1
|
Gupta R, Frison G. Correlation Between NMR Coupling Constants and σ-Donating Properties of N-Heterocyclic Carbenes and Their Derivatives. Chemistry 2024:e202403403. [PMID: 39565664 DOI: 10.1002/chem.202403403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/22/2024]
Abstract
Is the 1JC-H coupling constant for protonated carbene a relevant measure of its σ-donation ability? This paper addresses this question by comparing calculated 1JC-H values with various experimental and theoretical approaches across a broad spectrum of carbene compounds. We examined Arduengo-type NHCs based on the 2-imidazolylidene scaffold and many other derivatives with modified frameworks, including carbenes with extended, saturated, or conjugated rings, reduced heteroatom stabilization, alternative heteroatoms, permanently charged carbenes, acyclic carbenes, amidocarbenes, and cyclic amino(alkyl/aryl) carbenes, carbodicarbenes and carbodiphosphoranes. Our findings reveal a nuanced relationship between different parameters associated with σ-interaction, such as 1JC-H, Huynh electronic parameter (HEP), σ-donation from ETS-NOCV, and lone pair energy. Notably, the best correlation was observed between 1JC-H and the ETS-NOCV method, particularly for mono- and diaminocarbenes, highlighting the utility of 1JC-H in comparing σ-donation among structurally similar carbene types. However, the use of 1JC-H as a universal measure across all carbene classes appears limited, especially when considering carbenes with significantly different structural frameworks. While HEP is less effective for carbenes with diverse structural backbones, our study suggests that 1JC-H has potential across a broader range of systems. Additionally, the analysis demonstrates that lone pair energy reflects basicity rather than σ-donor ability.
Collapse
Affiliation(s)
- Radhika Gupta
- LCM, Ecole polytechnique, CNRS, IP Paris, 91128, Palaiseau, France
| | - Gilles Frison
- LCM, Ecole polytechnique, CNRS, IP Paris, 91128, Palaiseau, France
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, 75005, Paris
| |
Collapse
|
2
|
Leitner D, Neururer FR, Hohloch S. Synthesis and electrochemical properties of molybdenum nitrido complexes supported by redox-active NHC and MIC ligands. Dalton Trans 2024. [PMID: 39556080 PMCID: PMC11572837 DOI: 10.1039/d4dt02405b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
We report the synthesis of a series of molybdenum nitrido complexes supported by bis-phenolate N-heterocyclic and mesoionic carbenes (NHC & MIC). The reaction between MoN(OtBu)3 and the corresponding azolium salts [H3L1]Cl and [H3L2]Cl (with L1 = bis-phenolate triazolylidene and L2 = bis-phenolate benzimidazolylidene) gives clean access to the corresponding NHC/MIC complexes 1-Cl and 2-Cl. Electrochemical investigations of these complexes showed that they can be reversibly reduced at potentials of -1.13 and -1.01 V vs. Fc/[Fc]+ and the reduced complexes [1-Cl]- and [2-Cl]- can be cleanly isolated after chemical reduction with one equivalent of decamethylcobaltocene. Exchange of the halide atoms is furthermore reported to give a series of nitrido complexes supported by tert-butanolate (1-OtBu and 2-OtBu), perfluoro-tert-butanolate (1-OtBuF9 and 2-OtBuF9), tritylate (1-OCPh3 and 2-OCPh3), mesitolate (1-OMes and 2-OMes), thio-tert-butanolate (1-StBu), thiotritylate (1-SCPh3 and 2-SCPh3) and thiomesitolate complexes (1-SMes). The electrochemical properties of all complexes were evaluated and compared. All isolated complexes were characterized by multinuclear and multidimensional NMR spectroscopy and (if applicable) by EPR spectroscopy. Furthermore, the reactivity of 1-Cl and 2-Cl in the presence of protons and decamethylcobaltocene was investigated, which shows facile extrusion of ammonia, yielding diamagnetic bis-molybdenum(III) complexes 3 and 4.
Collapse
Affiliation(s)
- Daniel Leitner
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Florian R Neururer
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Stephan Hohloch
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Utecht-Jarzyńska G, Shi S, Gao P, Jarzyński S, Mahbubur Rahman M, Lalancette R, Szostak R, Szostak M. IPr* F - Highly Hindered, Fluorinated N-Heterocyclic Carbenes. Chemistry 2024; 30:e202402847. [PMID: 39298645 DOI: 10.1002/chem.202402847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The introduction of fluorine atom has attracted considerable interest in molecular design owing to the high electronegativity and the resulting polarization of carbon-fluorine bonds. Simultaneously, sterically-hindered N-heterocyclic carbenes (NHCs) have received major interest due to high stabilization of the reactive metal centers, which has paved the way for the synthesis of stable and reactive organometallic compounds with broad applications in main group chemistry, inorganic synthesis and transition-metal-catalysis. Herein, we report the first class of sterically-hindered, fluorinated N-heterocyclic carbenes. These ligands feature variable fluorine substitution at the N-aromatic wingtip, permitting to rationally vary steric and electronic characteristics of the carbene center imparted by the fluorine atom. An efficient, one-pot synthesis of fluorinated IPr*F ligands is presented, enabling broad access of academic and industrial researchers to the fluorinated ligands. The evaluation of steric, electron-donating and π-accepting properties as well as coordination chemistry to Au(I), Rh(I) and Se is presented. Considering the unique properties of carbon-fluorine bonds, we anticipate that this novel class of fluorinated carbene ligands will find widespread application in stabilizing reactive metal centers.
Collapse
Affiliation(s)
- Greta Utecht-Jarzyńska
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
- Faculty of Chemistry, University of Lodz, Tamka 12, Łódź, 91-403, Poland
| | - Shicheng Shi
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Szymon Jarzyński
- Faculty of Chemistry, University of Lodz, Tamka 12, Łódź, 91-403, Poland
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw, 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| |
Collapse
|
4
|
Dankert F, Messelberger J, Authesserre U, Swain A, Scheschkewitz D, Morgenstern B, Munz D. A Lead(II) Substituted Triplet Carbene. J Am Chem Soc 2024; 146:29630-29636. [PMID: 39423155 PMCID: PMC11528407 DOI: 10.1021/jacs.4c10205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
Reaction of the pincer-type ligand L3 supported complex [L3PbBr][BArF24] (1) with Li[(C(═N2)TMS)] furnishes [L3Pb(C(═N2)TMS)][BArF24] (2). Diazo-compound 2 eliminates dinitrogen upon irradiation affording formal plumba-alkyne 3, which persists in cold fluoroarene solutions. Variable temperature UV/Vis and NMR spectroscopies in combination with quantum-chemical calculations identify 3 as a metal-substituted triplet carbene. In-crystallo irradiation of [L3Pb(C(═N2)TMS)(tol)][BArF24] (2·tol) provides a snapshot of intermolecular C-H bond insertion with toluene (4).
Collapse
Affiliation(s)
- Fabian Dankert
- Saarland
University, Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Julian Messelberger
- Saarland
University, Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Ugo Authesserre
- Saarland
University, Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Abinash Swain
- Saarland
University, Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - David Scheschkewitz
- Saarland
University, Inorganic and General
Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Bernd Morgenstern
- Saarland
University, Inorganic Solid-State
Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Dominik Munz
- Saarland
University, Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| |
Collapse
|
5
|
Gravogl L, Kass D, Pyschny O, Heinemann FW, Haumann M, Katz S, Hildebrandt P, Dau H, Swain A, García-Serres R, Ray K, Munz D, Meyer K. A bis-Phenolate Carbene-Supported bis-μ-Oxo Iron(IV/IV) Complex with a [Fe IV(μ-O) 2Fe IV] Diamond Core Derived from Dioxygen Activation. J Am Chem Soc 2024; 146:28757-28769. [PMID: 39382653 DOI: 10.1021/jacs.4c07582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The diiron(II) complex, [(OCO)Fe(MeCN)]2 (1, MeCN = acetonitrile), supported by the bis-phenolate carbene pincer ligand, 1,3-bis(3,5-di-tert-butyl-2-hydroxyphenyl)benzimidazolin-2-ylidene (OCO), was synthesized and characterized by single-crystal X-ray diffraction, 1H nuclear magnetic resonance, infrared (IR) vibrational, ultraviolet/visible/near-infrared (UV/vis/NIR) electronic absorption, 57Fe Mössbauer, X-band electron paramagnetic resonance (EPR) and SQUID magnetization measurements. Complex 1 activates dioxygen to yield the diferric, μ-oxo-bridged complex [(OCO)Fe(py)(μ-O)Fe(O(C═O)O)(py)] (2) that was isolated and fully characterized. In 2, one of the iron-carbene bonds was oxidized to give a urea motif, resulting in an O(CNHC═O)O binding site, while the other Fe(OCO) unit remained unchanged. When the reaction is performed at -80 °C, an intensively colored, purple intermediate is observed (INT, λmax = 570 nm; ε = 5600 mol L-1 cm-1). INT acts as a sluggish oxidant, reacting only with easily oxidizable substrates, such as PPh3 or 2-phenylpropionic aldehyde (2-PPA). The identity of INT can be best described as a dinuclear complex containing a closed diamond core motif [(OCO)FeIV(μ-O)2FeIV(OCO)]. This proposal is based on extensive spectroscopic [UV/vis/NIR electronic absorption, 57Fe Mössbauer, X-band EPR, resonance Raman (rRaman), X-ray absorption, and nuclear resonance vibrational (NRVS)] and computational studies. The conversion of the diiron(II) complex 1 to the oxo diiron(IV) intermediate INT is reminiscent of the O2 activation process in soluble methane monooxygenases (sMMO). Most importantly, the low reactivity of INT supports the consensus that the [FeIV(μ-O)2FeIV] diamond core in sMMO is kinetically inert and needs to open up to terminal FeIV═O cores to react with the strong C-H bonds of methane.
