1
|
Zhang S, Zhong R, Younis MR, He H, Xu H, Li G, Yang R, Lui S, Wang Y, Wu M. Hydrogel Applications in the Diagnosis and Treatment of Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39366948 DOI: 10.1021/acsami.4c11855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Glioblastoma multiforme (GBM), a common malignant neurological tumor, has boundaries indistinguishable from those of normal tissue, making complete surgical removal ineffective. The blood-brain barrier (BBB) further impedes the efficacy of radiotherapy and chemotherapy, leading to suboptimal treatment outcomes and a heightened probability of recurrence. Hydrogels offer multiple advantages for GBM diagnosis and treatment, including overcoming the BBB for improved drug delivery, controlled drug release for long-term efficacy, and enhanced relaxation properties of magnetic resonance imaging (MRI) contrast agents. Hydrogels, with their excellent biocompatibility and customizability, can mimic the in vivo microenvironment, support tumor cell culture, enable drug screening, and facilitate the study of tumor invasion and metastasis. This paper reviews the classification of hydrogels and recent research for the diagnosis and treatment of GBM, including their applications as cell culture platforms and drugs including imaging contrast agents carriers. The mechanisms of drug release from hydrogels and methods to monitor the activity of hydrogel-loaded drugs are also discussed. This review is intended to facilitate a more comprehensive understanding of the current state of GBM research. It offers insights into the design of integrated hydrogel-based GBM diagnosis and treatment with the objective of achieving the desired therapeutic effect and improving the prognosis of GBM.
Collapse
Affiliation(s)
- Shuaimei Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Renming Zhong
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital, Chengdu, Sichuan 610041, P. R. China
| | - Muhammad Rizwan Younis
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Hualong He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hong Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Ruiyan Yang
- Department of Biology, Macalester College, Saint Paul, Minnesota 55105, United States
| | - Su Lui
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
2
|
Liu Y, Zhang L, Wei Z, Wang T, Yang X, Tian J, Hui H. Transformer for low concentration image denoising in magnetic particle imaging. Phys Med Biol 2024; 69:175014. [PMID: 39137818 DOI: 10.1088/1361-6560/ad6ede] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Objective.Magnetic particle imaging (MPI) is an emerging tracer-basedin vivoimaging technology. The use of MPI at low superparamagnetic iron oxide nanoparticle concentrations has the potential to be a promising area of clinical application due to the inherent safety for humans. However, low tracer concentrations reduce the signal-to-noise ratio of the magnetization signal, leading to severe noise artifacts in the reconstructed MPI images. Hardware improvements have high complexity, while traditional methods lack robustness to different noise levels, making it difficult to improve the quality of low concentration MPI images.Approach.Here, we propose a novel deep learning method for MPI image denoising and quality enhancing based on a sparse lightweight transformer model. The proposed residual-local transformer structure reduces model complexity to avoid overfitting, in which an information retention block facilitates feature extraction capabilities for the image details. Besides, we design a noisy concentration dataset to train our model. Then, we evaluate our method with both simulated and real MPI image data.Main results.Simulation experiment results show that our method can achieve the best performance compared with the existing deep learning methods for MPI image denoising. More importantly, our method is effectively performed on the real MPI image of samples with an Fe concentration down to 67μgFeml-1.Significance.Our method provides great potential for obtaining high quality MPI images at low concentrations.
Collapse
Affiliation(s)
- Yuanduo Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People's Republic of China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Liwen Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People's Republic of China
| | - Zechen Wei
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People's Republic of China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Tan Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People's Republic of China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xin Yang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People's Republic of China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People's Republic of China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing 100191, People's Republic of China
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
- National Key Laboratory of Kidney Diseases, Beijing 100853, People's Republic of China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People's Republic of China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- National Key Laboratory of Kidney Diseases, Beijing 100853, People's Republic of China
| |
Collapse
|
3
|
Yang S, Liu J, Yuan H, Cheng Q, Shen W, Lv Y, Xiao Y, Zhang L, Li P. Synergistic Photothermal Therapy and Chemotherapy Enabled by Tumor Microenvironment-Responsive Targeted SWCNT Delivery. Int J Mol Sci 2024; 25:9177. [PMID: 39273127 PMCID: PMC11394823 DOI: 10.3390/ijms25179177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
As a novel therapeutic approach, photothermal therapy (PTT) combined with chemotherapy can synergistically produce antitumor effects. Herein, dithiodipropionic acid (DTDP) was used as a donor of disulfide bonds sensitive to the tumor microenvironment for establishing chemical bonding between the photosensitizer indocyanine green amino (ICG-NH2) and acidified single-walled carbon nanotubes (CNTs). The CNT surface was then coated with conjugates (HD) formed by the targeted modifier hyaluronic acid (HA) and 1,2-tetragacylphosphatidyl ethanolamine (DMPE). After doxorubicin hydrochloride (DOX), used as the model drug, was loaded by CNT carriers, functional nano-delivery systems (HD/CNTs-SS-ICG@DOX) were developed. Nanosystems can effectively induce tumor cell (MCF-7) death in vitro by accelerating cell apoptosis, affecting cell cycle distribution and reactive oxygen species (ROS) production. The in vivo antitumor activity results in tumor-bearing model mice, further verifying that HD/CNTs-SS-ICG@DOX inhibited tumor growth most significantly by mediating a synergistic effect between chemotherapy and PTT, while various functional nanosystems have shown good biological tissue safety. In conclusion, the composite CNT delivery systems developed in this study possess the features of high biocompatibility, targeted delivery, and responsive drug release, and can achieve the efficient coordination of chemotherapy and PTT, with broad application prospects in cancer treatment.
Collapse
Affiliation(s)
- Shuoye Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, China
| | - Jiaxin Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Huajian Yuan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qianqian Cheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Weiwei Shen
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yanteng Lv
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yongmei Xiao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lu Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Peng Li
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
4
|
Xie M, Meng F, Wang P, Díaz-García AM, Parkhats M, Santos-Oliveira R, Asim MH, Bostan N, Gu H, Yang L, Li Q, Yang Z, Lai H, Cai Y. Surface Engineering of Magnetic Iron Oxide Nanoparticles for Breast Cancer Diagnostics and Drug Delivery. Int J Nanomedicine 2024; 19:8437-8461. [PMID: 39170101 PMCID: PMC11338174 DOI: 10.2147/ijn.s477652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Data published in 2020 by the International Agency for Research on Cancer (IARC) of the World Health Organization show that breast cancer (BC) has become the most common cancer globally, affecting more than 2 million women each year. The complex tumor microenvironment, drug resistance, metastasis, and poor prognosis constitute the primary challenges in the current diagnosis and treatment of BC. Magnetic iron oxide nanoparticles (MIONPs) have emerged as a promising nanoplatform for diagnostic tumor imaging as well as therapeutic drug-targeted delivery due to their unique physicochemical properties. The extensive surface engineering has given rise to multifunctionalized MIONPs. In this review, the latest advancements in surface modification strategies of MIONPs over the past five years are summarized and categorized as constrast agents and drug delivery platforms. Additionally, the remaining challenges and future prospects of MIONPs-based targeted delivery are discussed.
Collapse
Affiliation(s)
- Mengjie Xie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Laboratory of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528400, People’s Republic of China
| | - Panpan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | | | - Marina Parkhats
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, RJ, 21941906, Brazil
| | | | - Nazish Bostan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Honghui Gu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Lina Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Qi Li
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Zhenjiang Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Haibiao Lai
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528400, People’s Republic of China
| | - Yu Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Laboratory of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| |
Collapse
|
5
|
Rezaei B, Tay ZW, Mostufa S, Manzari ON, Azizi E, Ciannella S, Moni HEJ, Li C, Zeng M, Gómez-Pastora J, Wu K. Magnetic nanoparticles for magnetic particle imaging (MPI): design and applications. NANOSCALE 2024; 16:11802-11824. [PMID: 38809214 DOI: 10.1039/d4nr01195c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Recent advancements in medical imaging have brought forth various techniques such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound, each contributing to improved diagnostic capabilities. Most recently, magnetic particle imaging (MPI) has become a rapidly advancing imaging modality with profound implications for medical diagnostics and therapeutics. By directly detecting the magnetization response of magnetic tracers, MPI surpasses conventional imaging modalities in sensitivity and quantifiability, particularly in stem cell tracking applications. Herein, this comprehensive review explores the fundamental principles, instrumentation, magnetic nanoparticle tracer design, and applications of MPI, offering insights into recent advancements and future directions. Novel tracer designs, such as zinc-doped iron oxide nanoparticles (Zn-IONPs), exhibit enhanced performance, broadening MPI's utility. Spatial encoding strategies, scanning trajectories, and instrumentation innovations are elucidated, illuminating the technical underpinnings of MPI's evolution. Moreover, integrating machine learning and deep learning methods enhances MPI's image processing capabilities, paving the way for more efficient segmentation, quantification, and reconstruction. The potential of superferromagnetic iron oxide nanoparticle chains (SFMIOs) as new MPI tracers further advanced the imaging quality and expanded clinical applications, underscoring the promising future of this emerging imaging modality.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Zhi Wei Tay
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Tsukuba, Ibaraki 305-8564, Japan
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Omid Nejati Manzari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Ebrahim Azizi
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Hur-E-Jannat Moni
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Changzhi Li
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Minxiang Zeng
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
6
|
He J, Li Y, Zhang P, Hui H, Tian J. A fused LASSO operator for fast 3D magnetic particle imaging reconstruction. Phys Med Biol 2024; 69:135002. [PMID: 38815602 DOI: 10.1088/1361-6560/ad524b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Objective.Magnetic particle imaging (MPI) is a promising imaging modality that leverages the nonlinear magnetization behavior of superparamagnetic iron oxide nanoparticles to determine their concentration distribution. Previous optimization models with multiple regularization terms have been proposed to achieve high-quality MPI reconstruction, but these models often result in increased computational burden, particularly for dense gridding 3D fields of view. In order to achieve faster reconstruction speeds without compromising reconstruction quality, we have developed a novel fused LASSO operator, total sum-difference (TSD), which effectively captures the sparse and smooth priors of MPI images.Methods.Through an analysis-synthesis equivalence strategy and a constraint smoothing strategy, the TSD regularized model was solved using the fast iterative soft-thresholding algorithm (FISTA). The resulting reconstruction method, TSD-FISTA, boasts low computational complexity and quadratic convergence rate over iterations.Results.Experimental results demonstrated that TSD-FISTA required only 10% and 37% of the time to achieve comparable or superior reconstruction quality compared to commonly used fused LASSO-based alternating direction method of multipliers and Tikhonov-based algebraic reconstruction techniques, respectively.Significance.TSD-FISTA shows promise for enabling real-time 3D MPI reconstruction at high frame rates for large fields of view.
