1
|
Zhang Z, Lu L, Hong B, Ye Q, Guo L, Yuan C, Liu B, Cui B. Starch/polyacrylamide hydrogels with flexibility, conductivity and sensitivity enhanced by two imidazolium-based ionic liquids for wearable electronics: Effect of anion structure. Carbohydr Polym 2025; 347:122783. [PMID: 39487002 DOI: 10.1016/j.carbpol.2024.122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 11/04/2024]
Abstract
To meet the growing demands for sustainable and eco-friendly wearable electronics, biopolymer-based hydrogels have attracted much attention. As one of the most abundant sources of biopolymers, starch has the advantages of low-cost, renewability, biocompatibility and biodegradability. However, mechanical fragility, low conductivity and low sensitivity limited the application of starch-based hydrogels. Herein, two imidazolium-based ionic liquids with different anions (chloridion and acetate) were introduced into corn starch/polyacrylamide hydrogels. The mechanical properties (the maximum elongation: 515.4 %), conductivity (the maximum value: 3.1 S·m-1) and sensitivity (the maximum gauge factor value: 9.3) of the hydrogel were enhanced by the two ionic liquids and proved by the microcosmic characterizations and theoretical simulations (DFT). The two ionic liquids varied in their impacts on the above properties of the hydrogels due to the different anion structure. In mechanical properties, acetate was dominant over chloridion, while the opposite was true for conductivity. Based on the above properties of the starch-based hydrogels, wearable electronics were constructed for detecting human joint motions, subtle expressions, temperature and touch screen operations. This work not only provides novel starch-based hydrogels as candidates for the wearable electronics, but also lays a theoretical foundation for the application of ionic liquids in biopolymer-based materials.
Collapse
Affiliation(s)
- Ziling Zhang
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Lu Lu
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - Bingbing Hong
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Qichao Ye
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Li Guo
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Chao Yuan
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bo Liu
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bo Cui
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
2
|
Li H, Cao J, Wan R, Feig VR, Tringides CM, Xu J, Yuk H, Lu B. PEDOTs-Based Conductive Hydrogels: Design, Fabrications, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2415151. [PMID: 39711276 DOI: 10.1002/adma.202415151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/25/2024] [Indexed: 12/24/2024]
Abstract
Conductive hydrogels combine the benefits of soft hydrogels with electrical conductivity and have gained significant attention over the past decade. These innovative materials, including poly(3,4-ethylenedioxythiophene) (PEDOTs)-based conductive hydrogels (P-CHs), are promising for flexible electronics and biological applications due to their tunable flexibility, biocompatibility, and hydrophilicity. Despite the recent advances, the intrinsic correlation between the design, fabrications, and applications of P-CHs has been mostly based on trial-and-error-based Edisonian approaches, significantly limiting their further development. This review comprehensively examines the design strategies, fabrication technologies, and diverse applications of P-CHs. By summarizing design strategies, such as molecular, network, phase, and structural engineering, and exploring both 2D and 3D fabrication techniques, this review offers a comprehensive overview of P-CHs applications in diverse fields including bioelectronics, soft actuators, energy devices, and solar evaporators. Establishing this critical internal connection between design, fabrication, and application aims to guide future research and stimulate innovation in the field of functional P-CHs, offering broad benefits to multidisciplinary researchers.
Collapse
Affiliation(s)
- Hai Li
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Jie Cao
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Rongtai Wan
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Vivian Rachel Feig
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Christina M Tringides
- Department of Materials Science and Nanoengineering, Neuroengineering Initiative (NEl), Rice University, Houston, TX, 77005, USA
| | - Jingkun Xu
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, 330013, P. R. China
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Baoyang Lu
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| |
Collapse
|
3
|
Wang R, Gao Y, Yu K, Xu Z, Ma X, Wu L, Dou Q, Cui S. Tough and Stretchable Zwitterionic Eutectogels via Copolymerization-Induced Phase Separation in a Targeted Deep Eutectic Solvent. Macromol Rapid Commun 2024:e2400832. [PMID: 39692526 DOI: 10.1002/marc.202400832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/20/2024] [Indexed: 12/19/2024]
Abstract
Deep eutectic solvent (DES)-based eutectogels show significant promise for flexible sensors due to their high ionic conductivity, non-volatility, biocompatibility, and cost-effectiveness. However, achieving tough and stretchable eutectogels is challenging, as the highly polar DES tends to screen noncovalent bonds, such as hydrogen and ionic bonds, between polymer chains, limiting their mechanical strength. In this work, this issue is addressed by leveraging the limited solubility of zwitterionic polymers in a specific DES to induce phase separation, promoting dipole-dipole interactions between polymer chains. These interactions improve energy dissipation under mechanical stress, allowing the creation of tough and stretchable P(MAA-co-VIPS)/TBAC-EG eutectogels through a copolymerization-induced phase separation approach. Methacrylic acid (MAA) and sulfobetaine vinylimidazole (VIPS) are copolymerized within a tetrabutylammonium chloride-ethylene glycol (TBAC-EG) DES, resulting in a bicontinuous network. The bicontinuous structure consists of a PVIPS-rich phase that enhances toughness via dipole-dipole interactions, and a PMAA solvent-rich phase that enables high stretchability. The resulting eutectogel demonstrates excellent mechanical properties, including a strength of 1.76 MPa, toughness of 16.61 MJ m⁻3, and remarkable stretchability of 1293%, along with self-recovery, self-healing, and shape-memory capabilities. The zwitterionic polymer-specific DES design opens up broad application potential for these eutectogels in diverse fields.
Collapse
Affiliation(s)
- Rui Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yifeng Gao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Kaixuan Yu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Ziqian Xu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Xiaofeng Ma
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Linlin Wu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Qiang Dou
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Sheng Cui
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
4
|
Tang L, Huang Y, Wang Y, Zhao J, Lian H, Dong Y, Zhang Z, Hasebe Y. Highly stretchable, adhesive and conductive hydrogel for flexible and stable bioelectrocatalytic sensing layer of enzyme-based amperometric glucose biosensor. Bioelectrochemistry 2024; 163:108882. [PMID: 39671904 DOI: 10.1016/j.bioelechem.2024.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Highly stretchable, adhesive and conductive triblock hydrogel was synthesized and utilized as a flexible and stable bioelectrocatalytic sensing layer of enzyme-based amperometric glucose biosensor. The hydrogel was prepared through one-pot polymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid, methacrylamide, and hydroxyethyl methacrylate. The physical and chemical properties of the hydrogel were characterized with X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and electrochemical techniques. Glucose oxidase (GOx) and chitosan (CTS) embedded hydrogel was drop-coated on glassy carbon electrode (GCE) and screen printed graphite electrode (SPGE). The resulting GOx/CTS/hydrogel-GCE and GOx/CTS/hydrogel-SPGE exhibited excellent mediated bioelectrocatalytic oxidation current for glucose. The calibration curve of glucose by the GOx/CTS/hydrogel-GCE showed the linear range from 0.25 to 15 mM with the sensitivity of 27.0 µA mM-1 cm-2. This GOx/CTS/hydrogel-based sensing layer coated on the SPGE was stable against bending, and the response to glucose was almost same irrespective of the bending angles (0, 30, 60, and 90 degree). In addition, the response to glucose was not interfered by various organic and inorganic interfering species, allowed to detect glucose in goat serum. Furthermore, the GOx/CTS/hydrogel-GCE kept its original activity of 99.64 % during 30 days' storage under dry state in refrigerator.
Collapse
Affiliation(s)
- Linghui Tang
- School of Chemical Engineering, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China
| | - Yufeng Huang
- School of International Education, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China.
| | - Jifan Zhao
- School of Chemical Engineering, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China
| | - Huiyong Lian
- School of International Education, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China
| | - Yan Dong
- School of Chemical Engineering, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China.
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China
| | - Yasushi Hasebe
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan.
| |
Collapse
|
5
|
Vo DK, Trinh KTL. Advances in Wearable Biosensors for Healthcare: Current Trends, Applications, and Future Perspectives. BIOSENSORS 2024; 14:560. [PMID: 39590019 PMCID: PMC11592256 DOI: 10.3390/bios14110560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
Wearable biosensors are a fast-evolving topic at the intersection of healthcare, technology, and personalized medicine. These sensors, which are frequently integrated into clothes and accessories or directly applied to the skin, provide continuous, real-time monitoring of physiological and biochemical parameters such as heart rate, glucose levels, and hydration status. Recent breakthroughs in downsizing, materials science, and wireless communication have greatly improved the functionality, comfort, and accessibility of wearable biosensors. This review examines the present status of wearable biosensor technology, with an emphasis on advances in sensor design, fabrication techniques, and data analysis algorithms. We analyze diverse applications in clinical diagnostics, chronic illness management, and fitness tracking, emphasizing their capacity to transform health monitoring and facilitate early disease diagnosis. Additionally, this review seeks to shed light on the future of wearable biosensors in healthcare and wellness by summarizing existing trends and new advancements.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea;
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
6
|
An H, Yu P, Pan J, Ma J, Li A, Huang H, Jiang C, Shu Z, Zhu Y, Xiang Y, Tan L. A self-healing, long-lasting adhesive, lignin-based polyvinyl alcohol organo-hydrogel for strain-sensing applications. Int J Biol Macromol 2024; 279:135509. [PMID: 39255881 DOI: 10.1016/j.ijbiomac.2024.135509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Hydrogel-based flexible sensors have garnered considerable interest in the fields of soft electronics, robotics, and human-machine interfaces. For better practical applications, integrating multiple properties-such as self-adhesive, anti-freeze, anti-volatile, self-healing, and antibacterial-into a single gel for flexible sensors remains a challenge. In this paper, a multifunctional lignin-based polyvinyl alcohol gel, containing dynamic covalent bonds, hydrogen bonds, and coordination bonds, is constructed by a simple one-pot method, in which ethylene glycol/water chosen as a binary solvent and KI as a conductive medium. The resulting organogel exhibits self-healing, long-lasting adhesion, UV shielding, antibacterial properties, excellent frost resistance (-20 °C), and volatile resistance properties. In addition, the organogel-based sensor demonstrates satisfactory sensitivity in detecting joint movements and facial expressions. This study provides a new strategy for developing a versatile flexible sensor through the introduction of renewable and bio-based lignin, promising applications in the fields of wearable electronics.
