets with tunable thickness and explore their thickness-dependent electronic and magnetotransport properties. Raman spectroscopic studies demonstrate all Eg , A1 g , A2 u , and Eu modes are red shift in thicker nanosheets. Electrical measurements demonstrate the 1.7 nm thick nanosheet is a semiconductor with room temperature field-effect mobility of 66 cm2 V-1 s-1 and on/off ratio of 106 . The 2.3-3.8 nm thick nanosheets show slightly gated modulation with high field-effect mobility up to 324 cm2 V-1 s-1 at room-temperature. When the thickness is over 3.8 nm, the nanosheets show metallic behavior with conductivity and breakdown current density up to 6.8 × 105 S m-1 and 6.9 × 107 A cm-2 , respectively. Interestingly, magnetoresistance (MR) studies reveal magnetic orders exist in this intrinsically non-magnetic material system, as manifested by the thickness-dependent Kondo effect, where both metal to insulator transition and negative MR appear upon cooling. Together, these studies suggest that PtSe2 is an intriguing system for both developing novel functional electronics and conducting fundamental 2D magnetism study.
Collapse
Affiliation(s)
- Huifang Ma
- Hunan Key Laboratory of Two-Dimensional Materials and State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Qi Qian
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
| | - Biao Qin
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Zhong Wan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
| | - Ruixia Wu
- Hunan Key Laboratory of Two-Dimensional Materials and State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bei Zhao
- Hunan Key Laboratory of Two-Dimensional Materials and State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Hongmei Zhang
- Hunan Key Laboratory of Two-Dimensional Materials and State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zucheng Zhang
- Hunan Key Laboratory of Two-Dimensional Materials and State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jia Li
- Hunan Key Laboratory of Two-Dimensional Materials and State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhengwei Zhang
- Hunan Key Laboratory of Two-Dimensional Materials and State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Bo Li
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Lin Wang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Xidong Duan
- Hunan Key Laboratory of Two-Dimensional Materials and State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
27
|
Luo W, Xiong W, Han Y, Yan X, Mai L. Application of two-dimensional layered materials in surface-enhanced Raman spectroscopy (SERS). Phys Chem Chem Phys 2022; 24:26398-26412. [DOI: 10.1039/d2cp03650a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
2D materials are promising SERS substrates. Seven feasible strategies to improve the SERS performance of 2D substrate materials are summarized. The prospect of future progress in SERS and possible challenges of 2D layered materials are put forwarded.
Collapse
Affiliation(s)
- Wen Luo
- Department of Physical Science & Technology, School of Science, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan, 430062, P. R. China
| | - Weiwei Xiong
- Department of Physical Science & Technology, School of Science, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China
| | - Yuenan Han
- Department of Physical Science & Technology, School of Science, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China
| | - Xin Yan
- Department of Physical Science & Technology, School of Science, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 Hubei, China
| |
Collapse
|
28
|
Chen X, Chang P, Zhang S, Guan L, Ren G, Tao J. Nano-dendrite structured cobalt phosphide based hybrid supercapacitor with high energy storage and cycling stability. NANOTECHNOLOGY 2021; 33:085403. [PMID: 34781277 DOI: 10.1088/1361-6528/ac39c8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
The supercapacitors possessing high energy storage and long serving period have strategic significance to solve the energy crisis issues. Herein, fluffy nano-dendrite structured cobalt phosphide (CoP) is grown on carbon cloth through simple hydrothermal and electrodeposition treatments (CoP/C-HE). Benefit from its excellent electrical conductivity and special structure, CoP/C-HE manifests a high specific capacity of 461.4 C g-1at 1 A g-1. Meanwhile, the capacity retention remains 92.8% over 10 000 cycles at 5 A g-1, proving the superior cycling stability. The phase conversion of Co2P during the activation process also contributes to the improved performance. The assembled two-electrode asymmetric supercapacitor demonstrates excellent performance in terms of energy density (42.4 W h kg-1at a power density of 800.0 W kg-1) and cycling stability (86.3% retention over 5000 cycles at 5 A g-1), which is superior to many reported cobalt-based supercapacitors. Our work promotes the potential of transition metal phosphides for the applications in supercapacitors.
Collapse
Affiliation(s)
- Xiaoyu Chen
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, People's Republic of China
| | - Pu Chang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, People's Republic of China
| | - Shuo Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, People's Republic of China
| | - Lixiu Guan
- School of Science, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Guohe Ren
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, People's Republic of China
| | - Junguang Tao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, People's Republic of China
| |
Collapse
|
29
|
Kwon IS, Kwak IH, Debela TT, Kim JY, Yoo SJ, Kim JG, Park J, Kang HS. Phase-Transition Mo 1-xV xSe 2 Alloy Nanosheets with Rich V-Se Vacancies and Their Enhanced Catalytic Performance of Hydrogen Evolution Reaction. ACS NANO 2021; 15:14672-14682. [PMID: 34496215 DOI: 10.1021/acsnano.1c04453] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alloys of transition-metal dichalcogenide can display distinctive phase evolution because of their two-dimensional structures. Herein, we report the colloidal synthesis of Mo1-xVxSe2 alloy nanosheets with full composition tuning. Alloying led to a phase transition at x = 0.7 from the semiconducting 2H phase MoSe2 to the metallic 1T phase VSe2. It also produced significant V and Se vacancies, which became the richest in the 2H phase at x = 0.3-0.5. Extensive spin-polarized density functional theory calculations consistently predicted the 2H-1T phase transition at x = 0.7, in agreement with the experimental results. The vacancy formation energy also supports the formation of V and Se vacancies. Alloying in the 2H phase enhanced the electrocatalytic performance toward hydrogen evolution reaction (HER) at x = 0.3 (in 0.5 M H2SO4) or 0.4 (in 1 M KOH). The Gibbs free energy along the HER pathway indicates that this maximum performance is due to the highest concentration of active V and Se vacancy sites.