Collapse
Affiliation(s)
- Lisa Gravogl
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Dustin Kass
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str.2, 12489 Berlin, Germany
| | - Oliver Pyschny
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Sagie Katz
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Holger Dau
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Abinash Swain
- Inorganic Chemistry, Coordination Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany
| | - Ricardo García-Serres
- Université Grenoble Alpes, CEA, CNRS, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str.2, 12489 Berlin, Germany
| | - Dominik Munz
- Inorganic Chemistry, Coordination Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
6
|
Dabringhaus P, Molino A, Gilliard RJ. Carbodiphosphorane-Activated Distibene and Dibismuthene Dications. J Am Chem Soc 2024; 146:27186-27195. [PMID: 39298432 DOI: 10.1021/jacs.4c10834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Low-valent antimony and bismuth have emerged as novel platforms for achieving reversible small-molecule activation at main-group metals. Although various examples of oxidative addition reactions at monomeric Sb(I) and Bi(I) have been reported, the chemistry of the heavy group 15 Sb(I)═Sb(I)/Bi(I)═Bi(I) double bonds toward small molecules remains largely unexplored. In this study, we present a straightforward synthesis of distibene and dibismuthene dications coordinated with a neutral carbodiphosphorane (CDP) ligand. The nonbonding interactions between the occupied p-orbital at the CDP ligand and the π-bonding orbital of the Sb═Sb/Bi═Bi bonds yield compounds with exceptionally small HOMO-LUMO gaps. In addition, the reduction of steric hindrance compared to known neutral derivatives stabilized with bulky aryl groups allows for better accessibility of the double bonds. This high reactivity is demonstrated in the oxidative addition of distibene to diphenyldisulfide as well as in [2+2] cycloadditions to alkynes. Additionally, the Sb═Sb bond reversibly adds to 2,3-dimethylbutadiene in a [4+2] cycloaddition reaction.
Collapse
Affiliation(s)
- Philipp Dabringhaus
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrew Molino
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Warring L, Westendorff KS, Bennett MT, Nam K, Stewart BM, Dickie DA, Paolucci C, Gunnoe TB, Gilliard RJ. Carbodicarbene-Stibenium Ion-Mediated Functionalization of C(sp 3)-H and C(sp)-H Bonds. Angew Chem Int Ed Engl 2024:e202415070. [PMID: 39245628 DOI: 10.1002/anie.202415070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
Main-group element-mediated C-H activation remains experimentally challenging and the development of clear concepts and design principles has been limited by the increased reactivity of relevant complexes, especially for the heavier elements. Herein, we report that the stibenium ion [(pyCDC)Sb][NTf2]3 (1) (pyCDC=bis-pyridyl carbodicarbene; NTf2=bis(trifluoromethanesulfonyl)imide) reacts with acetonitrile in the presence of the base 2,6-di-tert-butylpyridine to enable C(sp3)-H bond breaking to generate the stiba-methylene nitrile complex [(pyCDC)Sb(CH2CN)][NTf2]2 (2). Kinetic analyses were performed to elucidate the rate dependence for all the substrates involved in the reaction. Computational studies suggest that C-H activation proceeds via a mechanism in which acetonitrile first coordinates to the Sb center through the nitrogen atom in a κ1 fashion, thereby weakening the C-H bond which can then be deprotonated by base in solution. Further, we show that 1 reacts with terminal alkynes in the presence of 2,6-di-tert-butylpyridine to enable C(sp)-H bond breaking to form stiba-alkynyl adducts of the type [(pyCDC)Sb(CCR)][NTf2]2 (3 a-f). Compound 1 shows excellent specificity for the activation of the terminal C(sp)-H bond even across alkynes with diverse functionality. The resulting stiba-methylene nitrile and stiba-alkynyl adducts react with elemental iodine (I2) to produce iodoacetonitrile and iodoalkynes, while regenerating an Sb trication.
Collapse
Affiliation(s)
- Levi Warring
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA-02139, USA
| | - Karl S Westendorff
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA-02139, USA
- Department of Chemical Engineering, University of Virginia, 385 McCormick Road, Charlottesville, VA-22904, USA
| | - Marc T Bennett
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, VA-22904, USA
| | - Kijeong Nam
- Department of Chemical Engineering, University of Virginia, 385 McCormick Road, Charlottesville, VA-22904, USA
| | - Brennan M Stewart
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, VA-22904, USA
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, VA-22904, USA
| | - Christopher Paolucci
- Department of Chemical Engineering, University of Virginia, 385 McCormick Road, Charlottesville, VA-22904, USA
| | - T Brent Gunnoe
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, VA-22904, USA
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA-02139, USA
| |
Collapse
|
8
|
Gravogl L, Keilwerth M, Körber E, Heinemann FW, Meyer K. From d 8 to d 1: Iron(0) and Iron(I) Complexes Complete the Series of Eight Fe Oxidation States within the TIMMN Mes Ligand Framework. Inorg Chem 2024; 63:15888-15905. [PMID: 39145894 DOI: 10.1021/acs.inorgchem.4c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Reduction of the ferrous precursor [(TIMMNMes)Fe(Cl)]+ (1) (TIMMNMes = tris-[(3-mesitylimidazol-2-ylidene)methyl]amine) to the low-valent iron(0) complex [(TIMMNMes)Fe(CO)3] (2) is presented, where the tris(N-heterocyclic carbene) (NHC) ligand framework remains intact, yet the coordination mode changed from 3-fold to 2-fold coordination of the carbene arms. Further, the corresponding iron(I) complexes [(TIMMNMes)Fe(L)]+ (L = free site, η1-N2, CO, py) (3) are synthesized and fully characterized. Complexes 1-3 demonstrate the notable steric and electronic flexibility of the TIMMNMes ligand framework by variation of the Fe-N anchor and Fe-carbene distances and the variable size of the axial cavity occupation. This is further underpinned by the oxidation of 3-N2 in a reaction with benzophenone to yield the corresponding, charge-separated iron(II) radical complex [(TIMMNMes)Fe(OCPh2)]+ (4). We found rather surprising similarities in the reactivity behavior when going to low- or high-valent oxidation states of the central iron ion. This is demonstrated by the closely related reactivity of 3-N2, where H atom abstraction with TEMPO triggers the formation of the metallacycle [(TIMMNMes*)Fe(py)]+ (5), and the reactivity of the highly unstable Fe(VII) nitride complex [(TIMMNMes)Fe(N)(F)]3+ to give the metallacyclic Fe(V) imido complex [(TIMMNMesN)Fe(NMes)(MeCN)]3+ (6) upon warming. Thus, the employed tris(carbene) chelate is not only capable of stabilizing the superoxidized Fe(VI) and Fe(VII) nitrides but equally supports the iron center in its low oxidation states 0 and +1. Isolation and characterization of these zero- and monovalent iron complexes demonstrate the extraordinary capability of the tris(carbene) chelate TIMMN to support iron in eight different oxidation states within the very same ligand platform.
Collapse
Affiliation(s)
- Lisa Gravogl
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Martin Keilwerth
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Eva Körber
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
9
|
Hollister KK, Molino A, Le VV, Jones N, Smith WJ, Müller P, Dickie DA, Wilson DJD, Gilliard RJ. Pentacyclic fused diborepinium ions with carbene- and carbone-mediated deep-blue to red emission. Chem Sci 2024:d4sc03835e. [PMID: 39156927 PMCID: PMC11325318 DOI: 10.1039/d4sc03835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024] Open
Abstract
Designing molecules that can undergo late-stage modifications resulting in specific optical properties is useful for developing structure-function trends in materials, which ultimately advance optoelectronic applications. Herein, we report a series of fused diborepinium ions stabilized by carbene and carbone ligands (diamino-N-heterocyclic carbenes, cyclic(alkyl)(amino) carbenes, carbodicarbenes, and carbodiphosphoranes), including a detailed bonding analysis. These are the first structurally confirmed examples of diborepin dications and we detail how distortions in the core of the pentacyclic fused system impact aromaticity, stability, and their light-emitting properties. Using the same fused diborepin scaffold, coordinating ligands were used to dramatically shift the emission profile, which exhibit colors ranging from blue to red (358-643 nm). Notably, these diborepinium ions access expanded regions of the visible spectrum compared to known examples of borepins, with quantum yields up to 60%. Carbones were determined to be superior stabilizing ligands, resulting in improved stability in the solution and solid states. Density functional theory was used to provide insight into the bonding as well as the specific transitions that result in the observed photophysical properties.
Collapse
Affiliation(s)
- Kimberly K Hollister
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Building 18-596 Cambridge MA 02139-4307 USA
| | - Andrew Molino
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Building 18-596 Cambridge MA 02139-4307 USA
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne 3086 Victoria Australia
| | - VuongVy V Le
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA
| | - Nula Jones
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA
| | - Wyatt J Smith
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA
| | - Peter Müller
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Building 18-596 Cambridge MA 02139-4307 USA
| | - Diane A Dickie
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA
| | - David J D Wilson
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne 3086 Victoria Australia
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Building 18-596 Cambridge MA 02139-4307 USA
| |
Collapse
|
10
|
Terschüren T, Schnakenburg G, Streubel R. Tapping into the coordinative potential of a C-functional 1,4-diphosphabarrelene using two sets of complementary ligand centres. Dalton Trans 2024. [PMID: 39092591 DOI: 10.1039/d4dt01817f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
7,8-Dihydro-1,4-diphosphabarrelene diselones and bis(NHCs) were synthesised and employed as multitopic P,Se and P,C ligands in coordination chemistry, benefitting from a unique bent, P-bridged topology, thus being promising new building blocks.