Collapse
Affiliation(s)
- Jie He
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing 100191, People's Republic of China
| | - Yimeng Li
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing 100191, People's Republic of China
| | - Peng Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- National Key Laboratory of Kidney Diseases, Beijing 100853, People's Republic of China
| | - Jie Tian
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing 100191, People's Republic of China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- National Key Laboratory of Kidney Diseases, Beijing 100853, People's Republic of China
| |
Collapse
|
7
|
Toomajian V, Tundo A, Ural EE, Greeson EM, Contag CH, Makela AV. Magnetic Particle Imaging Reveals that Iron-Labeled Extracellular Vesicles Accumulate in Brains of Mice with Metastases. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30860-30873. [PMID: 38860682 PMCID: PMC11194773 DOI: 10.1021/acsami.4c04920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
The incidence of breast cancer remains high worldwide and is associated with a significant risk of metastasis to the brain that can be fatal; this is due, in part, to the inability of therapeutics to cross the blood-brain barrier (BBB). Extracellular vesicles (EVs) have been found to cross the BBB and further have been used to deliver drugs to tumors. EVs from different cell types appear to have different patterns of accumulation and retention as well as the efficiency of bioactive cargo delivery to recipient cells in the body. Engineering EVs as delivery tools to treat brain metastases, therefore, will require an understanding of the timing of EV accumulation and their localization relative to metastatic sites. Magnetic particle imaging (MPI) is a sensitive and quantitative imaging method that directly detects superparamagnetic iron. Here, we demonstrate MPI as a novel tool to characterize EV biodistribution in metastatic disease after labeling EVs with superparamagnetic iron oxide (SPIO) nanoparticles. Iron-labeled EVs (FeEVs) were collected from iron-labeled parental primary 4T1 tumor cells and brain-seeking 4T1BR5 cells, followed by injection into the mice with orthotopic tumors or brain metastases. MPI quantification revealed that FeEVs were retained for longer in orthotopic mammary carcinomas compared to SPIOs. MPI signal due to iron could only be detected in brains of mice bearing brain metastases after injection of FeEVs, but not SPIOs, or FeEVs when mice did not have brain metastases. These findings indicate the potential use of EVs as a therapeutic delivery tool in primary and metastatic tumors.
Collapse
Affiliation(s)
- Victoria
A. Toomajian
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biomedical Engineering, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Anthony Tundo
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Evran E. Ural
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biomedical Engineering, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Emily M. Greeson
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Microbiology, Genetics & Immunology, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Christopher H. Contag
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biomedical Engineering, Michigan State
University, East Lansing, Michigan 48824, United States
- Department
of Microbiology, Genetics & Immunology, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Ashley V. Makela
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Shan S, Zhang C, Cheng M, Qi Y, Yu D, Wildgruber M, Ma X. SPFS: SNR peak-based frequency selection method to alleviate resolution degradation in MPI real-time imaging. Phys Med Biol 2024; 69:115028. [PMID: 38593815 DOI: 10.1088/1361-6560/ad3c90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Objective. The primary objective of this study is to address the reconstruction time challenge in magnetic particle imaging (MPI) by introducing a novel approach named SNR-peak-based frequency selection (SPFS). The focus is on improving spatial resolution without compromising reconstruction speed, thereby enhancing the clinical potential of MPI for real-time imaging.Approach. To overcome the trade-off between reconstruction time and spatial resolution in MPI, the researchers propose SPFS as an innovative frequency selection method. Unlike conventional SNR-based selection, SPFS prioritizes frequencies with signal-to-noise ratio (SNR) peaks that capture crucial system matrix information. This adaptability to varying quantities of selected frequencies enhances versatility in the reconstruction process. The study compares the spatial resolution of MPI reconstruction using both SNR-based and SPFS frequency selection methods, utilizing simulated and real device data.Main results.The research findings demonstrate that the SPFS approach substantially improves image resolution in MPI, especially when dealing with a limited number of frequency components. By focusing on SNR peaks associated with critical system matrix information, SPFS mitigates the spatial resolution degradation observed in conventional SNR-based selection methods. The study validates the effectiveness of SPFS through the assessment of MPI reconstruction spatial resolution using both simulated and real device data, highlighting its potential to address a critical limitation in the field.Significance.The introduction of SPFS represents a significant breakthrough in MPI technology. The method not only accelerates reconstruction time but also enhances spatial resolution, thus expanding the clinical potential of MPI for various applications. The improved real-time imaging capabilities of MPI, facilitated by SPFS, hold promise for advancements in drug delivery, plaque assessment, tumor treatment, cerebral perfusion evaluation, immunotherapy guidance, andin vivocell tracking.
Collapse
Affiliation(s)
- Shihao Shan
- School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, People's Republic of China
| | - Chenglong Zhang
- School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, People's Republic of China
| | - Min Cheng
- Xintai hospital of traditional Chinese medicine, Tai'an, Shandong, People's Republic of China
| | - Yafei Qi
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Dexin Yu
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Munich D-81337, Germany
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, People's Republic of China
| |
Collapse
|
9
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
10
|
Xie X, Zhai J, Zhou X, Guo Z, Lo PC, Zhu G, Chan KWY, Yang M. Magnetic Particle Imaging: From Tracer Design to Biomedical Applications in Vasculature Abnormality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306450. [PMID: 37812831 DOI: 10.1002/adma.202306450] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Indexed: 10/11/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique based on the response of magnetic nanoparticles (MNPs) to oscillating drive fields at the center of a static magnetic gradient. In contrast to magnetic resonance imaging (MRI), which is driven by uniform magnetic fields and projects the anatomic information of the subjects, MPI directly tracks and quantifies MNPs in vivo without background signals. Moreover, it does not require radioactive tracers and has no limitations on imaging depth. This article first introduces the basic principles of MPI and important features of MNPs for imaging sensitivity, spatial resolution, and targeted biodistribution. The latest research aiming to optimize the performance of MPI tracers is reviewed based on their material composition, physical properties, and surface modifications. While the unique advantages of MPI have led to a series of promising biomedical applications, recent development of MPI in investigating vascular abnormalities in cardiovascular and cerebrovascular systems, and cancer are also discussed. Finally, recent progress and challenges in the clinical translation of MPI are discussed to provide possible directions for future research and development.
Collapse
Affiliation(s)
- Xulin Xie
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Jiao Zhai
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Zhengjun Guo
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
- Department of Oncology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Pui-Chi Lo
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
11
|
Mata Corral MY, Alvarez DE, Poon W. Quantifying nanoparticle delivery: challenges, tools, and advances. Curr Opin Biotechnol 2024; 85:103042. [PMID: 38065039 DOI: 10.1016/j.copbio.2023.103042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/22/2023] [Indexed: 02/09/2024]
Abstract
This review explores challenges and methods for quantifying nanoparticle delivery in therapeutic applications. We discuss three main approaches: (1) functional readouts that assess therapeutic effects post nanoparticle administration, (2) nanocarrier tracking that directly monitors the nanoparticle localization, and (3) cargo tracking that infers nanoparticle localization by measuring encapsulated agents or attached surface tags. Reanalysis of the Wilhelm et al. Cancer Nanomedicine Repository dataset found mixed quantification methodologies, which could cause misleading conclusions. We discuss potential pitfalls in each quantification approach and highlight recent advancements in novel technologies. It is important that researchers select appropriate quantification methods based on their objectives and consider integrating multiple approaches for a comprehensive understanding of in vivo nanoparticle behavior to facilitate their clinical translation.
Collapse
Affiliation(s)
- Mario Y Mata Corral
- Department of Metallurgical, Materials, and Biomedical Engineering, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, USA
| | - Damian E Alvarez
- Department of Metallurgical, Materials, and Biomedical Engineering, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, USA
| | - Wilson Poon
- Department of Metallurgical, Materials, and Biomedical Engineering, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, USA.
| |
Collapse
|
12
|
Miller HA, Zhang Y, Smith BR, Frieboes HB. Anti-tumor effect of pH-sensitive drug-loaded nanoparticles optimized via an integrated computational/experimental approach. NANOSCALE 2024; 16:1999-2011. [PMID: 38193595 DOI: 10.1039/d3nr06414j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The acidic pH of tumor tissue has been used to trigger drug release from nanoparticles. However, dynamic interactions between tumor pH and vascularity present challenges to optimize therapy to particular microenvironment conditions. Despite recent development of pH-sensitive nanomaterials that can accurately quantify drug release from nanoparticles, tailoring release to maximize tumor response remains elusive. This study hypothesizes that a computational modeling-based platform that simulates the heterogeneously vascularized tumor microenvironment can enable evaluation of the complex intra-tumoral dynamics involving nanoparticle transport and pH-dependent drug release, and predict optimal nanoparticle parameters to maximize the response. To this end, SPNCD nanoparticles comprising superparamagnetic cores of iron oxide (Fe3O4) and a poly(lactide-co-glycolide acid) shell loaded with doxorubicin (DOX) were fabricated. Drug release was measured in vitro as a function of pH. A 2D model of vascularized tumor growth was calibrated to experimental data and used to evaluate SPNCD effect as a function of drug release rate and tissue vascular heterogeneity. Simulations show that pH-dependent drug release from SPNCD delays tumor regrowth more than DOX alone across all levels of vascular heterogeneity, and that SPNCD significantly inhibit tumor radius over time compared to systemic DOX. The minimum tumor radius forecast by the model was comparable to previous in vivo SPNCD inhibition data. Sensitivity analyses of the SPNCD pH-dependent drug release rate indicate that slower rates are more inhibitory than faster rates. We conclude that an integrated computational and experimental approach enables tailoring drug release by pH-responsive nanomaterials to maximize the tumor response.