Collapse
Affiliation(s)
- Ik Seon Kwon
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - In Hye Kwak
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Tekalign Terfa Debela
- Institute for Application of Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| | - Ju Yeon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
- Institute for Application of Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| | - Seung Jo Yoo
- Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon 305-806, Republic of Korea
| | - Jin-Gyu Kim
- Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon 305-806, Republic of Korea
| | - Jeunghee Park
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Hong Seok Kang
- Department of Nano and Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| |
Collapse
|
30
|
Agyapong‐Fordjour FO, Yun SJ, Kim H, Choi W, Kirubasankar B, Choi SH, Adofo LA, Boandoh S, Kim YI, Kim SM, Kim Y, Lee YH, Han Y, Kim KK. Substitutional Vanadium Sulfide Nanodispersed in MoS 2 Film for Pt-Scalable Catalyst. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003709. [PMID: 34085785 PMCID: PMC8373103 DOI: 10.1002/advs.202003709] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/13/2021] [Indexed: 05/12/2023]
Abstract
Among transition metal dichalcogenides (TMdCs) as alternatives for Pt-based catalysts, metallic-TMdCs catalysts have highly reactive basal-plane but are unstable. Meanwhile, chemically stable semiconducting-TMdCs show limiting catalytic activity due to their inactive basal-plane. Here, metallic vanadium sulfide (VSn ) nanodispersed in a semiconducting MoS2 film (V-MoS2 ) is proposed as an efficient catalyst. During synthesis, vanadium atoms are substituted into hexagonal monolayer MoS2 to form randomly distributed VSn units. The V-MoS2 film on a Cu electrode exhibits Pt-scalable catalytic performance; current density of 1000 mA cm-2 at 0.6 V and overpotential of -0.08 V at a current density of 10 mA cm-2 with excellent cycle stability for hydrogen-evolution-reaction (HER). The high intrinsic HER performance of V-MoS2 is explained by the efficient electron transfer from the Cu electrode to chalcogen vacancies near vanadium sites with optimal Gibbs free energy (-0.02 eV). This study provides insight into ways to engineer TMdCs at the atomic-level to boost intrinsic catalytic activity for hydrogen evolution.
Collapse
Affiliation(s)
- Frederick Osei‐Tutu Agyapong‐Fordjour
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
- Department of Energy and Materials EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Seok Joon Yun
- Center for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Sungkyunkwan UniversitySuwon16419Republic of Korea
| | - Hyung‐Jin Kim
- Department of Energy and Materials EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Wooseon Choi
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
| | | | - Soo Ho Choi
- Center for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Sungkyunkwan UniversitySuwon16419Republic of Korea
| | - Laud Anim Adofo
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Stephen Boandoh
- Center for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Sungkyunkwan UniversitySuwon16419Republic of Korea
| | - Yong In Kim
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Soo Min Kim
- Department of ChemistrySookmyung Women's UniversitySeoul140742Republic of Korea
| | - Young‐Min Kim
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
- Center for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Sungkyunkwan UniversitySuwon16419Republic of Korea
| | - Young Hee Lee
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
- Center for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Sungkyunkwan UniversitySuwon16419Republic of Korea
| | - Young‐Kyu Han
- Department of Energy and Materials EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Ki Kang Kim
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
- Center for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Sungkyunkwan UniversitySuwon16419Republic of Korea
| |
Collapse
|
31
|
Ping X, Liang D, Wu Y, Yan X, Zhou S, Hu D, Pan X, Lu P, Jiao L. Activating a Two-Dimensional PtSe 2 Basal Plane for the Hydrogen Evolution Reaction through the Simultaneous Generation of Atomic Vacancies and Pt Clusters. NANO LETTERS 2021; 21:3857-3863. [PMID: 33914541 DOI: 10.1021/acs.nanolett.1c00380] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) PtSe2 has emerged as a promising ultrathin electrocatalyst due to its excellent catalytic activity and conductivity. However, the PtSe2 basal plane is inert for the hydrogen evolution reaction (HER), which greatly limits its electrocatalytic performance. Here, in light of theoretical calculations, we designed a facile approach for activating the 2D PtSe2 basal plane for the HER by simultaneously introducing atomic vacancies of Se, Pt, and Pt clusters through a mild Ar plasma treatment. We tracked changes in the structures and catalytic performance of PtSe2 by combining microscopic imaging, spectroscopic mapping, and electrochemical measurements in microcells. The highest performance of the activated PtSe2 basal plane that we obtained was superior to those of other 2D transition metal dichalcogenide-based electrocatalysts measured in microcells in terms of the overpotential, the Tafel slope, and the exchange current density. This study demonstrates the great potential of activated 2D PtSe2 as an ultrathin catalyst for the HER and provides new insights on the rational design of 2D electrocatalysts.
