1
|
Hu Z, Yang Z, Chen M, Chen W, Ma W, Lu J, Sun D. Double hook-type aptamer-based colorimetric and electrochemical biosensor enables rapid and robust analysis of EpCAM expression. Biosens Bioelectron 2024; 266:116717. [PMID: 39232435 DOI: 10.1016/j.bios.2024.116717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Epithelial cell adhesion molecule (EpCAM), which is overexpressed in breast cancer cells and participates in cell signaling, migration, proliferation, and differentiation, has been utilized as a biomarker for cancer diagnosis and therapeutic prognosis. Here, a dual-signal readout nonenzymatic aptasensor is fabricated for the evaluation of EpCAM at the level of three breast cancer cell lines. The central principle of this enzyme-free aptasensor is the use of double hook-type aptamers (SYL3C and SJ3C2)-functionalized magnetic iron oxide (Fe3O4) as capture probes and quasi-CoFe prussian blue analogs (QCoFe PBAs) as nonenzymatic signal probes for colorimetric and electrochemical analysis. Following ligand detachment, the CoFe PBA was transformed to QCoFe PBA (calcined at 350 °C for 1 h), with its metal active sites exposed by controllable pyrolysis. We found that the enhanced sensitivity was attributed to the resonance effect of QCoFe PBA with the remarkable enzymatic properties. The dual-signal readout nonenzymatic aptasensor exhibited limits of detection for EpCAM as low as 0.89 pg mL-1 and 0.24 pg mL-1, within a wide linear range from 0.001 to 100 ng mL-1, respectively. We successfully employed this nonenzymatic aptasensor for monitoring EpCAM expression in three breast cancer cell lines, which provides an economical and robust alternative to costly and empirical flow cytometry. The dual-signal readout nonenzymatic aptasensor provides rapid, robust, and promising technological support for the accurate management of tumors.
Collapse
Affiliation(s)
- Zhuoliang Hu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Zelin Yang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Mengjie Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Wenjuan Ma
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China.
| | - Duanping Sun
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
2
|
Guo J, Wu J, Xu L, Yuan X, Tan C, Wang Q, Xiong X. Microplasma-assisted construction of cross-linked network hierarchical structure of NiMoO 4 nanorods @NiCo-LDH nanosheets for electrochemical sensing of non-enzymatic H 2O 2 in food. Food Chem 2024; 461:140940. [PMID: 39182335 DOI: 10.1016/j.foodchem.2024.140940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/28/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
The accumulation of small doses of hydrogen peroxide (H2O2) into food can cause many diseases in the human body, and it is urgent to develop efficient detection methods of H2O2. Herein, the hierarchical structure composite of NiCo-LDH nanosheets crosslinked NiMoO4 nanorods was grown in situ on carbon cloth (NiMoO4 NRs@NiCo-LDH NSs/CC) by micro-plasma assisted hydrothermal method. Thanks to the synergistic effect of three metals and (NiMoO4 NRs@NiCo-LDH NSs/CC) provided by nanorods/nanosheets hierarchical structure, NiMoO4 NRs@NiCo-LDH NSs/CC exposes more active sites and achieves rapid electron transfer. The H2O2 electrochemical sensor was constructed as the working electrode with a linear range of 1 μmol L-1 to 9.0 mmol L-1 and detection limit of 112 nmol L-1. In addition, the sensor has been successfully applied to the detection of H2O2 in food samples, the recovery rate is 95.2%-106.62%, RSD < 4.89%.
Collapse
Affiliation(s)
- Junchun Guo
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Jiaying Wu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Li Xu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiangwei Yuan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Chao Tan
- Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, 644000, Sichuan, China
| | - Qian Wang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | - Xiaoli Xiong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
3
|
Yang M, Xiao L, Chen WT, Deng X, Hu G. Recent advances on metal-organic framework-based electrochemical sensors for determination of organic small molecules. Talanta 2024; 280:126744. [PMID: 39186861 DOI: 10.1016/j.talanta.2024.126744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Metal-organic frameworks (MOFs) are an extraordinarily versatile class of porous materials renowned for their intricate three-dimensional skeletal architectures and exceptional chemical properties. These extraordinary attributes have pushed MOFs into the vanguard of diverse disciplines such as microporous conduction, catalysis, separation, biomedical engineering, and electrochemical sensing. The focus of this review is to offer a comprehensive summary of recent advancements in designing MOF-based electrochemical sensors for detecting organic small molecules. offer a comprehensive survey of the recent progress in the methodologies adopted for the construction of MOF composites, covering template-assisted synthesis, Modification in synthesis, and post-synthesis modification. In addition, we discuss the practical application of MOF-based electrochemical sensors in the detection of organic small molecules. Our findings highlight the superior electrochemical sensing capabilities of these novel composites compared to those of their pristine counterparts. In conclusion, we provide a condensed perspective on the potential future trajectories in this domain, underscoring the impetus for continued enquiry and enhancement of MOF composite assemblies. With sustained investigation, the horizon appears bright for electrochemical sensing of small organic molecules and their myriad applications.
Collapse
Affiliation(s)
- Mengxia Yang
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Linfeng Xiao
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Wen-Tong Chen
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, 343009, China
| | - Xiujun Deng
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, 650214, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Guangzhi Hu
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China.
| |
Collapse
|
4
|
Zhang L, Guo J, Yuan M, Xu Y, Pu Z, Tan C, Wang Q, Xiong X. Microplasma-induced in situ rapid synthesis of CoSe nanosphere@N-doped polymeric carbon dots derived from ZIF-67 for highly sensitive dopamine detection. Anal Chim Acta 2024; 1329:343236. [PMID: 39396300 DOI: 10.1016/j.aca.2024.343236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Designing a fast and sensitive electrochemical sensing platform to achieve selective quantitative detection of dopamine (DA) is a great challenge. Combining transition metal selenides (TMSs) with a variety of conductive carbonaceous materials is one of the effective strategies to improve the electrocatalytic activity of TMSs. However, most of the reported preparation methods of TMSs/carbon-based composite nanomaterials need to be annealed at a high temperature for a long time, which does not meet the requirements of sustainable development. Therefore, it is of great significance to explore an energy-efficient and fast method to prepare these compounds. RESULTS In this work, CoSe nanosphere@nitrogen-doped polymeric carbon dots are rapid prepared using ZIF precursor by simple dielectric barrier discharge (DBD) microplasma-induced on carbon cloth (CoSe NSs@N-PCDs/CC) for the first time. Owing to the fact that CoSe can promote rapid proton transfer, N-CDs has a high specific surface area, rich functional groups and electrical conductivity, this electrode exhibits highly sensitive non-enzymatic electrochemical sensing performance for DA detection. The linear range and detection limit are 0.1 μM-50 μM and 40.2 nM, respectively, and it have been successfully applied to the determination of DA levels in real human serum samples. Theoretical DFT calculations show that the most efficient interaction with DA on the surface of CoSe (101) can promote electrochemical reactions and catalyze DA oxidation. SIGNIFICANCE Using ZIF as precursor, CoSe NSs@N-PCDs/CC electrochemical electrode was synthesized in situ by simple and energy-saving DBD microplasma. CoSe NSs can effectively prevent the aggregation of function-rich N-PCDs and significantly improve the electrocatalytic activity of the composite. The mechanism of high selectivity of CoSe NSs@N-PCDs/CC electrode to DA was studied by DFT calculation. This work provides a new idea for the fast and green synthesis of transition metal and carbon-based nanomaterials by microplasma.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Junchun Guo
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Ming Yuan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Yao Xu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Ziyu Pu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Chao Tan
- Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, 644000, China
| | - Qian Wang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| | - Xiaoli Xiong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| |
Collapse
|
5
|
Tharuman S, Chen TW, Nataraj N, Chen SM, Lou BS, Abid I, Rizwana H, Elshikh MS, Yu J. Exploring the economic viability of electrochemical assessment for water contaminants with NiFe-PBA/ZIF-67 core shell modified GCE. ENVIRONMENTAL RESEARCH 2024; 261:119710. [PMID: 39102938 DOI: 10.1016/j.envres.2024.119710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Zeolitic Imidazolate (metal organic) Frameworks (ZIFs) and Prussian Blue Analogues (PBAs) are promising materials in electrochemical sensing due to their unique properties. In this study, a composite material comprising NiFe-PBA and ZIF-67 was synthesized and made to form a uniform layer onto a glassy carbon electrode (GCE) to enhance electrochemical performance for furazolidone (FZD) detection. The synthesized NiFe-PBA/ZIF-67 composite exhibited excellent sensitivity, selectivity, and stability towards FZD detection, with a low limit of detection (LOD). The electrochemical behaviour of FZD on the NiFe-PBA/ZIF-67/GCE electrode was investigated, revealing a diffusion-controlled process. Differential pulse voltammetry (DPV) analysis demonstrated the synergetic effect of the PBA/MOF core-shell structure in enhancing FZD electro-reduction. The sensor exhibited exceptional LOD of 0.007 μM. Selectivity studies confirmed the sensor's ability to distinguish FZD from potential interferents. Extensive evaluations demonstrated the sensor's reproducibility, repeatability, and long-term stability, affirming its practical utility. Real sample analysis further validated the sensor's excellent analytical capabilities in diverse matrices.