Collapse
Affiliation(s)
- Hunter A Miller
- Department of Bioengineering, University of Louisville, Louisville, KY, USA.
| | - Yapei Zhang
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Bryan Ronain Smith
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
13
|
Velazquez-Albino AC, Nozka A, Melnyk A, Good HJ, Rinaldi-Ramos CM. Post-synthesis Oxidation of Superparamagnetic Iron Oxide Nanoparticles to Enhance Magnetic Particle Imaging Performance. ACS APPLIED NANO MATERIALS 2024; 7:279-291. [PMID: 38606282 PMCID: PMC11008578 DOI: 10.1021/acsanm.3c04442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
This study investigates the impact of post-synthesis oxidation on the performance of superparamagnetic iron oxide nanoparticles (SPIONs) in magnetic particle imaging (MPI), an emerging technology with applications in diagnostic imaging and theranostics. SPIONs synthesized from iron oleate were subjected to a post-synthesis oxidation treatment with a 1% Oxygen in Argon mixture. MPI performance, gauged via signal intensity and resolution using a MOMENTUM™ scanner, was correlated to the nanoparticles' physical and magnetic properties. Post-synthesis oxidation did not alter physical attributes like size and shape, but significantly enhanced magnetic properties. Saturation magnetization increased from 52% to 93% of the bulk value for magnetite, leading to better MPI performance in terms of signal intensity and resolution. However, the observed MPI performance did not fully align with predictions based on the ideal Langevin model, indicating the need for considering factors like relaxation and shape anisotropy. The findings underscore the potential of post-synthesis oxidation as a method to fine-tune magnetic properties of SPIONs and improve MPI performance, and the need for reproducible synthesis methods that afford finely tuned control of nanoparticle size, shape, and magnetic properties.
Collapse
Affiliation(s)
| | - Aniela Nozka
- Department of Bioengineering, Clemson University, Clemson, SC 29634
| | - Andrii Melnyk
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611
| | - Hayden J Good
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611
| | - Carlos M Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131
| |
Collapse
|
14
|
Yang Z, Zhang Y, Tang L, Yang X, Song L, Shen C, Zvyagin AV, Li Y, Yang B, Lin Q. "All in one" nanoprobe Au-TTF-1 for target FL/CT bioimaging, machine learning technology and imaging-guided photothermal therapy against lung adenocarcinoma. J Nanobiotechnology 2024; 22:22. [PMID: 38184620 PMCID: PMC10770976 DOI: 10.1186/s12951-023-02280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024] Open
Abstract
The accurate preoperative diagnosis and tracking of lung adenocarcinoma is hindered by non-targeting and diffusion of dyes used for marking tumors. Hence, there is an urgent need to develop a practical nanoprobe for tracing lung adenocarcinoma precisely even treating them noninvasively. Herein, Gold nanoclusters (AuNCs) conjugate with thyroid transcription factor-1 (TTF-1) antibody, then multifunctional nanoprobe Au-TTF-1 is designed and synthesized, which underscores the paramount importance of advancing the machine learning diagnosis and bioimaging-guided treatment of lung adenocarcinoma. Bright fluorescence (FL) and strong CT signal of Au-TTF-1 set the stage for tracking. Furthermore, the high specificity of TTF-1 antibody facilitates selective targeting of lung adenocarcinoma cells as compared to common lung epithelial cells, so machine learning software Lung adenocarcinoma auxiliary detection system was designed, which combined with Au-TTF-1 to assist the intelligent recognition of lung adenocarcinoma jointly. Besides, Au-TTF-1 not only contributes to intuitive and targeted visualization, but also guides the following noninvasive photothermal treatment. The boundaries of tumor are light up by Au-TTF-1 for navigation, it penetrates into tumor and implements noninvasive photothermal treatment, resulting in ablating tumors in vivo locally. Above all, Au-TTF-1 serves as a key platform for target bio-imaging navigation, machine learning diagnosis and synergistic PTT as a single nanoprobe, which demonstrates attractive performance on lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhe Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yujia Zhang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lu Tang
- Department of Breast, China-Japan Union Hospital of Jilin University, Changchun, 130031, China
| | - Xiao Yang
- College of Computer Science and Technology Jilin University, Changchun, 130012, China
| | - Lei Song
- Department of Breast, China-Japan Union Hospital of Jilin University, Changchun, 130031, China
| | - Chun Shen
- College of Computer Science and Technology Jilin University, Changchun, 130012, China
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yang Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
15
|
Zhang Y, Li C, Wei Q, Yuan Q, He W, Zhang N, Dong Y, Jing Z, Zhang L, Wang H, Cao X. MiRNA320a Inhibitor-Loaded PLGA-PLL-PEG Nanoparticles Contribute to Bone Regeneration in Trauma-Induced Osteonecrosis Model of the Femoral Head. Tissue Eng Regen Med 2024; 21:185-197. [PMID: 37828392 PMCID: PMC10764684 DOI: 10.1007/s13770-023-00580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND This study aimed to explore the effect of a nanomaterial-based miR-320a inhibitor sustained release system in trauma-induced osteonecrosis of the femoral head (TIONFH). METHODS The miR-320a inhibitor-loaded polyethylene glycol (PEG)- Poly(lactic-co-glycolic acid) (PLGA)- Poly-L-lysine (PLL) nanoparticles were constructed using the double emulsion method. The TIONFH rabbit model was established to observe the effects of miR-320a inhibitor nanoparticles in vivo. Hematoxylin-eosin staining and microcomputed tomography scanning were used for bone morphology analysis. Bone marrow mesenchymal stem cells (BMSCs), derived from TIONFH rabbits, were used for in vitro experiments. Cell viability was determined using the MTT assay. RESULTS High expression of miR-320a inhibited the osteogenic differentiation capacity of BMSCs in vitro by inhibiting the expression of the osteoblastic differentiation markers ALP and RUNX2. MiR-320a inhibitor-loaded PEG-PLGA-PLL nanoparticles were constructed with a mean loading efficiency of 1.414 ± 0.160%, and a mean encapsulation efficiency of 93.45 ± 1.24%, which released 50% of the loaded miR-320a inhibitor at day 12 and 80% on day 18. Then, inhibitor release entered the plateau. After treatment with the miR-320a inhibitor nanoparticle, the empty lacunae were decreased in the femoral head tissue of TIONFH rabbits, and the osteoblast surface/bone surface (Ob.S/BS), osteoblast number/bone perimeter (Ob.N/B.Pm), bone volume fraction, and bone mineral density increased. Additionally, the expression of osteogenic markers RUNX2 and ALP was significantly elevated in the TIONFH rabbit model. CONCLUSION The miR-320a inhibitor-loaded PEG-PLGA-PLL nanoparticle sustained drug release system significantly contributed to bone regeneration in the TIONFH rabbit model, which might be a promising strategy for the treatment of TIONFH.
Collapse
Affiliation(s)
- Ying Zhang
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), No. 82 Qiming South Road, Luoyang, 471002, Henan, China.
| | - Chuan Li
- Department of Orthopedics, 920Th Hospital of Joint Logistic Support Force, Kunming, 650032, Yunnan, China
| | - Qiushi Wei
- Institute of Orthopaedics of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, 510240, China
- The Third Affiliated Hospital of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, 510240, China
| | - Qiang Yuan
- Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Wei He
- Institute of Orthopaedics of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, 510240, China
- The Third Affiliated Hospital of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, 510240, China
| | - Ning Zhang
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yiping Dong
- Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Zhenhao Jing
- Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Leilei Zhang
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), No. 82 Qiming South Road, Luoyang, 471002, Henan, China
| | - Haibin Wang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Xiangyang Cao
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), No. 82 Qiming South Road, Luoyang, 471002, Henan, China.
| |
Collapse
|
16
|
Meng J, Xin L, Zou B, Wang L, Zhao X, Gao J, Zhang R. A manual controlled theranostic nanoplatform with real-time photoacoustic quantification of drug release for chemophotothermal therapy. J Colloid Interface Sci 2023; 651:1020-1027. [PMID: 37586151 DOI: 10.1016/j.jcis.2023.07.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
The development of intelligent nanodrug delivery systems that can visually guide the on-demand quantitative control of drug release has received extensive attention. Herein, two chemotherapeutic drugs, gallic acid and 5-fluorouracil, and Fe(III) were selected to prepare nanomedicine GF-Fe via polyphenol-metal self-assembly and infinite coordination of drug-metal. GF-Fe has good biocompatibility, photothermal properties and photoacoustic (PA) signals. When deferoxamine (DFO) was artificially applied and interacted with GF-Fe, GF-Fe began to disassemble, gallic acid and 5-fluorouracil were gradually released, while the PA signal of the nanomedicine decayed synchronously. Based on this, the relationship between the intensity of the PA signal and the drug release amount was established, so as to realize the precise quantitative control of the drug release in real-time under the guidance of PA imaging. Besides, the combined effect of the two therapeutic drugs in combination with photothermal therapy (PTT) can improve the therapeutic effect, resulting in significant superadditiveness. This nanoplatform constructed by facile synthesis provided good clinical translation potential for the implementation of precise multimodal combination therapy strategies for tumors.
Collapse
Affiliation(s)
- Jian Meng
- The Radiology Department of First Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China; The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Taiyuan, China
| | - Lei Xin
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Bocheng Zou
- The Radiology Department of First Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Lei Wang
- Shanxi Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China; The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Taiyuan, China
| | - Xuhui Zhao
- The Radiology Department of First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Taiyuan, China
| | - Ruiping Zhang
- The Radiology Department of First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
17
|
Huang X, Li L, Ou C, Shen M, Li X, Zhang M, Wu R, Kou X, Gao L, Liu F, Luo R, Wu Q, Gong C. Tumor Environment Regression Therapy Implemented by Switchable Prune-to-Essence Nanoplatform Unleashed Systemic Immune Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303715. [PMID: 37875395 PMCID: PMC10724435 DOI: 10.1002/advs.202303715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/01/2023] [Indexed: 10/26/2023]
Abstract
Coevolution of tumor cells and surrounding stroma results in protective protumoral environment, in which abundant vessel, stiff structure and immunosuppression promote each other, cooperatively incurring deterioration and treatment compromise. Reversing suchenvironment may transform tumors from treatment-resistant to treatment-vulnerable. However, effective reversion requires synergistic comprehensive regression of such environment under precise control. Here, the first attempt to collaboratively retrograde coevolutionary tumor environment to pre-oncogenesis status, defined as tumor environment regression therapy, is made for vigorous immune response eruption by a switchable prune-to-essence nanoplatform (Pres) with simplified composition and fabrication process. Through magnetic targeting and multimodal imaging of Pres, tumor environment regression therapy is guided, optimized and accomplished in a trinity way: Antiangiogenesis is executed to rarefy vessels to impede tumor progression. By seizing the time, cancer associated fibroblasts are eliminated to diminish collagen and loosen the stiff structure for deep penetration of Pres, which alternately functioned in deeper tumors, forming a positive feedback loop. Through this loop, immune cell infiltration, immunosuppression mitigation and immunogenic cells death induction are all fulfilled and further escalated in the regressed environment. These transformations consequently unleashed systemic immune responses and generated immune memory against carcinoma. This study provides new insights intotreatment of solid tumors.