Collapse
Affiliation(s)
- Hang An
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Peng Yu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Jiaxin Pan
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jizu Ma
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ante Li
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Huabo Huang
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Can Jiang
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhou Shu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yizhou Zhu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, 999077, Hong Kong, China
| | - Yiming Xiang
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, 999077, Hong Kong, China
| | - Lei Tan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| |
Collapse
|
7
|
Kulkarni G, Guha Ray P, Sunka KC, Dixit K, Dhar D, Chakrabarti R, Singh A, Byram PK, Dhara S, Das S. Investigating the Effect of Polypyrrole-Gelatin/Silk Fibroin Hydrogel Mediated Pulsed Electrical Stimulation for Skin Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56762-56776. [PMID: 39382540 DOI: 10.1021/acsami.4c12322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
In clinical practice to treat complex injuries, the application of electrical stimulation (ES) directly to the skin complicates the wound. In this work, the effect of a conductive hydrogel mediated electric field on skin regeneration is investigated. Polypyrrole incorporated matrices of gelatin and silk fibroin were prepared by two-step interfacial polymerization. The maximum electrical conductivity of 10-4 S cm-1 was achieved when 200 mM polypyrrole was loaded. Mechanically stable and cytocompatible hydrogels were evidenced to have antioxidant and blood compatible characteristics. Human dermal fibroblast cells responded to pulsed stimulation of 100 or 300 mV mm-1 as observed from the increased expressions of TGFβ1, αSMA, and COLIAI genes. Further, the increase in the αSMA protein expression with the magnitude of electrical stimulation also suggested transdifferentiation of the fibroblast to myofibroblast. Moreover, Raman spectroscopy identified two fingerprint regions (collagen and lipid) to differentiate ES treated and nontreated samples. Therefore, the combination of hydrogels and electrical stimulation has potential therapeutic effects for accelerating the rate of skin regeneration.
Collapse
Affiliation(s)
- Gaurav Kulkarni
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Preetam Guha Ray
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Krishna Chaitanya Sunka
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Krishna Dixit
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Dhruba Dhar
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rituparna Chakrabarti
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Apoorva Singh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Prasanna Kumar Byram
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Soumen Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
8
|
Peña A, Alvarez EL, Ayala Valderrama DM, Palacio C, Bermudez Y, Paredes-Madrid L. Usage of Machine Learning Techniques to Classify and Predict the Performance of Force Sensing Resistors. SENSORS (BASEL, SWITZERLAND) 2024; 24:6592. [PMID: 39460073 PMCID: PMC11511561 DOI: 10.3390/s24206592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Recently, there has been a huge increase in the different ways to manufacture polymer-based sensors. Methods like additive manufacturing, microfluidic preparation, and brush painting are just a few examples of new approaches designed to improve sensor features like self-healing, higher sensitivity, reduced drift over time, and lower hysteresis. That being said, we believe there is still a lot of potential to boost the performance of current sensors by applying modeling, classification, and machine learning techniques. With this approach, final sensor users may benefit from inexpensive computational methods instead of dealing with the already mentioned manufacturing routes. In this study, a total of 96 specimens of two commercial brands of Force Sensing Resistors (FSRs) were characterized under the error metrics of drift and hysteresis; the characterization was performed at multiple input voltages in a tailored test bench. It was found that the output voltage at null force (Vo_null) of a given specimen is inversely correlated with its drift error, and, consequently, it is possible to predict the sensor's performance by performing inexpensive electrical measurements on the sensor before deploying it to the final application. Hysteresis error was also studied in regard to Vo_null readings; nonetheless, a relationship between Vo_null and hysteresis was not found. However, a classification rule base on k-means clustering method was implemented; the clustering allowed us to distinguish in advance between sensors with high and low hysteresis by relying solely on Vo_null readings; the method was successfully implemented on Peratech SP200 sensors, but it could be applied to Interlink FSR402 sensors. With the aim of providing a comprehensive insight of the experimental data, the theoretical foundations of FSRs are also presented and correlated with the introduced modeling/classification techniques.
Collapse
Affiliation(s)
- Angela Peña
- Faculty of Mechanic, Electronic and Biomedical Engineering, Universidad Antonio Nariño, Carrera 7 N 21–84, Tunja 150001, Boyacá, Colombia;
- Doctorado en Ciencia Aplicada, Universidad Antonio Nariño, Carrera 3 Este N 47 A–15, Bogotá DC 110231, Colombia
| | - Edwin L. Alvarez
- GIMAC (Modeling, Automation and Control Research Group), Mechatronics Engineering Program, Faculty of Sciences and Engineering, Universidad de Boyacá, Carrera 2A Este N 64–169, Tunja 150003, Boyacá, Colombia;
| | - Diana M. Ayala Valderrama
- Comprehensive Management of Agro-Industrial Productivity and Services GISPA, Santo Tomas University, Tunja, Av. Universitaria, No. 45-202, Tunja 15003, Boyacá, Colombia;
| | - Carlos Palacio
- Faculty of Sciences, Universidad Antonio Nariño, Carrera 7 N 21–84, Tunja 150001, Boyacá, Colombia;
| | | | - Leonel Paredes-Madrid
- Faculty of Mechanic, Electronic and Biomedical Engineering, Universidad Antonio Nariño, Carrera 7 N 21–84, Tunja 150001, Boyacá, Colombia;
| |
Collapse
|
9
|
Nath N, Chakroborty S, Vishwakarma DP, Goga G, Yadav AS, Mohan R. Recent advances in sustainable nature-based functional materials for biomedical sensor technologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57289-57313. [PMID: 36857000 PMCID: PMC9975880 DOI: 10.1007/s11356-023-26135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The lightweight, low-density, and low-cost natural polymers like cellulose, chitosan, and silk have good chemical and biodegradable properties due to their individually unique structural and functional elements. However, the mechanical properties of these polymers differ from each other. In this scenario, chitosan lacks good mechanical properties than cellulose and silk. The synthesis of nano natural polymer and reinforcement with suitable chemical compounds as the development of nanocomposite gives them promising multidisciplinary applications. Many kinds of research are already published with innovative bio-derived polymeric functional materials (Bd-PFM) applications. Most research interest is carried out on health concerns. Lots of attention has been paid to biomedical applications of Bd-PFM as biosensors. This review aims to provide a glimpse of the nanostructures Bd-PFM biosensors.
Collapse
Affiliation(s)
- Nibedita Nath
- Department of Chemistry, D.S Degree College, Laida, Sambalpur, Odisha, India
| | | | | | - Geetesh Goga
- Department of Mechanical Engineering, Bharat Group of Colleges, Sardulgarh, Punjab, 151507, India
| | - Anil Singh Yadav
- Department of Mechanical Engineering, IES College of Technology, Bhopal, Madhya Pradesh, India
| | - Ravindra Mohan
- Department of Mechanical Engineering, IES College of Technology, Bhopal, Madhya Pradesh, India
| |
Collapse
|
10
|
Mirzajani H, Kraft M. Soft Bioelectronics for Heart Monitoring. ACS Sens 2024; 9:4328-4363. [PMID: 39239948 DOI: 10.1021/acssensors.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Cardiovascular diseases (CVDs) are a predominant global health concern, accounting for over 17.9 million deaths in 2019, representing approximately 32% of all global fatalities. In North America and Europe, over a million adults undergo cardiac surgeries annually. Despite the benefits, such surgeries pose risks and require precise postsurgery monitoring. However, during the postdischarge period, where monitoring infrastructures are limited, continuous monitoring of vital signals is hindered. In this area, the introduction of implantable electronics is altering medical practices by enabling real-time and out-of-hospital monitoring of physiological signals and biological information postsurgery. The multimodal implantable bioelectronic platforms have the capability of continuous heart sensing and stimulation, in both postsurgery and out-of-hospital settings. Furthermore, with the emergence of machine learning algorithms into healthcare devices, next-generation implantables will benefit artificial intelligence (AI) and connectivity with skin-interfaced electronics to provide more precise and user-specific results. This Review outlines recent advancements in implantable bioelectronics and their utilization in cardiovascular health monitoring, highlighting their transformative deployment in sensing and stimulation to the heart toward reaching truly personalized healthcare platforms compatible with the Sustainable Development Goal 3.4 of the WHO 2030 observatory roadmap. This Review also discusses the challenges and future prospects of these devices.
Collapse
Affiliation(s)
- Hadi Mirzajani
- Department of Electrical and Electronics Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450 Turkey
| | - Michael Kraft
- Department of Electrical Engineering (ESAT-MNS), KU Leuven, 3000 Leuven, Belgium
- Leuven Institute for Micro- and Nanoscale Integration (LIMNI), KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
11
|
Verma SK, Tyagi V, Sonika, Dutta T, Mishra SK. Flexible and wearable electronic systems based on 2D hydrogel composites. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6300-6322. [PMID: 39219494 DOI: 10.1039/d4ay01124d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Flexible electronics is a rapidly developing field of study, which integrates many other fields, including materials science, biology, chemistry, physics, and electrical engineering. Despite their vast potential, the widespread utilization of flexible electronics is hindered by several constraints, including elevated Young's modulus, inadequate biocompatibility, and diminished responsiveness. Therefore, it is necessary to develop innovative materials aimed at overcoming these hurdles and catalysing their practical implementation. In these materials, hydrogels are particularly promising owing to their three-dimensional crosslinked hydrated polymer networks and exceptional properties, positioning them as leading candidates for the development of future flexible electronics.