Collapse
Affiliation(s)
- Xiaofan Ping
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dan Liang
- State Key Laboratory of Information Photonics and Optical Communications and School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yueyang Wu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xingxu Yan
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
- Irvine Materials Research Institute (IMRI), University of California, Irvine, California 92697, United States
| | - Shengxue Zhou
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dake Hu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
- Irvine Materials Research Institute (IMRI), University of California, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Pengfei Lu
- State Key Laboratory of Information Photonics and Optical Communications and School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Liying Jiao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Theoretical screening of VSe2 as support for enhanced electrocatalytic performance of transition-metal single atoms. J Colloid Interface Sci 2021; 590:210-218. [DOI: 10.1016/j.jcis.2021.01.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 01/23/2023]
|
33
|
Miao C, Zhang T, Li F, Zhang L, Sun J, Liu D, Wu L, Wang H, Chen F, He L, Han N, Ma Y, Dai Y, Yang ZX. Defect-engineered three-dimensional vanadium diselenide microflowers/nanosheets on carbon cloth by chemical vapor deposition for high-performance hydrogen evolution reaction. NANOTECHNOLOGY 2021; 32:265402. [PMID: 33684904 DOI: 10.1088/1361-6528/abecb8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
In the past decades, defect engineering has become an effective strategy to significantly improve the hydrogen evolution reaction (HER) efficiency of electrocatalysts. In this work, a facile chemical vapor deposition (CVD) method is firstly adopted to demonstrate defect engineering in high-efficiency HER electrocatalysts of vanadium diselenide nanostructures. For practical applications, the conductive substrate of carbon cloth (CC) is selected as the growth substrate. By using a four-time CVD method, uniform three-dimensional microflowers with defect-rich small nanosheets on the surface are prepared directly on the CC substrate, displaying a stable HER performance with a low Tafel slope value of 125 mV dec-1and low overpotential voltage of 295 mV at a current density of 10 mA cm-2in alkaline electrolyte. Based on the results of x-ray photoelectron spectra and density functional theory calculations, the impressive HER performance originates from the Se vacancy-related active sites of small nanosheets, while the microflower/nanosheet homoepitaxy structure facilitates the carrier flow between the active sites and conductive substrate. All the results present a new route to achieve defect engineering using the facile CVD technique, and pave a novel way to prepare high-activity layered electrocatalysts directly on a conductive substrate.
Collapse
Affiliation(s)
- Chengcheng Miao
- School of Physics, School of Microelectronics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Ting Zhang
- School of Physics, School of Microelectronics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Fulin Li
- School of Physics, School of Microelectronics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Lei Zhang
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jiamin Sun
- School of Physics, School of Microelectronics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Dong Liu
- School of Physics, School of Microelectronics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Liqian Wu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Hang Wang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Fenghua Chen
- School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Longbing He
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, 210096, People's Republic of China
| | - Ning Han
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Yandong Ma
- School of Physics, School of Microelectronics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Ying Dai
- School of Physics, School of Microelectronics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Zai-Xing Yang
- School of Physics, School of Microelectronics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| |
Collapse
|
34
|
Su J, Liu G, Liu L, Chen J, Hu X, Li Y, Li H, Zhai T. Recent Advances in 2D Group VB Transition Metal Chalcogenides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005411. [PMID: 33694286 DOI: 10.1002/smll.202005411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/25/2020] [Indexed: 06/12/2023]
Abstract
2D materials have received considerable research interest owing to their abundant material systems and remarkable properties. Among them, 2D group VB transition metal chalcogenides (GVTMCs) stand out as emerging 2D metallic materials and significantly broaden the research scope of 2D materials. 2D GVTMCs have great advantages in electrical transport, 2D magnetism, charge density wave, sensing, catalysis, and charge storage, making them attractive in the fields of functional devices and energy chemistry. In this review, the recent progress of 2D GVTMCs is summarized systematically from fundamental properties, growth methodologies to potential applications. The challenges and prospects are also discussed for future research in this field.
Collapse
Affiliation(s)
- Jianwei Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Guiheng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Lixin Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Jiazhen Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Xiaozong Hu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| |
Collapse
|
35
|
Yang H, Zhao Y, Wen Q, Yang R, Liu Y, Li H, Zhai T. Single WTe 2 Sheet-Based Electrocatalytic Microdevice for Directly Detecting Enhanced Activity of Doped Electronegative Anions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14302-14311. [PMID: 33733726 DOI: 10.1021/acsami.1c01091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The high electrical conductivity of 1T'-WTe2 deserves particular attention and may show a high potential for hydrogen evolution reaction (HER) catalysis. However, the actual activity certainly does not match expectations, and the inferior HER activity is actually still ambiguous at the atomic level. Unraveling the underlying HER behaviors of 1T'-WTe2 will give rise to a new family of HER catalysts. Our structural analysis reveals that the inferior activity could result from insufficient charge density around the Te site and blocked adsorption channel at the W site, which cause too weak hydrogen adsorption. Herein, we fabricated a single WTe2 sheet-based electrocatalytic microdevice for directly extracting enhanced HER activity of doped electronegative F atoms. The overpotential at -10 mA cm-2 reduced to 0.27 V after F doping compared to 0.45 V for the original state. In situ electrochemical measurement and electrical tests on a single sheet indicate that doped F can regulate surface charge and hydrogen adsorption behavior. Furthermore, the theory simulation uncovers that the smaller atomic radius of F contributes to an empty coordination environment; meanwhile, strong electronegativity induces hydrogen adsorption. Thus, the ΔGH* at W sites around the doped F is as low as 0.18 eV. Synergistically modulating the charge properties and opening steric hindrance provides a new pathway to rationally construct electrocatalysts and beyond.
Collapse
Affiliation(s)
- Huan Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Yinghe Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Qunlei Wen
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Ruoou Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
36
|
Fu Q, Han J, Wang X, Xu P, Yao T, Zhong J, Zhong W, Liu S, Gao T, Zhang Z, Xu L, Song B. 2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1907818. [PMID: 32578254 PMCID: PMC11468112 DOI: 10.1002/adma.201907818] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 05/11/2023]
Abstract
Hydrogen has been deemed as an ideal substitute fuel to fossil energy because of its renewability and the highest energy density among all chemical fuels. One of the most economical, ecofriendly, and high-performance ways of hydrogen production is electrochemical water splitting. Recently, 2D transition metal dichalcogenides (also known as 2D TMDs) showed their utilization potentiality as cost-effective hydrogen evolution reaction (HER) catalysts in water electrolysis. Herein, recent representative research efforts and systematic progress made in 2D TMDs are reviewed, and future opportunities and challenges are discussed. Furthermore, general methods of synthesizing 2D TMDs materials are introduced in detail and the advantages and disadvantages for some specific methods are provided. This explanation includes several important regulation strategies of creating more active sites, heteroatoms doping, phase engineering, construction of heterostructures, and synergistic modulation which are capable of optimizing the electrical conductivity, exposure to the catalytic active sites, and reaction energy barrier of the electrode material to boost the HER kinetics. In the last section, the current obstacles and future chances for the development of 2D TMDs electrocatalysts are proposed to provide insight into and valuable guidelines for fabricating effective HER electrocatalysts.