Collapse
Affiliation(s)
- Sharmila Tharuman
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 106
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom.
| | - Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 106
| | - Shen Ming Chen
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 106.
| | - Bih-Show Lou
- Chemistry Division, Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan; Department of Orthopaedic Surgery, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City, 236, Taiwan.
| | - Islem Abid
- Centre of Excellence in Biotechnology Research, King Saud University, P.O Box 2455, Riyadh, 11495, Saudi Arabia
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jaysan Yu
- Well Fore Special Wire Corporation, 10, Tzu-Chiang 7th., Chung-Li Industrial Park, Taoyuan, Taiwan
| |
Collapse
|
6
|
Rafiq K, Sabir M, Abid MZ, Hussain E. Unveiling the scope and perspectives of MOF-derived materials for cutting-edge applications. NANOSCALE 2024; 16:16791-16837. [PMID: 39206569 DOI: 10.1039/d4nr02168a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Although synthesis and design of MOFs are crucial factors to the successful implementation of targeted applications, there is still lack of knowledge among researchers about the synthesis of MOFs and their derived composites for practical applications. For example, many researchers manipulate study results, and it has become quite difficult to quit this habit specifically among the young researchers Undoubtedly, MOFs have become an excellent class of compounds but there are many challenges associated with their improvement to attain diverse applications. It has been noted that MOF-derived materials have gained considerable interest owing to their unique chemical properties. These compounds have exhibited excellent potential in various sectors such as energy, catalysis, sensing and environmental applications. It is worth mentioning that most of the researchers rely on commercially available MOFs for use as precursor supports, but it is an unethical and wrong practice because it prevents the exploration of the hidden diversity of similar materials. The reported studies have significant gaps and flaws, they do not have enough details about the exact parameters used for the synthesis of MOFs and their derived materials. For example, many young researchers claim that MOF-based materials cannot be synthesized as per the reported instructions for large-scale implementation. In this regard, current article provides a comprehensive review of the most recent advancements in the design of MOF-derived materials. The methodologies and applications have been evaluated together with their advantages and drawbacks. Additionally, this review suggests important precautions and solutions to overcome the drawbacks associated with their preparation. Applications of MOF-derived materials in the fields of energy, catalysis, sensing and environment have been discussed. No doubt, these materials have become excellent class but there are still many challenges ahead to specify it for the targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Mamoona Sabir
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| |
Collapse
|
7
|
Anil Kumar Y, Sana SS, Ramachandran T, Assiri MA, Srinivasa Rao S, Kim SC. From lab to field: Prussian blue frameworks as sustainable cathode materials. Dalton Trans 2024; 53:10770-10804. [PMID: 38859722 DOI: 10.1039/d4dt00905c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Prussian blue and Prussian blue analogues have attracted increasing attention as versatile framework materials with a wide range of applications in catalysis, energy conversion and storage, and biomedical and environmental fields. In terms of energy storage and conversion, Prussian blue-based materials have emerged as suitable candidates of growing interest for the fabrication of batteries and supercapacitors. Their outstanding electrochemical features such as fast charge-discharge rates, high capacity and prolonged cycling life make them favorable for energy storage application. Furthermore, Prussian blue and its analogues as rechargeable battery anodes can advance significantly by the precise control of their structure, morphology, and composition at the nanoscale. Their tunable structural and electronic properties enable the detection of many types of analytes with high sensitivity and specificity, and thus, they are ideal materials for the development of sensors for environmental detection, disease trend monitoring, and industrial safety. Additionally, Prussian blue-based catalysts display excellent photocatalytic performance for the degradation of pollutants and generation of hydrogen. Specifically, their excellent light capturing and charge separation capabilities make them stand out in photocatalytic processes, providing a sustainable option for environmental remediation and renewable energy production. Besides, Prussian blue coatings have been studied particularly for corrosion protection, forming stable and protective layers on metal surfaces, which extend the lifespan of infrastructural materials in harsh environments. Prussian blue and its analogues are highly valuable materials in healthcare fields such as imaging, drug delivery and theranostics because they are biocompatible and their further functionalization is possible. Overall, this review demonstrates that Prussian blue and related framework materials are versatile and capable of addressing many technical challenges in various fields ranging from power generation to healthcare and environmental management.
Collapse
Affiliation(s)
- Yedluri Anil Kumar
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
| | - Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Tholkappiyan Ramachandran
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, P. O. Box 127788, United Arab Emirates
- Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore, 641 062, India
| | - Mohammed A Assiri
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Sunkara Srinivasa Rao
- Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Bowrampet, Hyderabad, 500 043, Telangana, India
| | - Seong Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
8
|
Mukundan G, Badhulika S. Composite of a Stabilizer-Free Trimetallic Prussian Blue Analogue (PBA) and Polyaniline (PANI) on 3D Porous Nickel Foam for the Detection of Nitrofurantoin in Biological Fluids. ACS APPLIED BIO MATERIALS 2024; 7:2924-2935. [PMID: 38637912 DOI: 10.1021/acsabm.3c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Herein, a facile and highly effective nonenzymatic electrochemical sensing system is designed for the detection of the antibacterial drug nitrofurantoin (NFT). This electrocatalyst is a combination of a trimetallic Prussian blue analogue and conductive polyaniline coated onto a three-dimensional porous nickel foam substrate. A comprehensive set of physicochemical analyses have verified the successful synthesis. The fabricated electrochemical sensor exhibits an impressively low limit of detection (0.096 nM) and quantification (0.338 nM, S/N = 3.3), coupled with a wide linear range spanning from 0.1 nM to 5 mM and a sensitivity of 13.9 μA nM-1 cm-2. This excellent performance is attributed to the collaborative effects of conducting properties of polyaniline (PANI) and the remarkable redox behavior of the Prussian blue analogue (PBA). When both are integrated into the nickel foam, they create a significantly enlarged surface area with numerous catalytic active sites, enhancing the sensor's efficiency. The sensor demonstrates a high degree of specificity for NFT, while effectively minimizing responses to potential interferences such as flutamide, ascorbic acid, glucose, dopamine, uric acid, and nitrophenol, even when present in 2-3-fold higher concentrations. Moreover, to validate its practical utility, the sensor underwent real sample analysis using synthetic urine, achieving outstanding recovery rates of 118 and 101%.
Collapse
Affiliation(s)
- Gopika Mukundan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad 502285, India
| | - Sushmee Badhulika
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285, India
| |
Collapse
|
9
|
Jiang Q, Chen C, Chai N, Guo Q, Chen T, Ma X, Yi FY. In Situ Exfoliation Growth Strategy Realizing Controlled Synthesis of 3D to 2D MOF Materials as High-Performance Electrochemical Biosensors. Inorg Chem 2024; 63:4636-4645. [PMID: 38394612 DOI: 10.1021/acs.inorgchem.3c04218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Two-dimensional (2D) metal-organic framework (MOF) nanosheets with large surface area, ultrathin thickness, and highly accessible active sites have attracted great research attention. Developing efficient approaches to realize the controllable synthesis of well-defined 2D MOFs with a specific composition and morphology is critical. However, it is still a significant challenge to construct thin and uniform 2D MOF nanosheets and resolve the reagglomeration as well as poor stability of target 2D MOF products. Here, an "in situ exfoliation growth" strategy is proposed, where a one-step synthetic process can realize the successful fabrication of PBA/MIL-53(NiFe)/NF nanosheets on the surface of nickel foam (NF) via in situ conversion and exfoliation growth strategies. The PBA/MIL-53(NiFe)/NF nanosheets combine the individual advantages of MOFs, Prussian blue analogues (PBAs), and 2D materials. As expected, the resulting PBA/MIL-53(NiFe)/NF as a glucose electrode exhibits an extremely high sensitivity of 25.74 mA mM-1 cm-2 in a very wide concentration range of 180 nM to 4.8 μM. The present exciting work provides a simple and effective strategy for the construction of high-performance nonenzymatic glucose electrochemical biosensors.