Collapse
Affiliation(s)
- Sushil Kumar Verma
- Centre for Sustainable Polymers, Technology Complex, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Varee Tyagi
- Centre for Sustainable Polymers, Technology Complex, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sonika
- Department of Physics, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh 791112, India
| | - Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur, Howrah, W.B. 711103, India
| | - Satyendra Kumar Mishra
- Space and Resilient Communications and Systems (SRCOM), Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Castelldefels, Spain.
| |
Collapse
|
12
|
Liu J, Li S, Li S, Tian J, Li H, Pan Z, Lu L, Mao Y. Recent Advances in Natural-Polymer-Based Hydrogels for Body Movement and Biomedical Monitoring. BIOSENSORS 2024; 14:415. [PMID: 39329790 PMCID: PMC11430138 DOI: 10.3390/bios14090415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024]
Abstract
In recent years, the interest in medical monitoring for human health has been rapidly increasing due to widespread concern. Hydrogels are widely used in medical monitoring and other fields due to their excellent mechanical properties, electrical conductivity and adhesion. However, some of the non-degradable materials in hydrogels may cause some environmental damage and resource waste. Therefore, organic renewable natural polymers with excellent properties of biocompatibility, biodegradability, low cost and non-toxicity are expected to serve as an alternative to those non-degradable materials, and also provide a broad application prospect for the development of natural-polymer-based hydrogels as flexible electronic devices. This paper reviews the progress of research on many different types of natural-polymer-based hydrogels such as proteins and polysaccharides. The applications of natural-polymer-based hydrogels in body movement detection and biomedical monitoring are then discussed. Finally, the present challenges and future prospects of natural polymer-based hydrogels are summarized.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Saisai Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Shuoze Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Jinyue Tian
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Hang Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Zhifeng Pan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Lijun Lu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
13
|
Uzokboev S, Akhmadbekov K, Nuritdinova R, Tawfik SM, Lee YI. Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1077-1104. [PMID: 39188756 PMCID: PMC11346306 DOI: 10.3762/bjnano.15.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Sensors are applied to many fields nowadays because of their high sensitivity, low cost, time-saving, user-friendly, and excellent selectivity. Current biomedical and pharmaceutical science has one focus on developing nanoparticle-based sensors, especially biopolymeric nanoparticles. Alginate is a widely used biopolymer in a variety of applications. The hydrogel-forming characteristic, the chemical structure with hydroxy and carboxylate moieties, biocompatibility, biodegradability, and water solubility of alginate have expanded opportunities in material and biomedical sciences. Recently, research on alginate-based nanoparticles and their applications has begun. These materials are gaining popularity because of their wide usage potential in the biomedical and pharmaceutical fields. Many review papers describe applications of alginate in the drug delivery field. The current study covers the structural and physicochemical properties of alginate-based nanoparticles. The prospective applications of alginate-based nanomaterials in various domains are discussed, including drug delivery and environmental sensing applications for humidity, heavy metals, and hydrogen peroxide. Moreover, biomedical sensing applications of alginate-based nanoparticles regarding various analytes such as glucose, cancer cells, pharmaceutical drugs, and human motion will also be reviewed in this paper. Future research scopes highlight existing challenges and solutions.
Collapse
Affiliation(s)
- Shakhzodjon Uzokboev
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Khojimukhammad Akhmadbekov
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Ra’no Nuritdinova
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Salah M Tawfik
- Department of Petrochemicals, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Yong-Ill Lee
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea
| |
Collapse
|
14
|
Xie F. Natural polymer starch-based materials for flexible electronic sensor development: A review of recent progress. Carbohydr Polym 2024; 337:122116. [PMID: 38710566 DOI: 10.1016/j.carbpol.2024.122116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/30/2024] [Indexed: 05/08/2024]
Abstract
In response to the burgeoning interest in the development of highly conformable and resilient flexible electronic sensors capable of transducing diverse physical stimuli, this review investigates the pivotal role of natural polymers, specifically those derived from starch, in crafting sustainable and biocompatible sensing materials. Expounding on cutting-edge research, the exploration delves into innovative strategies employed to leverage the distinctive attributes of starch in conjunction with other polymers for the fabrication of advanced sensors. The comprehensive discussion encompasses a spectrum of starch-based materials, spanning all-starch-based gels to starch-based soft composites, meticulously scrutinizing their applications in constructing resistive, capacitive, piezoelectric, and triboelectric sensors. These intricately designed sensors exhibit proficiency in detecting an array of stimuli, including strain, temperature, humidity, liquids, and enzymes, thereby playing a pivotal role in the continuous and non-invasive monitoring of human body motions, physiological signals, and environmental conditions. The review highlights the intricate interplay between material properties, sensor design, and sensing performance, emphasizing the unique advantages conferred by starch-based materials, such as self-adhesiveness, self-healability, and re-processibility facilitated by dynamic bonding. In conclusion, the paper outlines current challenges and future research opportunities in this evolving field, offering valuable insights for prospective investigations.
Collapse
Affiliation(s)
- Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom.
| |
Collapse
|
15
|
Zhang C, Kwon SH, Dong L. Piezoelectric Hydrogels: Hybrid Material Design, Properties, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310110. [PMID: 38329191 DOI: 10.1002/smll.202310110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Hydrogels show great potential in biomedical applications due to their inherent biocompatibility, high water content, and resemblance to the extracellular matrix. However, they lack self-powering capabilities and often necessitate external stimulation to initiate cell regenerative processes. In contrast, piezoelectric materials offer self-powering potential but tend to compromise flexibility. To address this, creating a novel hybrid biomaterial of piezoelectric hydrogels (PHs), which combines the advantageous properties of both materials, offers a systematic solution to the challenges faced by these materials when employed separately. Such innovative material system is expected to broaden the horizons of biomedical applications, such as piezocatalytic medicinal and health monitoring applications, showcasing its adaptability by endowing hydrogels with piezoelectric properties. Unique functionalities, like enabling self-powered capabilities and inducing electrical stimulation that mimics endogenous bioelectricity, can be achieved while retaining hydrogel matrix advantages. Given the limited reported literature on PHs, here recent strategies concerning material design and fabrication, essential properties, and distinctive applications are systematically discussed. The review is concluded by providing perspectives on the remaining challenges and the future outlook for PHs in the biomedical field. As PHs emerge as a rising star, a comprehensive exploration of their potential offers insights into the new hybrid biomaterials.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07114, USA
| | - Sun Hwa Kwon
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07114, USA
| | - Lin Dong
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07114, USA
| |
Collapse
|
16
|
Zhao R, Fang Y, Zhao Z, Song S. Ultra-stretchable, adhesive, fatigue resistance, and anti-freezing conductive hydrogel based on gelatin/guar gum and liquid metal for dual-sensory flexible sensor and all-in-one supercapacitors. Int J Biol Macromol 2024; 271:132585. [PMID: 38810849 DOI: 10.1016/j.ijbiomac.2024.132585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Benefiting from the tissue-like mechanical properties, conductive hydrogels have emerged as a promising candidate for manufacturing wearable electronics. However, the high water content within hydrogels will inevitably freeze at subzero temperature, causing a degradation or loss of functionality, which severely prevent their practical application in wearable electronics. Herein, an anti-freezing hydrogel integrating high conductivity, superior stretchability, and robust adhesion was fabricated by dissolving choline chloride and gallium in gelatin/guar gum network using borax as the cross-linker. Based on the synergistic effect of dynamic borate ester bonds and hydrogen bonds, the hydrogel exhibited rapid self-healing property and excellent fatigue resistance. Profiting from these fascinating characteristics, the hydrogel was assembled as strain sensor to precisely detect various human activities with high strain sensitivity and fast response time. Meanwhile, the hydrogel was demonstrated high sensitivity and rapid response to temperature, which can be used as thermal sensor to monitor temperature. Moreover, the conductive hydrogel was encapsulated into supercapacitors with high areal capacitance and favorable cycle stability. Importantly, the flexible sensor and supercapacitors still maintain stable sensing performance and good electrochemical performance even at subzero temperature. Therefore, our work broaden hydrogels application in intelligent wearable devices and energy storage in extreme environments.
Collapse
Affiliation(s)
- Rongrong Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Shasha Song
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
17
|
Du Y, Kim JH, Kong H, Li AA, Jin ML, Kim DH, Wang Y. Biocompatible Electronic Skins for Cardiovascular Health Monitoring. Adv Healthc Mater 2024; 13:e2303461. [PMID: 38569196 DOI: 10.1002/adhm.202303461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Cardiovascular diseases represent a significant threat to the overall well-being of the global population. Continuous monitoring of vital signs related to cardiovascular health is essential for improving daily health management. Currently, there has been remarkable proliferation of technology focused on collecting data related to cardiovascular diseases through daily electronic skin monitoring. However, concerns have arisen regarding potential skin irritation and inflammation due to the necessity for prolonged wear of wearable devices. To ensure comfortable and uninterrupted cardiovascular health monitoring, the concept of biocompatible electronic skin has gained substantial attention. In this review, biocompatible electronic skins for cardiovascular health monitoring are comprehensively summarized and discussed. The recent achievements of biocompatible electronic skin in cardiovascular health monitoring are introduced. Their working principles, fabrication processes, and performances in sensing technologies, materials, and integration systems are highlighted, and comparisons are made with other electronic skins used for cardiovascular monitoring. In addition, the significance of integrating sensing systems and the updating wireless communication for the development of the smart medical field is explored. Finally, the opportunities and challenges for wearable electronic skin are also examined.
Collapse
Affiliation(s)
- Yucong Du
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266071, China
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Ji Hong Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hui Kong
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Anne Ailina Li
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Ming Liang Jin
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Do Hwan Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yin Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
18
|
You L, Zheng Z, Xu W, Wang Y, Xiong W, Xiong C, Wang S. Self-healing and adhesive MXene-polypyrrole/silk fibroin/polyvinyl alcohol conductive hydrogels as wearable sensor. Int J Biol Macromol 2024; 263:130439. [PMID: 38423420 DOI: 10.1016/j.ijbiomac.2024.130439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Conductive hydrogels become increasing attractive for flexible electronic devices and biosensors. However, challenges still remain in fabrication of flexible hydrogels with high electrical conductivity, self-healing capability and adhesion property. Herein, a conductive hydrogel (PSDM) was prepared by solution-gel method using MXene and dopamine modified polypyrrole as conductive enhanced materials, polyvinyl alcohol and silk fibroin as gel networks, and borax as cross-linking agent. Notably, the PSDM hydrogels not only showed high permeability (13.82 mg∙cm-2∙h-1), excellent stretch ability (1235 %), high electrical conductivity (11.3 S/m) and long-term stability, but also exhibited high adhesion performance and self-healing properties. PSDM hydrogels displayed outstanding sensing performance and durability for monitoring human activities including writing, finger bending and wrist bending. The PSDM hydrogel was made into wearable flexible electrodes and realized accurate, sensitive and reliable detection of human electromyographic and electrocardiographic signals. The sensor was also applied in human-computer interaction by collecting electromyography signals of different gestures for machine learning and gesture recognition. According to 480 groups of data collected, the recognition accuracy of gestures by the electrodes was close to 100 %, indicating that the PSDM hydrogel electrodes possessed excellent sensing performance for high precision data acquisition and human-computer interaction interface.