Collapse
Affiliation(s)
- Tatjana Terschüren
- Institute of Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Rainer Streubel
- Institute of Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
11
|
Lorkowski J, Yorkgitis P, Serrato MR, Gembicky M, Pietraszuk C, Bertrand G, Jazzar R. Genuine carbene versus carbene-like reactivity. Angew Chem Int Ed Engl 2024; 63:e202401020. [PMID: 38632078 DOI: 10.1002/anie.202401020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Singlet carbenes are not always isolable and often even elude direct detection. When they escape observation, their formation can sometimes be evidenced by in situ trapping experiments. However, is carbene-like reactivity genuine evidence of carbene formation? Herein, using the first example of a spectroscopically characterized cyclic (amino)(aryl)carbene (CAArC), we cast doubt on the most common carbene trapping reactions as sufficient proof of carbene formation.
Collapse
Affiliation(s)
- Jan Lorkowski
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA-92093-0343, USA
| | - Patrick Yorkgitis
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA-92093-0343, USA
| | - Melinda R Serrato
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA-92093-0343, USA
| | - Milan Gembicky
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA-92093-0343, USA
| | - Cezary Pietraszuk
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Guy Bertrand
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA-92093-0343, USA
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA-92093-0343, USA
| |
Collapse
|
12
|
Papangelis E, Pelzer K, Gourlaouen C, Armspach D, Braunstein P, Danopoulos AA, Bailly C, Tsoureas N, Gerokonstantis DT. New Pyridine Dicarbene Pincer Ligands with Ring Expanded NHCs and their Nickel and Chromium Complexes. Chem Asian J 2024; 19:e202400169. [PMID: 38619064 DOI: 10.1002/asia.202400169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
The pincer complexes [NiIIBr(CNC)]Br (4), [CrIIIBr3(CNC)] (5 a) and [CrIIIBr2.3Cl0.7(CNC)] (5 b), where CNC=3,3'-(pyridine-2,6-diyl)bis(1-mesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene), were obtained from the novel ligand CNC, generated in situ from the precursor (CHNCH)Br2 and [NiIIBr2(PPh3)2] or from [CrII{N(SiMe3)2}2(THF)2] and (CHNCH)Br2 by aminolysis, respectively. The tetrahedrally distorted square planar (τ4≅0.30) geometry and the singlet ground state of Ni in 4 were attributed to steric constraints of the CNC backbone. Computational methods highlighted the dependence of the coordination geometry and the singlet-triplet energy difference on the size of the N-substituent of the tetrahydropyrimidine wingtips and contrasted it to the situation in 5-membered imidazolin-2-ylidene pincer analogues. The octahedral CrIII metal center in 5 a and 5 b is presumably formed after one electron oxidation from CH2Cl2. 4/MAO and 5 a/MAO were catalysts of moderate activity for the oligomerization and polymerization of ethylene, respectively. The analogous (CH^N^CH)Br2 precursor, where (CH^N^CH)=3,3'-(pyridine-2,6-diylbis(methylene))bis(1-mesityl-3,4,5,6-tetrahydropyrimidin-1-ium), was also prepared, however its coordination chemistry was not studied due to the inherent instability of the resulting free C^N^C ligand.
Collapse
Affiliation(s)
- Evangelos Papangelis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Katrin Pelzer
- Equipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS-90032, 67081, Strasbourg Cedex, France
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS-90032, 67081, Strasbourg Cedex, France
| | - Dominique Armspach
- Equipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS-90032, 67081, Strasbourg Cedex, France
| | - Pierre Braunstein
- Equipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS-90032, 67081, Strasbourg Cedex, France
| | - Andreas A Danopoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Corinne Bailly
- Fédération de Chimie "Le Bel" -, UAR2042, BP 296R8, 1, rue Blaise Pascal, 67008, Strasbourg Cedex, France
| | - Nikolaos Tsoureas
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Dimitrios Triantafyllos Gerokonstantis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| |
Collapse
|
13
|
Kılınçarslan R, Tuncer H, Özdemir N, Çetinkaya B. Vitamin B1-based thiazol-2-ylidene-Ru(II) complexes: recyclable transfer hydrogenation catalysts in water. Dalton Trans 2024; 53:9192-9197. [PMID: 38742996 DOI: 10.1039/d4dt00445k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The [(p-cymene)RuCl(κ2C,N-{CNHC-NH})]+X- (CNHC = thiazol-2-ylidene) complexes with a bidentate ligand (2: X = Cl and 3: X = PF6) were prepared by a one-pot reaction of vitamin B1 (VB1, 1), Ag2O and [(p-cymene)RuCl2]2. In the complexes, VB1 coordinates through C2 and the exocyclic N in the imino form with the κ2-(C,N) coordination mode. The complexes 2 and 3 are stable in the solid state, but slowly release p-cymene in solution. Furthermore, upon heating in polar solvents, 2 or 3 can be converted by ligand exchange reactions to produce [(L)3RuCl(κ2C,N-{CNHC-NH})]+PF6- (4: L = py).Robustness was improved remarkably for 4. The complex 4 is stable in the solid state and in solution. The complexes 2-4 have been identified by 1H and 13C{1H} 2D NMR spectroscopy and 2 and 4 were studied by X-ray crystallography. In an effort to develop a recyclable catalyst in water, 2-4 were evaluated for TH of ketones and aldehydes with an azeotropic mixture of HCOOH/Et3N in water. The complexes 3 and 4 exhibited very good catalytic activity and 4 could be reused nine times without significant loss of activity, giving a high turnover frequency (TOF50%(h-1) = 1286).
Collapse
Affiliation(s)
- Rafet Kılınçarslan
- Pamukkale University, Faculty of Science, Department of Chemistry, 20070, Denizli, Turkey.
| | - Hayriye Tuncer
- Pamukkale University, Faculty of Science, Department of Chemistry, 20070, Denizli, Turkey.
| | - Namık Özdemir
- Ondokuz Mayıs University, Faculty of Science, Department of Physics, 55139, Samsun, Turkey
| | - Bekir Çetinkaya
- Ege University, Faculty of Science, Department of Chemistry, 35100, İzmir, Turkey
| |
Collapse
|
14
|
Hollister KK, Wentz KE, Gilliard RJ. Redox- and Charge-State Dependent Trends in 5, 6, and 7-Membered Boron Heterocycles: A Neutral Ligand Coordination Chemistry Approach to Boracyclic Cations, Anions, and Radicals. Acc Chem Res 2024; 57:1510-1522. [PMID: 38708938 DOI: 10.1021/acs.accounts.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
ConspectusBoron heterocycles represent an important subset of heteroatom-incorporated rings, attracting attention from organic, inorganic, and materials chemists. The empty pz orbital at the boron center makes them stand out as quintessential Lewis acidic molecules, also serving as a means to modulate electronic structure and photophysical properties in a facile manner. As boracycles are ripe for extensive functionalization, they are used in catalysis, chemical biology, materials science, and continue to be explored as chemical synthons for conjugated materials and reagents. Neutral boron(III)-incorporated polycyclic molecules are some of the most studied types of boracycles, and understanding their redox transformations is important for applications relying on electron transfer and charge transport. While relevant redox species can often be electrochemically observed, it remains challenging to isolate and characterize boracycles where the boron center and/or polycyclic skeleton have been chemically reduced.We describe our recent work isolating 5-, 6-, and 7-membered boracyclic radicals, anions, and cations, focusing on stabilization strategies, ligand-mediated bonding situations, and reactivity. We present a versatile neutral ligand coordination chemistry approach that permits the transformation of boracycles from potent electrophiles to powerful nucleophilic heterocycles that facilitate diverse electron transfer and bond activation chemistry. Although there are a wide range of suitable stabilizing ligands, we have employed both diamino-N-heterocyclic carbenes (NHCs) and cyclic(alkyl)(amino) carbenes (CAACs), which led to boracycles with tunable electronic structures and aromaticity trends. We highlight successful isolation of borafluorene radicals and demonstrate their reversible redox behavior, undergoing oxidation to the cation or reduction to the anion. The borafluorene anion is a chemical synthon that has been used to prepare boryl main-group and transition-metal bonds, luminescent oxabora-spirocycles, borafluorenate-crown ethers, and CO-releasing molecules via carbon dioxide activation. We expanded to 6-membered boracycles and characterized neutral bis(NHC-supported 9-boraphenanthrene)s and the corresponding bis(CAAC-stabilized 9-boraphenanthrene) biradical. We detail the interconvertible multiredox states of boraphenalene, where the boraphenalenyl radical, anion, and cation mimic the charge-states of the all-hydrocarbon analogue. Reactivity studies of the boraphenalenyl anion displayed unusual nucleophilic reactivity at multiple sites on the periphery of the boraphenalenyl tricyclic scaffold. Reduced borepins, 7-membered boron containing heterocycles, have also been isolated. We used a stepwise one-pot synthesis combining the halo-borepin precursor, CAAC, and KC8 to afford the monomeric borepin radicals and anions. The π-system was extended to contain two borepin rings fused in a pentacyclic scaffold, which permitted isolation of diborepin biradicals and a diborepin containing a dibora-quinone core.Our goal is to provide a guide explaining the current structure-function trends and isolation strategies for redox-active boron-incorporated polycyclic molecules to initiate the rational design and use of these types of compounds across a vast chemical space.
Collapse
Affiliation(s)
- Kimberly K Hollister
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| | - Kelsie E Wentz
- Department of Chemistry, Johns Hopkins University, Remson Hall, 3400 N Charles Street, Baltimore, Maryland 21218-2625, United States
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
15
|
Steffenfauseweh H, Vishnevskiy YV, Neumann B, Stammler HG, de Bruin B, Ghadwal RS. N-Heterocyclic Carbene Analogues of Wittig Hydrocarbon. Chemistry 2024; 30:e202400879. [PMID: 38437163 DOI: 10.1002/chem.202400879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
N-Heterocyclic carbene (NHC) analogues of Wittig hydrocarbon, [(NHC)(Stil)(NHC)] (3a-c) (NHC = SIPr (1a) = C[N(Dipp)CH2]2, Dipp = 2,6-iPr2C6H3; IPr (1b) = C[N(Dipp)CH]2; Me-IPr (1c) = C[N(Dipp)CMe]2 and Stil = C6H4CHCHC6H4) have been reported as crystalline solids. 3a-c are prepared by two-electron reductions of the corresponding bis-1,3-imidazoli(ni)um bromides [(NHC)(Stil)NHC)](Br)2 (2a-c) with KC8 in >94 % yields. 2a-c are accessible by the nickel catalyzed direct C-C coupling of NHCs (1a-c) with (E)-4,4'-dibromostilbene. One-electron oxidation of 3a,b yields the corresponding radical cations [(NHC)(Stil)NHC)]B(C6F5)4 4a,b. All compounds have been characterized by UV-Vis/NMR/EPR spectroscopy as well as 2a, 3a, and 3b by single crystal X-ray diffraction. The electronic structures of representative systems have been analyzed by quantum chemical calculations.