Collapse
Affiliation(s)
- Qiao Jiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Chen Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Ning Chai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Qingqing Guo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Tianyu Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Xinghua Ma
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Fei-Yan Yi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| |
Collapse
|
10
|
Ma S, Xiao S, Hong Y, Bao Y, Xu Z, Chen D, Huang X. Coupling metal organic frameworks nanozyme with carbon nanotubes on the gradient porous hollow fiber membrane for nonenzymatic electrochemical H 2O 2 detection. Anal Chim Acta 2024; 1293:342285. [PMID: 38331554 DOI: 10.1016/j.aca.2024.342285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
In this paper, we present a gradient porous hollow fiber structure integrated the signal transduction within a microspace, serving as a platform for cellular metabolism monitoring. We developed a nonenzymatic electrochemical electrode by coupling carbon nanotubes (CNT) and metal organic frameworks (MOF) nanozyme on three-dimensional (3D) gradient porous hollow fiber membrane (GPF) for in-situ detection of cell released hydrogen peroxide (H2O2). The GPF was used as a substrate for cell culture as well as the supporting matrix of the working electrode. The ultrasonically coupled CNT@MOF composite was immobilized on the outer surface of the GPF by means of pressure filtration. Notably, the MOF, acting as a peroxidase mimic, exhibits superior stability compared to traditional horseradish peroxidase. The incorporation of CNT not only provided sufficient specific surface area to improve the uniform distribution of MOF nanozyme, but also formed 3D conductive network. This network efficiently facilitates the electrons transfer during the catalytic process of the MOF, addressing the inherent poor conductivity of MOFs. The GPF-CNT@MOF nonenzymatic bioelectrode demonstrated excellent electrocatalytic performance including rapid response, satisfactory sensing selectivity, and attractive stability, which enabled the development of a robust in-situ cellular metabolic monitoring platform.
Collapse
Affiliation(s)
- Shuyan Ma
- Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Engineering Research Center for Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shenghao Xiao
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yinhui Hong
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuheng Bao
- Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Engineering Research Center for Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhikang Xu
- Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Engineering Research Center for Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dajing Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Xiaojun Huang
- Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Engineering Research Center for Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
11
|
Govindaraj M, Srivastava A, Muthukumaran MK, Tsai PC, Lin YC, Raja BK, Rajendran J, Ponnusamy VK, Arockia Selvi J. Current advancements and prospects of enzymatic and non-enzymatic electrochemical glucose sensors. Int J Biol Macromol 2023; 253:126680. [PMID: 37673151 DOI: 10.1016/j.ijbiomac.2023.126680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
This review discusses the most current developments and future perspectives in enzymatic and non-enzymatic glucose sensors, which have notably evolved over the preceding quadrennial period. Furthermore, a thorough exploration encompassed the sensor's intricate fabrication processes, the diverse range of materials employed, the underlying principles of detection, and an in-depth assessment of the sensors' efficacy in detecting glucose levels within essential bodily fluids such as human blood serums, urine, saliva, and interstitial fluids. It is worth noting that the accurate quantification of glucose concentrations within human blood has been effectively achieved by utilizing classical enzymatic sensors harmoniously integrated with optical and electrochemical transduction mechanisms. Monitoring glucose levels in various mediums has attracted exceptional attention from industrial to academic researchers for diabetes management, food quality control, clinical medicine, and bioprocess inspection. There has been an enormous demand for the creation of novel glucose sensors over the past ten years. Research has primarily concentrated on succeeding biocompatible and enhanced sensing abilities related to the present technologies, offering innovative avenues for more effective glucose sensors. Recent developments in wearable optical and electrochemical sensors with low cost, high stability, point-of-care testing, and online tracking of glucose concentration levels in biological fluids can aid in managing and controlling diabetes globally. New nanomaterials and biomolecules that can be used in electrochemical sensor systems to identify glucose concentration levels are developed thanks to advances in nanoscience and nanotechnology. Both enzymatic and non-enzymatic glucose electrochemical sensors have garnered much interest recently and have made significant strides in detecting glucose levels. In this review, we summarise several categories of non-enzymatic glucose sensor materials, including composites, non-precious transition metals and their metal oxides, hydroxides, precious metals and their alloys, carbon-based materials, conducting polymers, metal-organic framework (MOF)-based electrocatalysts, and wearable device-based glucose sensors deeply.
Collapse
Affiliation(s)
- Muthukumar Govindaraj
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Magesh Kumar Muthukumaran
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Bharathi Kannan Raja
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Jerome Rajendran
- Department of Electrical Engineering and Computer Science, The University of California, Irvine, CA 92697, United States
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| | - J Arockia Selvi
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
12
|
Guati C, Gómez-Coma L, Fallanza M, Ortiz I. Optimized Copper-Based Microfeathers for Glucose Detection. BIOSENSORS 2023; 13:1032. [PMID: 38131792 PMCID: PMC10741577 DOI: 10.3390/bios13121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Diabetes is expected to rise substantially by 2045, prompting extensive research into accessible glucose electrochemical sensors, especially those based on non-enzymatic materials. In this context, advancing the knowledge of stable metal-based compounds as alternatives to non-enzymatic sensors becomes a scientific challenge. Nonetheless, these materials have encountered difficulties in maintaining stable responses under physiological conditions. This work aims to advance knowledge related to the synthesis and characterization of copper-based electrodes for glucose detection. The microelectrode presented here exhibits a wide linear range and a sensitivity of 1009 µA∙cm-2∙mM-1, overperfoming the results reported in literature so far. This electrode material has also demonstrated outstanding results in terms of reproducibility, repeatability, and stability, thereby meeting ISO 15197:2015 standards. Our study guides future research on next-generation sensors that combine copper with other materials to enhance activity in neutral media.
Collapse
Affiliation(s)
| | | | | | - Inmaculada Ortiz
- Chemical and Biomolecular Engineering Department, University of Cantabria, 39005 Santander, Spain; (C.G.); (L.G.-C.); (M.F.)
| |
Collapse
|
13
|
Zhang K, Xu M, Wang J, Chen Z. Self-supporting, hierarchically hollow structured NiFe-PBA electrocatalyst for efficient alkaline seawater oxidation. NANOSCALE 2023; 15:17525-17533. [PMID: 37869872 DOI: 10.1039/d3nr04101h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Seawater electrolysis, taking advantage of the huge seawater resource, holds great promise for sustainable hydrogen generation. Compared to conventional water electrolysis, seawater electrolysis is more challenging because of the more complex and corrosive electrolyte and competitive side reactions, which necessitates the development of highly efficient and stable electrocatalysts. In this study, a self-supporting, highly porous NiFe-PBA (Prussian-blue-analogue) electrocatalyst with a hierarchically hollow nanostructure is introduced, which exhibits impressive catalytic performance towards the oxygen evolution in alkaline seawater electrolytes. In NiFe-PBA, the synergistic interaction between Ni and Fe improves intrinsic conductivity for efficient electron transfer, enhances chemical stability in seawater, and boosts overall electrocatalytic activity. The direct use of self-supporting NiFe-PBA as an electrocatalyst avoids the energy-intensive and tedious pyrolysis procedure during the preparation process while making use of the tailored morphological, structural, and compositional benefits of PBA-based materials. By combining the NiFe-PBA catalyst with the NiMoN cathode, the constructed two-electrode electrolyzer achieved a high current density of 500 mA cm-2 at a low cell voltage of 1.782 V for overall electrolysis of alkaline seawater, demonstrating excellent durability for 100 hours. Our findings have important implications for the hydrogen economy and sustainable development through the development of robust and efficient PBA-based electrocatalysts for seawater electrolysis.
Collapse
Affiliation(s)
- Kaiyan Zhang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Mingze Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Jianying Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Zuofeng Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
14
|
Luo Y, Shupletsov L, Ortega Vega MR, Gutiérrez-Serpa A, Khan AH, Brunner E, Senkovska I, Kaskel S. Integration of Triphenylene-Based Conductive Metal-Organic Frameworks into Carbon Nanotube Electrodes for Boosting Nonenzymatic Glucose Sensing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37903405 DOI: 10.1021/acsami.3c11810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The rational design and preparation of conductive metal-organic frameworks (MOFs) are alluring and challenging pathways to develop active catalysts toward electrocatalytic glucose oxidation. The hybridization of conductive MOFs with carbon nanotubes (CNTs) in the form of a composite can greatly improve the electrocatalytic performance. Herein, a facile one-step synthetic strategy is utilized to fabricate a Ni3(HHTP)2/CNT (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) composite for nonenzymatic detection of glucose in an alkaline solution. The Ni3(HHTP)2/CNT composite, as an electrochemical glucose sensor material, exhibits superior electrocatalytic activity toward glucose oxidation with a wide detection range of up to 3.9 mM, a low detection limit of 4.1 μM (signal/noise = 3), a fast amperometric response time of <2 s, and a high sensitivity of 4774 μA mM-1 cm-2, surpassing the performance of some recently reported nonenzymatic transition-metal-based glucose sensors. In addition, the composite sensor also shows outstanding selectivity, robust long-term electrochemical stability, favorable anti-interference properties, and good reproducibility. This work displays the effectiveness of enhancing the electrocatalytic performance toward glucose detection by combing conductive MOFs with CNTs, thereby opening up an applicable and encouraging approach for the design of advanced nonenzymatic glucose sensors.