Collapse
Affiliation(s)
- Lijun You
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Zhijuan Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Wenjing Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yang Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Weijie Xiong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Caihua Xiong
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
19
|
Imani KBC, Dodda JM, Yoon J, Torres FG, Imran AB, Deen GR, Al‐Ansari R. Seamless Integration of Conducting Hydrogels in Daily Life: From Preparation to Wearable Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306784. [PMID: 38240470 PMCID: PMC10987148 DOI: 10.1002/advs.202306784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Indexed: 04/04/2024]
Abstract
Conductive hydrogels (CHs) have received significant attention for use in wearable devices because they retain their softness and flexibility while maintaining high conductivity. CHs are well suited for applications in skin-contact electronics and biomedical devices owing to their high biocompatibility and conformality. Although highly conductive hydrogels for smart wearable devices are extensively researched, a detailed summary of the outstanding results of CHs is required for a comprehensive understanding. In this review, the recent progress in the preparation and fabrication of CHs is summarized for smart wearable devices. Improvements in the mechanical, electrical, and functional properties of high-performance wearable devices are also discussed. Furthermore, recent examples of innovative and highly functional devices based on CHs that can be seamlessly integrated into daily lives are reviewed.
Collapse
Affiliation(s)
- Kusuma Betha Cahaya Imani
- Graduate Department of Chemical MaterialsInstitute for Plastic Information and Energy MaterialsSustainable Utilization of Photovoltaic Energy Research CenterPusan National UniversityBusan46241Republic of Korea
| | - Jagan Mohan Dodda
- New Technologies – Research Centre (NTC)University of West Bohemia, Univerzitní 8Pilsen301 00Czech Republic
| | - Jinhwan Yoon
- Graduate Department of Chemical MaterialsInstitute for Plastic Information and Energy MaterialsSustainable Utilization of Photovoltaic Energy Research CenterPusan National UniversityBusan46241Republic of Korea
| | - Fernando G. Torres
- Department of Mechanical EngineeringPontificia Universidad Catolica del Peru. Av. Universitaria 1801Lima15088Peru
| | - Abu Bin Imran
- Department of ChemistryBangladesh University of Engineering and TechnologyDhaka1000Bangladesh
| | - G. Roshan Deen
- Materials for Medicine Research GroupSchool of MedicineThe Royal College of Surgeons in Ireland (RCSI)Medical University of BahrainBusaiteen15503Kingdom of Bahrain
| | - Renad Al‐Ansari
- Materials for Medicine Research GroupSchool of MedicineThe Royal College of Surgeons in Ireland (RCSI)Medical University of BahrainBusaiteen15503Kingdom of Bahrain
| |
Collapse
|
20
|
Xu J, Song W, Ren L, Wu N, Zeng R, Wang S, Wang Z, Zhang Q. Reinforced hydrogel building via formation of alginate-chitosan double network with pH & salt-responsiveness and electric conductivity for soft actuators. Int J Biol Macromol 2024; 263:130282. [PMID: 38423901 DOI: 10.1016/j.ijbiomac.2024.130282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/28/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Aiming at green and friendly environmental protection, polyvinyl alcohol/sodium alginate/chitosan (PSCS) double network hydrogel was successfully prepared through diffusing the high molecular weight chitosan into PVA/sodium alginate (PS) hydrogel without any other toxic reagents. The polyanion hydrogels could be significantly enhanced by immersing the polyanion hydrogel in high molecular weight chitosan solution without requiring specific structure. The PSCS hydrogel had a compact and rough surface structure with the smaller porosities and larger crystallization degree compared with polyvinyl alcohol/sodium alginate hydrogels and polyvinyl alcohol/sodium alginate/Ca2+ (PSCa) hydrogels. The PSCS hydrogel possessed excellent hydrolysis resistance, the significant pH-sensitive and salt-sensitive swelling. In addition, the flexibility, Young's modulus and mechanical properties of PSCS hydrogel can be adjusted through the changing the content of sodium alginate. Moreover, PS, PSCa and PSCS had electric conductivity, and PSCS showed twice the conductivity compared to PS hydrogel. Based on differences of swelling ratio, a PSCS bilayer hydrogel was designed and showed excellent pH-driven deformation ability. The PSCS hydrogel is expected to expand the application of hydrogels in conditions involving stimulus response, and might serve as a promising intelligent actuators or soft robots.
Collapse
Affiliation(s)
- Jian Xu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, College of Bionic Science and Engineering, Jilin University, Changchun 130022, China
| | - Wei Song
- College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Lili Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, College of Bionic Science and Engineering, Jilin University, Changchun 130022, China.
| | - Nan Wu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, College of Bionic Science and Engineering, Jilin University, Changchun 130022, China
| | - Rui Zeng
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, College of Bionic Science and Engineering, Jilin University, Changchun 130022, China
| | - Shuai Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, College of Bionic Science and Engineering, Jilin University, Changchun 130022, China
| | - Zeyu Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, College of Bionic Science and Engineering, Jilin University, Changchun 130022, China
| | - Qingzhu Zhang
- School of Engineering, Huzhou University, Huzhou 313000, China
| |
Collapse
|
21
|
Li P, Jia X, Sun Z, Tang J, Ji Q, Ma X. Conductive interpenetrating network organohydrogels of gellan gum/polypyrrole with weather-tolerance, piezoresistive sensing and shape-memory capability. Int J Biol Macromol 2024; 262:130215. [PMID: 38365141 DOI: 10.1016/j.ijbiomac.2024.130215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
To develop ecofriendly multifunctional gel materials for sustainable flexible electronic devices, composite organohydrogels of gellan gum (GG) and polypyrrole (PPy) with an interpenetrating network structure (IPN-GG/PPy organohydrogels) were developed first time, through fabrication of GG organohydrogels followed by in-situ oxidation polymerization of pyrrole inside. Combination of water with glycerol can not only impart environment-stability to GG hydrogels but promote the mechanics remarkably, with the compressive strength amplified by 1250 % from 0.02 to 0.27 MPa. Incorporation of PPy confers electrical conductivity to the GG organohydrogel as well as promoting the mechanical performance further. The maximum conductivity of the IPN-GG/PPy organohydrogels reached 1.2 mS/cm at 25 °C, and retained at 0.6 mS/cm under -20 °C and 0.56 mS/cm after 7 days' exposure in 25 °C and 60 % RH. The compression strength of that with the maximum conductivity increases by 170 % from 0.27 to 0.73 MPa. The excellent conductivity and mechanical properties endow the IPN-GG/PPy organohydrogels good piezoresistive strain/pressure sensing behavior. Moreover, the thermo-reversible GG network bestows them shape-memory capability. The multifunctionality and intrinsic eco-friendliness is favorable for sustainable application in fields such as flexible electronics, soft robotics and artificial intelligence, competent in motion recognition, physiological signal monitoring, intelligent actuation.
Collapse
Affiliation(s)
- Panpan Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xinyu Jia
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Zhaolong Sun
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Quan Ji
- Institute of Marine Biobased Materials, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China
| | - Xiaomei Ma
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China; Institute of Marine Biobased Materials, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
22
|
El-Husseiny HM, Mady EA, Doghish AS, Zewail MB, Abdelfatah AM, Noshy M, Mohammed OA, El-Dakroury WA. Smart/stimuli-responsive chitosan/gelatin and other polymeric macromolecules natural hydrogels vs. synthetic hydrogels systems for brain tissue engineering: A state-of-the-art review. Int J Biol Macromol 2024; 260:129323. [PMID: 38242393 DOI: 10.1016/j.ijbiomac.2024.129323] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Currently, there are no viable curative treatments that can enhance the central nervous system's (CNS) recovery from trauma or illness. Bioengineered injectable smart/stimuli-responsive hydrogels (SSRHs) that mirror the intricacy of the CNS milieu and architecture have been suggested as a way to get around these restrictions in combination with medication and cell therapy. Additionally, the right biophysical and pharmacological stimuli are required to boost meaningful CNS regeneration. Recent research has focused heavily on developing SSRHs as cutting-edge delivery systems that can direct the regeneration of brain tissue. In the present article, we have discussed the pathology of brain injuries, and the applicable strategies employed to regenerate the brain tissues. Moreover, the most promising SSRHs for neural tissue engineering (TE) including alginate (Alg.), hyaluronic acid (HA), chitosan (CH), gelatin, and collagen are used in natural polymer-based hydrogels and thoroughly discussed in this review. The ability of these hydrogels to distribute bioactive substances or cells in response to internal and external stimuli is highlighted with particular attention. In addition, this article provides a summary of the most cutting-edge techniques for CNS recovery employing SSRHs for several neurodegenerative diseases.
Collapse
Affiliation(s)
- Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Amr M Abdelfatah
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Ras Sudr 46612, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| |
Collapse
|
23
|
Di Pasquale G, Graziani S, Pollicino A, Trigona C. Pullulan-1-Ethyl-3-Methylimidazolium Tetrafluoroborate Composite as a Water-Soluble Active Component of a Vibration Sensor. SENSORS (BASEL, SWITZERLAND) 2024; 24:1176. [PMID: 38400334 PMCID: PMC10891797 DOI: 10.3390/s24041176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
In recent years, the issue of electronic waste production has gained significant attention. To mitigate the environmental impact of e-waste, one approach under consideration involves the development of biodegradable electronic devices or devices that dissolve in the environment at the end of their life cycle. This study presents results related to the creation of a sensor that effectively addresses both criteria. The device was constructed using a composite material formed by impregnating a pullulan membrane (a biodegradable water-soluble biopolymer) with 1-Ethyl-3-Methylimidazolium tetrafluoroborate (a water-soluble ionic liquid) and coating the product with a conductive silver-based varnish. Capitalizing on the piezoionic effect, the device has demonstrated functionality as a vibration sensor with a sensitivity of approximately 5.5 × 10-5 V/mm and a resolution of about 1 mm. The novelty of this study lies in the unique combination of materials. Unlike the use of piezoelectric materials, this combination allows for the production of a device that does not require an external potential difference generator to function properly as a sensor. Furthermore, the combination of a biopolymer, such as pullulan, and an ionic liquid, both readily soluble in water, in creating an active electronic component represents an innovation in the field of vibration sensors.