Collapse
Affiliation(s)
- Qiang Fu
- School of PhysicsHarbin Institute of TechnologyHarbin150001China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsHarbin Institute of TechnologyHarbin150001China
| | - Xianjie Wang
- School of PhysicsHarbin Institute of TechnologyHarbin150001China
| | - Ping Xu
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Tai Yao
- Interdisciplinary Science Research CenterHarbin Institute of TechnologyHarbin150001China
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhou215123China
| | - Wenwu Zhong
- School of Advanced StudyTaizhou UniversityTaizhou317000China
| | - Shengwei Liu
- School of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510006China
| | - Tangling Gao
- Institute of PetrochemistryHeilongjiang Academy of SciencesHarbin150040China
| | - Zhihua Zhang
- School of Materials Science and EngineeringDalian Jiaotong UniversityDalian116028China
| | - Lingling Xu
- Key Laboratory for Photonic and Electronic Bandgap MaterialsMinistry of EducationSchool of Physics and Electronic EngineeringHarbin Normal UniversityHarbin150025China
| | - Bo Song
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsHarbin Institute of TechnologyHarbin150001China
| |
Collapse
|
37
|
Hu C, Tu S, Tian N, Ma T, Zhang Y, Huang H. Photocatalysis Enhanced by External Fields. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009518] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cheng Hu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes School of Materials Science and Technology China University of Geosciences Beijing 100083 P. R. China
| | - Shuchen Tu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes School of Materials Science and Technology China University of Geosciences Beijing 100083 P. R. China
| | - Na Tian
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes School of Materials Science and Technology China University of Geosciences Beijing 100083 P. R. China
| | - Tianyi Ma
- Discipline of Chemistry University of Newcastle Callaghan NSW 2308 Australia
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes School of Materials Science and Technology China University of Geosciences Beijing 100083 P. R. China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes School of Materials Science and Technology China University of Geosciences Beijing 100083 P. R. China
| |
Collapse
|
38
|
Hu C, Tu S, Tian N, Ma T, Zhang Y, Huang H. Photocatalysis Enhanced by External Fields. Angew Chem Int Ed Engl 2021; 60:16309-16328. [PMID: 32770594 DOI: 10.1002/anie.202009518] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2021] [Indexed: 11/12/2022]
Abstract
The efficient conversion of solar energy by means of photocatalysis shows huge potential to relieve the ongoing energy crisis and increasing environmental pollution. However, unsatisfactory conversion efficiency still hinders its practical application. The introduction of external fields can remarkably enhance the photocatalytic performance of semiconductors from the inside out. This review focuses on recent advances in the application of diverse external fields, including microwaves, mechanical stress, temperature gradient, electric field, magnetic field, and coupled fields, to boost photocatalytic reactions, for applications in, for example, contaminant degradation, water splitting, CO2 reduction, and bacterial inactivation. The relevant reinforcement mechanisms of photoabsorption, the transport and separation of photoinduced charges, and adsorption of reagents by the external fields are highlighted. Finally, the challenges and outlook for the development of external-field-enhanced photocatalysis are presented.
Collapse
Affiliation(s)
- Cheng Hu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Shuchen Tu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Na Tian
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Tianyi Ma
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| |
Collapse
|
39
|
Shetty M, Walton A, Gathmann SR, Ardagh MA, Gopeesingh J, Resasco J, Birol T, Zhang Q, Tsapatsis M, Vlachos DG, Christopher P, Frisbie CD, Abdelrahman OA, Dauenhauer PJ. The Catalytic Mechanics of Dynamic Surfaces: Stimulating Methods for Promoting Catalytic Resonance. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03336] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Manish Shetty
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
- Catalysis Center for Energy Innovation, 150 Academy Street, Newark, Delaware 19716, United States
| | - Amber Walton
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Sallye R. Gathmann
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - M. Alexander Ardagh
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
- Catalysis Center for Energy Innovation, 150 Academy Street, Newark, Delaware 19716, United States
| | - Joshua Gopeesingh
- University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Joaquin Resasco
- University of California Santa Barbara, Engineering II Building, Santa Barbara, California 93106, United States
| | - Turan Birol
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Qi Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Michael Tsapatsis
- Catalysis Center for Energy Innovation, 150 Academy Street, Newark, Delaware 19716, United States
- Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723, United States
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Dionisios G. Vlachos
- Catalysis Center for Energy Innovation, 150 Academy Street, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Phillip Christopher
- Catalysis Center for Energy Innovation, 150 Academy Street, Newark, Delaware 19716, United States
- University of California Santa Barbara, Engineering II Building, Santa Barbara, California 93106, United States
| | - C. Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Omar A. Abdelrahman
- Catalysis Center for Energy Innovation, 150 Academy Street, Newark, Delaware 19716, United States
- University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Paul J. Dauenhauer
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
- Catalysis Center for Energy Innovation, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
40
|
Huang J, Pan X, Liao X, Yan M, Dunn B, Luo W, Mai L. In situ monitoring of the electrochemically induced phase transition of thermodynamically metastable 1T-MoS 2 at nanoscale. NANOSCALE 2020; 12:9246-9254. [PMID: 32307502 DOI: 10.1039/d0nr02161j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
1T-MoS2 is widely used in the hydrogen evolution reaction (HER) due to its abundant active sites and good conductivity. However, 1T-MoS2 is thermodynamically metastable due to the distorted crystal structure. Recently, researchers have detected the J1 and A1g Raman peaks after the HER process and confirmed that the 2H-1T phase possesses good stability. Therefore, continuous HER is likely to transform 1T-MoS2 into a stable 2H-1T mixed phase. The in situ characterization of 1T-MoS2 individual nanosheets in the HER process is important to understand the intrinsic electrocatalytic behaviour at confined nanoscale, which has rarely been investigated. Herein, we built an individual 1T-MoS2 nanosheet micro-nano device by the intercalation of N-butyllithium into 2H-MoS2. Then, the device was kept at an overpotential (η) of 450 mV, which was much lower than the onset potential, for 20 minutes to ensure continuous HER. Through this electrochemical treatment, we successfully obtained a mixed phase of 2H-1T and monitored the electrochemical phase transition by in situ Raman mapping and atomic force microscopy (AFM). The HER performance of the 2H-1T phase was superior to that of 1T-MoS2 and 2H-MoS2. Additionally, computational simulations demonstrated that the 2H-1T phase exhibited optimal hydrogen adsorption energy. The presented work displays the excellent catalysis of the mixed phase obtained by the electrochemical phase transition, which provides new directions for improving the catalytic activity of TMDs.