Collapse
Affiliation(s)
- Xianzhou Huang
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Lu Li
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Chunqing Ou
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Meiling Shen
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xinchao Li
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Miaomiao Zhang
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Rui Wu
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xiaorong Kou
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Ling Gao
- Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Furong Liu
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Rui Luo
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Qinjie Wu
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Changyang Gong
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
18
|
Ma X, Mao M, He J, Liang C, Xie HY. Nanoprobe-based molecular imaging for tumor stratification. Chem Soc Rev 2023; 52:6447-6496. [PMID: 37615588 DOI: 10.1039/d3cs00063j] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The responses of patients to tumor therapies vary due to tumor heterogeneity. Tumor stratification has been attracting increasing attention for accurately distinguishing between responders to treatment and non-responders. Nanoprobes with unique physical and chemical properties have great potential for patient stratification. This review begins by describing the features and design principles of nanoprobes that can visualize specific cell types and biomarkers and release inflammatory factors during or before tumor treatment. Then, we focus on the recent advancements in using nanoprobes to stratify various therapeutic modalities, including chemotherapy, radiotherapy (RT), photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), ferroptosis, and immunotherapy. The main challenges and perspectives of nanoprobes in cancer stratification are also discussed to facilitate probe development and clinical applications.
Collapse
Affiliation(s)
- Xianbin Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Mingchuan Mao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jiaqi He
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, P. R. China.
| |
Collapse
|
19
|
Jiang Y, Jiang Y, Li M, Yu Q. Will nanomedicine become a good solution for the cardiotoxicity of chemotherapy drugs? Front Pharmacol 2023; 14:1143361. [PMID: 37214453 PMCID: PMC10194942 DOI: 10.3389/fphar.2023.1143361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, and with the continuous development of life sciences and pharmaceutical technology, more and more antitumor drugs are being used in clinics to benefit cancer patients. However, the incidence of chemotherapy-induced cardiotoxicity has been continuously increasing, threatening patients' long-term survival. Cardio-oncology has become a research hot spot, and the combination of nanotechnology and biomedicine has brought about an unprecedented technological revolution. Nanomaterials have the potential to maximize the efficacy and reduce the side effects of chemotherapeutic drugs when used as their carriers, and several nano-formulations of frequently used chemotherapeutic drugs have already been approved for marketing. In this review, we summarize chemotherapeutic drugs that are highly associated with cardiotoxicity and evaluate the role of nano-delivery systems in reducing cardiotoxicity based on studies of their marketed or R&D nano-formulations. Some of the marketed chemotherapy drugs are combined with nano-delivery systems that can effectively deliver chemotherapy drugs to tumors and cannot easily penetrate the endothelial barrier of the heart, thus decreasing their distribution in the heart and reducing the cardiotoxicity to some extent. However, many chemotherapy nanomedicines that are marketed or in R&D have not received enough attention in determining their cardiotoxicity. In general, nanomedicine is an effective method to reduce the cardiotoxicity of traditional chemotherapy drugs. However, cardiovascular complications in cancer treatment are very complex diseases, requiring the application of multiple measures to achieve effective management and prevention.
Collapse
Affiliation(s)
- Yichuan Jiang
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yueyao Jiang
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Min Li
- Pharmacological Experiment Center, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Qian Yu
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
20
|
Smith BR, Edelman ER. Nanomedicines for cardiovascular disease. NATURE CARDIOVASCULAR RESEARCH 2023; 2:351-367. [PMID: 39195953 DOI: 10.1038/s44161-023-00232-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 01/25/2023] [Indexed: 08/29/2024]
Abstract
The leading cause of death in the world, cardiovascular disease (CVD), remains a formidable condition for researchers, clinicians and patients alike. CVD comprises a broad collection of diseases spanning the heart, the vasculature and the blood that runs through and interconnects them. Limitations in CVD therapeutic and diagnostic landscapes have generated excitement for advances in nanomedicine, a field focused on improving patient outcomes through transformative therapies, imaging agents and ex vivo diagnostics. CVD nanomedicines are fundamentally shaped by their intended clinical application, including (1) cardiac or heart-related biomaterials, which can be functionally (for example, mechanically, immunologically, electrically) improved by incorporating nanomaterials; (2) the vasculature, involving systemically injected nanotherapeutics and imaging nanodiagnostics, nano-enabled biomaterials or tissue-nanoengineered solutions; and (3) improving the sensitivity and/or specificity of ex vivo diagnostic devices for patient samples. While immunotherapy has developed into a key pillar of oncology in the past dozen years, CVD immunotherapy and immunoimaging are recently emergent and likely to factor substantially in CVD management in the coming decade. The nanomaterials in CVD-related clinical trials and many promising preclinical strategies indicate that nanomedicine is on the cusp of greatly impacting patients with CVD. Here we review these recent advances, highlighting key clinical opportunities in the rapidly emerging field of CVD nanomedicine.
Collapse
Affiliation(s)
- Bryan Ronain Smith
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA.
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Magnetic Particle Imaging in Vascular Imaging, Immunotherapy, Cell Tracking, and Noninvasive Diagnosis. Mol Imaging 2023. [DOI: 10.1155/2023/4131117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Magnetic particle imaging (MPI) is a new tracer-based imaging modality that is useful in diagnosing various pathophysiology related to the vascular system and for sensitive tracking of cytotherapies. MPI uses nonradioactive and easily assimilated nanometer-sized iron oxide particles as tracers. MPI images the nonlinear Langevin behavior of the iron oxide particles and has allowed for the sensitive detection of iron oxide-labeled therapeutic cells in the body. This review will provide an overview of MPI technology, the tracer, and its use in vascular imaging and cytotherapies using molecular targets.
Collapse
|
22
|
Fung KLB, Colson C, Bryan J, Saayujya C, Mokkarala-Lopez J, Hartley A, Yousuf K, Kuo R, Lu Y, Fellows BD, Chandrasekharan P, Conolly SM. First Superferromagnetic Remanence Characterization and Scan Optimization for Super-Resolution Magnetic Particle Imaging. NANO LETTERS 2023; 23:1717-1725. [PMID: 36821385 PMCID: PMC10790312 DOI: 10.1021/acs.nanolett.2c04404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetic particle imaging (MPI) is a sensitive, high-contrast tracer modality that images superparamagnetic iron oxide nanoparticles, enabling radiation-free theranostic imaging. MPI resolution is currently limited by scanner and particle constraints. Recent tracers have experimentally shown 10× resolution and signal improvements with dramatically sharper M-H curves. Experiments show a dependence on interparticle interactions, conforming to literature definitions of superferromagnetism. We thus call our tracers superferromagnetic iron oxide nanoparticles (SFMIOs). While SFMIOs provide excellent signal and resolution, they exhibit hysteresis with non-negligible remanence and coercivity. We provide the first quantitative measurements of SFMIO remanence decay and reformation using a novel multiecho pulse sequence. We characterize MPI scanning with remanence decay and coercivity and describe an SNR-optimized pulse sequence for SFMIOs under human electromagnetic safety limitations. The resolution from SFMIOs could enable clinical MPI with 10× reduced scanner selection fields, reducing hardware costs by up to 100×.
Collapse
Affiliation(s)
- K L Barry Fung
- UC Berkeley-UCSF Graduate Group in Bioengineering, University of California Berkeley and University of California San Francisco, https://bioegrad.berkeley.edu/
| | - Caylin Colson
- UC Berkeley-UCSF Graduate Group in Bioengineering, University of California Berkeley and University of California San Francisco, https://bioegrad.berkeley.edu/
| | - Jacob Bryan
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California 94720, United States
| | - Javier Mokkarala-Lopez
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Allison Hartley
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Khadija Yousuf
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Renesmee Kuo
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Yao Lu
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Benjamin D Fellows
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Prashant Chandrasekharan
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Steven M Conolly
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
23
|
Wu X, Gao P, Zhang P, Shang Y, He B, Zhang L, Jiang J, Hui H, Tian J. Cross-domain knowledge transfer based parallel-cascaded multi-scale attention network for limited view reconstruction in projection magnetic particle imaging. Comput Biol Med 2023; 158:106809. [PMID: 37004433 DOI: 10.1016/j.compbiomed.2023.106809] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/20/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Projection magnetic particle imaging (MPI) can significantly improve the temporal resolution of three-dimensional (3D) imaging compared to that using traditional point by point scanning. However, the dense view of projections required for tomographic reconstruction limits the scope of temporal resolution optimization. The solution to this problem in computed tomography (CT) is using limited view projections (sparse view or limited angle) for reconstruction, which can be divided into: completing the limited view sinogram and image post-processing for streaking artifacts caused by insufficient projections. Benefiting from large-scale CT datasets, both categories of deep learning-based methods have achieved tremendous progress; yet, there is a data scarcity limitation in MPI. We propose a cross-domain knowledge transfer learning strategy that can transfer the prior knowledge of the limited view learned by the model in CT to MPI, which can help reduce the network requirements for real MPI data. In addition, the size of the imaging target affects the scale of the streaking artifacts caused by insufficient projections. Therefore, we propose a parallel-cascaded multi-scale attention module that allows the network to adaptively identify streaking artifacts at different scales. The proposed method was evaluated on real phantom and in vivo mouse data, and it significantly outperformed several advanced limited view methods. The streaking artifacts caused by an insufficient number of projections can be overcome using the proposed method.
Collapse
Affiliation(s)
- Xiangjun Wu
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Pengli Gao
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Peng Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Yaxin Shang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Bingxi He
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Liwen Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Beijing Key Laboratory of Molecular Imaging, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jingying Jiang
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China.