Collapse
Affiliation(s)
- Giovanna Di Pasquale
- Dipartimento di Scienze Chimiche (DSC), University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Salvatore Graziani
- Dipartimento di Ingegneria Elettrica Elettronica e Informatica (DIEEI), University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Antonino Pollicino
- Dipartimento di Ingegneria Civile e Architettura (DICAr), University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Carlo Trigona
- Dipartimento di Ingegneria Elettrica Elettronica e Informatica (DIEEI), University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| |
Collapse
|
24
|
Landi G, Pagano S, Granata V, Avallone G, La Notte L, Palma AL, Sdringola P, Puglisi G, Barone C. Regeneration and Long-Term Stability of a Low-Power Eco-Friendly Temperature Sensor Based on a Hydrogel Nanocomposite. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:283. [PMID: 38334553 PMCID: PMC10856540 DOI: 10.3390/nano14030283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
A water-processable and low-cost nanocomposite material, based on gelatin and graphene, has been used to fabricate an environmentally friendly temperature sensor. Demonstrating a temperature-dependent open-circuit voltage between 260 and 310 K, the sensor effectively detects subzero ice formation. Notably, it maintains a constant temperature sensitivity of approximately -19 mV/K over two years, showcasing long-term stability. Experimental evidence demonstrates the efficient regeneration of aged sensors by injecting a few drops of water at a temperature higher than the gelation point of the hydrogel nanocomposite. The real-time monitoring of the electrical characteristics during the hydration reveals the initiation of the regeneration process at the gelation point (~306 K), resulting in a more conductive nanocomposite. These findings, together with a fast response and low power consumption in the range of microwatts, underscore the potential of the eco-friendly sensor for diverse practical applications in temperature monitoring and environmental sensing. Furthermore, the successful regeneration process significantly enhances its sustainability and reusability, making a valuable contribution to environmentally conscious technologies.
Collapse
Affiliation(s)
- Giovanni Landi
- ENEA, Portici Research Center, Piazzale Enrico Fermi, Località Granatello, 80055 Portici, Italy;
| | - Sergio Pagano
- Dipartimento di Fisica “E.R. Caianiello”, Università degli Studi di Salerno, 84084 Fisciano, Italy; (V.G.); (G.A.)
- INFN Gruppo Collegato di Salerno, Università degli Studi di Salerno, 84084 Fisciano, Italy
- CNR-SPIN, Università degli Studi di Salerno, 84084 Fisciano, Italy
| | - Veronica Granata
- Dipartimento di Fisica “E.R. Caianiello”, Università degli Studi di Salerno, 84084 Fisciano, Italy; (V.G.); (G.A.)
- INFN Gruppo Collegato di Salerno, Università degli Studi di Salerno, 84084 Fisciano, Italy
| | - Guerino Avallone
- Dipartimento di Fisica “E.R. Caianiello”, Università degli Studi di Salerno, 84084 Fisciano, Italy; (V.G.); (G.A.)
- INFN Gruppo Collegato di Salerno, Università degli Studi di Salerno, 84084 Fisciano, Italy
| | - Luca La Notte
- ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (L.L.N.); (A.L.P.); (P.S.); (G.P.)
| | - Alessandro Lorenzo Palma
- ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (L.L.N.); (A.L.P.); (P.S.); (G.P.)
| | - Paolo Sdringola
- ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (L.L.N.); (A.L.P.); (P.S.); (G.P.)
| | - Giovanni Puglisi
- ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (L.L.N.); (A.L.P.); (P.S.); (G.P.)
| | - Carlo Barone
- Dipartimento di Fisica “E.R. Caianiello”, Università degli Studi di Salerno, 84084 Fisciano, Italy; (V.G.); (G.A.)
- INFN Gruppo Collegato di Salerno, Università degli Studi di Salerno, 84084 Fisciano, Italy
- CNR-SPIN, Università degli Studi di Salerno, 84084 Fisciano, Italy
| |
Collapse
|
25
|
Zhang Y, Tang Q, Zhou J, Zhao C, Li J, Wang H. Conductive and Eco-friendly Biomaterials-based Hydrogels for Noninvasive Epidermal Sensors: A Review. ACS Biomater Sci Eng 2024; 10:191-218. [PMID: 38052003 DOI: 10.1021/acsbiomaterials.3c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
As noninvasive wearable electronic devices, epidermal sensors enable continuous, real-time, and remote monitoring of various human physiological parameters. Conductive biomaterials-based hydrogels as sensor matrix materials have good biocompatibility, biodegradability, and efficient stimulus response capabilities and are widely applied in motion monitoring, healthcare, and human-machine interaction. However, biomass hydrogel-based epidermal sensing devices still need excellent mechanical properties, prolonged stability, multifunctionality, and extensive practicality. Therefore, this paper reviews the common biomass hydrogel materials for epidermal sensing (proteins, polysaccharides, polyphenols, etc.) and the various types of noninvasive sensing devices (strain/pressure sensors, temperature sensors, glucose sensors, electrocardiograms, etc.). Moreover, this review focuses on the strategies of scholars to enhance sensor properties, such as strength, conductivity, stability, adhesion, and self-healing ability. This work will guide the preparation and optimization of high-performance biomaterials-based hydrogel epidermal sensors.
Collapse
Affiliation(s)
- Yibo Zhang
- School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Qianhui Tang
- School of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian, Liaoning 116023, P. R. China
| | - Junyang Zhou
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chenghao Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Jingpeng Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Haiting Wang
- School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
| |
Collapse
|
26
|
Sutthasupa S, Koo-Amornpattana W, Worasuwannarak N, Prachakittikul P, Teachawachirasiri P, Wanthong W, Thungthong T, Inthapat P, Chanamarn W, Thawonbundit C, Srifa A, Ratchahat S, Chaiwat W. Sugarcane bagasse-derived granular activated carbon hybridized with ash in bio-based alginate/gelatin polymer matrix for methylene blue adsorption. Int J Biol Macromol 2023; 253:127464. [PMID: 37852399 DOI: 10.1016/j.ijbiomac.2023.127464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Sugarcane bagasse (SCB) and sugarcane bagasse ash (SCB-ash) are major agricultural residues from sugar processing industries in Thailand. In this study, SCB-derived activated carbon (SCBAC) with the optimum surface area of 489 m2/g was prepared by steam activation at 900 °C for 1 h. Hybrid granular activated carbons (GACs) were successfully developed by mixing SCBAC with bio-based polymers, alginate and gelatin, at the weight ratio of 3:1 for methylene blue (MB) adsorption. SCB-ash, which was additionally mixed in the GACs, could significantly increase compressive strength of the GACs, but decrease their surface areas and MB adsorption efficiencies. An existence of gelatin up to 30 wt% in the polymer matrix of the GACs showed a slight increase in swelling degree and iodine number, but could not enhance bead strength and MB adsorption efficiency due to its relatively lower bulk density and specific surface area. Maximum MB adsorption capacities of the GACs were found at 290-403 mg/g under this study's experimental condition. MB adsorption efficiencies at above 90 % with no deformation of all of the selected SCB hybrid GACs were finally confirmed after seven consecutive adsorption-desorption cycles using a simple regeneration with ethanol.
Collapse
Affiliation(s)
- Sutthira Sutthasupa
- Division of Packaging Technology, Faculty of Agro Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Wanida Koo-Amornpattana
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Nakorn Worasuwannarak
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Pensiri Prachakittikul
- Division of Environmental Engineering and Disaster Management, Mahidol University, Kanchanaburi Campus, Kanchanaburi 71150, Thailand
| | - Preut Teachawachirasiri
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Woramet Wanthong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Thiti Thungthong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Pimonpan Inthapat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Wilasinee Chanamarn
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chalongrat Thawonbundit
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Atthapon Srifa
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sakhon Ratchahat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Weerawut Chaiwat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
27
|
Zhao R, Zhao Z, Song S, Wang Y. Multifunctional Conductive Double-Network Hydrogel Sensors for Multiscale Motion Detection and Temperature Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59854-59865. [PMID: 38095585 DOI: 10.1021/acsami.3c15522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
As typical soft materials, hydrogels have demonstrated great potential for the fabrication of flexible sensors due to their highly compatible elastic modulus with human skin, prominent flexibility, and biocompatible three-dimensional network structure. However, the practical application of wearable hydrogel sensors is significantly constrained because of weak adhesion, limited stretchability, and poor self-healing properties of traditional hydrogels. Herein, a multifunctional sodium hyaluronate (SH)/borax (B)/gelatin (G) double-cross-linked conductive hydrogel (SBG) was designed and constructed through a simple one-pot blending strategy with SH and gelatin as the gel matrix and borax as the dynamic cross-linker. The obtained SBG hydrogels exhibited a moderate tensile strength of 25.3 kPa at a large elongation of 760%, high interfacial toughness (106.5 kJ m-3), strong adhesion (28 kPa to paper), and satisfactory conductivity (224.5 mS/m). In particular, the dynamic cross-linking between SH, gelatin, and borax via borate ester bonds and hydrogen bonds between SH and gelatin chain endowed the SBG hydrogels with good fatigue resistance (>300 cycles), rapid self-healing performance (HE (healing efficiency) ∼97.03%), and excellent repeatable adhesion. The flexible wearable sensor assembled with SBG hydrogels demonstrated desirable strain sensing performance with a competitive gauge factor and exceptional stability, which enabled it to detect and distinguish various multiscale human motions and physiological signals. Furthermore, the flexible sensor is capable of precisely perceiving temperature variation with a high thermal sensitivity (1.685% °C-1). As a result, the wearable sensor displayed dual sensory performance for temperature and strain deformation. It is envisioned that the integration of strain sensors and thermal sensors provide a novel and convenient strategy for the next generation of multisensory wearable electronics and lay a solid foundation for their application in electronic skin and soft actuators.