Collapse
Affiliation(s)
- Junxiao Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Hülsey MJ, Lim CW, Yan N. Promoting heterogeneous catalysis beyond catalyst design. Chem Sci 2020; 11:1456-1468. [PMID: 32180922 PMCID: PMC7058091 DOI: 10.1039/c9sc05947d] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/12/2020] [Indexed: 12/14/2022] Open
Abstract
Despite the indisputable success of conventional approaches to manipulate the performance of heterogeneous catalysts by tuning the composition and structure of active sites, future research on catalysis engineering will likely go beyond the catalyst itself. Recently, several auxiliary promotion methods, either promoting the activity of reagents or enabling optimized adsorbate-catalyst interactions, have been proven as viable strategies to enhance catalytic reactions. Those auxiliary promotion methods range from electric/magnetic fields and electric potentials to mechanic stress, significantly altering the properties of reagent molecules and/or the surface characteristics of nanostructured catalysts. Apart from static enhancement effects, they in principle also allow for spatially and temporally variable modifications of catalyst surfaces. While some of those methods have been demonstrated, some are only theoretically predicted, opening exciting avenues for future experimental advances. Besides fundamental descriptions and comparisons of each activation method, in this perspective we plan to provide examples for the applications of those techniques for a variety of catalytic reactions as diverse as N2 and CO2 hydrogenation as well as electrochemical water splitting. Finally, we provide a unifying view and guidelines for future research into the use of promotion methods, generating deeper understanding of the complex dynamics on the nanoparticle surface under auxiliary promotion and the expansion of auxiliary techniques to different sustainability-related reactions.
Collapse
Affiliation(s)
- Max J Hülsey
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117585 Singapore , Singapore .
| | - Chia Wei Lim
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117585 Singapore , Singapore .
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117585 Singapore , Singapore .
| |
Collapse
|
42
|
Wang Z, Wu H, Li Q, Besenbacher F, Li Y, Zeng XC, Dong M. Reversing Interfacial Catalysis of Ambipolar WSe 2 Single Crystal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901382. [PMID: 32042552 PMCID: PMC7001631 DOI: 10.1002/advs.201901382] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/10/2019] [Indexed: 05/26/2023]
Abstract
An improved understanding of the origin of the electrocatalytic activity is of importance to the rational design of highly efficient electrocatalysts for the hydrogen evolution reaction. Here, an ambipolar single-crystal tungsten diselenide (WSe2) semiconductor is employed as a model system where the conductance and carrier of WSe2 can be individually tuned by external electric fields. The field-tuned electrochemical microcell is fabricated based on the single-crystal WSe2 and the catalytic activity of the WSe2 microcell is measured versus the external electric field. Results show that WSe2 with electrons serving as the dominant carrier yields much higher activity than WSe2 with holes serving as the dominant carrier even both systems exhibit similar conductance. The catalytic activity enhancement can be characterized by the Tafel slope decrease from 138 to 104 mV per decade, while the electron area concentration increases from 0.64 × 1012 to 1.72 × 1012 cm-2. To further understand the underlying mechanism, the Gibbs free energy and charge distribution for adsorbed hydrogen on WSe2 versus the area charge concentration is systematically computed, which is in line with experiments. This comprehensive study not only sheds light on the mechanism underlying the electrocatalysis processes, but also offers a strategy to achieve higher electrocatalytic activity.
Collapse
Affiliation(s)
- Zegao Wang
- College of Materials Science and EngineeringSichuan UniversityChengdu610065China
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityDK‐8000Aarhus CDenmark
| | - Hong‐Hui Wu
- Department of ChemistryUniversity of Nebraska‐LincolnNE68588LincolnUSA
- Beijing Advanced Innovation Center for Materials Genome EngineeringState Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijing100083China
| | - Qiang Li
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityDK‐8000Aarhus CDenmark
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationShandong UniversityJinan250100China
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityDK‐8000Aarhus CDenmark
| | - Yanrong Li
- State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Xiao Cheng Zeng
- Department of ChemistryUniversity of Nebraska‐LincolnNE68588LincolnUSA
- Department of Chemical and Biomolecular Engineering and Department of Mechanical and Materials EngineeringUniversity of Nebraska‐LincolnNE68588LincolnUSA
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityDK‐8000Aarhus CDenmark
| |
Collapse
|
43
|
Yang D, Cao L, Huang J, Kajiyoshi K, Feng L, Kou L, Liu Q, Feng L. Generation of Ni 3S 2 nanorod arrays with high-density bridging S 22- by introducing a small amount of Na 3VO 4·12H 2O for superior hydrogen evolution reaction. NANOSCALE 2020; 12:2063-2070. [PMID: 31912846 DOI: 10.1039/c9nr09027d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bridging S22- moieties have been demonstrated to be highly active sites existing in metal polysulfides for the hydrogen evolution reaction (HER), thus the incorporation of high-density bridging S22- into a Ni3S2 material to improve its electrocatalytic HER performance is highly desirable and challenging. Herein, we report a novel Ni3S2 nanorod array decorated with (020)-oriented VS4 nanocrystals grown on nickel foam (Shig-NS-rod/NF) via a simple and facile solvothermal method. Results show that the in situ incorporation of VS4 not only triggers the formation of such a nanorod array structure, but also contributes to the uniform grafting of high-density and high catalytically active bridging S22- sites on the interface between Ni3S2 and VS4 for enhanced HER activity, and also promotes the absorption ability of OH- radicals and thus accelerates the HER Volmer step in alkaline media. As expected, the resultant Shig-NS-rod/NF material exhibits impressive catalytic performance toward the HER, with a much lower overpotential of 137 mV at 10 mA cm-2 and a long-term durability for at least 22 h, and is superior to Ni3S2 nanorod arrays with low-density bridging S22- (Slow-NS-rod/NF) and NS-film/NF counterparts (without VS4), even outperforming the NF-supported 20% Pt/C at a large current density of over 120 mA cm-2. Our findings put forward fresh insight into the rational design of highly efficient electrocatalysts toward the HER for green hydrogen fuel production.