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Beijing Key Laboratory of Molecular Imaging, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Jie Tian
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Beijing Key Laboratory of Molecular Imaging, Beijing, China; Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, China.
| |
Collapse
|
24
|
Chowdhury MS, Rösch EL, Esteban DA, Janssen KJ, Wolgast F, Ludwig F, Schilling M, Bals S, Viereck T, Lak A. Decoupling the Characteristics of Magnetic Nanoparticles for Ultrahigh Sensitivity. NANO LETTERS 2023; 23:58-65. [PMID: 36584282 DOI: 10.1021/acs.nanolett.2c03568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immunoassays exploiting magnetization dynamics of magnetic nanoparticles are highly promising for mix-and-measure, quantitative, and point-of-care diagnostics. However, how single-core magnetic nanoparticles can be employed to reduce particle concentration and concomitantly maximize assay sensitivity is not fully understood. Here, we design monodisperse Néel and Brownian relaxing magnetic nanocubes (MNCs) of different sizes and compositions. We provide insights into how to decouple physical properties of these MNCs to achieve ultrahigh sensitivity. We find that tricomponent-based Zn0.06Co0.80Fe2.14O4 particles, with out-of-phase to initial magnetic susceptibility χ″/χ0 ratio of 0.47 out of 0.50 for magnetically blocked ideal particles, show the ultrahigh magnetic sensitivity by providing a rich magnetic particle spectroscopy (MPS) harmonics spectrum despite bearing lower saturation magnetization than dicomponent Zn0.1Fe2.9O4 having high saturation magnetization. The Zn0.06Co0.80Fe2.14O4 MNCs, coated with catechol-based poly(ethylene glycol) ligands, measured by our benchtop MPS show 3 orders of magnitude better particle LOD than that of commercial nanoparticles of comparable size.
Collapse
Affiliation(s)
- Mohammad Suman Chowdhury
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
| | - Enja Laureen Rösch
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
| | | | - Klaas-Julian Janssen
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
| | - Florian Wolgast
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
| | - Frank Ludwig
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
| | - Meinhard Schilling
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
| | - Sara Bals
- EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Thilo Viereck
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
| | - Aidin Lak
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
| |
Collapse
|
25
|
Vangijzegem T, Lecomte V, Ternad I, Van Leuven L, Muller RN, Stanicki D, Laurent S. Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15010236. [PMID: 36678868 PMCID: PMC9861355 DOI: 10.3390/pharmaceutics15010236] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/01/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Despite significant advances in cancer therapy over the years, its complex pathological process still represents a major health challenge when seeking effective treatment and improved healthcare. With the advent of nanotechnologies, nanomedicine-based cancer therapy has been widely explored as a promising technology able to handle the requirements of the clinical sector. Superparamagnetic iron oxide nanoparticles (SPION) have been at the forefront of nanotechnology development since the mid-1990s, thanks to their former role as contrast agents for magnetic resonance imaging. Though their use as MRI probes has been discontinued due to an unfavorable cost/benefit ratio, several innovative applications as therapeutic tools have prompted a renewal of interest. The unique characteristics of SPION, i.e., their magnetic properties enabling specific response when submitted to high frequency (magnetic hyperthermia) or low frequency (magneto-mechanical therapy) alternating magnetic field, and their ability to generate reactive oxygen species (either intrinsically or when activated using various stimuli), make them particularly adapted for cancer therapy. This review provides a comprehensive description of the fundamental aspects of SPION formulation and highlights various recent approaches regarding in vivo applications in the field of cancer therapy.
Collapse
Affiliation(s)
- Thomas Vangijzegem
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Correspondence: (T.V.); (S.L.)
| | - Valentin Lecomte
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Indiana Ternad
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Levy Van Leuven
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Robert N. Muller
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
| | - Dimitri Stanicki
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
- Correspondence: (T.V.); (S.L.)
| |
Collapse
|
26
|
Myocardial Cell Preservation from Potential Cardiotoxic Drugs: The Role of Nanotechnologies. Pharmaceutics 2022; 15:pharmaceutics15010087. [PMID: 36678717 PMCID: PMC9865222 DOI: 10.3390/pharmaceutics15010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiotoxic therapies, whether chemotherapeutic or antibiotic, represent a burden for patients who may need to interrupt life-saving treatment because of serious complications. Cardiotoxicity is a broad term, spanning from forms of heart failure induction, particularly left ventricular systolic dysfunction, to induction of arrhythmias. Nanotechnologies emerged decades ago. They offer the possibility to modify the profiles of potentially toxic drugs and to abolish off-target side effects thanks to more favorable pharmacokinetics and dynamics. This relatively modern science encompasses nanocarriers (e.g., liposomes, niosomes, and dendrimers) and other delivery systems applicable to real-life clinical settings. We here review selected applications of nanotechnology to the fields of pharmacology and cardio-oncology. Heart tissue-sparing co-administration of nanocarriers bound to chemotherapeutics (such as anthracyclines and platinum agents) are discussed based on recent studies. Nanotechnology applications supporting the administration of potentially cardiotoxic oncological target therapies, antibiotics (especially macrolides and fluoroquinolones), or neuroactive agents are also summarized. The future of nanotechnologies includes studies to improve therapeutic safety and to encompass a broader range of pharmacological agents. The field merits investments and research, as testified by its exponential growth.
Collapse
|
27
|
Arslan MT, Ozaslan AA, Kurt S, Muslu Y, Saritas EU. Rapid TAURUS for Relaxation-Based Color Magnetic Particle Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3774-3786. [PMID: 35921341 DOI: 10.1109/tmi.2022.3195694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic particle imaging (MPI) is a rapidly developing medical imaging modality that exploits the non-linear response of magnetic nanoparticles (MNPs). Color MPI widens the functionality of MPI, empowering it with the capability to distinguish different MNPs and/or MNP environments. The system function approach for color MPI relies on extensive calibrations that capture the differences in the harmonic responses of the MNPs. An alternative calibration-free x-space-based method called TAURUS estimates a map of the relaxation time constant, τ , by recovering the underlying mirror symmetry in the MPI signal. However, TAURUS requires a back and forth scanning of a given region, restricting its usage to slow trajectories with constant or piecewise constant focus fields (FFs). In this work, we propose a novel technique to increase the performance of TAURUS and enable τ map estimation for rapid and multi-dimensional trajectories. The proposed technique is based on correcting the distortions on mirror symmetry induced by time-varying FFs. We demonstrate via simulations and experiments in our in-house MPI scanner that the proposed method successfully estimates high-fidelity τ maps for rapid trajectories that provide orders of magnitude reduction in scanning time (over 300 fold for simulations and over 8 fold for experiments) while preserving the calibration-free property of TAURUS.
Collapse
|
28
|
Borum RM, Moore C, Mantri Y, Xu M, Jokerst JV. Supramolecular Loading of DNA Hydrogels with Dye-Drug Conjugates for Real-Time Photoacoustic Monitoring of Chemotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204330. [PMID: 36403233 PMCID: PMC9811488 DOI: 10.1002/advs.202204330] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/18/2022] [Indexed: 06/16/2023]
Abstract
A longstanding problem with conventional cancer therapy is the nonspecific distribution of chemotherapeutics. Monitoring drug release in vivo via noninvasive bioimaging can thus have value, but it is difficult to distinguish loaded from released drug in live tissue. Here, this work describes an injectable supramolecular hydrogel that allows slow and trackable release of doxorubicin (Dox) via photoacoustic (PA) tomography. Dox is covalently linked with photoacoustic methylene blue (MB) to monitor Dox before, during, and after release from the hydrogel carrier. The conjugate (MB-Dox) possesses an IC50 of 161.4 × 10-9 m against human ovarian carcinoma (SKOV3) cells and loads into a DNA-clad hydrogel with 91.3% loading efficiency due to MB-Dox's inherent intramolecular affinity to DNA. The hydrogel is biodegradable by nuclease digestion, which causes gradual release of MB-Dox. This release rate is tunable based on the wt% of the hydrogel. This hydrogel maintains distinct PA contrast on the order of days when injected in vivo and demonstrates activatable PA spectral shifts during hydrogel degradation. The released and loaded payload can be imaged relative to live tissue via PA and ultrasound signal being overlaid in real-time. The hydrogel slowed the rate of the murine intraperitoneal tumor growth 72.2% more than free Dox.
Collapse
Affiliation(s)
- Raina M. Borum
- Department of NanoEngineeringUniversity of California, San Diego9500 Gilman DriveLa JollaCalifornia92093United States
| | - Colman Moore
- Department of NanoEngineeringUniversity of California, San Diego9500 Gilman DriveLa JollaCalifornia92093United States
| | - Yash Mantri
- Department of BioEngineeringUniversity of California, San Diego9500 Gilman DriveLa JollaCalifornia92093United States
| | - Ming Xu
- Department of NanoEngineeringUniversity of California, San Diego9500 Gilman DriveLa JollaCalifornia92093United States
| | - Jesse V. Jokerst
- Department of NanoEngineeringUniversity of California, San Diego9500 Gilman DriveLa JollaCalifornia92093United States
- Department of RadiologyUniversity of California, San Diego9500 Gilman DriveLa JollaCalifornia92093United States
- Materials Science ProgramUniversity of California, San Diego9500 Gilman DriveLa JollaCalifornia92093United States
| |
Collapse
|
29
|
Li P, Wang D, Hu J, Yang X. The role of imaging in targeted delivery of nanomedicine for cancer therapy. Adv Drug Deliv Rev 2022; 189:114447. [PMID: 35863515 DOI: 10.1016/j.addr.2022.114447] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/27/2022] [Accepted: 07/06/2022] [Indexed: 01/24/2023]
Abstract
Nanomedicines overcome the pharmacokinetic limitations of traditional drug formulations and have promising prospect in cancer treatment. However, nanomedicine delivery in vivo is still facing challenges from the complex physiological environment. For the purpose of effective tumor therapy, they should be designed to guarantee the five features principle, including long blood circulation, efficient tumor accumulation, deep matrix penetration, enhanced cell internalization and accurate drug release. To ensure the excellent performance of the designed nanomedicine, it would be better to monitor the drug delivery process as well as the therapeutic effects by real-time imaging. In this review, we summarize strategies in developing nanomedicines for efficiently meeting the five features of drug delivery, and the role of several imaging modalities (fluorescent imaging (FL), magnetic resonance imaging (MRI), computed tomography (CT), photoacoustic imaging (PAI), positron emission tomography (PET), and electron microscopy) in tracing drug delivery and therapeutic effect in vivo based on five features principle.