Collapse
Affiliation(s)
- Yutong Luo
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Leonid Shupletsov
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Maria Rita Ortega Vega
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Adrián Gutiérrez-Serpa
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Arafat Hossain Khan
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Irena Senkovska
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| |
Collapse
|
15
|
Feng Z, Lim HN, Ibrahim I, Gowthaman NSK. A review of zeolitic imidazolate frameworks (ZIFs) as electrochemical sensors for important small biomolecules in human body fluids. J Mater Chem B 2023; 11:9099-9127. [PMID: 37650588 DOI: 10.1039/d3tb01221b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Small biomolecules play a critical role in the fundamental processes that sustain life and are essential for the proper functioning of the human body. The detection of small biomolecules has garnered significant interest in various fields, including disease diagnosis and medicine. Electrochemical techniques are commonly employed in the detection of critical biomolecules through the principle of redox reactions. It is also a very convenient, cheap, simple, fast, and accurate measurement method in analytical chemistry. Zeolitic imidazolate frameworks (ZIFs) are a unique type of metal-organic framework (MOF) composed of porous crystals with extended three-dimensional structures. These frameworks are made up of metal ions and imidazolate linkers, which form a highly porous and stable structure. In addition to their many advantages in other applications, ZIFs have emerged as promising candidates for electrochemical sensors. Their large surface area, pore diameter, and stability make them ideal for use in sensing applications, particularly in the detection of small molecules and ions. This review summarizes the critical role of small biomolecules in the human body, the standard features of electrochemical analysis, and the utilization of various types of ZIF materials (including carbon composites, metal-based composites, ZIF polymer materials, and ZIF-derived materials) for the detection of important small biomolecules in human body fluids. Lastly, we provide an overview of the current status, challenges, and future outlook for research on ZIF materials.
Collapse
Affiliation(s)
- Zhou Feng
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - H N Lim
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Foundry of Reticular Materials for Sustainability (FORMS) Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - I Ibrahim
- Foundry of Reticular Materials for Sustainability (FORMS) Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Functional Nanotechnology Devices Laboratory (FNDL), Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - N S K Gowthaman
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
16
|
Eom S, Lee SY, Park JT, Choi I. Alveoli-Like Multifunctional Scaffolds for Optical and Electrochemical In Situ Monitoring of Cellular Responses from Type II Pneumocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301395. [PMID: 37246281 PMCID: PMC10427368 DOI: 10.1002/advs.202301395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Indexed: 05/30/2023]
Abstract
While breathing, alveoli are exposed to external irritants, which contribute to the pathogenesis of lung disease. Therefore, in situ monitoring of alveolar responses to stimuli of toxicants under in vivo environments is important to understand lung disease. For this purpose, 3D cell cultures are recently employed for examining cellular responses of pulmonary systems exposed to irritants; however, most of them have used ex situ assays requiring cell lysis and fluorescent labeling. Here, an alveoli-like multifunctional scaffold is demonstrated for optical and electrochemical monitoring of cellular responses of pneumocytes. Porous foam with dimensions like the alveoli structure is used as a backbone for the scaffold, wherein electroactive metal-organic framework crystals, optically active gold nanoparticles, and biocompatible hyaluronic acid are integrated. The fabricated multifunctional scaffold allows for label-free detection and real-time monitoring of oxidative stress released in pneumocytes under toxic-conditions via redox-active amperometry and nanospectroscopy. Moreover, cellular behavior can be statistically classified based on fingerprint Raman signals collected from the cells on the scaffold. The developed scaffold is expected to serve as a promising platform to investigate cellular responses and disease pathogenesis, owing to its versatility in monitoring electrical and optical signals from cells in situ in the 3D microenvironments.
Collapse
Affiliation(s)
- Seonghyeon Eom
- Department of Life ScienceUniversity of SeoulSeoul02504Republic of Korea
| | - So Yeon Lee
- Department of Chemical EngineeringKonkuk UniversitySeoul05029Republic of Korea
| | - Jung Tae Park
- Department of Chemical EngineeringKonkuk UniversitySeoul05029Republic of Korea
| | - Inhee Choi
- Department of Life ScienceUniversity of SeoulSeoul02504Republic of Korea
- Department of Applied ChemistryUniversity of SeoulSeoul02504Republic of Korea
| |
Collapse
|
17
|
Khoshnavaz Y, Erk EE, Li G, Mehmandoust M, Erk N. Green synthesis of Au@g-C 3N 4 nanocomposite using Hyssopus officinalis extract and its sensing application for vortioxetine determination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80085-80093. [PMID: 37289391 DOI: 10.1007/s11356-023-28040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Herein, we introduce a stable and green Au@g-C3N4 nanocomposite as a selective electrochemical sensor for vortioxetine (VOR) determination. The electrochemical behavior of VOR on the developed electrode was investigated through cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and chronoamperometry. The Au@g-C3N4 nanocomposite was thoroughly observed by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and scanning electron microscopy. The Au@g-C3N4 nanocomposite had a higher conductivity and a narrower band gap than pure g-C3N4, causing higher electrochemical activity for VOR detection. Moreover, Au@g-C3N4 on the glassy carbon electrode (Au@g-C3N4/GCE) monitored a low level of VOR with high efficiency and low interference as an environmentally friendly processing approach. Interestingly, the as-fabricated sensor exhibited an ultrahigh selectivity for recognizing VOR with a detection limit (LOD) of 3.2 nM. Furthermore, the developed sensor was applied to determine VOR in pharmaceutical and biological samples, which indicated a high selectivity in the presence of interferences. This study suggests new insights into the phytosynthesis synthesis of nanomaterials with excellent biosensing applications.
Collapse
Affiliation(s)
- Yasamin Khoshnavaz
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Erknaz Ecehan Erk
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, 06230, Ankara, Turkey
| | - Guangli Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Mohammad Mehmandoust
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Nevin Erk
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey.
| |
Collapse
|
18
|
Li Z, Zeng W, Li Y. Recent Progress in MOF-Based Electrochemical Sensors for Non-Enzymatic Glucose Detection. Molecules 2023; 28:4891. [PMID: 37446552 DOI: 10.3390/molecules28134891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
In recent years, substantial advancements have been made in the development of enzyme-free glucose sensors utilizing pristine metal-organic frameworks (MOFs) and their combinations. This paper provides a comprehensive exploration of various MOF-based glucose sensors, encompassing monometallic MOF sensors as well as multi-metal MOF combinations. These approaches demonstrate improved glucose detection capabilities, facilitated by the augmented surface area and availability of active sites within the MOF structures. Furthermore, the paper delves into the application of MOF complexes and derivatives in enzyme-free glucose sensing. Derivatives incorporating carbon or metal components, such as carbon cloth synthesis, rGO-MOF composites, and core-shell structures incorporating noble metals, exhibit enhanced electrochemical performance. Additionally, the integration of MOFs with foams or biomolecules, such as porphyrins, enhances the electrocatalytic properties for glucose detection. Finally, this paper concludes with an outlook on the future development prospects of enzyme-free glucose MOF sensors.
Collapse
Affiliation(s)
- Ziteng Li
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
| | - Wen Zeng
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
| | - Yanqiong Li
- School of Electronic Information & Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing 400030, China
| |
Collapse
|
19
|
Li P, Peng Y, Cai J, Bai Y, Li Q, Pang H. Recent Advances in Metal-Organic Frameworks (MOFs) and Their Composites for Non-Enzymatic Electrochemical Glucose Sensors. Bioengineering (Basel) 2023; 10:733. [PMID: 37370664 DOI: 10.3390/bioengineering10060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, with pressing needs such as diabetes management, the detection of glucose in various substrates has attracted unprecedented interest from researchers in academia and industry. As a relatively new glucose sensor, non-enzymatic target detection has the characteristics of high sensitivity, good stability and simple manufacturing process. However, it is urgent to explore novel materials with low cost, high stability and excellent performance to modify electrodes. Metal-organic frameworks (MOFs) and their composites have the advantages of large surface area, high porosity and high catalytic efficiency, which can be utilized as excellent materials for electrode modification of non-enzymatic electrochemical glucose sensors. However, MOFs and their composites still face various challenges and difficulties that limit their further commercialization. This review introduces the applications and the challenges of MOFs and their composites in non-enzymatic electrochemical glucose sensors. Finally, an outlook on the development of MOFs and their composites is also presented.
Collapse
Affiliation(s)
- Panpan Li
- Guangling College, Yangzhou University, Yangzhou 225009, China
| | - Yi Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jinpeng Cai
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210008, China
| | - Qing Li
- Guangling College, Yangzhou University, Yangzhou 225009, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
20
|
Jiang Q, Wang J, Liu T, Ying S, Kong Y, Chai N, Yi FY. UiO-66-Derived PBA Composite as Multifunctional Electrochemical Non-Enzymatic Sensor Realizing High-Performance Detection of Hydrogen Peroxide and Glucose. Inorg Chem 2023; 62:7014-7023. [PMID: 37126666 DOI: 10.1021/acs.inorgchem.3c00285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this work, a highly efficient multifunctional non-enzymatic electrochemical sensor is successfully fabricated based on a facile two-step synthetic strategy. It resolves two important challenges of poor stability and low reproducibility compared to conventional electrochemical enzyme-based sensors. Herein, a metal-organic framework (UiO-66) is selected as a sacrificial template to construct the corresponding Prussian blue analogue (PBA) target to improve its stability and conductivity, namely, PBA/UiO-66/NF. Target PBA/UiO-66/NF exhibits excellent electrochemical sensing performance as hydrogen peroxide (H2O2) and glucose sensors with ultrahigh sensitivity of up to 1903 μA mM-1 cm-2 for H2O2 and 22,800 μA mM-1 cm-2 for glucose, as well as a very low detection limit of 0.02 μM (S/N = 3) for H2O2 and 0.28 μM for glucose. Especially, extremely high stability can be observed, which will be beneficial for practical application.