Collapse
Affiliation(s)
- Dan Yang
- School of Materials Science & Engineering, Xi'an Key Laboratory of Green Processing for Ceramic Materials, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an Shaanxi 710021, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Yang H, He Q, Liu Y, Li H, Zhang H, Zhai T. On-chip electrocatalytic microdevice: an emerging platform for expanding the insight into electrochemical processes. Chem Soc Rev 2020; 49:2916-2936. [DOI: 10.1039/c9cs00601j] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This comprehensive summary of on-chip electrocatalytic microdevices will expand the insight into electrochemical processes, ranging from dynamic exploration to performance optimization.
Collapse
Affiliation(s)
- Huan Yang
- State Key Laboratory of Material Processing and Die & Mould Technology
- School of Materials Science and Engineering
- Huazhong University of Science and Technology
- Wuhan
- P. R. China
| | - Qiyuan He
- Department of Materials Science and Engineering
- City University of Hong Kong
- Hong Kong
- P. R. China
| | - Youwen Liu
- State Key Laboratory of Material Processing and Die & Mould Technology
- School of Materials Science and Engineering
- Huazhong University of Science and Technology
- Wuhan
- P. R. China
| | - Huiqiao Li
- State Key Laboratory of Material Processing and Die & Mould Technology
- School of Materials Science and Engineering
- Huazhong University of Science and Technology
- Wuhan
- P. R. China
| | - Hua Zhang
- Department of Chemistry
- City University of Hong Kong
- Hong Kong
- P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM)
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology
- School of Materials Science and Engineering
- Huazhong University of Science and Technology
- Wuhan
- P. R. China
| |
Collapse
|
45
|
Zhang XY, Yuan H, Mao F, Wen CF, Zheng LR, Liu PF, Yang HG. Boosting Alkaline Hydrogen Evolution Electrocatalysis over Metallic Nickel Sites through Synergistic Coupling with Vanadium Sesquioxide. CHEMSUSCHEM 2019; 12:5063-5069. [PMID: 31642194 DOI: 10.1002/cssc.201902599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/21/2019] [Indexed: 06/10/2023]
Abstract
For renewable and sustainable energy, developing cut-price and high-efficiency electrocatalysts for the hydrogen evolution reaction (HER) by alkaline water electrolysis is of paramount importance. In this study, a compound electrocatalyst composed of nickel-vanadium sesquioxide nanoparticles supported on porous nickel foam (Ni-V2 O3 /NF) is found to exhibit electrocatalytic performance towards HER that is superior to that of the commercial Pt/C catalyst, with nearly zero onset overpotential, an extremely low overpotential of 25 mV to obtain a current density of -10 mA cm-2 , a Tafel slope of 58 mV dec-1 , and a good durability for 24 h in 1.0 m KOH. Theoretical calculations reveal that the presence of V2 O3 optimizes the electronic structure of active Ni components and continuously accelerates the dissociation of water molecules, which in turn improves the HER kinetics. The present work will advance the development of highly efficient nanocomposite electrocatalysts for alkaline water electrocatalysis.