Collapse
Affiliation(s)
- Puze Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dongdong Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
30
|
Jyoti D, Gordon-Wylie SW, Reeves DB, Paulsen KD, Weaver JB. Distinguishing Nanoparticle Aggregation from Viscosity Changes in MPS/MSB Detection of Biomarkers. SENSORS (BASEL, SWITZERLAND) 2022; 22:6690. [PMID: 36081147 PMCID: PMC9459920 DOI: 10.3390/s22176690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Magnetic particle spectroscopy (MPS) in the Brownian relaxation regime, also termed magnetic spectroscopy of Brownian motion (MSB), can detect and quantitate very low, sub-nanomolar concentrations of molecular biomarkers. MPS/MSB uses the harmonics of the magnetization induced by a small, low-frequency oscillating magnetic field to provide quantitative information about the magnetic nanoparticles' (mNPs') microenvironment. A key application uses antibody-coated mNPs to produce biomarker-mediated aggregation that can be detected using MPS/MSB. However, relaxation changes can also be caused by viscosity changes. To address this challenge, we propose a metric that can distinguish between aggregation and viscosity. Viscosity changes scale the MPS/MSB harmonic ratios with a constant multiplier across all applied field frequencies. The change in viscosity is exactly equal to the multiplier with generality, avoiding the need to understand the signal explicitly. This simple scaling relationship is violated when particles aggregate. Instead, a separate multiplier must be used for each frequency. The standard deviation of the multipliers over frequency defines a metric isolating viscosity (zero standard deviation) from aggregation (non-zero standard deviation). It increases monotonically with biomarker concentration. We modeled aggregation and simulated the MPS/MSB signal changes resulting from aggregation and viscosity changes. MPS/MSB signal changes were also measured experimentally using 100 nm iron-oxide mNPs in solutions with different viscosities (modulated by glycerol concentration) and with different levels of aggregation (modulated by concanavalin A linker concentrations). Experimental and simulation results confirmed that viscosity changes produced small changes in the standard deviation and aggregation produced larger values of standard deviation. This work overcomes a key barrier to using MPS/MSB to detect biomarkers in vivo with variable tissue viscosity.
Collapse
Affiliation(s)
- Dhrubo Jyoti
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | | | | | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - John B. Weaver
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| |
Collapse
|
31
|
Maryjose N, Custovic I, Chaabane L, Lesniewska E, Piétrement O, Chambin O, Assifaoui A. Core-shell polygalacturonate magnetic iron oxide nanoparticles: Synthesis, characterization, and functionalities. Int J Biol Macromol 2022; 220:360-370. [PMID: 35932808 DOI: 10.1016/j.ijbiomac.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This work aims to synthesize polygalacturonate-based magnetic iron oxide nanoparticles (INP-polyGalA). The synthesis consists of the diffusion of both Fe2+ and Fe3+ at a molar ratio of 1:2 through polyGalA solution followed by the addition of an alkaline solution. To form individual nanoparticle materials, the polyGalA concentration needs to be below its overlapping concentration (C*). The synthesized materials (INP-polyGalA) contain about 45 % of organic compound (polyGalA), and they have an average particle size ranging from 10 to 50 nm as estimated by several techniques (DLS, TEM and AFM) and their surfaces are negatively charged in pH range 2 to 7. The synthesized NPs showed magnetic characteristics, thanks to the formation of magnetite (Fe3O4) as confirmed by X-ray diffractions (XRD). Moreover, AFM combined with Infra-red mapping allowed us to conclude that polyGalA is located in the core of the nanoparticles but also on their surfaces. More specially, both carboxylate (COO-) and carboxylic (COOH) groups of polyGalA are observed on the NPs surfaces. The presence of such functional groups allowed the synthesized material to (i) bind through the electrostatic interactions methylene blue (MB) which may have a great potential for r pollution control or (ii) to form hydrogel beads (ionotropic gelation) by using calcium as a crosslinking agent which can be used to encapsulate active molecules and target their release by using an external stimulus (magnetic field).
Collapse
Affiliation(s)
- Navya Maryjose
- Université de Bourgogne Franche Comté (UBFC), Institut Agro Dijon, UMR PAM A 02.102, F-21000 Dijon, France
| | - Irma Custovic
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR CNRS 6303, Université de Bourgogne-Franche-Comté, 21078 Dijon Cedex, France
| | - Laroussi Chaabane
- Université de Bourgogne Franche Comté (UBFC), Institut Agro Dijon, UMR PAM A 02.102, F-21000 Dijon, France
| | - Eric Lesniewska
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR CNRS 6303, Université de Bourgogne-Franche-Comté, 21078 Dijon Cedex, France
| | - Olivier Piétrement
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR CNRS 6303, Université de Bourgogne-Franche-Comté, 21078 Dijon Cedex, France
| | - Odile Chambin
- Université de Bourgogne Franche Comté (UBFC), Institut Agro Dijon, UMR PAM A 02.102, F-21000 Dijon, France; Department of Pharmaceutical Technology, School of Pharmacy, Université de Bourgogne Franche Comté, 7 Bd Jeanne d'Arc, 21079 Dijon, France
| | - Ali Assifaoui
- Université de Bourgogne Franche Comté (UBFC), Institut Agro Dijon, UMR PAM A 02.102, F-21000 Dijon, France; Department of Pharmaceutical Technology, School of Pharmacy, Université de Bourgogne Franche Comté, 7 Bd Jeanne d'Arc, 21079 Dijon, France.
| |
Collapse
|
32
|
Yang X, Shao G, Zhang Y, Wang W, Qi Y, Han S, Li H. Applications of Magnetic Particle Imaging in Biomedicine: Advancements and Prospects. Front Physiol 2022; 13:898426. [PMID: 35846005 PMCID: PMC9285659 DOI: 10.3389/fphys.2022.898426] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
Magnetic particle imaging (MPI) is a novel emerging noninvasive and radiation-free imaging modality that can quantify superparamagnetic iron oxide nanoparticles tracers. The zero endogenous tissue background signal and short image scanning times ensure high spatial and temporal resolution of MPI. In the context of precision medicine, the advantages of MPI provide a new strategy for the integration of the diagnosis and treatment of diseases. In this review, after a brief explanation of the simplified theory and imaging system, we focus on recent advances in the biomedical application of MPI, including vascular structure and perfusion imaging, cancer imaging, the MPI guidance of magnetic fluid hyperthermia, the visual monitoring of cell and drug treatments, and intraoperative navigation. We finally optimize MPI in terms of the system and tracers, and present future potential biomedical applications of MPI.
Collapse
Affiliation(s)
- Xue Yang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | | | - Yanyan Zhang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Yu Qi
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Shuai Han
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Hongjun Li
- Beijing You’an Hospital, Capital Medical University, Beijing, China,*Correspondence: Hongjun Li,
| |
Collapse
|
33
|
Wang T, Zhang X, Xu Y, Xu Y, Zhang Y, Zhang K. Emerging nanobiotechnology-encoded relaxation tuning establishes new MRI modes to localize, monitor and predict diseases. J Mater Chem B 2022; 10:7361-7383. [PMID: 35770674 DOI: 10.1039/d2tb00600f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Magnetic resonance imaging (MRI) is one of the most important techniques in the diagnosis of many diseases including cancers, where contrast agents (CAs) are usually necessary to improve its precision and sensitivity. Previous MRI CAs are confined to the signal-to-noise ratio (SNR) elevation of lesions for precisely localizing lesions. As nanobiotechnology advances, some new MRI CAs or nanobiotechnology-enabled MRI modes have been established to vary the longitudinal or transverse relaxation of CAs, which are harnessed to detect lesion targets, monitor disease evolution, predict or evaluate curative effect, etc. These distinct cases provide unexpected insights into the correlation of the design principles of these nanobiotechnologies and corresponding MRI CAs with their potential applications. In this review, first, we briefly present the principles, classifications and applications of conventional MRI CAs, and then elucidate the recent advances in relaxation tuning via the development of various nanobiotechnologies with emphasis on the design strategies of nanobiotechnology and the corresponding MRI CAs to target the tumor microenvironment (TME) and biological targets or activities in tumors or other diseases. In addition, we exemplified the advantages of these strategies in disease theranostics and explored their potential application fields. Finally, we analyzed the present limitations, potential solutions and future development direction of MRI after its combination with nanobiotechnology.
Collapse
Affiliation(s)
- Taixia Wang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China. .,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Xueni Zhang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China.
| | - Yuan Xu
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China.
| | - Yingchun Xu
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China.
| | - Yifeng Zhang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China. .,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Kun Zhang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China. .,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| |
Collapse
|
34
|
Wu K, Liu J, Chugh VK, Liang S, Saha R, Krishna VD, Cheeran MCJ, Wang JP. Magnetic nanoparticles and magnetic particle spectroscopy-based bioassays: a 15 year recap. NANO FUTURES 2022; 6:022001. [PMID: 36199556 PMCID: PMC9531898 DOI: 10.1088/2399-1984/ac5cd1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Magnetic nanoparticles (MNPs) have unique physical and chemical properties, such as high surface area to volume ratio and size-related magnetism, which are completely different from their bulk materials. Benefiting from the facile synthesis and chemical modification strategies, MNPs have been widely studied for applications in nanomedicine. Herein, we firstly summarized the designs of MNPs from the perspectives of materials and physicochemical properties tailored for biomedical applications. Magnetic particle spectroscopy (MPS), first reported in 2006, has flourished as an independent platform for many biological and biomedical applications. It has been extensively reported as a versatile platform for a variety of bioassays along with the artificially designed MNPs, where the MNPs serve as magnetic nanoprobes to specifically probe target analytes from fluid samples. In this review, the mechanisms and theories of different MPS platforms realizing volumetric- and surface-based bioassays are discussed. Some representative works of MPS platforms for applications such as disease diagnosis, food safety and plant pathology monitoring, drug screening, thrombus maturity assessments are reviewed. At the end of this review, we commented on the rapid growth and booming of MPS-based bioassays in its first 15 years. We also prospected opportunities and challenges that portable MPS devices face in the rapidly growing demand for fast, inexpensive, and easy-to-use biometric techniques.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Jinming Liu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Venkatramana D Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN 55108, United States of America
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN 55108, United States of America
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, United States of America
| |
Collapse
|
35
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
36
|
Tuguntaev RG, Hussain A, Fu C, Chen H, Tao Y, Huang Y, Liu L, Liang XJ, Guo W. Bioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations. J Nanobiotechnology 2022; 20:236. [PMID: 35590412 PMCID: PMC9118863 DOI: 10.1186/s12951-022-01451-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Nanomedicines (NMs) have emerged as an efficient approach for developing novel treatment strategies against a variety of diseases. Over the past few decades, NM formulations have received great attention, and a large number of studies have been performed in this field. Despite this, only about 60 nano-formulations have received industrial acceptance and are currently available for clinical use. Their in vivo pharmaceutical behavior is considered one of the main challenges and hurdles for the effective clinical translation of NMs, because it is difficult to monitor the pharmaceutic fate of NMs in the biological environment using conventional pharmaceutical evaluations. In this context, non-invasive imaging modalities offer attractive solutions, providing the direct monitoring and quantification of the pharmacokinetic and pharmacodynamic behavior of labeled NMs in a real-time manner. Imaging evaluations have great potential for revealing the relationship between the physicochemical properties of NMs and their pharmaceutical profiles in living subjects. In this review, we introduced imaging techniques that can be used for in vivo NM evaluations. We also provided an overview of various studies on the influence of key parameters on the in vivo pharmaceutical behavior of NMs that had been visualized in a non-invasive and real-time manner.