Collapse
Affiliation(s)
- Qiao Jiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Jiang Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Tian Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Shuanglu Ying
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yuxuan Kong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Ning Chai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Fei-Yan Yi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
21
|
Jing X, Li Y, Shen Y, Li Q, Fang Q. Constructing 3D flower-like LaFe bimetal oxides with abundant mesoporous and controllable active sites for high-efficient phosphorus removal: Synthesis, mechanism, and application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160334. [PMID: 36410488 DOI: 10.1016/j.scitotenv.2022.160334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The design of high-performance porous adsorbents for phosphorus removal is a persistently hot topic to maintain a sustainable aquatic ecosystem. In the present study, a self-templating strategy using LaFe cyanometallates (CMs) as precursors was adopted to prepare porous LaFe bimetal oxides with optimizable structure and composition for phosphate adsorption. The results showed that a high supplied LaIII/FeII ratio enabled an adequate coordination polymerization in the preparation of LaFe CM precursor and led to a striking three-dimensional (3D) structure of "twin lotus flower" with high coordinated water content, which resulted in a 3D flower-like LaFe oxide with high surface area and high porosity (mainly in mesopore). The LaFe oxide of LaFe15T possessing the optimal La/Fe ratio (1.5: 1) exhibited the most superior performance of phosphate adsorption, where La was confirmed to be the main active site for phosphate capture via ligand exchange mechanism. The batch and column tests of phosphate adsorption showed that the 3D flower-like LaFe oxides are effective adsorbents for phosphate removal. Therefore, the structure optimization in the template preparation stage is an effective strategy to design porous LaFe bimetal oxides as high-performance phosphorus removal materials.
Collapse
Affiliation(s)
- Xiaoxu Jing
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, PR China; Sichuan Provincial Sci-Tech Cooperation Base of Low-cost Wastewater Treatment Technology, Department of Environmental Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Yungui Li
- Sichuan Provincial Sci-Tech Cooperation Base of Low-cost Wastewater Treatment Technology, Department of Environmental Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Yi Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Qingqing Li
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, PR China
| | - Qile Fang
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, PR China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
22
|
Gayathri A, Mathi S, Vijayarangan M, Jayabharathi J, Thanikachalam V. Ultrafine Core‐Shell Nanostructured Iron Cobalt Ferrocyanide with Excellent Electrocatalytic Activity toward Overall Water Splitting. ChemistrySelect 2022. [DOI: 10.1002/slct.202203616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arunagiri Gayathri
- Department of Chemistry Material Science Lab Annamalai University Annamalai Nagar Tamil Nadu 608002 India
| | - Selvam Mathi
- Department of Chemistry Material Science Lab Annamalai University Annamalai Nagar Tamil Nadu 608002 India
| | - Murugan Vijayarangan
- Department of Chemistry Material Science Lab Annamalai University Annamalai Nagar Tamil Nadu 608002 India
| | - Jayaraman Jayabharathi
- Department of Chemistry Material Science Lab Annamalai University Annamalai Nagar Tamil Nadu 608002 India
| | - Venukopal Thanikachalam
- Department of Chemistry Material Science Lab Annamalai University Annamalai Nagar Tamil Nadu 608002 India
| |
Collapse
|
23
|
Hsu LF, Venkatesh K, Karuppiah C, Ramaraj SK, Yang CC. Incorporation of ZIF-67 derived Co-N/C core-shell nanoparticles on functionalized MWCNT as a highly efficient electrocatalyst for nonenzymatic H2O2 sensor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Sakthivel R, Prasanna SB, Tseng CL, Lin LY, Duann YF, He JH, Chung RJ. A Sandwich-Type Electrochemical Immunosensor for Insulin Detection Based on Au-Adhered Cu 5 Zn 8 Hollow Porous Carbon Nanocubes and AuNP Deposited Nitrogen-Doped Holey Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202516. [PMID: 35950565 DOI: 10.1002/smll.202202516] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Rapid, accurate, and sensitive insulin detection is crucial for managing and treating diabetes. A simple sandwich-type electrochemical immunosensor is engineered using gold nanoparticle (AuNP)-adhered metal-organic framework-derived copper-zinc hollow porous carbon nanocubes (Au@Cu5 Zn8 /HPCNC) and AuNP-deposited nitrogen-doped holey graphene (NHG) are used as a dual functional label and sensing platform. The results show that identical morphology and size of Au@Cu5 Zn8 /HPCNC enhance the electrocatalytic active sites, conductivity, and surface area to immobilize the detection antibodies (Ab2 ). In addition, AuNP/NHG has the requisite biocompatibility and electrical conductivity, which facilitates electron transport and increases the surface area of the capture antibody (Ab1 ). Significantly, Cu5 Zn8 /HPCNC exhibits necessary catalytic activity and sensitivity for the electrochemical reduction of H2 O2 using (i-t) amperometry and improves the electrochemical response in differential pulse voltammetry. Under optimal conditions, the immunosensor for insulin demonstrates a wide linear range with a low detection limit and viable specificity, stability, and reproducibility. The platform's practicality is evaluated by detecting insulin in human serum samples. All these characteristics indicate that the Cu5 Zn8 /HPCNC-based biosensing strategy may be used for the point-of-care assay of diverse biomarkers.
Collapse
Affiliation(s)
- Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Sanjay Ballur Prasanna
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Yeh-Fang Duann
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| |
Collapse
|
25
|
Manoj D, Rajendran S, Hoang TKA, Soto-Moscoso M. The role of MOF based nanocomposites in the detection of phenolic compounds for environmental remediation- A review. CHEMOSPHERE 2022; 300:134516. [PMID: 35398074 DOI: 10.1016/j.chemosphere.2022.134516] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/02/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Phenolic compounds would be the emerging pollutant by 2050, because of their wide spread applicability in daily life and therefore the adoption of suitable detection methods in which identification and separation of isomers is highly desirable. Owing to the fascinating features, Metal-organic framework (MOF), a class of reticular materials holds a large surface area with tunable shape and adjustable porosity will provide strong interaction with analytes through abundant functional groups resulting in high selectivity towards electrochemical determination of phenolic isomers. Nevertheless, the sensing performance can still be further improved by building MOF network (intrinsic resistance) with functional (conducting) materials, resulting in MOF based nanocomposite. Herein, this review provides the summary of MOF based nanocomposites for electrochemical sensing of phenolic compounds developed from 2015. In this review, we discussed the demerits of pristine MOF as electrode materials, and the requirement of new class of MOF with functional materials such as nanomaterials, carbon nanotubes, graphene and MXene. The history and evolution of MOF nanocomposite-based materials are discussed and also featured the impressive physical and chemical properties. Besides this review discusses the factors influencing the conducting pathway and mass transport of MOF based nanocomposite for enhanced sensing performance of phenolic compounds with suitable mechanistic illustrations. Finally, the major challenges governing the determination of phenolic compounds and the future advancements required for the development of MOF based electrodes for various applications are highlighted.
Collapse
Affiliation(s)
- Devaraj Manoj
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | | |
Collapse
|
26
|
Wang J, Chen C, Xiong D, Lu C, Liu T, Ying S, Kong Y, Yi FY. Prussian blue analogue fabricated one-dimensional hollow tube for high-performance detection of glucose. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Huang S, Liu Z, Yan Y, Chen J, Yang R, Huang Q, Jin M, Shui L. Triple signal-enhancing electrochemical aptasensor based on rhomboid dodecahedra carbonized-ZIF67 for ultrasensitive CRP detection. Biosens Bioelectron 2022; 207:114129. [DOI: 10.1016/j.bios.2022.114129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
|
28
|
Xie Y, Huang H, Chen Z, He Z, Huang Z, Ning S, Fan Y, Barboiu M, Shi JY, Wang D, Su CY. Co-Fe-P Nanosheet Arrays as a Highly Synergistic and Efficient Electrocatalyst for Oxygen Evolution Reaction. Inorg Chem 2022; 61:8283-8290. [PMID: 35583467 DOI: 10.1021/acs.inorgchem.2c00727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rational design and synthesis of highly efficient electrocatalysts for oxygen evolution reaction (OER) is of critical importance to the large-scale production of hydrogen by water electrolysis. Here, we develop a bimetallic, synergistic, and highly efficient Co-Fe-P electrocatalyst for OER, by selecting a two-dimensional metal-organic framework (MOF) of Co-ZIF-L as the precursor. The Co-Fe-P electrocatalyst features pronounced synergistic effects induced by notable electron transfer from Co to Fe, and a large electrochemical active surface area achieved by organizing the synergistic Co-Fe-P into hierarchical nanosheet arrays with disordered grain boundaries. Such features facilitate the generation of abundant and efficiently exposed Co3+ sites for electrocatalytic OER and thus enable Co-Fe-P to deliver excellent activity (overpotential and Tafel slope as low as 240 mV and 36 mV dec-1, respectively, at a current density of 10 mA cm-2 in 1.0 M KOH solution). The Co-Fe-P electrocatalyst also shows great durability by steadily working for up to 24 h. Our work thus provides new insight into the development of highly efficient electrocatalysts based on nanoscale and/or electronic structure engineering.