Collapse
Affiliation(s)
- Henric Steffenfauseweh
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Bas de Bruin
- University of Amsterdam (UvA), Faculty of Science, Van 't Hoff Institute for Molecular Sciences (HIMS), Homogeneous and Supramolecular Catalysis Group, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| |
Collapse
|
16
|
He M, Hu C, Wei R, Wang XF, Liu LL. Recent advances in the chemistry of isolable carbene analogues with group 13-15 elements. Chem Soc Rev 2024; 53:3896-3951. [PMID: 38436383 DOI: 10.1039/d3cs00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Carbenes (R2C:), compounds with a divalent carbon atom containing only six valence shell electrons, have evolved into a broader class with the replacement of the carbene carbon or the RC moiety with main group elements, leading to the creation of main group carbene analogues. These analogues, mirroring the electronic structure of carbenes (a lone pair of electrons and an empty orbital), demonstrate unique reactivity. Over the last three decades, this area has seen substantial advancements, paralleling the innovations in carbene chemistry. Recent studies have revealed a spectrum of unique carbene analogues, such as monocoordinate aluminylenes, nitrenes, and bismuthinidenes, notable for their extraordinary properties and diverse reactivity, offering promising applications in small molecule activation. This review delves into the isolable main group carbene analogues that are in the forefront from 2010 and beyond, spanning elements from group 13 (B, Al, Ga, In, and Tl), group 14 (Si, Ge, Sn, and Pb) and group 15 (N, P, As, Sb, and Bi). Specifically, this review focuses on the potential amphiphilic species that possess both lone pairs of electrons and vacant orbitals. We detail their comprehensive synthesis and stabilization strategies, outlining the reactivity arising from their distinct structural characteristics.
Collapse
Affiliation(s)
- Mian He
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chaopeng Hu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Rui Wei
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xin-Feng Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Liu Leo Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
17
|
Merschel A, Vishnevskiy YV, Neumann B, Stammler HG, Ghadwal RS. Boosting the π-Acceptor Property of Mesoionic Carbenes by Carbonylation with Carbon Monoxide. Angew Chem Int Ed Engl 2024; 63:e202318525. [PMID: 38284508 DOI: 10.1002/anie.202318525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
We report the room temperature dimerization of carbon monoxide mediated by C4/C5-vicinal anionic dicarbenes Li(ADC) (ADC = ArC{(Dipp)NC}2 ; Dipp = 2,6-iPr2 C6 H3 ; Ar = Ph, DMP (4-Me2 NC6 H4 ), Bp (4-PhC6 H4 )) to yield (E)-ethene-1,2-bis(olate) (i.e. - O-C=C-O- = COen ) bridged mesoionic carbene (iMIC) lithium compounds COen -[(iMIC)Li]2 (COen -[iMIC]2 = [ArC{(Dipp)NC}2 (CO)]2 ) in quantitative yields. COen -[(iMIC)Li]2 are highly colored stable solids, exhibit a strikingly small HOMO-LUMO energy gap, and readily undergo 2e-oxidations with selenium, CuCl (or CuCl2 ), and AgCl to afford the dinuclear compounds COon -[(iMIC)E]2 (E = Se, CuCl, AgCl) featuring a 1,2-dione bridged neutral bis-iMIC (i.e. COon -[iMIC]2 = [ArC{(Dipp)NC}2 (C=O)]2 ). COen -[(iMIC)Li]2 undergo redox-neutral salt metathesis reactions with LiAlH4 and (Et2 O)2 BeBr2 and afford COen -[(iMIC)AlH2 ]2 and COen -[(iMIC)BeBr]2 , in which the dianionic COen -moiety remains intact. All compounds have been characterized by NMR spectroscopy, mass spectrometry, and X-ray diffraction. Stereoelectronic properties of COon -[iMIC]2 are quantified by experimental and theoretical methods.
Collapse
Affiliation(s)
- Arne Merschel
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| |
Collapse
|
18
|
Wagner JP. Designing a σ 0π 2 singlet ground state carbene from dicationic carbones. Chem Commun (Camb) 2024; 60:3327-3330. [PMID: 38436398 DOI: 10.1039/d4cc00492b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Carbenes with a σ0π2 singlet ground state are rare and little is known about their chemistry. Here, we study the potential formation of such carbenes by removal of two electrons from carbones/donor-substituted allenes. The desired electron configuration becomes favorable in the case of bis-diiminium substitution (CAAC motif).
Collapse
Affiliation(s)
- J Philipp Wagner
- Institut für Organische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany.
| |
Collapse
|
19
|
Terschüren T, Schnakenburg G, Streubel R. Application of phosphorus-bridged rigid, bent bis(NHCs) as dipodal ligands in main group and transition metal chemistry. Dalton Trans 2024; 53:5043-5050. [PMID: 38375673 DOI: 10.1039/d4dt00378k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Phosphorus-bridged rigid, bent bis(N-heterocyclic) carbenes have not been reported, so far, despite having structural features that could make them interesting ligands in coordination and main group element chemistry. In previous reports, we had demonstrated that tuning of σ3- and σ4-phosphorus environments in planarised bis(NHCs) affects electronic properties and can provide additional coordination sites. Herein, we report on first examples of synthesis and conversion of 1,4-diphosphabarrelene-related compounds into rigid bent, doubly P-bridged bis(NHCs). The formation of main group element adducts with substrates from group 13, 14 and 15 illustrates opportunities to access novel scaffolds and to create nonplanar branching points. DFT calculations reveal the new bis(NHCs) to be good candidates as novel soft/hard ligands with up to four coordination sites. The synthesis of a dinuclear Fe(CO)4 complex is demonstrated. The thermal retro-[4 + 2] cycloaddition was theoretically and experimentally explored for a variety of ionic and zwitterionic 1,4-diphosphabarrelenes, and the generation and trapping of a dinuclear Fe(0) bis(NHC) complex with a tricyclic 1σ2,4 σ2-diphosphinine scaffold is presented.
Collapse
Affiliation(s)
- Tatjana Terschüren
- Institute of Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Rainer Streubel
- Institute of Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
20
|
Merschel A, Vishnevskiy YV, Neumann B, Stammler HG, Ghadwal RS. Ring-Opening of 1,3-Imidazole Based Mesoionic Carbenes (iMICs) and Ring-Closing Clicks: Facile Access to iMIC-Compounds. Chemistry 2024; 30:e202303652. [PMID: 37937442 DOI: 10.1002/chem.202303652] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
Herein, ring-opening of mesoionic carbenes (iMICs) (iMIC=[ArC{N(Dipp)}2 C(SiMe3 )C:) (Dipp=2,6-iPr2 C6 H3 , Ar=Ph, 4-Me2 NC6 H4 or 4-PhC6 H4 ) based on an 1,3-imidazole scaffold to yield N-ethynylformimidamide (eFIM) derivatives as crystalline solids (eFIM={(Dipp)N=C(Ar)N(Dipp)}C≡CSiMe3 ) is reported. eFIMs are thermally stable under inert gas atmosphere and show moderate air stability (t1/2= 3 h for Ar=Ph). eFIMs are excellent surrogates of iMICs, which generally have a limited shelf-life, and readily undergo ring-closing click reactions with a variety of main-group as well as transition metal Lewis acids to form hitherto challenging iMIC-compounds in good to excellent yields. In addition to the relevance of eFIMs in the synthesis of iMIC-compounds, quantification of the stereoelectronic properties of a representative iMIC (Ar=Ph) by experimental and theoretical methods suggests remarkably σ-donor property and steric profile of these new ligand sets.
Collapse
Affiliation(s)
- Arne Merschel
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| |
Collapse
|
21
|
Chen Z, Sun F, Tang Q. Thermal Stability and Electronic Properties of N-Heterocyclic Carbene-Protected Au 13 Nanocluster and Phosphine-Protected Analogues. J Phys Chem Lett 2023; 14:10648-10656. [PMID: 38031664 DOI: 10.1021/acs.jpclett.3c02965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Despite significant advances in manufacturing atomically precise gold nanoclusters protected by various ligands, there is a limited understanding of the thermal stability dynamics and electronic properties of ligand effects. We conducted ab initio molecular dynamics (AIMD) simulations on the well-characterized [Au13(NHCMe)9Cl3]2+ nanocluster and its counterpart [Au13(PMe3)9Cl3]2+ cluster to evaluate the thermal stability induced by N-heterocyclic carbene (NHC) and phosphine ligands. The result shows that under vacuum conditions, [Au13(PMe3)9Cl3]2+ is more stable than [Au13(NHCMe)9Cl3]2+, and both lead to metal nucleation decomposition, breaking into the Au12 fragment and L-Au-Cl (L = NHCMe or PMe3) complexes eventually. The optical and electronic properties of these two clusters change significantly due to ligand alteration. Furthermore, we have designed a novel [Au13(NHCMe)(PMe3)8Cl3]2+ cluster coprotected by NHC and phosphine ligands, displaying higher thermal stability than the homoligand protected [Au13(NHCMe)9Cl3]2+ and [Au13(PMe3)9Cl3]2+. Our hypothetical species are an interesting model for nanostructured materials, facilitating the experimental exploration of cluster synthesis and catalytic applications.