Collapse
Affiliation(s)
- Rongrong Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Shasha Song
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Yifan Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore639798, Singapore
| |
Collapse
|
28
|
Sinad KVG, Ebubechukwu RC, Chu CK. Recent advances in double network hydrogels based on naturally-derived polymers: synthesis, properties, and biological applications. J Mater Chem B 2023; 11:11460-11482. [PMID: 38047404 DOI: 10.1039/d3tb00773a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hydrogels composed of naturally-derived biopolymers have garnered significant research interest due to the bioavailability and biocompatibility of starting materials. However, translating these advantages to practical use is challenged by limitations of mechanical properties and stability of the resulting materials. The development of double network (DN) hydrogels has led to greatly enhanced mechanical properties and shows promise toward broadening the applications of conventional synthetic or natural hydrogels. This review highlights recently developed protein-based and polysaccharide-based DN hydrogels. For each biopolymer, we focus on a subset of DN hydrogels centered around a theme related to synthetic design or applications. Network structures and crosslinking mechanisms that endow enhanced mechanical properties and performance to the materials are discussed. Important applications, including tissue engineering, drug delivery, bioadhesives, wound healing, and wearable sensors, that arise from the inherent properties of the natural polymer or its combination with other materials are also emphasized. Finally, we discuss ongoing challenges to stimulate the discovery of new design principles for the future of DN hydrogels based on naturally-derived polymers for biological applications.
Collapse
Affiliation(s)
| | - Ruth C Ebubechukwu
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA.
| | - Crystal K Chu
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA.
| |
Collapse
|
29
|
Li Y, Zhang H, Qi Y, You C. Recent Studies and Applications of Hydrogel-Based Biosensors in Food Safety. Foods 2023; 12:4405. [PMID: 38137209 PMCID: PMC10742584 DOI: 10.3390/foods12244405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Food safety has increasingly become a human health issue that concerns all countries in the world. Some substances in food that can pose a significant threat to human health include, but are not limited to, pesticides, biotoxins, antibiotics, pathogenic bacteria, food quality indicators, heavy metals, and illegal additives. The traditional methods of food contaminant detection have practical limitations or analytical defects, restricting their on-site application. Hydrogels with the merits of a large surface area, highly porous structure, good shape-adaptability, excellent biocompatibility, and mechanical stability have been widely studied in the field of food safety sensing. The classification, response mechanism, and recent application of hydrogel-based biosensors in food safety are reviewed in this paper. Furthermore, the challenges and future trends of hydrogel biosensors are also discussed.
Collapse
Affiliation(s)
- Yuzhen Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.L.); (H.Z.); (Y.Q.)
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Hongfa Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.L.); (H.Z.); (Y.Q.)
| | - Yan Qi
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.L.); (H.Z.); (Y.Q.)
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.L.); (H.Z.); (Y.Q.)
| |
Collapse
|
30
|
Garland NT, Kaveti R, Bandodkar AJ. Biofluid-Activated Biofuel Cells, Batteries, and Supercapacitors: A Comprehensive Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303197. [PMID: 37358398 DOI: 10.1002/adma.202303197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Recent developments in wearable and implanted devices have resulted in numerous, unprecedented capabilities that generate increasingly detailed information about a user's health or provide targeted therapy. However, options for powering such systems remain limited to conventional batteries which are large and have toxic components and as such are not suitable for close integration with the human body. This work provides an in-depth overview of biofluid-activated electrochemical energy devices, an emerging class of energy sources judiciously designed for biomedical applications. These unconventional energy devices are composed of biocompatible materials that harness the inherent chemistries of various biofluids to produce useable electrical energy. This work covers examples of such biofluid-activated energy devices in the form of biofuel cells, batteries, and supercapacitors. Advances in materials, design engineering, and biotechnology that form the basis for high-performance, biofluid-activated energy devices are discussed. Innovations in hybrid manufacturing and heterogeneous integration of device components to maximize power output are also included. Finally, key challenges and future scopes of this nascent field are provided.
Collapse
Affiliation(s)
- Nate T Garland
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Rajaram Kaveti
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|
31
|
Mikhailidi A, Ungureanu E, Belosinschi D, Tofanica BM, Volf I. Cellulose-Based Metallogels-Part 3: Multifunctional Materials. Gels 2023; 9:878. [PMID: 37998968 PMCID: PMC10671087 DOI: 10.3390/gels9110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
The incorporation of the metal phase into cellulose hydrogels, resulting in the formation of metallogels, greatly expands their application potential by introducing new functionalities and improving their performance in various fields. The unique antiviral, antibacterial, antifungal, and anticancer properties of metal and metal oxide nanoparticles (Ag, Au, Cu, CuxOy, ZnO, Al2O3, TiO2, etc.), coupled with the biocompatibility of cellulose, allow the development of composite hydrogels with multifunctional therapeutic potential. These materials can serve as efficient carriers for controlled drug delivery, targeting specific cells or pathogens, as well as for the design of artificial tissues or wound and burn dressings. Cellulose-based metallogels can be used in the food packaging industry to provide biodegradable and biocidal materials to extend the shelf life of the goods. Metal and bimetallic nanoparticles (Au, Cu, Ni, AuAg, and AuPt) can catalyze chemical reactions, enabling composite cellulose hydrogels to be used as efficient catalysts in organic synthesis. In addition, metal-loaded hydrogels (with ZnO, TiO2, Ag, and Fe3O4 nanoparticles) can exhibit enhanced adsorption capacities for pollutants, such as dyes, heavy metal ions, and pharmaceuticals, making them valuable materials for water purification and environmental remediation. Magnetic properties imparted to metallogels by iron oxides (Fe2O3 and Fe3O4) simplify the wastewater treatment process, making it more cost-effective and environmentally friendly. The conductivity of metallogels due to Ag, TiO2, ZnO, and Al2O3 is useful for the design of various sensors. The integration of metal nanoparticles also allows the development of responsive materials, where changes in metal properties can be exploited for stimuli-responsive applications, such as controlled release systems. Overall, the introduction of metal phases augments the functionality of cellulose hydrogels, expanding their versatility for diverse applications across a broad spectrum of industries not envisaged during the initial research stages.
Collapse
Affiliation(s)
- Aleksandra Mikhailidi
- Higher School of Printing and Media Technologies, St. Petersburg State University of Industrial Technologies and Design, 18 Bolshaya Morskaya Street, 191186 St. Petersburg, Russia;
| | - Elena Ungureanu
- “Ion Ionescu de la Brad” University of Life Sciences Iasi, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Dan Belosinschi
- Innovations Institute in Ecomaterials, Ecoproducts, and Ecoenergies, University of Quebec at Trois-Rivières, 3351, Boul. des Forges, Trois-Rivières, QC G8Z 4M3, Canada;
- CellON AS, Lakkegata 75C, NO-0562 Oslo, Norway
| | - Bogdan-Marian Tofanica
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
- IF2000 Academic Foundation, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Irina Volf
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| |
Collapse
|
32
|
Cui Z, Liu C, Fang S, Xu J, Zhao Z, Fang J, Shen Z, Cong Z, Niu J. Bio-Inspired Conductive Hydrogels with High Toughness and Ultra-Stability as Wearable Human-Machine Interfaces for all Climates. Macromol Rapid Commun 2023; 44:e2300324. [PMID: 37462222 DOI: 10.1002/marc.202300324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
Drawing inspiration from Salicornia, a plant with the remarkable ability to thrive in harsh environments, a conductive hydrogel with high toughness and ultra-stability is reported. Specifically, the strategy of pre-cross-linking followed by secondary soaking in saturated salt solutions is introduced to prepare the PAAM-alginate conductive hydrogel with dual cross-linked dual network structure. It allows the alginate network to achieve complete cross-linking, fully leveraging the structural advantages of the PAAM-alginate conductive hydrogel. The highest tensile strength of the obtained conductive hydrogel is 697.3 kPa and the fracture energy can reach 69.59 kJ m-2 , significantly higher than human cartilage and natural rubbers. Specially, by introducing saturated salt solutions within the hydrogel, the colligative properties endow the PAAM-alginate conductive hydrogel with excellent water retention and anti-freezing properties. The prepared conductive hydrogels can work stably in an ambient environment for more than 7 days and still maintain good mechanical behavior and ionic conductivity at -50 °C. Benefiting from the excellent comprehensive performance of conductive hydrogels, wearable human-machine interfaces that can withstand large joint movements and are adapted for extreme environments are prepared to achieve precise control of robots and prostheses, respectively.
Collapse
Affiliation(s)
- Zeyu Cui
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Chen Liu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Shiqiang Fang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Junbin Xu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhi Zhao
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jiaquan Fang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Zehao Shen
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Zhenhua Cong
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jian Niu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| |
Collapse
|
33
|
Zhong L, Zhang Y, Liu F, Wang L, Feng Q, Chen C, Xu Z. Muscle-inspired anisotropic carboxymethyl cellulose-based double-network conductive hydrogels for flexible strain sensors. Int J Biol Macromol 2023; 248:125973. [PMID: 37495000 DOI: 10.1016/j.ijbiomac.2023.125973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/22/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Conductive hydrogels are considered one of the most promising materials for preparing flexible sensors due to their flexible and extensible properties. However, conventional hydrogels' weak mechanical and isotropic properties are greatly limited in practical applications. Here, the internal structure of the hydrogel was regulated by pre-stretching synergistic ion crosslinking to construct a carboxymethyl cellulose-based double network-oriented hydrogel similar to muscle. The introduction of pre-stretching increased the tensile strength of the double-network hydrogel from 1.45 MPa to 4.32 MPa, and its light transmittance increased from 67.3 % to 84.5 %. In addition, the hydrogel's thermal stability and electrical conductivity were improved to a certain extent. Its good mechanical properties and conductive properties can be converted into stable electrical signal output during deformation. The carboxymethyl cellulose-based double network oriented hydrogels were further assembled as flexible substrates into flexible sensor devices. The hydrogel sensors can monitor simple joint movements as well as complex spatial movements, which makes them have potential application value in the research field of intelligent response electronic devices such as flexible wearables, intelligent strain sensing, and soft robots.