Collapse
Affiliation(s)
- Yanyu Xie
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huanfeng Huang
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhuodi Chen
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhujie He
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhixiang Huang
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shunlian Ning
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yanan Fan
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Mihail Barboiu
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.,Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095 Montpellier, France
| | - Jian-Ying Shi
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dawei Wang
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
29
|
Muslu E, Eren E, Oksuz AU. Prussian Blue-Based Flexible Thin Film Nanoarchitectonics for Non-enzymatic Electrochemical Glucose Sensor. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02290-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
Synthesis of Co-H2ABDC metal organic framework and finding their electrochemical non-enzymatic sensing properties. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Mohan B, Kumar S, Xi H, Ma S, Tao Z, Xing T, You H, Zhang Y, Ren P. Fabricated Metal-Organic Frameworks (MOFs) as luminescent and electrochemical biosensors for cancer biomarkers detection. Biosens Bioelectron 2022; 197:113738. [PMID: 34740120 DOI: 10.1016/j.bios.2021.113738] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023]
Abstract
In the health domain, a major challenge is the detection of diseases using rapid and cost-effective techniques. Most of the existing cancer detection methods show poor sensitivity and selectivity and are time consuming with high cost. To overcome this challenge, we analyzed porous fabricated metal-organic frameworks (MOFs) that have better structures and porosities for enhanced biomarker sensing. Here, we summarize the use of fabricated MOF luminescence and electrochemical sensors in devices for cancer biomarker detection. Various strategies of fabrication and the role of fabricated materials in sensing cancer biomarkers have been studied and described. The structural properties, sensing mechanisms, roles of noncovalent interactions, limits of detection, modeling, advantages, and limitations of MOF sensors have been well-discussed. The study presents an innovative technique to detect the cancer biomarkers by the use of luminescence and electrochemical MOF sensors. In addition, the potential association studies have been opening the way for personalized patient treatments and the development of new cancer-detecting devices.
Collapse
Affiliation(s)
- Brij Mohan
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Sandeep Kumar
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Hui Xi
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Shixuan Ma
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Zhiyu Tao
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Tiantian Xing
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Yang Zhang
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China.
| | - Peng Ren
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China.
| |
Collapse
|
32
|
Chalil Oglou R, Ulusoy Ghobadi TG, Ozbay E, Karadas F. Selective Glucose Sensing under Physiological pH with Flexible and Binder‐Free Prussian Blue Coated Carbon Cloth Electrodes. ChemElectroChem 2022. [DOI: 10.1002/celc.202101355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ramadan Chalil Oglou
- Institute of Material Science and Nanotechnology, UNAM – National Nanotechnology Research Center Bilkent University Ankara 06800 Turkey
| | | | - Ekmel Ozbay
- NANOTAM – Nanotechnology Research Center, Department of Electrical and Electronics Engineering Department of Physics Bilkent University Ankara 06800 Turkey
| | - Ferdi Karadas
- Department of Chemistry Bilkent University Ankara 06800 Turkey
- Institute of Material Science and Nanotechnology, UNAM – National Nanotechnology Research Center Bilkent University Ankara 06800 Turkey
| |
Collapse
|
33
|
Thenrajan T, Sankar SS, Kundu S, Wilson J. Bimetallic nickel iron zeolitic imidazolate fibers as biosensing platform for neurotransmitter serotonin. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04947-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Li Y, Deng D, Wang H, Huan K, Yan X, Luo L. Controlled synthesis of Cu-Sn alloy nanosheet arrays on carbon fiber paper for self-supported nonenzymatic glucose sensing. Anal Chim Acta 2022; 1190:339249. [PMID: 34857143 DOI: 10.1016/j.aca.2021.339249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023]
Abstract
Nanoalloy shows significant advantages and broad application prospects in chemical catalysis, due to the possessed high specific surface energy and abundant active sites can greatly promote their catalytic performance. In this work, morphology-controlled Cu-Sn alloy nanosheet arrays supported on carbon fiber paper (CP) substrate (Cu-Sn/CP) have been developed by a facile one-step electrodeposition technique at room temperature for the first time. Benefiting from the large active surface area, considerable ion transport channels and strong synergistic catalytic effect between Cu and Sn, the as-prepared Cu-Sn/CP served as a self-supported electrode for efficient nonenzymatic glucose sensing. Under optimized conditions, Cu-Sn/CP electrode offers wide linear ranges of 0.0005-2.0 mM and 2.0-10.0 mM, respectively. The detection limit is as low as 0.061 μM (S/N = 3). Cu-Sn/CP electrode also exhibited excellent selectivity and stability. Additionally, the proposed sensor is proven to be suitable for the detection of glucose in human serum samples.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai, 200444, PR China; Department of Chemistry, Shanghai University, Shanghai, 200444, PR China
| | - Dongmei Deng
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai, 200444, PR China.
| | - Huan Wang
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai, 200444, PR China
| | - Ke Huan
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai, 200444, PR China
| | - Xiaoxia Yan
- Department of Chemistry, Shanghai University, Shanghai, 200444, PR China
| | - Liqiang Luo
- Department of Chemistry, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
35
|
Wu X, Jing Q, Sun F, Pang H. The synthesis of zeolitic imidazolate framework/prussian blue analogue heterostructure composites and their application in supercapacitors. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01966c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
ZIF-67/PBA heterostructure composites was prepared by the ion-exchange method with ZIF-67 nanoparticles as host MOFs. The electrochemical performance of the ZIF-67/PBA heterostructure composites improved after low-temperature calcination.
Collapse
Affiliation(s)
- Xinyue Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Qingling Jing
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Fancheng Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, P.R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| |
Collapse
|
36
|
Wu X, Ru Y, Bai Y, Zhang G, Shi Y, Pang H. PBA composites and their derivatives in energy and environmental applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214260] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Wu M, Xia L, Li Y, Yin D, Yu J, Li W, Wang N, Li X, Cui J, Chu W, Cheng Y, Hu M. Automated and remote synthesis of poly(ethylene glycol)-mineralized ZIF-8 composite particles via a synthesizer assisted by femtosecond laser micromachining. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Arivazhagan M, Maduraiveeran G. Gold dispersed hierarchical flower-like copper oxide microelectrodes for the sensitive detection of glucose and lactic acid in human serum and urine. Biomater Sci 2022; 10:4538-4548. [DOI: 10.1039/d2bm00527a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report self-supported gold dispersed copper oxide microflowers (Au@CuO MFs) on copper microelectrodes (CME) as a sensitive platform for the sensing of glucose and lactic acid in human serum...
Collapse
|
39
|
Cao FH, Zhou Y, Wu J, Li W, Zhang CL, Ni G, Cui P, Song CJ. Electrospinning One-dimensional Surface-phosphorized CuCo/C nanofibers for Enzyme-free Glucose Sensing. NEW J CHEM 2022. [DOI: 10.1039/d2nj01485h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing novel electrocatalysts is of great importance for the practical application of non-enzymatic glucose sensors. One-dimensional (1D) carbon fiber-supported copper-cobalt bimetallic electrocatalysts (CuCo-P350) are successfully prepared via electrospinning technology and...
Collapse
|
40
|
Luo C, Liu X, Liu F, He N, Yu R, Liu X. AgNPs doping the fold carbon nanoflower composite for highly sensitive electrochemical detection of hydrogen peroxide. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
Chalil Oglou R, Ulusoy Ghobadi TG, Ozbay E, Karadas F. Electrodeposited cobalt hexacyanoferrate electrode as a non-enzymatic glucose sensor under neutral conditions. Anal Chim Acta 2021; 1188:339188. [PMID: 34794574 DOI: 10.1016/j.aca.2021.339188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
A CoFe Prussian blue analogue (CoFe PB) modified FTO electrode, prepared via a facile electrodeposition method, is investigated as a non-enzymatic glucose sensor under neutral conditions. The electrode exhibits a linear detection of glucose in the 0.1-8.2 mmol/L range with a detection limit of 67 μM, a sensitivity of 18.69 μA/mM.cm2, and a fast response time of less than 7 s under neutral conditions. Its stability is confirmed with both electrochemical experiments and characterization studies performed on the pristine and post-mortem electrode. We also conducted a comprehensive electrochemical analysis to elucidate the identity of the active site and the glucose oxidation mechanism on the Prussian blue surface.