Collapse
Affiliation(s)
- Zhimin Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| |
Collapse
|
22
|
Guthardt R, Jacob HL, Bruhn C, Siemeling U. A complete series of N-heterocyclic tetrylenes (Si-Pb) with a 1,1'-ferrocenediyl backbone enabled by 1,3,2-diazaborolyl N-substituents. Dalton Trans 2023; 52:14380-14389. [PMID: 37781741 DOI: 10.1039/d3dt02684a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The use of bulky 1,3,2-diazaborolyl N-substituents has allowed the synthesis of the complete series of ferrocene-based N-heterocyclic tetrylenes fc[(N{B})2E] (fc = 1,1'-ferrocenediyl, {B} = (HCNC6H3-2,6-iPr2)2B, E = Si-Pb). The silylene fc[(N{B})2Si] is inert towards NH3, CO2 or N2O under ambient conditions and thus significantly less reactive than the N-aryl homologue fc[(NC6H3-2,6-iPr2)2Si]. In accord with its higher reactivity, computational results indicate a more pronounced ambiphilicity of fc[(NC6H3-2,6-iPr2)2Si]. Our computational investigation of the model compound fc[(NBMe2)2Si] suggests that silylenes of this type may be superior to fc[(NC6H3-2,6-iPr2)2Si] in terms of ambiphilicity.
Collapse
Affiliation(s)
- Robin Guthardt
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Hannes L Jacob
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Clemens Bruhn
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Ulrich Siemeling
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| |
Collapse
|
23
|
Nguyen TH, Pauly C, Kent GT, Wu G, Hayton TW. Dimerization and ring-opening in bis(diisopropylamino)cyclopropenylidene (BAC) mediated by [U(NR 2) 3(CCPh)] (R = SiMe 3). Dalton Trans 2023; 52:13868-13871. [PMID: 37751280 DOI: 10.1039/d3dt02741d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Addition of 2 equiv. of bis(diisopropylamino)cyclopropenylidene (BAC) to [U(NR2)3(CCPh)] (1, R = SiMe3), in Et2O, results in formation of [cyclo-N(iPr)C(Me)2CH(NiPr2)C{CHC3(NiPr2)2}][U(NR2)2(N(SiMe3)SiMe2CH2)(CCPh)] (2) in moderate isolated yield. Complex 2 is the result of coupling and protonation of two BAC molecules, where complex 1 contributes the required proton. It was characterized by NMR spectroscopy and X-ray crystallography and represents a new mode of reactivity of the cyclopropenylidene fragment.
Collapse
Affiliation(s)
- Thien H Nguyen
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Christophe Pauly
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Greggory T Kent
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
24
|
Schratzberger H, Liebminger LA, Stöger B, Veiros LF, Kirchner K. Base metal complexes featuring a new pyrazole-derived PCP pincer ligand. Dalton Trans 2023; 52:12410-12422. [PMID: 37594380 DOI: 10.1039/d3dt02111d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
A new pyrazole-derived PCP pincer ligand featuring a 1-methylpyrazole backbone tethered to two di(isopropyl)phosphine moieties via phenylene spacers (P(CH)P-iPr) was prepared. When reacting the ligand with group six carbonyl complexes [M(CO)6] (M = Cr, Mo, W) at 130 °C, complexes of the type [M(κ2PN-PCP-iPr)(CO)4] were obtained featuring a κ2P,N-bound ligand with a pendant phosphine arm. Upon an increase of the reaction temperature to 150 °C, in the case of molybdenum, the formation of the complex [Mo(κ3PCP-PCP-iPr)(CO)3] was observed featuring a weak Mo-C bond. DFT calculations reveal that there is no agostic η2-C-H interaction. Treatment of [Mn2(CO)10], [Fe2(CO)9], [Co2(CO)8] and [Ni(COD)2] afforded complexes [Mn(κ3PCP-PCP-iPr)(CO)3], [Fe(κ3PCP-PCP-iPr)(H)(CO)2], [Co(κ3PCP-PCP-iPr)(CO)2] and [Ni(κ3PCP-PCP-iPr)(H)], respectively, where the PCP ligand is coordinated in the typical meridional κ3-fashion. Postfunctionalization of the anionic PCP pincer ligand was possible via N-methylation of the second nitrogen atom of the pyrazole unit with the oxonium salt [Me3O]BF4. Treatment of [Mn(κ3PCP-PCP-iPr)(CO)3] and [Fe(κ3PCP-PCP-iPr)(H)(CO)2] with [Me3O]BF4 resulted in the formation of the cationic complexes [Mn(κ3PCP-PCPMe-iPr)(CO)3]+ and [Fe(κ3PCP-PCPMe-iPr)(Cl)(CO)2]+. In the case of the latter, the chloride ligand seems to originate from the solvent CH2Cl2 undergoing a hydride chloride exchange. All complexes were characterized by means of 1H, 13C{1H}, and 31P{1H} NMR spectroscopy, IR spectroscopy and HR-MS. In addition, the structures of representative complexes were determined by X-ray crystallography.
Collapse
Affiliation(s)
- Heiko Schratzberger
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria.
| | - Lorenzo A Liebminger
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria.
| | - Berthold Stöger
- X-Ray Center, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Luis F Veiros
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria.
| |
Collapse
|
25
|
Ghadwal RS. 1,3-Imidazole-Based Mesoionic Carbenes and Anionic Dicarbenes: Pushing the Limit of Classical N-Heterocyclic Carbenes. Angew Chem Int Ed Engl 2023; 62:e202304665. [PMID: 37132480 DOI: 10.1002/anie.202304665] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/04/2023]
Abstract
Classical N-heterocyclic carbenes (NHCs) featuring the carbene center at the C2-position of 1,3-imidazole framework (i.e. C2-carbenes) are well acknowledged as very versatile neutral ligands in molecular as well as in materials sciences. The efficiency and success of NHCs in diverse areas is essentially attributed to their persuasive stereoelectronics, in particular the potent σ-donor property. The NHCs with the carbene center at the unusual C4 (or C5) position, the so-called abnormal NHCs (aNHCs) or mesoionic carbenes (iMICs), are however superior σ-donors than C2-carbenes. Hence, iMICs have substantial potential in sustainable synthesis and catalysis. The main obstacle in this direction is rather demanding synthetic accessibility of iMICs. The aim of this review article is to highlight recent advances, particularly by the author's research group, in accessing stable iMICs, quantifying their properties, and exploring their applications in synthesis and catalysis. In addition, the synthetic viability and use of vicinal C4,C5-anionic dicarbenes (ADCs), also based on an 1,3-imidazole framework, are presented. As will be apparent on following pages, iMICs and ADCs hold potentials in pushing the limit of classical NHCs by enabling access to conceptually new main-group heterocycles, radicals, molecular catalysts, ligands sets, and more.
Collapse
Affiliation(s)
- Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
26
|
Dettling L, Limberg N, Küppers R, Frost D, Weber M, Coles NT, Andrada DM, Müller C. Phosphorus derivatives of mesoionic carbenes: synthesis and characterization of triazaphosphole-5-ylidene → BF 3 adducts. Chem Commun (Camb) 2023; 59:10243-10246. [PMID: 37530480 DOI: 10.1039/d3cc03268j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Trimethylsilyl-substituted triazaphospholes were synthesized by a [3+2] cycloaddition reaction between organic azides and (CH3)3Si-CP. In an attempt to isolate their N-alkylated products, the formation of BF3 adducts of unprecedented triazaphosphol-5-ylidenes was found. The nature of the carboncarbene-boron bond was investigated within the DFT framework, revealing a strong donation of electrons from the carbene carbon atom to the boron atom combined with weak back-bonding.
Collapse
Affiliation(s)
- Lea Dettling
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, Berlin 14195, Germany.
| | - Niklas Limberg
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, Berlin 14195, Germany.
| | - Raphaela Küppers
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, Berlin 14195, Germany.
| | - Daniel Frost
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, Berlin 14195, Germany.
| | - Manuela Weber
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, Berlin 14195, Germany.
| | - Nathan T Coles
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Diego M Andrada
- Universität des Saarlandes, Anorganische Chemie, Saarbrücken 66123, Germany
| | - Christian Müller
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, Berlin 14195, Germany.
| |
Collapse
|
27
|
Zhang C, Dankert F, Jiang Z, Wang B, Munz D, Chu J. Evidence for Carbene Intermediates in Isocyanide Homologation by Aluminium(I). Angew Chem Int Ed Engl 2023; 62:e202307352. [PMID: 37319123 DOI: 10.1002/anie.202307352] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
The C-C bond formation between C1 molecules plays an important role in chemistry as manifested by the Fischer-Tropsch (FT) process. Serving as models for the FT process, we report here the reactions between a neutral AlI complex (Me NacNac)Al (1, Me NacNac=HC[(CMe)(NDipp)]2 , Dipp=2,6-diisopropylphenyl) and various isocyanides. The step-by-step coupling mechanism was studied in detail by low-temperature NMR monitoring, isotopic labeling, as well as quantum chemical calculations. Three different products were isolated in reaction of 1 with the sterically encumbered 2,6-bis(benzhydryl)-4-Me-phenyl isocyanide (BhpNC). These products substantiate carbene intermediates. The reaction between 1 and adamantyl isocyanide (AdNC) generated a trimerization product, and a corresponding carbene intermediate could be trapped in the form of a molybdenum(0) complex. Tri-, tetra-, and even pentamerization products were isolated with the sterically less congested phenyl and p-methoxyphenyl isocyanides (PhNC and PMPNC) with concurrent construction of quinoline or indole heterocycles. Overall, this study provides evidence for carbene intermediates in FT-type chemistry of aluminium(I) and isocyanides.