Collapse
Affiliation(s)
- Li Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuhui Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Luzhen Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qian Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chuchu Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyang Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
34
|
Chen Y, Lv X, Wang Y, Shi J, Luo S, Fan J, Sun B, Liu Y, Fan Q. Skin-adhesive lignin-grafted-polyacrylamide/hydroxypropyl cellulose hydrogel sensor for real-time cervical spine bending monitoring in human-machine Interface. Int J Biol Macromol 2023; 247:125833. [PMID: 37453629 DOI: 10.1016/j.ijbiomac.2023.125833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Developing a straightforward method to produce conductive hydrogels with excellent mechanical properties, self-adhesion, and biocompatibility remains a significant challenge. While current approaches aim to enhance mechanical performance, they often require additional steps or external forces for fixation, leading to increased production time and limited practicality. A novel lignin-grafted polyacrylamide/hydroxypropyl cellulose hydrogel (L-g-PAM/HPC hydrogel) with a semi-interpenetrating polymer network structure had been developed in this research that boasted exceptional adhesion to the skin (∼68 kPa) and stretchability properties (∼1637 %) compared to PAM-based hydrogels. By incorporating conductive additives such as silver nanowires and carbon nanocages to construct a bridge-like structure within the hydrogel matrix, the resulting AgC@L-g-PAM/HPC hydrogel exhibited impressive electrical conductivity, surpassing that of other PAM-based hydrogels relying on MXene, with a maximum value of 0.76 S/m. Furthermore, the AgC@L-g-PAM/HPC hydrogel retained its efficient electrical signal transmission capability even under mechanical stress. These make it an ideal flexible strain sensor capable of detecting various human motions. In this study, a smart real-time monitoring system was successfully developed for tracking cervical spine bending, serving as an extension for monitoring human activities.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing 210021, China.
| | - Xiaowei Lv
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing 210021, China
| | - Yushu Wang
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing 210021, China
| | - Jingyi Shi
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing 210021, China
| | - Sihan Luo
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing 210021, China
| | - Junjiang Fan
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing 210021, China
| | - Bo Sun
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing 210021, China
| | - Yupeng Liu
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Province, Nanjing 210042, China; Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Quli Fan
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing 210021, China
| |
Collapse
|
35
|
Omidian H, Chowdhury SD. High-Performing Conductive Hydrogels for Wearable Applications. Gels 2023; 9:549. [PMID: 37504428 PMCID: PMC10379850 DOI: 10.3390/gels9070549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Conductive hydrogels have gained significant attention for their extensive applications in healthcare monitoring, wearable sensors, electronic devices, soft robotics, energy storage, and human-machine interfaces. To address the limitations of conductive hydrogels, researchers are focused on enhancing properties such as sensitivity, mechanical strength, electrical performance at low temperatures, stability, antibacterial properties, and conductivity. Composite materials, including nanoparticles, nanowires, polymers, and ionic liquids, are incorporated to improve the conductivity and mechanical strength. Biocompatibility and biosafety are emphasized for safe integration with biological tissues. Conductive hydrogels exhibit unique properties such as stretchability, self-healing, wet adhesion, anti-freezing, transparency, UV-shielding, and adjustable mechanical properties, making them suitable for specific applications. Researchers aim to develop multifunctional hydrogels with antibacterial characteristics, self-healing capabilities, transparency, UV-shielding, gas-sensing, and strain-sensitivity.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sumana Dey Chowdhury
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
36
|
Xiao M. Development of chitosan-based hydrogels for healthcare: A review. Int J Biol Macromol 2023:125333. [PMID: 37307979 DOI: 10.1016/j.ijbiomac.2023.125333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Chitosan-based hydrogels (CSH) are promising materials for healthcare. Based on the relationship among structure, property and application, researches reported within last decade are chosen to elucidate the developing approaches and potential applications of target CSH. The applications of CSH are classified into the conventional biomedical fields, such as drug controlled release, tissue repair and monitoring, and the essential ones including food safety, water purification and air cleaning. The approaches focused on in this article are the reversible chemical and physical ones. Apart from describing the current status of the development, suggestions are presented as well.
Collapse
Affiliation(s)
- Mo Xiao
- Quanzhou Medical College, 362021, China.
| |
Collapse
|
37
|
Zhu Y, Haghniaz R, Hartel MC, Mou L, Tian X, Garrido PR, Wu Z, Hao T, Guan S, Ahadian S, Kim HJ, Jucaud V, Dokmeci MR, Khademhosseini A. Recent Advances in Bioinspired Hydrogels: Materials, Devices, and Biosignal Computing. ACS Biomater Sci Eng 2023; 9:2048-2069. [PMID: 34784170 PMCID: PMC10823919 DOI: 10.1021/acsbiomaterials.1c00741] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The remarkable ability of biological systems to sense and adapt to complex environmental conditions has inspired new materials and novel designs for next-generation wearable devices. Hydrogels are being intensively investigated for their versatile functions in wearable devices due to their superior softness, biocompatibility, and rapid stimulus response. This review focuses on recent strategies for developing bioinspired hydrogel wearable devices that can accommodate mechanical strain and integrate seamlessly with biological systems. We will provide an overview of different types of bioinspired hydrogels tailored for wearable devices. Next, we will discuss the recent progress of bioinspired hydrogel wearable devices such as electronic skin and smart contact lenses. Also, we will comprehensively summarize biosignal readout methods for hydrogel wearable devices as well as advances in powering and wireless data transmission technologies. Finally, current challenges facing these wearable devices are discussed, and future directions are proposed.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Lei Mou
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Xinyu Tian
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Pamela Rosario Garrido
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Electric and Electronic Engineering, Technological Institute of Merida, Merida, Yucatan 97118, Mexico
| | - Zhuohong Wu
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Taige Hao
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Shenghan Guan
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| |
Collapse
|
38
|
Liang Y, Song Q, Chen Y, Hu C, Zhang S. Stretch-Induced Robust Intrinsic Antibacterial Thermoplastic Gelatin Organohydrogel for a Thermoenhanced Supercapacitor and Mono-gauge-factor Sensor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20278-20293. [PMID: 37043180 DOI: 10.1021/acsami.3c02255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sustainable organohydrogel electronics have shown promise in resolving the electronic waste (e-waste) evoked by traditional chemical cross-linking hydrogels. Herein, thermoplastic-recycled gelatin/oxidized starch (OST)/glycerol/ZnCl2 organohydrogels (GOGZs) were fabricated by introducing the anionic polyelectrolyte OST and solvent exchange strategy to construct noncovalently cross-linking networks. Benefiting from the electrostatic interaction and hydrogen and coordination bonds, GOGZ possessed triple-supramolecular interactions and a continuous ion transport pathway, which resulted in excellent thermoplasticity and high ionic conductivities and mechanical and antibacterial properties. Because of the thermally induced phase transition of gelatin, GOGZ exhibited isotropic-ionic conductivity with a positive temperature coefficient and realized intrinsic affinity with the activated carbon electrode for fabricating a double-layer structure supercapacitor. These novel features significantly decreased the impedance (3.71 Ω) and facilitated the flexible supercapacitors to achieve thermoenhanced performance with 4.89 Wh kg-1 energy density and 49.2 F g-1 specific mass capacitance at 65 °C. Fantastically, the GOGZ-based stress sensor exhibited a monolinear gauge factor (R2 = 0.999) at its full-range strain (0 to 350%), and its sensitivity increased with the thermoplastic-recycled times. Consequently, this sustainable and temperature-sensitive sensor (-40 to 60 °C) could serve as health monitoring wearable devices with excellent reliability (R2 = 0.999) at tiny strain. Moreover, GOGZ could achieve efficient self-enhancement by stretch-induced alignment. The sustained weighted load, tensile strength, and elongation at break of the stretch-induced GOGZ were 6 kg/g, 2.37 MPa, and 300%, respectively. This self-enhanced feature indicated that GOGZ can be utilized as an artificial muscle. Eventually, GOGZ obtained high intrinsic antibiosis (Dinhibition circle > 25 mm) by a binding species (-COO-NH3+-) from COOH in OST and NH2 in gelatin, freezing resistance, and water retention. In summary, this study provided an effective strategy to fabricate thermoplastic-recycled organohydrogels for multifunctional sustainable electronics with novel performance.
Collapse
Affiliation(s)
- Yingpei Liang
- College of Mechanical and Automotive, South China University of Technology, Guangzhou 510640, China
- Guangdong Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, China
| | - Qiaowei Song
- Packaging Engineering Institute, Jinan University, Zhuhai, Guangdong 519070, China
| | - Yukun Chen
- College of Mechanical and Automotive, South China University of Technology, Guangzhou 510640, China
| | - Changying Hu
- Packaging Engineering Institute, Jinan University, Zhuhai, Guangdong 519070, China
| | - Shuidong Zhang
- College of Mechanical and Automotive, South China University of Technology, Guangzhou 510640, China
- Guangdong Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Pulp and Paper Engineering,South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
39
|
Bachs-Herrera A, York D, Stephens-Jones T, Mabbett I, Yeo J, Martin-Martinez FJ. Biomass carbon mining to develop nature-inspired materials for a circular economy. iScience 2023; 26:106549. [PMID: 37123246 PMCID: PMC10130920 DOI: 10.1016/j.isci.2023.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
A transition from a linear to a circular economy is the only alternative to reduce current pressures in natural resources. Our society must redefine our material sources, rethink our supply chains, improve our waste management, and redesign materials and products. Valorizing extensively available biomass wastes, as new carbon mines, and developing biobased materials that mimic nature's efficiency and wasteless procedures are the most promising avenues to achieve technical solutions for the global challenges ahead. Advances in materials processing, and characterization, as well as the rise of artificial intelligence, and machine learning, are supporting this transition to a new materials' mining. Location, cultural, and social aspects are also factors to consider. This perspective discusses new alternatives for carbon mining in biomass wastes, the valorization of biomass using available processing techniques, and the implementation of computational modeling, artificial intelligence, and machine learning to accelerate material's development and process engineering.
Collapse
Affiliation(s)
| | - Daniel York
- Department of Chemistry, Swansea University, Swansea SA2 8PP, UK
| | | | - Ian Mabbett
- Department of Chemistry, Swansea University, Swansea SA2 8PP, UK
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
40
|
Gao Y, Zhou J, Xu F, Huang W, Ma X, Dou Q, Fang Y, Wu L. Highly Stretchable, Self‐Healable and Self‐Adhesive Double‐Network Eutectogel Based on Gellan Gum and Polymerizable Deep Eutectic Solvent for Strain Sensing. ChemistrySelect 2023. [DOI: 10.1002/slct.202204463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
41
|
Han N, Yao X, Wang Y, Huang W, Niu M, Zhu P, Mao Y. Recent Progress of Biomaterials-Based Epidermal Electronics for Healthcare Monitoring and Human-Machine Interaction. BIOSENSORS 2023; 13:393. [PMID: 36979605 PMCID: PMC10046871 DOI: 10.3390/bios13030393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Epidermal electronics offer an important platform for various on-skin applications including electrophysiological signals monitoring and human-machine interactions (HMI), due to their unique advantages of intrinsic softness and conformal interfaces with skin. The widely used nondegradable synthetic materials may produce massive electronic waste to the ecosystem and bring safety issues to human skin. However, biomaterials extracted from nature are promising to act as a substitute material for the construction of epidermal electronics, owing to their diverse characteristics of biocompatibility, biodegradability, sustainability, low cost and natural abundance. Therefore, the development of natural biomaterials holds great prospects for advancement of high-performance sustainable epidermal electronics. Here, we review the recent development on different types of biomaterials including proteins and polysaccharides for multifunctional epidermal electronics. Subsequently, the applications of biomaterials-based epidermal electronics in electrophysiological monitoring and HMI are discussed, respectively. Finally, the development situation and future prospects of biomaterials-based epidermal electronics are summarized. We expect that this review can provide some inspirations for the development of future, sustainable, biomaterials-based epidermal electronics.