Collapse
Affiliation(s)
- Ramadan Chalil Oglou
- UNAM - National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | | | - Ekmel Ozbay
- NANOTAM - Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey; Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey; Department of Physics, Faculty of Science Bilkent University, 06800, Ankara, Turkey
| | - Ferdi Karadas
- UNAM - National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey; Department of Chemistry, Faculty of Science, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
42
|
Ying S, Chen C, Wang J, Lu C, Liu T, Kong Y, Yi FY. Synthesis and Applications of Prussian Blue and Its Analogues as Electrochemical Sensors. Chempluschem 2021; 86:1608-1622. [PMID: 34907675 DOI: 10.1002/cplu.202100423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/15/2021] [Indexed: 12/23/2022]
Abstract
Prussian blue (PB) and its analogue (PBA) are a kind of representative cyanide-based coordination polymer. They have received enormous research interest and have shown promising applications in the electrochemical sensing field due to their excellent electrochemical activity and unique structural characteristics including open framework structure, high specific surface area, and adjustable metal active sites. In this review, we summarize the latest research progress of PB/PBA as an electrochemical sensor in detail from three aspects: fabrication strategy, synthesis method and electrochemical sensor application. For the fabrication strategy, we discussed different fabrication methods containing the combination of PBA and carbon materials, metal nanoparticles, polymers, etc., respectively, as well as their corresponding sensing mechanism for improving performance. We also presented the synthesis methods of PB/PBA materials in detail, such as: coprecipitation, hydrothermal and electrodeposition. In addition, the effects of different methods on the morphology, particle size and productivity of PB/PBA materials are also concluded. For the application of electrochemical sensors, the latest progress of such materials as electrochemical sensors for glucose, H2O2, toxic compounds, and biomolecules have been summarized. Finally, we conclude remaining challenges of PB/PBA-based materials as electrochemical sensors, and provide personal perspectives for future research in this field.
Collapse
Affiliation(s)
- Shuanglu Ying
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Chen Chen
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Jiang Wang
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Chunxiao Lu
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Tian Liu
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Yuxuan Kong
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Fei-Yan Yi
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| |
Collapse
|
43
|
Metal-directed thiophene-carboxylate-based nickel(II) complexes as multifunctional electrochemical and fluorescent sensors for detecting different analytes. TRANSIT METAL CHEM 2021. [DOI: 10.1007/s11243-021-00479-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Zheng J, Zhao P, Zhou S, Chen S, Liang Y, Tian F, Zhou J, Huo D, Hou C. Development of Au-Pd@UiO-66-on-ZIF-L/CC as a self-supported electrochemical sensor for in situ monitoring of cellular hydrogen peroxide. J Mater Chem B 2021; 9:9031-9040. [PMID: 34657951 DOI: 10.1039/d1tb01120k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Integrating metal-organic frameworks (MOFs) of different components or structures together and exploiting them as electrochemical sensors for electrochemical sensing has aroused great interest. Furthermore, the incorporation of noble metals with MOFs is conducive to the improvement of catalytic performance. In this work, Pd@UiO-66-on-ZIF-L nanomaterials were successfully synthesised onto a self-supported flexible carbon cloth (Pd@UiO-66-on-ZIF-L/CC) through a novel strategy called MOF-on-MOF. Then, Au nanoparticles were electrodeposited onto Pd@UiO-66-on-ZIF-L/CC to obtain Au-Pd@UiO-66-on-ZIF-L/CC, which can serve as an excellent electrocatalyst for the reduction of hydrogen peroxide (H2O2). The obtained flower-like Pd@UiO-66-on-ZIF-L/CC hybrid MOF changes the structure of the monomeric MOF alone and adds more attachment sites. The synergy of the bimetals greatly improved the catalytic performance of the as-developed sensor. Electrochemical experiment results show that the proposed sensor based on Au-Pd@UiO-66-on-ZIF-L/CC has an extended linear range from 1 μM to 19.6 mM with a sensitivity of 390 μA mM-1 cm-2, and a low limit of detection (LOD) of 21.2 nM (S/N = 3). Moreover, it has good anti-interference, reproducibility, repeatability and excellent stability. Furthermore, the real-time in situ detection of H2O2 secreted from human adenocarcinomic alveolar basal epithelial cells (A549 cells) was achieved by culturing cells on Au-Pd@UiO-66-on-ZIF-L/CC, which indicates the potential of the sensor for applications in cancer pathology. Both the synthesis strategy and the sensor design provide new methods and ideas for the production of ultrasensitive H2O2 electrochemical sensors.
Collapse
Affiliation(s)
- Jilin Zheng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Peng Zhao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Shiying Zhou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Sha Chen
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Yi Liang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Fengchun Tian
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jun Zhou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. .,National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd, Luzhou 646000, P. R. China
| | - Danqun Huo
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. .,Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. .,National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
45
|
Jo H, Cho Y, Yoo T, Jeon Y, Hong H, Piao Y. Polyaniline-Encapsulated Hollow Co-Fe Prussian Blue Analogue Nanocubes Modified on a Polypropylene Separator To Improve the Performance of Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47593-47602. [PMID: 34583503 DOI: 10.1021/acsami.1c12855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent studies of lithium-sulfur (Li-S) batteries have identified that a modified separator plays a critical role in challenging the capacity fading and shuttle effect of lithium polysulfides (LiPSs). Herein, we report a polyaniline-encapsulated hollow Co-Fe Prussian blue analogue (CFP@PANI) for separator modification. The open frame-like hollow CFP was synthesized via oriented attachment (OA). To improve the catalytic effect and electrical conductivity, PANI was coated on the synthesized CFP. The resulting CFP@PANI was applied on the conventional polypropylene (PP) separator (CFP@PANI-PP) with vacuum filtration. With a ketjen black/sulfur (KB/S) cathode with 66% of the sulfur load, the CFP@PANI-PP exhibited an initial capacity of 723.1 mAh g-1 at a current density of 1 A g-1. Furthermore, the CFP@PANI-PP showed stable cycling performance with 83.5% capacity retention after 100 cycles at 1 A g-1. During the 100 cycles, each cycle maintained high coulombic efficiency above 99.5%, which indicates that the CFP@PANI-PP could inhibit LiPS migration to the anode side without a Li+ transport disturbance across the separator. Overall, the CFP@PANI-PP efficiently suppressed LiPSs, resulting in enhanced electrochemical performance. The current study provides useful insight into designing a nanostructure for separator modification of Li-S batteries.
Collapse
Affiliation(s)
- Hakrae Jo
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Youngseul Cho
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Taehyun Yoo
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270, Republic of Korea
| | - Youngmoo Jeon
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Hwichan Hong
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Yuanzhe Piao
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
- Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| |
Collapse
|
46
|
Liu WJ, Chang YH, Chen YT, Chang CY, Lai JX, Lin SH, Wu TH, Chi PW. Annealing Effect on the Characteristics of Co 40Fe 40W 10B 10 Thin Films on Si(100) Substrate. MATERIALS 2021; 14:ma14206017. [PMID: 34683609 PMCID: PMC8538527 DOI: 10.3390/ma14206017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
This research explores the behavior of Co40Fe40W10B10 when it is sputtered onto Si(100) substrates with a thickness (tf) ranging from 10 nm to 100 nm, and then altered by an annealing process at temperatures of 200 °C, 250 °C, 300 °C, and 350 °C, respectively. The crystal structure and grain size of Co40Fe40W10B10 films with different thicknesses and annealing temperatures are observed and estimated by an X-ray diffractometer pattern (XRD) and full-width at half maximum (FWHM). The XRD of annealing Co40Fe40W10B10 films at 200 °C exhibited an amorphous status due to insufficient heating drive force. Moreover, the thicknesses and annealing temperatures of body-centered cubic (BCC) CoFe (110) peaks were detected when annealing at 250 °C with thicknesses ranging from 80 nm to 100 nm, annealing at 300 °C with thicknesses ranging from 50 nm to 100 nm, and annealing at 350 °C with thicknesses ranging from 10 nm to 100 nm. The FWHM of CoFe (110) decreased and the grain size increased when the thickness and annealing temperature increased. The CoFe (110) peak revealed magnetocrystalline anisotropy, which was related to strong low-frequency alternative-current magnetic susceptibility (χac) and induced an increasing trend in saturation magnetization (Ms) as the thickness and annealing temperature increased. The contact angles of all Co40Fe40W10B10 films were less than 90°, indicating the hydrophilic nature of Co40Fe40W10B10 films. Furthermore, the surface energy of Co40Fe40W10B10 presented an increased trend as the thickness and annealing temperature increased. According to the results, the optimal conditions are a thickness of 100 nm and an annealing temperature of 350 °C, owing to high χac, large Ms, and strong adhesion; this indicates that annealing Co40Fe40W10B10 at 350 °C and with a thickness of 100 nm exhibits good thermal stability and can become a free or pinned layer in a magnetic tunneling junction (MTJ) application.