Collapse
Affiliation(s)
- Cuijuan Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Fabian Dankert
- Coordination Chemistry, Saarland University, Campus C4.1, 66123, Saarbrücken, Germany
| | - Ziang Jiang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Baolu Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Dominik Munz
- Coordination Chemistry, Saarland University, Campus C4.1, 66123, Saarbrücken, Germany
| | - Jiaxiang Chu
- School of Chemical Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
| |
Collapse
|
28
|
Rahman MM, Zhao Q, Meng G, Lalancette R, Szostak R, Szostak M. [IPr #-PEPPSI]: A Well-Defined, Highly Hindered and Broadly Applicable Pd(II)-NHC (NHC = N-Heterocyclic Carbene) Precatalyst for Cross-Coupling Reactions. Molecules 2023; 28:5833. [PMID: 37570803 PMCID: PMC10421006 DOI: 10.3390/molecules28155833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
In this Special Issue, "Featured Papers in Organometallic Chemistry", we report on the synthesis and characterization of [IPr#-PEPPSI], a new, well-defined, highly hindered Pd(II)-NHC precatalyst for cross-coupling reactions. This catalyst was commercialized in collaboration with MilliporeSigma, Burlington, ON, Canada (no. 925489) to provide academic and industrial researchers with broad access to reaction screening and optimization. The broad activity of [IPr#-PEPPSI] in cross-coupling reactions in a range of bond activations with C-N, C-O, C-Cl, C-Br, C-S and C-H cleavage is presented. A comprehensive evaluation of the steric and electronic properties is provided. Easy access to the [IPr#-PEPPSI] class of precatalysts based on modular pyridine ligands, together with the steric impact of the IPr# peralkylation framework, will facilitate the implementation of well-defined, air- and moisture-stable Pd(II)-NHC precatalysts in chemistry research.
Collapse
Affiliation(s)
- Md. Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (M.M.R.); (Q.Z.); (G.M.); (R.L.)
| | - Qun Zhao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (M.M.R.); (Q.Z.); (G.M.); (R.L.)
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430000, China
| | - Guangrong Meng
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (M.M.R.); (Q.Z.); (G.M.); (R.L.)
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (M.M.R.); (Q.Z.); (G.M.); (R.L.)
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, 50-383 Wroclaw, Poland;
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (M.M.R.); (Q.Z.); (G.M.); (R.L.)
| |
Collapse
|
29
|
Vanden Broeck SMP, Tzouras NV, Saab M, Van Hecke K, Dereli B, Ritacco I, Cavallo L, Vougioukalakis GC, Braunstein P, Nolan SP, Danopoulos AA, Cazin CSJ. Gold complexes with remote-substituted amino N-heterocyclic carbenes. Dalton Trans 2023; 52:9908-9912. [PMID: 37458362 DOI: 10.1039/d3dt02086j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The 4-RN-1,3-Ar2-imidazolium salt, R = iPr, tBu, Ar = Mes, Dipp, Mes = mesityl, Dipp = 2,6-bis-diisopropyl-phenyl was metalated by AuI at the C2-, C5- and 4-RN positions depending on the reactants and conditions employed; a rare direct rearrangement of a AuI aminide to an abnormal imidazol-5-ylidene AuI complex was also observed and based on a DFT study it may involve TfO- facilitated H+ transfer.
Collapse
Affiliation(s)
- Sofie M P Vanden Broeck
- Department of Chemistry and Centre of Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Nikolaos V Tzouras
- Department of Chemistry and Centre of Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece.
| | - Marina Saab
- Department of Chemistry and Centre of Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Kristof Van Hecke
- Department of Chemistry and Centre of Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Busra Dereli
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ida Ritacco
- Dipartimento di Chimica e Biologia, Università di Salerno, Fisciano 84084, Italy
| | - Luigi Cavallo
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Dipartimento di Chimica e Biologia, Università di Salerno, Fisciano 84084, Italy
| | - Georgios C Vougioukalakis
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece.
| | - Pierre Braunstein
- Université de Strasbourg, CNRS, Institut de Chimie UMR 7177, Strasbourg 67081, Cedex, France
| | - Steven P Nolan
- Department of Chemistry and Centre of Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Andreas A Danopoulos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece.
| | - Catherine S J Cazin
- Department of Chemistry and Centre of Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| |
Collapse
|
30
|
Marigo N, Morgenstern B, Biffis A, Munz D. (CAAC)Pd(py) Catalysts Disproportionate to Pd(CAAC) 2. Organometallics 2023; 42:1567-1572. [PMID: 37448536 PMCID: PMC10337258 DOI: 10.1021/acs.organomet.3c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 07/15/2023]
Abstract
Palladium complexes with one N-heterocyclic carbene (NHC) and a pyridine ancillary ligand are powerful cross-coupling precatalysts. Herein, we report such complexes with a cyclic (alkyl)(amino)carbene (CAAC) ligand replacing the NHC. We find that the alleged reduced form, (CAAC)Pd(py), disproportionates to the (CAAC)2Pd0 complex and palladium nanoparticles. This notwithstanding, they are potent catalysts in the Buchwald-Hartwig amination with aryl chlorides under mild conditions (60 °C). In the presence of dioxygen, these complexes catalyze the formation of diazenes from anilines. The catalytic activities of the NHC- and CAAC-supported palladium(0) and palladium(II) complexes are similar in the cross-coupling reaction, yet the CAAC complexes are superior for diazene formation.
Collapse
Affiliation(s)
- Nicola Marigo
- Coordination
Chemistry, Saarland University, Campus C4.1, Saarbrücken D-66123, Germany
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, Padova I-35131, Italy
| | - Bernd Morgenstern
- Coordination
Chemistry, Saarland University, Campus C4.1, Saarbrücken D-66123, Germany
| | - Andrea Biffis
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, Padova I-35131, Italy
| | - Dominik Munz
- Coordination
Chemistry, Saarland University, Campus C4.1, Saarbrücken D-66123, Germany
| |
Collapse
|
31
|
Ritch JS. Chalcogen-substituted carbenes: a density functional study of structure, stability, and donor ability. RSC Adv 2023; 13:16828-16836. [PMID: 37283867 PMCID: PMC10240176 DOI: 10.1039/d3ra03324d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Chalcogen-substituted carbenes are examined computationally using density functional theory. Several approaches are used to assess the stability and reactivity of chalcogenazol-2-ylidene carbenes (NEHCs; E = O, S, Se, Te). The known unsaturated species 1,3-dimethylimidazol-2-ylidene is studied at the same level of theory as the NEHC molecules, as a reference. Electronic structures, stability towards dimerization, and ligand properties are discussed. The results highlight the NEHCs as potentially valuable ancillary ligands for stabilizing low-valent metals or paramagnetic main group molecules. A simple, effective computational method for evaluating σ donor ability and π acidity of carbenes is presented.
Collapse
Affiliation(s)
- Jamie S Ritch
- Department of Chemistry, The University of Winnipeg 515 Portage Avenue Winnipeg MB R3B 2E9 Canada +1-204-774-2401 +1-204-786-9730
| |
Collapse
|
32
|
Rahman MM, Meng G, Bisz E, Dziuk B, Lalancette R, Szostak R, Szostak M. I tOct (I tOctyl) - pushing the limits of I tBu: highly hindered electron-rich N-aliphatic N-heterocyclic carbenes. Chem Sci 2023; 14:5141-5147. [PMID: 37206400 PMCID: PMC10189875 DOI: 10.1039/d3sc01006f] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023] Open
Abstract
ItBu (ItBu = 1,3-di-tert-butylimidazol-2-ylidene) represents the most important and most versatile N-alkyl N-heterocyclic carbene available in organic synthesis and catalysis. Herein, we report the synthesis, structural characterization and catalytic activity of ItOct (ItOctyl), C2-symmetric, higher homologues of ItBu. The new ligand class, including saturated imidazolin-2-ylidene analogues has been commercialized in collaboration with MilliporeSigma: ItOct, 929 298; SItOct, 929 492 to enable broad access of the academic and industrial researchers within the field of organic and inorganic synthesis. We demonstrate that replacement of the t-Bu side chain with t-Oct results in the highest steric volume of N-alkyl N-heterocyclic carbenes reported to date, while retaining the electronic properties inherent to N-aliphatic ligands, such as extremely strong σ-donation crucial to the reactivity of N-alkyl N-heterocyclic carbenes. An efficient large-scale synthesis of imidazolium ItOct and imidazolinium SItOct carbene precursors is presented. Coordination chemistry to Au(i), Cu(i), Ag(i) and Pd(ii) as well as beneficial effects on catalysis using Au(i), Cu(i), Ag(i) and Pd(ii) complexes are described. Considering the tremendous importance of ItBu in catalysis, synthesis and metal stabilization, we anticipate that the new class of ItOct ligands will find wide application in pushing the boundaries of new and existing approaches in organic and inorganic synthesis.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Guangrong Meng
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Elwira Bisz
- Department of Chemistry, Opole University 48 Oleska Street Opole 45-052 Poland
| | - Błażej Dziuk
- Department of Chemistry, Wroclaw University of Science and Technology Norwida 4/6 14 Wroclaw 50-373 Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Roman Szostak
- Department of Chemistry, Wroclaw University F. Joliot-Curie 14 Wroclaw 50-383 Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
33
|
Pahar S, Kundu G, George CP, Gonnade RG, Sen SS. Substitution at a Coordinatively Saturated Aluminum Center Stabilized by Imidazolidin-2-imine. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sanjukta Pahar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gargi Kundu
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Christy P. George
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Rajesh G. Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sakya S. Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
34
|
Keilwerth M, Mao W, Jannuzzi SAV, Grunwald L, Heinemann FW, Scheurer A, Sutter J, DeBeer S, Munz D, Meyer K. From Divalent to Pentavalent Iron Imido Complexes and an Fe(V) Nitride via N-C Bond Cleavage. J Am Chem Soc 2023; 145:873-887. [PMID: 36583993 DOI: 10.1021/jacs.2c09072] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As key intermediates in metal-catalyzed nitrogen-transfer chemistry, terminal imido complexes of iron have attracted significant attention for a long time. In search of versatile model compounds, the recently developed second-generation N-anchored tris-NHC chelating ligand tris-[2-(3-mesityl-imidazole-2-ylidene)-methyl]amine (TIMMNMes) was utilized to synthesize and compare two series of mid- to high-valent iron alkyl imido complexes, including a reactive Fe(V) adamantyl imido intermediate en route to an isolable Fe(V) nitrido complex. The chemistry toward the iron adamantyl imides was achieved by reacting the Fe(I) precursor [(TIMMNMes)FeI(N2)]+ (1) with 1-adamantyl azide to yield the corresponding trivalent iron imide. Stepwise chemical reduction and oxidation lead to the isostructural series of low-spin [(TIMMNMes)Fe(NAd)]0,1+,2+,3+ (2Ad-5Ad) in oxidation states II to V. The Fe(V) imide [(TIMMNMes)Fe(NAd)]3+ (5Ad) is unstable under ambient conditions and converts to the air-stable nitride [(TIMMNMes)FeV(N)]2+ (6) via N-C bond cleavage. The stability of the pentavalent imide can be increased by derivatizing the nitride [(TIMMNMes)FeIV(N)]+ (7) with an ethyl group using the triethyloxonium salt Et3OPF6. This gives access to the analogous series of ethyl imides [(TIMMNMes)Fe(NEt)]0,1+,2+,3+ (2Et-5Et), including the stable Fe(V) ethyl imide. Iron imido complexes exist in a manifold of different electronic structures, ultimately controlling their diverse reactivities. Accordingly, these complexes were characterized by single-crystal X-ray diffraction analyses, SQUID magnetization, and electrochemical methods, as well as 57Fe Mössbauer, IR vibrational, UV/vis electronic absorption, multinuclear NMR, X-band EPR, and X-ray absorption spectroscopy. Our studies are complemented with quantum chemical calculations, thus providing further insight into the electronic structures of all complexes.