Collapse
Affiliation(s)
- Ruslan G Tuguntaev
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Abid Hussain
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecular Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chenxing Fu
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Haoting Chen
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Ying Tao
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Lu Liu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China.
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
37
|
Pantke D, Mueller F, Reinartz S, Philipps J, Mohammadali Dadfar S, Peters M, Franke J, Schrank F, Kiessling F, Schulz V. Frequency-selective signal enhancement by a passive dual coil resonator for magnetic particle imaging. Phys Med Biol 2022; 67. [PMID: 35472698 DOI: 10.1088/1361-6560/ac6a9f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/26/2022] [Indexed: 11/12/2022]
Abstract
Objective.Magnetic particle imaging (MPI) visualizes the spatial distribution of magnetic nanoparticles. MPI already provides excellent temporal and good spatial resolution, however, to achieve translation into clinics, further advances in the fields of sensitivity, image reconstruction and tracer performance are needed. In this work, we propose a novel concept to enhance the MPI signal and image resolution by a purely passive receive coil insert for a preclinical MPI system.Approach.The passive dual coil resonator (pDCR) provides frequency-selective signal enhancement. This is enabled by the adaptable resonance frequency of the pDCR network, which is galvanically isolated from the MPI system and composed of two coaxial solenoids connected via a capacitor. The pDCR aims to enhance frequency components related to high mixing orders, which are crucial to achieve high spatial resolution.Main Results.In this study, system matrix measurements and image acquisitions of a resolution phantom are carried out to evaluate the performance of the pDCR compared to the integrated receive unit of the preclinical MPI and a dedicated rat-sized receive coil. Frequency-selective signal increase and spatial resolution enhancement are demonstrated.Significance.Common dedicated receive coils come along with noise-matched receive networks, which makes them costly and difficult to reproduce. The presented pDCR is a purely passive coil insert that gets along without any additional receive electronics. Therefore, it is cost-efficient, easy-to-handle and adaptable to other MPI scanners and potentially other applications providing the basis for a new breed of passive MPI receiver systems.
Collapse
Affiliation(s)
- Dennis Pantke
- Department of Physics of Molecular Imaging, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Florian Mueller
- Department of Physics of Molecular Imaging, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Sebastian Reinartz
- Department of Diagnostic and Interventional Radiology, Uniklinik RWTH Aachen, Aachen, Germany
| | - Jonas Philipps
- Department of Physics of Molecular Imaging, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Seyed Mohammadali Dadfar
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Maximilian Peters
- Department of Physics of Molecular Imaging, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Jochen Franke
- Department of Physics of Molecular Imaging, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.,Bruker BioSpin MRI GmbH, Preclinical Imaging Division, Ettlingen, Germany
| | - Franziska Schrank
- Department of Physics of Molecular Imaging, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Volkmar Schulz
- Department of Physics of Molecular Imaging, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.,Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.,III. Physikalisches Institut B, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
38
|
Harvell-Smith S, Tung LD, Thanh NTK. Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. NANOSCALE 2022; 14:3658-3697. [PMID: 35080544 DOI: 10.1039/d1nr05670k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging tracer-based modality that enables real-time three-dimensional imaging of the non-linear magnetisation produced by superparamagnetic iron oxide nanoparticles (SPIONs), in the presence of an external oscillating magnetic field. As a technique, it produces highly sensitive radiation-free tomographic images with absolute quantitation. Coupled with a high contrast, as well as zero signal attenuation at-depth, there are essentially no limitations to where that can be imaged within the body. These characteristics enable various biomedical applications of clinical interest. In the opening sections of this review, the principles of image generation are introduced, along with a detailed comparison of the fundamental properties of this technique with other common imaging modalities. The main feature is a presentation on the up-to-date literature for the development of SPIONs tailored for improved imaging performance, and developments in the current and promising biomedical applications of this emerging technique, with a specific focus on theranostics, cell tracking and perfusion imaging. Finally, we will discuss recent progress in the clinical translation of MPI. As signal detection in MPI is almost entirely dependent on the properties of the SPION employed, this work emphasises the importance of tailoring the synthetic process to produce SPIONs demonstrating specific properties and how this impacts imaging in particular applications and MPI's overall performance.
Collapse
Affiliation(s)
- Stanley Harvell-Smith
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Le Duc Tung
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|
39
|
Stanicki D, Vangijzegem T, Ternad I, Laurent S. An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opin Drug Deliv 2022; 19:321-335. [PMID: 35202551 DOI: 10.1080/17425247.2022.2047020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION In the field of drug delivery, controlling the release of therapeutic substances at localized targets has become a primary focus of medical research, especially in the field of cancer treatment. Magnetic nanoparticles are one of the most promising drug carriers thanks to their biocompatibility and (super)paramagnetic properties. These properties allow for the combination between imaging modalities and specific release of drugs at target sites using either local stimulus (i.e. pH, conjugation of biomarkers, …) or external stimulus (i.e. external magnetic field). AREAS COVERED This review provides an update on recent advances with the development of targeted drug delivery systems based on magnetic nanoparticles (MNPs). This overview focuses on active targeting strategies and systems combining both imaging and therapeutic modalities (i.e. theranostics). If most of the examples concern the particular case of cancer therapy, the possibility of using MNPs for other medical applications is also discussed. EXPERT OPINION The development of clinically relevant drug delivery systems based on magnetic nanoparticles is driven by advantages stemming from their remarkable properties (i.e. easy preparation, facile chemical functionalization, biocompatibility, low toxicity and superior magnetic responsiveness). This literature review shows that drug carriers based on magnetic nanoparticles can be efficiently used for the controlled release of drug at targeted locations mediated by various stimuli. Advances in the field should lead to the implementation of such systems into clinical trials, especially systems enabling drug tracking in the body.
Collapse
Affiliation(s)
- D Stanicki
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - T Vangijzegem
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - I Ternad
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - S Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| |
Collapse
|
40
|
Montiel Schneider MG, Martín MJ, Otarola J, Vakarelska E, Simeonov V, Lassalle V, Nedyalkova M. Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives. Pharmaceutics 2022; 14:204. [PMID: 35057099 PMCID: PMC8780449 DOI: 10.3390/pharmaceutics14010204] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/01/2022] [Accepted: 01/14/2022] [Indexed: 01/08/2023] Open
Abstract
The enormous development of nanomaterials technology and the immediate response of many areas of science, research, and practice to their possible application has led to the publication of thousands of scientific papers, books, and reports. This vast amount of information requires careful classification and order, especially for specifically targeted practical needs. Therefore, the present review aims to summarize to some extent the role of iron oxide nanoparticles in biomedical research. Summarizing the fundamental properties of the magnetic iron oxide nanoparticles, the review's next focus was to classify research studies related to applying these particles for cancer diagnostics and therapy (similar to photothermal therapy, hyperthermia), in nano theranostics, multimodal therapy. Special attention is paid to research studies dealing with the opportunities of combining different nanomaterials to achieve optimal systems for biomedical application. In this regard, original data about the synthesis and characterization of nanolipidic magnetic hybrid systems are included as an example. The last section of the review is dedicated to the capacities of magnetite-based magnetic nanoparticles for the management of oncological diseases.
Collapse
Affiliation(s)
- María Gabriela Montiel Schneider
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca 8000, Argentina; (M.G.M.S.); (M.J.M.); (J.O.); (V.L.)
| | - María Julia Martín
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca 8000, Argentina; (M.G.M.S.); (M.J.M.); (J.O.); (V.L.)
| | - Jessica Otarola
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca 8000, Argentina; (M.G.M.S.); (M.J.M.); (J.O.); (V.L.)
| | - Ekaterina Vakarelska
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Vasil Simeonov
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Verónica Lassalle
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca 8000, Argentina; (M.G.M.S.); (M.J.M.); (J.O.); (V.L.)
| | - Miroslava Nedyalkova
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| |
Collapse
|
41
|
Mei R, Wang Y, Zhao X, Kang Q, Shen D, Chen L. Near-Infrared Light-Responsive SERS Tags Enable Positioning and Monitoring of the Drug Release of Photothermal Nanomedicines In Vivo. Anal Chem 2021; 93:16590-16597. [PMID: 34850626 DOI: 10.1021/acs.analchem.1c03949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Understanding the in vivo behavior of photothermal nanomedicines (PTNMs) is important for drug development and evaluation. However, it is still very challenging. Herein, two key parameters, i.e., the depth of PTNMs under biological tissue and the drug release ratio of PTNMs in vivo, can be revealed by a near-infrared (NIR) light-responsive surface-enhanced Raman scattering (SERS) strategy. The fabricated PTNMs were composed of waxberry-like gold nanoparticles, model drug curcumin, and an elaborately selected NIR light-responsive Raman reporter (3,3'-diethylthiatricarbocyanine iodide, DTTC). The response mechanism of DTTC to NIR light was investigated as photodegradation. NIR light irradiation heated the gold nanoparticles, triggered the release of a model drug, and simultaneously decreased the SERS intensity of the PTNMs. In vitro experiment results revealed that the SERS intensity decrease could well reflect the depth of PTNMs with a correlation coefficient of more than 0.99. On this basis, after in situ SERS detection, the depth of PTNMs in a tumor could be revealed with satisfactory accuracy. Moreover, the decrease in the SERS intensity of PTNMs showed a highly similar trend to the increase in the drug release, suggesting that it could be used for real-time monitoring of drug release of PTNMs. This study not only opens a new avenue for the release study of many inactive fluorescent and Raman drugs of PTNMs but also provides an effective way for reporting the depth, which greatly promotes the application of PTNMs in vivo.