Collapse
Affiliation(s)
- Wen-Jen Liu
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 84001, Taiwan;
| | - Yung-Huang Chang
- Bachelor Program in Interdisciplinary Studies, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou 64002, Yunlin, Taiwan;
| | - Yuan-Tsung Chen
- Graduate School of Materials Science, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou 64002, Yunlin, Taiwan; (C.-Y.C.); (J.-X.L.); (T.-H.W.)
- Correspondence: ; Tel.: +886-5-534-2601
| | - Chun-Yu Chang
- Graduate School of Materials Science, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou 64002, Yunlin, Taiwan; (C.-Y.C.); (J.-X.L.); (T.-H.W.)
| | - Jian-Xin Lai
- Graduate School of Materials Science, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou 64002, Yunlin, Taiwan; (C.-Y.C.); (J.-X.L.); (T.-H.W.)
| | - Shih-Hung Lin
- Department of Electronic Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou 64002, Yunlin, Taiwan;
| | - Te-Ho Wu
- Graduate School of Materials Science, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou 64002, Yunlin, Taiwan; (C.-Y.C.); (J.-X.L.); (T.-H.W.)
| | - Po-Wei Chi
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan;
| |
Collapse
|
47
|
Thenrajan T, Sam Sankar S, Srinivasan G, Kundu S, Wilson J. Cobalt-iron zeolitic imidazolate frameworks (ZIFs) as microfibers for the effective detection of hydroquinone. Dalton Trans 2021; 50:10540-10548. [PMID: 34263279 DOI: 10.1039/d1dt01718g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The monitoring of pollutants has received significant attention from researchers in recent years owing to their hazardous nature and their toxic effect on the environment. Among them, water pollution plays a major role and results in dominant diseases along with life-long health problems. Hydroquinone (HQ), the major metabolite of benzene, is an industrially used organic compound which causes symptoms associated with nervous related disorders, such as faintness, therefore the research community has been inspired to detect sources of this carcinogenic agent. In this work, cobalt-iron based zeolitic imidazolate framework microfibers (CoFe-ZIF-MFs) were used for the selective detection of HQ. Micro-structured CoFe-ZIF fibers were fabricated using the wet chemical and electrospinning method. The electrochemical response of the prepared composite revealed an excellent redox behavior towards HQ and does not suffer from interference resulting from other analytes. The proposed sensor exhibited a wide linear range of 1 μM-1 mM with a detection limit of 230 nM, resulting in a good stability of up to 88%, even after 250 cycles. The designed sensor showed an exquisite performance for real sample analysis which indicates the device mechanism is reliable for use in environmental monitoring, public health care, industrialized areas and waste water management systems.
Collapse
Affiliation(s)
- Thatchanamoorthy Thenrajan
- Polymer Electronics Laboratory, Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi - 630 003, Tamil Nadu, India.
| | - Selvasundarsekar Sam Sankar
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India.
| | - Girija Srinivasan
- Polymer Electronics Laboratory, Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi - 630 003, Tamil Nadu, India.
| | - Subrata Kundu
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India.
| | - Jeyaraj Wilson
- Polymer Electronics Laboratory, Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi - 630 003, Tamil Nadu, India.
| |
Collapse
|
48
|
Thakur N, Mandal D, Nagaiah TC. Highly sensitive non-enzymatic electrochemical glucose sensor surpassing water oxidation interference. J Mater Chem B 2021; 9:8399-8405. [PMID: 34319345 DOI: 10.1039/d1tb01332g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An electrochemical non-enzymatic sensor based on a NiVP/Pi material was developed for the selective and sensitive determination of glucose. The novel sensor showed a high sensitivity of 6.04 mA μM-1 cm-2 with a lowest detection limit of 3.7 nM in a wide detection range of 100 nM-10 mM. The proposed sensor exhibited a superior selectivity without any interference from the oxygen evolution reaction during glucose sensing. We also found that this glucose sensor showed negligible interference from various interferents, such as ascorbic acid, uric acid, dopamine and sodium chloride. Additionally, a novel flexible sensor was developed by coating the NiVP/Pi over Whatman filter paper, which exhibited two linear ranges of 100 nM to 1 μM and 100 μM to 10 mM with an ultra-sensitivity of 1.130 mA μM-1 cm-2 and 0.746 mA μM-1 cm-2, respectively, in 0.1 M NaOH. The proposed sensor was tested with human blood serum samples demonstrating its practical application. Our findings provide a new route by fine tuning the composition of nickel and vanadium that sheds new light on better understanding the processes. This NiVP/Pi-based sensor offers a new approach towards the electrochemical detection of glucose, enabling glucose monitoring in a convenient way.
Collapse
Affiliation(s)
- Neha Thakur
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| | - Debaprasad Mandal
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| | - Tharamani C Nagaiah
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| |
Collapse
|
49
|
Bimetallic MOFs-derived coral-like Ag-Mo 2C/C interwoven nanorods for amperometric detection of hydrogen peroxide. Mikrochim Acta 2021; 188:234. [PMID: 34160693 DOI: 10.1007/s00604-021-04888-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Coral-like Ag-Mo2C/C-I and blocky Ag-Mo2C/C-II composites were obtained from one-step in situ calcination of [Ag(HL)3(Mo8O26)]n·nH2O [L: N-(pyridin-3-ylmethyl) pyridine-2-amine] under N2/H2 and N2 atmospheres, respectively. The coral-like morphology of Ag-Mo2C/C-I is composed of interwoven nanorods embedded with small particles, and the nano-aggregate of Ag-Mo2C/C-II is formed by cross-linkage of irregular nanoparticles. The above composites are decorated on glassy carbon electrode (GCE) drop by drop to generate two enzyme-free electrochemical sensors (Ag-Mo2C/C/GCE) for amperometric detection of H2O2. In particular, the coral-like Ag-Mo2C/C-I/GCE sensor possesses rapid response (1.2 s), high sensitivity (466.2 μA·mM-1·cm-2), and low detection limit (25 nM) towards trace H2O2 and has wide linear range (0.08 μM~4.67 mM) and good stability. All these sensing performances are superior to Ag-Mo2C/C-II/GCE, indicating that the calcining atmosphere has an important influence on microstructure and electrochemical properties. The excellent electrochemical H2O2 sensing performance of Ag-Mo2C/C-I/GCE sensor is mainly attributed to the synergism of unique microstructure, platinum-like electron structure of Mo2C, strong interaction between Mo and Ag, as well as the increased active sites and conductivity caused by co-doped Ag and carbon. Furthermore, this sensor has been successfully applied to the detection of H2O2 in human serum sample, contact lens solution, and commercial disinfector, demonstrating the potential in related fields of environment and biology. Graphical abstract.
Collapse
|
50
|
Jiang X, Fan R, Zhou X, Zhu K, Sun T, Zheng X, Xing K, Chen W, Yang Y. Mixed functionalization strategy on indium-organic framework for multiple ion detection and H 2O 2 turn-on sensing. Dalton Trans 2021; 50:7554-7562. [PMID: 33973607 DOI: 10.1039/d1dt00889g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A special functional group mediated functionalization platform is introduced as a new and versatile platform tool to improve the fluorescence detection performance of metal-organic frameworks (MOF). The creation of a mixed-functionalization strategy on a MOF realizes the high sensitivity detection of heavy metal ions, anions and small molecules. In this work, we have first reported a novel amino functionalized 3D indium MOF [In(BDC-NH2)(OH)]n (In1-NH2) which not only has an excellent fluorescent characteristic but also shows highly sensitive identification of Fe3+, Cu2+, Pb2+ and ClO- in water with broad linear ranges and short response times. Subsequently, based on the remaining amino group site of In1-NH2, a post-synthetic modification strategy is utilized to introduce an active boronic acid group for hydrogen peroxide detection. The obtained PBA-In1 exhibits an efficient sensing performance for hydrogen peroxide with an LOD of 0.42 μM. Given this, PBA-In1 is expected to become an effective probe to monitor the formation of metabolites in humans. In1-NH2 successfully achieves multiple ion detection and the PBA-In1 sensing platform with boronic acid functionalization may have good application prospects in biochemical research in the future.
Collapse
Affiliation(s)
- Xin Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, P. R. China.
| | - Ruiqing Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, P. R. China.
| | - Xuesong Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, P. R. China.
| | - Ke Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, P. R. China.
| | - Tiancheng Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, P. R. China.
| | - Xubin Zheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, P. R. China.
| | - Kai Xing
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, P. R. China.
| | - Wei Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, P. R. China.
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, P. R. China.
| |
Collapse
|