Collapse
Affiliation(s)
- Martin Keilwerth
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Weiqing Mao
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Sergio A V Jannuzzi
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Liam Grunwald
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany.,Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zürich, 8093 Zürich, Switzerland
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Andreas Scheurer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Jörg Sutter
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Serena DeBeer
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Dominik Munz
- Inorganic Chemistry: Coordination Chemistry, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
35
|
Matsubara K, Yamada Y, Iwasaki H, Ikeda H, Kanetsugu Y, Kawata S, Koga Y. A 1,2,3-triazole-derived pincer-type mesoionic carbene complex of iron(II): carbonyl elimination and hydrosilylation of aromatic aldehydes via the concerted reaction with hydrosilane and a base. Dalton Trans 2023; 52:572-582. [PMID: 36537300 DOI: 10.1039/d2dt03617g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Iron complexes bearing 1,2,3-triazol-5-ylidene were synthesized and applied to the reaction with hydrosilane and homogeneous catalytic hydrosilylation of aromatic ketones and aldehydes. Addition of a free carbene to a solution of Fe(CO)4Br2 yielded an octahedral, diamagnetic and cationic iron(II) complex [Fe(1,2,3-triazolylidene)(CO)2Br]+. Pyrolysis of the dicarbonyl complex eliminated the two CO ligands to form a paramagnetic four-coordinate complex. A theoretical study using DFT calculations indicated that the spin state changed from singlet to quintet during ligand elimination. Investigations of the successful hydrosilylation of acetophenone and benzaldehyde derivatives using MIC-iron(II) bromide suggested the importance of the base for efficient conversion in the catalytic process. The bromide-to-hydride exchange reaction, transmetallation, of MIC-iron(II) bromide in the presence of KOtBu and HSi(OEt)3 which could occur in the initial process of hydrosilylation was proposed, and supported by a theoretical study.
Collapse
Affiliation(s)
- Kouki Matsubara
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| | - Yuji Yamada
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| | - Haruka Iwasaki
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| | - Hayao Ikeda
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| | - Yuki Kanetsugu
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| | - Satoshi Kawata
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| | - Yuji Koga
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| |
Collapse
|
36
|
Philipp MSM, Bertermann R, Radius U. Activation of Ge-H and Sn-H Bonds with N-Heterocyclic Carbenes and a Cyclic (Alkyl)(amino)carbene. Chemistry 2023; 29:e202202493. [PMID: 36177710 PMCID: PMC10100474 DOI: 10.1002/chem.202202493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 01/14/2023]
Abstract
A study of the reactivity of several N-heterocyclic carbenes (NHCs) and the cyclic (alkyl)(amino)carbene 1-(2,6-di-iso-propylphenyl)-3,3,5,5-tetramethyl-pyrrolidin-2-ylidene (cAACMe ) with the group 14 hydrides GeH2 Mes2 and SnH2 Me2 (Me=CH3 , Mes=1,3,5-(CH3 )3 C6 H2 ) is presented. The reaction of GeH2 Mes2 with cAACMe led to the insertion of cAACMe into one Ge-H bond to give cAACMe H-GeHMes2 (1). If 1,3,4,5-tetramethyl-imidazolin-2-ylidene (Me2 ImMe ) was used as the carbene, NHC-mediated dehydrogenative coupling occurred, which led to the NHC-stabilized germylene Me2 ImMe ⋅GeMes2 (2). The reaction of SnH2 Me2 with cAACMe also afforded the insertion product cAACMe H-SnHMe2 (3), and reaction of two equivalents Me2 ImMe with SnH2 Me2 gave the NHC-stabilized stannylene Me2 ImMe ⋅SnMe2 (4). If the sterically more demanding NHCs Me2 ImMe , 1,3-di-isopropyl-4,5-dimethyl-imidazolin-2-ylidene (iPr2 ImMe ) and 1,3-bis-(2,6-di-isopropylphenyl)-imidazolin-2-ylidene (Dipp2 Im) were employed, selective formation of cyclic oligomers (SnMe2 )n (5; n=5-8) in high yield was observed. These cyclic oligomers were also obtained from the controlled decomposition of cAACMe H-SnHMe2 (3).
Collapse
Affiliation(s)
- Michael S. M. Philipp
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Rüdiger Bertermann
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Udo Radius
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
37
|
Oldroyd NL, Chitnis SS, LaPierre EA, Annibale VT, Walsgrove HTG, Gates DP, Manners I. Ambient Temperature Carbene-Mediated Depolymerization: Stoichiometric and Catalytic Reactions of N-Heterocyclic- and Cyclic(Alkyl)Amino Carbenes with Poly( N-Methylaminoborane) [MeNH–BH 2] n. J Am Chem Soc 2022; 144:23179-23190. [DOI: 10.1021/jacs.2c10931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicola L. Oldroyd
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
- Department of Chemistry, University of Victoria, Victoria BC V8W 3V6, Canada
| | - Saurabh S. Chitnis
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Etienne A. LaPierre
- Department of Chemistry, University of Victoria, Victoria BC V8W 3V6, Canada
| | - Vincent T. Annibale
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
- Department of Chemistry, University of Victoria, Victoria BC V8W 3V6, Canada
| | - Henry T. G. Walsgrove
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Derek P. Gates
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria BC V8W 3V6, Canada
| |
Collapse
|
38
|
Zhou T, Gao P, Bisz E, Dziuk B, Lalancette R, Szostak R, Szostak M. Well-Defined, Air- and Moisture-Stable Palladium-Imidazo[1,5- a]pyridin-3-ylidene Complexes: A Versatile Catalyst Platform for Cross-Coupling Reactions by L-Shaped NHC Ligands. Catal Sci Technol 2022; 12:6581-6589. [PMID: 38045636 PMCID: PMC10691866 DOI: 10.1039/d2cy01136k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We describe the development of [(NHC)Pd(cinnamyl)Cl] complexes of ImPy (ImPy = imidazo[1,5-a]pyridin-3-ylidene) as a versatile class of precatalysts for cross-coupling reactions. These precatalysts feature fast activation to monoligated Pd(0) with 1:1 Pd to ligand ratio in a rigid imidazo[1,5-a]pyridin-3-ylidene template. Steric matching of the C5-substituent and N2-wingtip in the catalytic pocket of the catalyst framework led to the discovery of ImPyMesDipp as a highly reactive imidazo[1,5-a]pyridin-3-ylidene ligand for Pd-catalyzed cross-coupling of nitroarenes by challenging C-NO2 activation. Kinetic studies demonstrate fast activation and high reactivity of this class of well-defined ImPy-Pd catalysts. Structural studies provide full characteristics of this new class of imidazo[1,5-a]pyridin-3-ylidene ligands. Computational studies establish electronic properties of sterically-restricted imidazo[1,5-a]pyridin-3-ylidene ligands. Finally, a scalable synthesis of C5-substituted imidazo[1,5-a]pyridin-3-ylidene ligands through Ni-catalyzed Kumada cross-coupling is disclosed. The method obviates chromatographic purification at any of the steps, resulting in a facile and modular access to ImPy ligands. We anticipate that well-defined [Pd-ImPy] complexes will find broad utility in organic synthesis and catalysis for activation of unreactive bonds.