Collapse
Affiliation(s)
- Xin Yu Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Haiyang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Fangxin Mao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Chun Fang Wen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Li Rong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| |
Collapse
|
46
|
Zhang L, He X, Xing K, Zhang W, Tadich A, Wong PKJ, Qi DC, Wee ATS. Is Charge-Transfer Doping Possible at the Interfaces of Monolayer VSe 2 with MoO 3 and K? ACS APPLIED MATERIALS & INTERFACES 2019; 11:43789-43795. [PMID: 31657202 DOI: 10.1021/acsami.9b16822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Being a metallic transition-metal dichalcogenide, monolayer vanadium diselenide (VSe2) exhibits many novel properties, such as charge density waves and magnetism. Its interfaces with other materials can potentially be used in device applications as well as for manipulating its intrinsic properties. Here, we present a scanning tunneling microscopy and synchrotron-based X-ray photoemission spectroscopy study of the surface charge-transfer doping using efficient electron-withdrawing and electron-donating materials, that is, molybdenum trioxide (MoO3) and potassium (K), on the molecular beam epitaxy-grown monolayer VSe2 on highly oriented pyrolytic graphite (HOPG). We demonstrate that monolayer VSe2 is immune to MoO3- and K-doping effects. However, at the monolayer edges where the local chemical reactivity is higher because of Se deficiency, MoO3 is seen to react with VSe2 to form molybdenum dioxide (MoO2) and vanadium dioxide (VO2). Compared to the obvious charge-transfer doping effects of MoO3 and K on HOPG, the electronic structure of monolayer VSe2 is barely perturbed. This is attributed to the large density of states at the Fermi level of monolayer VSe2 carrying the metallic character. This work provides new insights into the chemical and electronic properties of monolayer VSe2, important for future VSe2-based electronic device design.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Physics , National University of Singapore , 2 Science Drive 3 , Singapore 117542 , Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre , National University of Singapore , 6 Science Drive 2 , Singapore 117546 , Singapore
| | - Xiaoyue He
- Department of Physics , National University of Singapore , 2 Science Drive 3 , Singapore 117542 , Singapore
- Songshan Lake Materials Laboratory , Dongguan , Guangdong 523808 , China
| | - Kaijian Xing
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Victoria 3086 , Australia
| | - Wen Zhang
- Department of Physics , National University of Singapore , 2 Science Drive 3 , Singapore 117542 , Singapore
| | - Anton Tadich
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Victoria 3086 , Australia
- Australian Synchrotron , 800 Blackburn Road , Clayton , Victoria 3168 , Australia
| | - Ping Kwan Johnny Wong
- Centre for Advanced 2D Materials and Graphene Research Centre , National University of Singapore , 6 Science Drive 2 , Singapore 117546 , Singapore
| | - Dong-Chen Qi
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Victoria 3086 , Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, School of Chemistry, Physics and Mechanical Engineering , Queensland University of Technology , Brisbane , Queensland 4001 , Australia
| | - Andrew T S Wee
- Department of Physics , National University of Singapore , 2 Science Drive 3 , Singapore 117542 , Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre , National University of Singapore , 6 Science Drive 2 , Singapore 117546 , Singapore
| |
Collapse
|
47
|
Wang Y, Udyavara S, Neurock M, Frisbie CD. Field Effect Modulation of Electrocatalytic Hydrogen Evolution at Back-Gated Two-Dimensional MoS 2 Electrodes. NANO LETTERS 2019; 19:6118-6123. [PMID: 31434483 DOI: 10.1021/acs.nanolett.9b02079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrocatalytic activity for hydrogen evolution at monolayer MoS2 electrodes can be enhanced by the application of an electric field normal to the electrode plane. The electric field is produced by a gate electrode lying underneath the MoS2 and separated from it by a dielectric. Application of a voltage to the back-side gate electrode while sweeping the MoS2 electrochemical potential in a conventional manner in 0.5 M H2SO4 results in up to a 140 mV reduction in overpotential for hydrogen evolution at current densities of 50 mA/cm2. Tafel analysis indicates that the exchange current density is correspondingly improved by a factor of four to 0.1 mA/cm2 as gate voltage is increased. Density functional theory calculations support a mechanism in which the higher hydrogen evolution activity is caused by gate-induced increase in the electronic charge on Mo metal centers adjacent to the S vacancies (the active sites), leading to enhanced Mo-H bond strengths. Overall, our findings indicate that the back-gated working electrode architecture is a convenient and versatile platform for investigating the connection between tunable electronic charge at active sites and overpotential for electrocatalytic processes on ultrathin electrode materials.
Collapse
Affiliation(s)
- Yan Wang
- Department of Chemical Engineering and Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Sagar Udyavara
- Department of Chemical Engineering and Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Matthew Neurock
- Department of Chemical Engineering and Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
48
|
Li L, Qin Z, Ries L, Hong S, Michel T, Yang J, Salameh C, Bechelany M, Miele P, Kaplan D, Chhowalla M, Voiry D. Role of Sulfur Vacancies and Undercoordinated Mo Regions in MoS 2 Nanosheets toward the Evolution of Hydrogen. ACS NANO 2019; 13:6824-6834. [PMID: 31136708 DOI: 10.1021/acsnano.9b01583] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Low-dimensional materials have been examined as electrocatalysts for the hydrogen evolution reaction (HER). Among them, two-dimensional transition metal dichalcogenides (2D-TMDs) such as MoS2 have been identified as potential candidates. However, the performance of TMDs toward HER in both acidic and basic media remains inferior to that of noble metals such as Pt and its alloys. This calls for investigating the influence of controlled defect engineering of 2D TMDs on their performance toward hydrogen production. Here, we explored the HER activity from defective multilayered MoS2 over a large range of surface S vacancy concentrations up to 90%. Amorphous MoS2 and 2H MoS2 with ultrarich S vacancies demonstrated the highest HER performance in acid and basic electrolytes, respectively. We also report that the HER performance from multilayered MoS2 can be divided into two domains corresponding to "point defects" at low concentrations of surface S vacancies (Stage 1) and large regions of undercoordinated Mo atoms for high concentrations of surface S vacancies (Stage 2). The highest performance is obtained for Stage 2 in the presence of undercoordinated Mo atoms with a TOF of ∼2 s-1 at an overpotential of 160 mV in 0.1 M KOH which compares favorably to the best results in the literature. Overall, our work provides deeper insight on the HER mechanism from defected MoS2 and provides guidance for the development of defect-engineered TMD-based electrocatalysts.