Collapse
|
42
|
Yang Z, Sarkar AK, Amdursky N. Glycoproteins as a Platform for Making Proton-Conductive Free-Standing Biopolymers. Biomacromolecules 2023; 24:1111-1120. [PMID: 36787188 DOI: 10.1021/acs.biomac.2c01007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Biopolymers are an attractive environmentally friendly alternative to common synthetic polymers, whereas primarily proteins and polysaccharides are the biomacromolecules that are used for making the biopolymer. Due to the breadth of side chains of such biomacromolecules capable of participating in hydrogen bonding, proteins and polysaccharide biopolymers were also used for the making of proton-conductive biopolymers. Here, we introduce a new platform for combining the merits of both proteins and polysaccharides while using a glycosylated protein for making the biopolymer. We use mucin as our starting point, whereas being a waste of the food industry, it is a highly available and low-cost glycoprotein. We show how we can use different chemical strategies to target either the glycan part or specific amino acids for both crosslinking between the different glycoproteins, thus making a free-standing biopolymer, as well as for introducing superior proton conductivity properties to the formed biopolymer. The resultant proton-conductive soft biopolymer is an appealing candidate for any soft bioelectronic application.
Collapse
Affiliation(s)
- Ziyu Yang
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Amit Kumar Sarkar
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
43
|
Mane NS, Hemadri V, Tripathi S. Exploring the role of biopolymers and surfactants on the electrical conductivity of water-based CuO, Fe 3O 4, and hybrid nanofluids. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2023.2186428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Affiliation(s)
- Nikhil S. Mane
- Department of Mechanical Engineering, BITS Pilani K K Birla Goa Campus, Zuarinagar, Sancoale, Goa, India
| | - Vadiraj Hemadri
- Department of Mechanical Engineering, BITS Pilani K K Birla Goa Campus, Zuarinagar, Sancoale, Goa, India
| | - Siddhartha Tripathi
- Department of Mechanical Engineering, BITS Pilani K K Birla Goa Campus, Zuarinagar, Sancoale, Goa, India
| |
Collapse
|
44
|
Zheng D, Zhang C, Chen Z, Zhu P, Gao C. Tough and anti‐swelling γ‐polyglutamic acid/polyvinyl alcohol hydrogels for wearable sensors. J Appl Polym Sci 2023. [DOI: 10.1002/app.53792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Deyang Zheng
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Chenyang Zhang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Ziwei Chen
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Peizhi Zhu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Chunxia Gao
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| |
Collapse
|
45
|
C S A, Kandasubramanian B. Hydrogel as an advanced energy material for flexible batteries. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2113893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Anju C S
- CIPET, Institute of Petrochemicals Technology (IPT), Kochi, India
| | | |
Collapse
|
46
|
Song Y, Niu L, Ma P, Li X, Feng J, Liu Z. Rapid Preparation of Antifreezing Conductive Hydrogels for Flexible Strain Sensors and Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10006-10017. [PMID: 36763089 DOI: 10.1021/acsami.2c21617] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Conductive hydrogels have shown great promise in flexible electronics, but their practical applications may be impeded by the time-consuming and energy-consuming polymerization process. We proposed a sodium lignosulfonate-Fe (SLS-Fe) strategy to address this challenge and took advantage of carboxymethyl cellulose (CMC) and poly(acrylic acid) to prepare the CMC/PAA/Fe3+/LiCl interpenetrating conductive hydrogels with good self-healing properties, antifreezing properties, and a 6-fold increase in conductivity in this study. The hydrogel-based flexible strain sensors demonstrated a broad detection range (400%), high sensitivity (GF = 6.19 at 200-400%), and human motion detection capability. The hydrogel-based supercapacitor exhibited a single-electrode specific capacitance of 122.36 F g-1 which successfully powered LEDs. Furthermore, the supercapacitor showed a single-electrode specific capacitance of 83.16 F g-1 at -23 °C (68% of the one exhibited at 25 °C). Therefore, the multifunctional performance of the CMC/PAA/Fe3+/LiCl hydrogel is anticipated to play an exemplary role in a new generation of flexible electronics.
Collapse
Affiliation(s)
- Yating Song
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, P. R. China
| | - Li Niu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, P. R. China
| | - Peilin Ma
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, P. R. China
| | - Xu Li
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, P. R. China
| | | | - Zhiming Liu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, P. R. China
| |
Collapse
|
47
|
Rong Y, Zhu L, Zhang X, Fei J, Li H, Huang D, Huang X, Yao X. Photocurable 3D printing gels with dual networks for high-sensitivity wearable sensors. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Zhu T, Ni Y, Biesold GM, Cheng Y, Ge M, Li H, Huang J, Lin Z, Lai Y. Recent advances in conductive hydrogels: classifications, properties, and applications. Chem Soc Rev 2023; 52:473-509. [PMID: 36484322 DOI: 10.1039/d2cs00173j] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogel-based conductive materials for smart wearable devices have attracted increasing attention due to their excellent flexibility, versatility, and outstanding biocompatibility. This review presents the recent advances in multifunctional conductive hydrogels for electronic devices. First, conductive hydrogels with different components are discussed, including pure single network hydrogels based on conductive polymers, single network hydrogels with additional conductive additives (i.e., nanoparticles, nanowires, and nanosheets), double network hydrogels based on conductive polymers, and double network hydrogels with additional conductive additives. Second, conductive hydrogels with a variety of functionalities, including self-healing, super toughness, self-growing, adhesive, anti-swelling, antibacterial, structural color, hydrophobic, anti-freezing, shape memory and external stimulus responsiveness are introduced in detail. Third, the applications of hydrogels in flexible devices are illustrated (i.e., strain sensors, supercapacitors, touch panels, triboelectric nanogenerator, bioelectronic devices, and robot). Next, the current challenges facing hydrogels are summarized. Finally, an imaginative but reasonable outlook is given, which aims to drive further development in the future.
Collapse
Affiliation(s)
- Tianxue Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Yimeng Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yan Cheng
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang 325000, P. R. China
| | - Mingzheng Ge
- School of Textile and Clothing, Nantong University, Nantong 226019, P. R. China
| | - Huaqiong Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang 325000, P. R. China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China. .,Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China. .,Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| |
Collapse
|
49
|
Shukla AK, Mitra S, Dhakar S, Maiti A, Sharma S, Dey KK. Electrochemical Energy Harvesting Using Microbial Active Matter. ACS APPLIED BIO MATERIALS 2023; 6:117-125. [PMID: 36503255 DOI: 10.1021/acsabm.2c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the continuous growth in world population and economy, the global energy demand is increasing rapidly. Given that non-renewable energy sources will eventually deplete, there is increasing need for clean, alternative renewable energy sources, which will be inexpensive and involve minimum risk of environmental pollution. In this paper, harnessing the activity of cupric reductase NDH-2 enzyme present in Escherichia coli bacterial cells, we demonstrate a simple and efficient energy harvesting strategy within an electrochemical chamber without the requirement of any external fuels or force fields. The transduction of energy has been demonstrated with various strains of E. coli, indicating that this strategy could, in principle, be applicable for other microbial catalytic systems. We offer a simple mechanism of the energy transduction process considering the bacterial enzyme-mediated redox reaction occurring over the working electrode of the electrochemical cell. Also, the amount of energy generated has been found to be depending on the motility of bacteria within the experimental chamber, suggesting possible opportunities for developing microbial motility-controlled small scale power generators. Finally, we show that the Faradaic electrochemical energy harvested is large enough to power a commercial light emitting diode connected to an amplifier circuit. We expect the present study to generate sufficient interest within soft condensed matter and biophysics communities, and offer useful platforms for controlled energy generation at the small scales.
Collapse
Affiliation(s)
- Ashish K Shukla
- Laboratory of Soft and Living Materials, Discipline of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar382055, India
| | - Shirsendu Mitra
- Laboratory of Soft and Living Materials, Discipline of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar382055, India
| | - Shikha Dhakar
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar382055, India
| | - Arnab Maiti
- Laboratory of Soft and Living Materials, Discipline of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar382055, India
| | - Sudhanshu Sharma
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar382055, India
| | - Krishna K Dey
- Laboratory of Soft and Living Materials, Discipline of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar382055, India
| |
Collapse
|
50
|
Zhou X, Cao W. Flexible and Stretchable Carbon-Based Sensors and Actuators for Soft Robots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:316. [PMID: 36678069 PMCID: PMC9864711 DOI: 10.3390/nano13020316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
In recent years, the emergence of low-dimensional carbon-based materials, such as carbon dots, carbon nanotubes, and graphene, together with the advances in materials science, have greatly enriched the variety of flexible and stretchable electronic devices. Compared with conventional rigid devices, these soft robotic sensors and actuators exhibit remarkable advantages in terms of their biocompatibility, portability, power efficiency, and wearability, thus creating myriad possibilities of novel wearable and implantable tactile sensors, as well as micro-/nano-soft actuation systems. Interestingly, not only are carbon-based materials ideal constituents for photodetectors, gas, thermal, triboelectric sensors due to their geometry and extraordinary sensitivity to various external stimuli, but they also provide significantly more precise manipulation of the actuators than conventional centimeter-scale pneumatic and hydraulic robotic actuators, at a molecular level. In this review, we summarize recent progress on state-of-the-art flexible and stretchable carbon-based sensors and actuators that have creatively added to the development of biomedicine, nanoscience, materials science, as well as soft robotics. In the end, we propose the future potential of carbon-based materials for biomedical and soft robotic applications.
Collapse
Affiliation(s)
- Xinyi Zhou
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenhan Cao
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai 201210, China
| |
Collapse
|