Collapse
Affiliation(s)
- Rongchao Mei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.,School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.,School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Xizhen Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.,School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
42
|
Magnetic iron oxide nanoparticles for biomedical applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20. [DOI: 10.1016/j.cobme.2021.100330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
43
|
Soydan DA, Gungor A, Top CB. A Simulation Study for Three Dimensional Tomographic Field Free Line Magnetic Particle Imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3701-3704. [PMID: 34892040 DOI: 10.1109/embc46164.2021.9631111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetic Particle Imaging (MPI) is an emerging modality that images the magnetic nanoparticle distribution inside the body. The method is based on the non-linear response of the magnetic nanoparticles to an applied magnetic field. In this study, we present simulation results for three-dimensional (3D) tomographic imaging using an open-bore MPI system that can electronically scan a field free line (FFL). A field of view with 26×26×10 mm3 volume is imaged with a relatively low gradient field of 0.5 T/m. Imaging results for two 3D phantoms are presented: a letter phantom and a vessel phantom with stenosis regions. Using the system-matrix based reconstruction approach, the images were obtained with the Algebraic reconstruction technique (ART) and alternating direction method of multipliers (ADMM) methods. The stenosis regions were visually recognizable in high SNR conditions with ADMM. The effect of low gradient strength became prominent with increasing noise level, resulting in interlayer coupling artifacts.Clinical relevance- Magnetic Particle Imaging (MPI) is a new tracer-based imaging modality with high-spatiotemporal resolution. MPI can map quantitative distribution of super-paramagnetic iron oxide nanoparticles introduced inside the body. A field free line scanning MPI system with an open configuration can enable imaging of human-size volumes for interventional operations. In this study, we present simulation results for an FFL scanning open MPI system configuration to scan 3D field of view volume electronically. We analyze 3D imaging performance for various SNR levels at a low gradient value of 0.5 T/m that is relevant for clinical-size systems.
Collapse
|
44
|
Tay ZW, Chandrasekharan P, Fellows BD, Arrizabalaga IR, Yu E, Olivo M, Conolly SM. Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer. Cancers (Basel) 2021; 13:5285. [PMID: 34771448 PMCID: PMC8582440 DOI: 10.3390/cancers13215285] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Magnetic Particle Imaging (MPI) is an emerging imaging modality for quantitative direct imaging of superparamagnetic iron oxide nanoparticles (SPION or SPIO). With different physics from MRI, MPI benefits from ideal image contrast with zero background tissue signal. This enables clear visualization of cancer with image characteristics similar to PET or SPECT, but using radiation-free magnetic nanoparticles instead, with infinite-duration reporter persistence in vivo. MPI for cancer imaging: demonstrated months of quantitative imaging of the cancer-related immune response with in situ SPION-labelling of immune cells (e.g., neutrophils, CAR T-cells). Because MPI suffers absolutely no susceptibility artifacts in the lung, immuno-MPI could soon provide completely noninvasive early-stage diagnosis and treatment monitoring of lung cancers. MPI for magnetic steering: MPI gradients are ~150 × stronger than MRI, enabling remote magnetic steering of magneto-aerosol, nanoparticles, and catheter tips, enhancing therapeutic delivery by magnetic means. MPI for precision therapy: gradients enable focusing of magnetic hyperthermia and magnetic-actuated drug release with up to 2 mm precision. The extent of drug release from the magnetic nanocarrier can be quantitatively monitored by MPI of SPION's MPS spectral changes within the nanocarrier. CONCLUSION MPI is a promising new magnetic modality spanning cancer imaging to guided-therapy.
Collapse
Affiliation(s)
- Zhi Wei Tay
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Singapore;
| | - Prashant Chandrasekharan
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Benjamin D. Fellows
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Irati Rodrigo Arrizabalaga
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Elaine Yu
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Malini Olivo
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Singapore;
| | - Steven M. Conolly
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| |
Collapse
|
45
|
Baki A, Wiekhorst F, Bleul R. Advances in Magnetic Nanoparticles Engineering for Biomedical Applications-A Review. Bioengineering (Basel) 2021; 8:134. [PMID: 34677207 PMCID: PMC8533261 DOI: 10.3390/bioengineering8100134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Magnetic iron oxide nanoparticles (MNPs) have been developed and applied for a broad range of biomedical applications, such as diagnostic imaging, magnetic fluid hyperthermia, targeted drug delivery, gene therapy and tissue repair. As one key element, reproducible synthesis routes of MNPs are capable of controlling and adjusting structure, size, shape and magnetic properties are mandatory. In this review, we discuss advanced methods for engineering and utilizing MNPs, such as continuous synthesis approaches using microtechnologies and the biosynthesis of magnetosomes, biotechnological synthesized iron oxide nanoparticles from bacteria. We compare the technologies and resulting MNPs with conventional synthetic routes. Prominent biomedical applications of the MNPs such as diagnostic imaging, magnetic fluid hyperthermia, targeted drug delivery and magnetic actuation in micro/nanorobots will be presented.
Collapse
Affiliation(s)
- Abdulkader Baki
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany;
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany;
| | - Regina Bleul
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany;
| |
Collapse
|
46
|
Su X, Zhang X, Liu W, Yang X, An N, Yang F, Sun J, Xing Y, Shang H. Advances in the application of nanotechnology in reducing cardiotoxicity induced by cancer chemotherapy. Semin Cancer Biol 2021; 86:929-942. [PMID: 34375726 DOI: 10.1016/j.semcancer.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Advances in the development of anti-tumour drugs and related technologies have resulted in a significant increase in the number of cancer survivors. However, the incidence of chemotherapy-induced cardiotoxicity (CIC) has been rising continuously, threatening their long-term survival. The integration of nanotechnology and biomedicine has brought about an unprecedented technological revolution and has promoted the progress of anti-tumour therapy. In this review, we summarised the possible mechanisms of CIC, evaluated the role of nanoparticles (including liposomes, polymeric micelles, dendrimers, and hydrogels) as drug carriers in preventing cardiotoxicity and proposed five advantages of nanotechnology in reducing cardiotoxicity: Liposomes cannot easily penetrate the heart's endothelial barrier; optimized delivery strategies reduce distribution in important organs, such as the heart; targeting the tumour microenvironment and niche; stimulus-responsive polymer nano-drug carriers rapidly iterate; better economic benefits were obtained. Nanoparticles can effectively deliver chemotherapeutic drugs to tumour tissues, while reducing the toxicity to heart tissues, and break through the dilemma of existing chemotherapy to a certain extent. It is important to explore the interactions between the physicochemical properties of nanoparticles and optimize the highly specific tumour targeting strategy in the future.
Collapse
Affiliation(s)
- Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyu Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Yang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiahao Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
47
|
Tang G, He J, Liu J, Yan X, Fan K. Nanozyme for tumor therapy: Surface modification matters. EXPLORATION (BEIJING, CHINA) 2021; 1:75-89. [PMID: 37366468 PMCID: PMC10291575 DOI: 10.1002/exp.20210005] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 06/28/2023]
Abstract
As the next generation of artificial enzymes, nanozymes have shown unique properties compared to its natural counterparts, such as stability in harsh environment, low cost, and ease of production and modification, paving the way for its biomedical applications. Among them, tumor catalytic therapy mediated by the generation of reactive oxygen species (ROS) has made great progress mainly from the peroxidase-like activity of nanozymes. Fe3O4 nanozymes, the earliest type of nanomaterial discovered to possess peroxidase-like activity, has consequently received wide attention for tumor therapy due to its ROS generation ability and tumor cell killing ability. However, inconsistent results of cytotoxicity were observed between different reports, and some even showed the scavenging of ROS in some cases. By collectively studying these inconsistent outcomes, we raise the question whether surface modification of Fe3O4 nanozymes, either through affecting peroxidase activity or by affecting the biodistribution and intracellular fate, play an important role in its therapeutic effects. This review will go over the fundamental catalytic mechanisms of Fe3O4 nanozymes and recent advances in tumor catalytic therapy, and discuss the importance of surface modification. Employing Fe3O4 nanozymes as an example, we hope to provide an outlook on the improvement of nanozyme-based antitumor activity.
Collapse
Affiliation(s)
- Guoheng Tang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing101408P. R. China
| | - Jiuyang He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing101408P. R. China
- Nanozyme Medical Center, School of Basic Medical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing101408P. R. China
- Nanozyme Medical Center, School of Basic Medical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
48
|
Liu H, Lu C, Han L, Zhang X, Song G. Optical – Magnetic probe for evaluating cancer therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Lu C, Han L, Wang J, Wan J, Song G, Rao J. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chem Soc Rev 2021; 50:8102-8146. [PMID: 34047311 DOI: 10.1039/d0cs00260g] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Magnetic particle imaging (MPI) has recently emerged as a promising non-invasive imaging technique because of its signal linearly propotional to the tracer mass, ability to generate positive contrast, low tissue background, unlimited tissue penetration depth, and lack of ionizing radiation. The sensitivity and resolution of MPI are highly dependent on the properties of magnetic nanoparticles (MNPs), and extensive research efforts have been focused on the design and synthesis of tracers. This review examines parameters that dictate the performance of MNPs, including size, shape, composition, surface property, crystallinity, the surrounding environment, and aggregation state to provide guidance for engineering MPI tracers with better performance. Finally, we discuss applications of MPI imaging and its challenges and perspectives in clinical translation.
Collapse
Affiliation(s)
- Chang Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Linbo Han
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Joanna Wang
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California 94305-5484, USA.
| | - Jiacheng Wan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California 94305-5484, USA.
| |
Collapse
|
50
|
Navigation of a magnetic micro-robot through a cerebral aneurysm phantom with magnetic particle imaging. Sci Rep 2021; 11:14082. [PMID: 34234207 PMCID: PMC8263782 DOI: 10.1038/s41598-021-93323-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
Cerebral aneurysms are potentially life threatening and nowadays treated by a catheter-guided coiling or by a neurosurgical clipping intervention. Here, we propose a helically shaped magnetic micro-robot, which can be steered by magnetic fields in an untethered manner and could be applied for a novel coiling procedure. This is shown by navigating the micro-robot through an additively manufactured phantom of a human cerebral aneurysm. The magnetic fields are applied with a magnetic particle imaging (MPI) scanner, which allows for the navigation and tomographic visualization by the same machine. With MPI the actuation process can be visualized with a localization accuracy of 0.68 mm and an angiogram can be acquired both without any radiation exposure. First in-vitro phantom experiments are presented, showing an idea of a robot conducted treatment of cerebral aneurysms.
Collapse
|