Collapse
Affiliation(s)
- Lei Li
- Institut Européen des Membranes, IEM, UMR 5635 , Université Montpellier , ENSCM, CNRS, 34095 Montpellier Cedex 5, France
- College of Biological, Chemical Sciences and Engineering , Jiaxing University , Jiaxing , Zhejiang 314001 , China
| | - Zhaodan Qin
- Institut Européen des Membranes, IEM, UMR 5635 , Université Montpellier , ENSCM, CNRS, 34095 Montpellier Cedex 5, France
| | - Lucie Ries
- Institut Européen des Membranes, IEM, UMR 5635 , Université Montpellier , ENSCM, CNRS, 34095 Montpellier Cedex 5, France
| | - Song Hong
- College of Materials Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Thierry Michel
- Laboratoire Charles Coulomb, L2C , Université de Montpellier , CNRS, 34095 Montpellier , France
| | - Jieun Yang
- Materials Science and Engineering , Rutgers University , 607 Taylor Road , Piscataway , New Jersey 08854 , United States
| | - Chrystelle Salameh
- Institut Européen des Membranes, IEM, UMR 5635 , Université Montpellier , ENSCM, CNRS, 34095 Montpellier Cedex 5, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635 , Université Montpellier , ENSCM, CNRS, 34095 Montpellier Cedex 5, France
| | - Philippe Miele
- Institut Européen des Membranes, IEM, UMR 5635 , Université Montpellier , ENSCM, CNRS, 34095 Montpellier Cedex 5, France
- Institut Universitaire de France (IUF) , MESRI , 1 rue Descartes , 75231 Paris Cedex 05, France
| | - Daniel Kaplan
- US Army RDECOM-ARDEC , Advanced Materials Technology Branch , Picatinny Arsenal , New Jersey 07806 , United States
| | - Manish Chhowalla
- Materials Science and Engineering , Rutgers University , 607 Taylor Road , Piscataway , New Jersey 08854 , United States
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR 5635 , Université Montpellier , ENSCM, CNRS, 34095 Montpellier Cedex 5, France
| |
Collapse
|
49
|
Wong PKJ, Zhang W, Bussolotti F, Yin X, Herng TS, Zhang L, Huang YL, Vinai G, Krishnamurthi S, Bukhvalov DW, Zheng YJ, Chua R, N'Diaye AT, Morton SA, Yang CY, Ou Yang KH, Torelli P, Chen W, Goh KEJ, Ding J, Lin MT, Brocks G, de Jong MP, Castro Neto AH, Wee ATS. Evidence of Spin Frustration in a Vanadium Diselenide Monolayer Magnet. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901185. [PMID: 30997712 DOI: 10.1002/adma.201901185] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/30/2019] [Indexed: 06/09/2023]
Abstract
Monolayer VSe2 , featuring both charge density wave and magnetism phenomena, represents a unique van der Waals magnet in the family of metallic 2D transition-metal dichalcogenides (2D-TMDs). Herein, by means of in situ microscopy and spectroscopic techniques, including scanning tunneling microscopy/spectroscopy, synchrotron X-ray and angle-resolved photoemission, and X-ray absorption, direct spectroscopic signatures are established, that identify the metallic 1T-phase and vanadium 3d1 electronic configuration in monolayer VSe2 grown on graphite by molecular-beam epitaxy. Element-specific X-ray magnetic circular dichroism, complemented with magnetic susceptibility measurements, further reveals monolayer VSe2 as a frustrated magnet, with its spins exhibiting subtle correlations, albeit in the absence of a long-range magnetic order down to 2 K and up to a 7 T magnetic field. This observation is attributed to the relative stability of the ferromagnetic and antiferromagnetic ground states, arising from its atomic-scale structural features, such as rotational disorders and edges. The results of this study extend the current understanding of metallic 2D-TMDs in the search for exotic low-dimensional quantum phenomena, and stimulate further theoretical and experimental studies on van der Waals monolayer magnets.
Collapse
Affiliation(s)
- Ping Kwan Johnny Wong
- Centre for Advanced 2D Materials (CA2DM) and Graphene Research Centre (GRC), National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
| | - Wen Zhang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Fabio Bussolotti
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*Star), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Xinmao Yin
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Tun Seng Herng
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Lei Zhang
- Centre for Advanced 2D Materials (CA2DM) and Graphene Research Centre (GRC), National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Yu Li Huang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Giovanni Vinai
- Instituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Area Science Park, S.S. Km 163.5, Trieste, I-34149, Italy
| | - Sridevi Krishnamurthi
- Computational Materials Science, Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500, AE, Enschede, The Netherlands
| | - Danil W Bukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, 210037, P. R. China
- Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002, Yekaterinburg, Russia
| | - Yu Jie Zheng
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Rebekah Chua
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Alpha T N'Diaye
- Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Simon A Morton
- Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chao-Yao Yang
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - Kui-Hon Ou Yang
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - Piero Torelli
- Instituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Area Science Park, S.S. Km 163.5, Trieste, I-34149, Italy
| | - Wei Chen
- Centre for Advanced 2D Materials (CA2DM) and Graphene Research Centre (GRC), National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
- Department of Chemistry, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Kuan Eng Johnson Goh
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*Star), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Jun Ding
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Minn-Tsong Lin
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - Geert Brocks
- Computational Materials Science, Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500, AE, Enschede, The Netherlands
| | - Michel P de Jong
- NanoElectronics Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500, AE, Enschede, The Netherlands
| | - Antonio H Castro Neto
- Centre for Advanced 2D Materials (CA2DM) and Graphene Research Centre (GRC), National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Andrew Thye Shen Wee
- Centre for Advanced 2D Materials (CA2DM) and Graphene Research Centre (GRC), National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| |
Collapse
|
50
|
Hot electron-driven electrocatalytic hydrogen evolution reaction on metal-semiconductor nanodiode electrodes. Sci Rep 2019; 9:6208. [PMID: 30996284 PMCID: PMC6470139 DOI: 10.1038/s41598-019-42566-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
Hot electrons generated on metal catalysts influence atomic and molecular processes, leading to hot electron-driven catalytic reactions. Here, we show the acceleration of electrocatalytic hydrogen evolution caused by internal injection of hot electrons on Pt/Si metal–semiconductor electrodes. When a forward bias voltage is applied to the Pt/Si contact, hot electrons are injected. The excess energy of these electrons allows them to reach the Pt/electrolyte interface and reduce the adsorbed hydrogen ions to form H2 (2H+ + 2e−→H2). We show that the onset potential of the hydrogen evolution reaction shifts positively by 160 mV while the cathodic current exhibits an 8-fold increase in the presence of hot electrons. The effect disappears when the thickness of the Pt film exceeds the mean free path of the hot electrons. The concept of a hot electron-driven reaction can lead to the development of a novel mechanism for controlling reactivity at liquid–solid interfaces.
Collapse
|