Collapse
Affiliation(s)
- Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6, Wroclaw 50-373, Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
39
|
Obi AD, Freeman LA, Coates SJ, Alexis AJH, Frey NC, Dickie DA, Webster CE, Gilliard RJ. Carbene–Calcium Silylamides and Amidoboranes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Akachukwu D. Obi
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Lucas A. Freeman
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Samuel J. Coates
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Andrew J. H. Alexis
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Nathan C. Frey
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, Mississippi 39762, United States
| | - Robert J. Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| |
Collapse
|
40
|
Ibrahim H, Bala MD, Friedrich HB. Poly-functional imino-N-heterocyclic carbene ligands: Synthesis, complexation, and catalytic applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Breitwieser K, Bahmann H, Weiss R, Munz D. Gauging Radical Stabilization with Carbenes. Angew Chem Int Ed Engl 2022; 61:e202206390. [PMID: 35796423 PMCID: PMC9545232 DOI: 10.1002/anie.202206390] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 11/29/2022]
Abstract
Carbenes, including N-heterocyclic carbene (NHC) ligands, are used extensively to stabilize open-shell transition metal complexes and organic radicals. Yet, it remains unknown, which carbene stabilizes a radical well and, thus, how to design radical-stabilizing C-donor ligands. With the large variety of C-donor ligands experimentally investigated and their electronic properties established, we report herein their radical-stabilizing effect. We show that radical stabilization can be understood by a captodative frontier orbital description involving π-donation to- and π-donation from the carbenes. This picture sheds a new perspective on NHC chemistry, where π-donor effects usually are assumed to be negligible. Further, it allows for the intuitive prediction of the thermodynamic stability of covalent radicals of main group- and transition metal carbene complexes, and the quantification of redox non-innocence.
Collapse
Affiliation(s)
- Kevin Breitwieser
- Coordination ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
| | - Hilke Bahmann
- Physical and Theoretical ChemistrySaarland UniversityCampus B2.266123SaarbrückenGermany
| | - Robert Weiss
- Organische ChemieFriedrich-Alexander-Universität (FAU) Erlangen-NürnbergHenkestr. 4291054ErlangenGermany
| | - Dominik Munz
- Coordination ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
- Inorganic and General ChemistryFriedrich-Alexander-Universität (FAU) Erlangen-NürnbergEgerlandstr. 191058ErlangenGermany
| |
Collapse
|
42
|
Volk J, Heinz M, Leibold M, Bruhn C, Bens T, Sarkar B, Holthausen MC, Siemeling U. A crystalline cyclic (alkyl)(amino)carbene with a 1,1'-ferrocenylene backbone. Chem Commun (Camb) 2022; 58:10396-10399. [PMID: 36039867 DOI: 10.1039/d2cc03871d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic (alkyl)(amino)carbenes with a 1,1'-ferrocenylene backbone (fcCAACs) are established as an original family by the preparation of a crystalline congener. The Ccarbene bond angle is unprecedentedly wide for a CAAC, causing an exceptionally pronounced ambiphilicity. The redox-active backbone opens the door to unconventional metalloradicals and oligoradicals.
Collapse
Affiliation(s)
- Julia Volk
- Institut für Chemie, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany.
| | - Myron Heinz
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Michael Leibold
- Institut für Chemie, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany.
| | - Clemens Bruhn
- Institut für Chemie, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany.
| | - Tobias Bens
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 50659 Stuttgart, Germany
| | - Biprajit Sarkar
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 50659 Stuttgart, Germany
| | - Max C Holthausen
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Ulrich Siemeling
- Institut für Chemie, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany.
| |
Collapse
|
43
|
Cai BG, Li Q, Empel C, Li L, Koenigs RM, Xuan J. Dark and Light Reactions of Carbenes─Merging Carbene Transfer Reactions with N-Heterocyclic Carbene Catalysis for the Synthesis of Hydroxamic Acid Esters. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Qian Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Rene M. Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| |
Collapse
|
44
|
Rahman MM, Zhang J, Zhao Q, Feliciano J, Bisz E, Dziuk B, Lalancette R, Szostak R, Szostak M. Pd-PEPPSI N-Heterocyclic Carbene Complexes from Caffeine: Application in Suzuki, Heck, and Sonogashira Reactions. Organometallics 2022; 41:2281-2290. [PMID: 38031591 PMCID: PMC10686539 DOI: 10.1021/acs.organomet.2c00262] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first synthesis of Pd-PEPPSI N-heterocyclic carbene complexes derived from the abundant and renewable natural product caffeine is reported. The catalysts bearing 3-chloro-pyridine, pyridine and N-methylimidazole ancillary ligands were readily prepared from the corresponding N9-Me caffeine imidazolium salt by direct deprotonation and coordination to PdX2 in the presence of N-heterocycles or by ligand displacement of PdX2(Het)2. The model Pd-PEPPSI-caffeine complex has been characterized by x-ray crystallography. The complexes were successfully employed in the Suzuki cross-coupling of aryl bromides, Suzuki cross-coupling of amides, Heck cross-coupling and Sonogashira cross-coupling. Computational studies were employed to determine frontier molecular orbitals and bond order analysis of caffeine derived Pd-PEPPSI complexes. This class of catalysts offers an entry to utilize benign and sustainable biomass-derived Xanthine NHC ligands in the popular Pd-PEPPSI systems in organic synthesis and catalysis.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Qun Zhao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jessica Feliciano
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6, Wroclaw 50-373, Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
45
|
Banerjee S, Vanka K. Computational insights into hydroboration with acyclic α-Borylamido-germylene and stannylene catalysts: Cooperative dual catalysis the key to system efficiency. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Philipp MSM, Bertermann R, Radius U. N‐Heterocyclic Carbene and Cyclic (Alkyl)(amino)carbene Adducts of Germanium(IV) and Tin(IV) Chlorides and Organyl Chlorides. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael S. M. Philipp
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Inorganic Chemistry GERMANY
| | - Rüdiger Bertermann
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Inorganic Chemistry GERMANY
| | - Udo Radius
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Institut für Anorganische Chemie Am Hubland 97074 Würzburg GERMANY
| |
Collapse
|
47
|
Zhang J, Rahman M, Zhao Q, Feliciano J, Bisz E, Dziuk B, Lalancette R, Szostak R, Szostak M. N-Heterocyclic Carbene Complexes of Nickel(II) from Caffeine and Theophylline: Sustainable Alternative to Imidazol-2-ylidenes. Organometallics 2022; 41:1806-1815. [PMID: 36213557 PMCID: PMC9534456 DOI: 10.1021/acs.organomet.2c00019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Xanthines, such as caffeine and theophylline, are abundant natural products that are often present in foods. Leveraging renewable and benign resources for ligand design in organometallic chemistry and catalysis is one of the major missions of green and sustainable chemistry. In this Special Issue on Sustainable Organometallic Chemistry, we report the first nickel-N-heterocyclic carbene complexes derived from Xanthines. Well-defined, air- and moisture-stable, half-sandwich, cyclopentadienyl [CpNi(NHC)I] nickel-NHC complexes are prepared from the natural products caffeine and theophylline. The model complex has been characterized by x-ray crystallography. The evaluation of steric, electron-donating and π-accepting properties is presented. High activity in the model Suzuki-Miyaura cross-coupling is demonstrated. The data show that nickel-N-heterocyclic carbenes derived from both Earth abundant 3d transition metal and renewable natural products represent a sustainable alternative to the classical imidazol-2-ylidenes.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Qun Zhao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jessica Feliciano
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6, Wroclaw 50-373, Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
48
|
Burnett S, de Vere-Tucker M, Davitt M, Cordes DB, Slawin AMZ, Ferns R, van Mourik T, Stasch A. Magnesium Complexes with Isomeric Pyrazol‐4‐ylidene and Imidazol‐2‐ylidene Ligands. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Andreas Stasch
- University of St Andrews School of Chemistry North Haugh KY169ST St Andrews UNITED KINGDOM
| |
Collapse
|
49
|
Vivancos Á, Bautista D, González-Herrero P. Phosphorescent Tris-cyclometalated Pt(IV) Complexes with Mesoionic N-Heterocyclic Carbene and 2-Arylpyridine Ligands. Inorg Chem 2022; 61:12033-12042. [PMID: 35860839 PMCID: PMC9377419 DOI: 10.1021/acs.inorgchem.2c02039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis, structure, photophysical properties, and electrochemistry of the first series of Pt(IV) tris-chelates bearing cyclometalated aryl-NHC ligands are reported. The complexes have the general formula [Pt(trz)2(C∧N)]+, combining two units of the cyclometalated, mesoionic aryl-NHC ligand 4-butyl-3-methyl-1-phenyl-1H-1,2,3-triazol-5-ylidene (trz) with a cyclometalated 2-arylpyridine [C∧N = 2-(2,4-difluorophenyl)pyridine (dfppy), 2-phenylpyridine (ppy), 2-(p-tolyl)pyridine (tpy), 2-(2-thienyl)pyridine (thpy), 2-(9,9-dimethylfluoren-2-yl)pyridine (flpy)], and presenting a mer arrangement or metalated aryls. They exhibit a significant photostability under UV irradiation and long-lived phosphorescence in the blue to yellow color range, arising from 3LC excited states involving the C∧N ligands, with quantum yields of up to 0.34 in fluid solution and 0.77 in the rigid matrix at 298 K. The time-dependent density functional theory (TD-DFT) calculations reveal that nonemissive, deactivating excited states of ligand-to-metal charge-transfer (LMCT) character are pushed to high energies as a consequence of the strong σ-donating ability of the carbenic moieties, making the Pt(trz)2 subunit an essential structural component that enables efficient emissions from the chromophoric C∧N ligands, with potential application for the development of different Pt(IV) emitters with tunable properties.
Collapse
Affiliation(s)
- Ángela Vivancos
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Delia Bautista
- Área Científica y Técnica de Investigación, Universidad de Murcia, Campus de Espinardo, 21, 30100 Murcia, Spain
| | - Pablo González-Herrero
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| |
Collapse
|
50
|
Breitwieser K, Bahmann H, Weiss R, Munz D. Gauging Radical Stabilization with Carbenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kevin Breitwieser
- Saarland University: Universitat des Saarlandes Coordination Chemistry GERMANY
| | - Hilke Bahmann
- Saarland University: Universitat des Saarlandes Theoretical Chemistry GERMANY
| | - Robert Weiss
- FAU Erlangen Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Organic Chemistry GERMANY
| | - Dominik Munz
- Universitat des Saarlandes Inorganic Chemistry: Coordination Chemistry Campus C 4.1 66123 Saarbrücken GERMANY
| |
Collapse
|