1
|
Liu H, Jin X, Liu S, Liu X, Pei X, Sun K, Li M, Wang P, Chang Y, Wang T, Wang B, Yu XA. Recent advances in self-targeting natural product-based nanomedicines. J Nanobiotechnology 2025; 23:31. [PMID: 39833846 PMCID: PMC11749302 DOI: 10.1186/s12951-025-03092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Natural products, recognized for their potential in disease prevention and treatment, have been integrated with advanced nano-delivery systems to create natural product-based nanomedicines, offering innovative approaches for various diseases. Natural products derived from traditional Chinese medicine have their own targeting effect and remarkable therapeutic effect on many diseases, but there are some shortcomings such as poor physical and chemical properties. The construction of nanomedicines using the active ingredients of natural products has become a key step in the modernization research process, which could be used to make up for the defects of natural products such as low solubility, large dosage, poor bioavailability and poor targeting. Nanotechnology enhances the safety, selectivity, and efficacy of natural products, positioning natural product-based nanomedicines as promising candidates in medicine. This review outlines the current status of development, the application in different diseases, and safety evaluation of natural product-based nanomedicines, providing essential insights for further exploration of the synergy between natural products and nano-delivery systems in disease treatment.
Collapse
Affiliation(s)
- Haifan Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xingyue Jin
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinyue Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao Pei
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Kunhui Sun
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tiejie Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| |
Collapse
|
2
|
Zhang Y, Lian Y, Zhou C, Cheng J, Zhao S, Liu H, Wang J, Lu X, Shi J, Du G. Self-assembled natural triterpenoids for the delivery of cyclin-dependent kinase 4/6 inhibitors to enhance cancer chemoimmunotherapy. J Control Release 2024; 378:791-802. [PMID: 39732370 DOI: 10.1016/j.jconrel.2024.12.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/22/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Immunogenic cell death (ICD) has recently emerged as a promising strategy in reinforcing anti-PD-L1 blockade immunotherapy of triple-negative breast cancer (TNBC). The CDK4/6 inhibitor palbociclib (PAL), as a clinical star medicine targeting the cell cycle machinery, is an ideal candidate for fabricating a highly efficient ICD inducer for TNBC chemoimmunotherapy. However, the frequently observed chemoresistance and clinical adverse effects, as well as significant antagonistic effects when co-administered with certain chemotherapeutics, have seriously restricted the efficiency of PAL and the feasibility of combination strategies. Herein, we screened and identified six self-assembled natural pentacyclic triterpenoid (PT) molecules that can serve as competent co-administration nanoplatforms for the synergistic or combined delivery of PAL. Analysis of two representative PT-PAL nano-assemblies validated that PT-mediated co-assembly enhances the cytotoxicity and synergy of PAL by inhibiting the PI3K/AKT/mTOR signaling pathway, rather than directly targeting CDK4/6 proteins. Importantly, the PAL nanoassemblies exhibited multiple favorable therapeutic features and stronger accumulative ICD induction, ensuring highly efficient synergistic anti-PD-L1 chemoimmunotherapy by simultaneously facilitating T-cell immune response and reversing the immunosuppressive tumor microenvironment. This study offers possibilities for improving the anticancer efficacy of CDK4/6 inhibitors and potential avenues for clinical applications of chemoimmunotherapy in treating TNBC.
Collapse
Affiliation(s)
- Yongbo Zhang
- Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China
| | - Yajie Lian
- Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China
| | - Conglei Zhou
- Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China
| | - Jianjun Cheng
- Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475000, PR China.
| | - Shuang Zhao
- Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475000, PR China
| | - Hongjun Liu
- Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475000, PR China
| | - Jiacheng Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Xin Lu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475000, PR China.
| | - Guanhua Du
- Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475000, PR China; Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
3
|
Sun Y, Lei C, Qiao R, Li C. Recent advances in carrier-free natural small molecule self-assembly for drug delivery. Biomater Sci 2024; 12:6237-6252. [PMID: 39513256 DOI: 10.1039/d4bm01153h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Natural small-molecule drugs have been used for thousands of years for the prevention and treatment of human diseases. Most of the natural products available on the market have been modified into various polymer materials for improving the solubility, stability, and targeted delivery of drugs. However, these nanomedicines formed based on polymer carriers would produce severe problems such as systemic toxicity and kidney metabolic stress. In contrast, the carrier-free nanomedicines formed by their self-assembly in water have inherent advantages such as low toxicity, good biocompatibility, and biodegradability. This review summarizes the assembly process and application of natural small-molecule products, which are mainly driven by multiple non-covalent interactions, and includes single-molecule assembly, bimolecular assembly, drug-modified assembly, and organogels. Meanwhile, the molecular mechanism involved in different self-assembly processes is also discussed. Self-assembly simulation and structural modification of natural small-molecule products or traditional Chinese medicine molecules using molecular dynamics simulation and computer-assisted methods are proposed, which will lead to the discovery of more carrier-free nanomedicine drug delivery systems. Overall, this review provides an important understanding and strategy to study single-molecule and multi-molecule carrier-free nanomedicines.
Collapse
Affiliation(s)
- Yehua Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Changyang Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Renzhong Qiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Chao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| |
Collapse
|
4
|
Han J, Shen Y, Cao R, Wang W, Duan J, Duan J, Bao C. Active herbal ingredients and drug delivery design for tumor therapy: a review. Chin J Nat Med 2024; 22:1134-1162. [PMID: 39725513 DOI: 10.1016/s1875-5364(24)60741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Indexed: 12/28/2024]
Abstract
Active herbal ingredients are gaining recognition for their potent anti-tumor efficacy, attributable to various mechanisms including tumor cell inhibition, immune system activation, and tumor angiogenesis inhibition. Recent studies have revealed that numerous anti-tumor herbal ingredients, such as ginsenosides, ursolic acid, oleanolic acid, and Angelica sinensis polysaccharides, can be utilized to develop smart drug carriers like liposomes, micelles, and nanoparticles. These carriers can deliver active herbal ingredients and co-deliver anti-tumor drugs to enhance drug accumulation at tumor sites, thereby improving anti-tumor efficacy. This study provides a comprehensive analysis of the mechanisms by which these active herbal ingredients-derived carriers enhance therapeutic outcomes. Additionally, it highlights the structural properties of these active herbal ingredients, demonstrating how their unique features can be strategically employed to design smart drug carriers with improved anti-tumor efficacy. The insights presented aim to serve as a reference and guide future innovations in the design and application of smart drug carriers for cancer therapy that leverage active herbal ingredients.
Collapse
Affiliation(s)
- Jing Han
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanxi Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruiying Cao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiren Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jialun Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunjie Bao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
5
|
Xiao M, Guo Z, Yang Y, Hu C, Cheng Q, Zhang C, Wu Y, Cheng Y, Benson WLM, Shamay SMN, Leung GPH, Li J, Gao H, Zhang J. Glycyrrhizic acid-based multifunctional nanoplatform for tumor microenvironment regulation. Chin J Nat Med 2024; 22:1089-1099. [PMID: 39725510 DOI: 10.1016/s1875-5364(24)60685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Indexed: 12/28/2024]
Abstract
Natural compounds demonstrate unique therapeutic advantages for cancer treatment, primarily through direct tumor suppression or interference with the tumor microenvironment (TME). Glycyrrhizic acid (GL), a bioactive ingredient derived from the medicinal herb Glycyrrhiza uralensis Fisch., and its sapogenin glycyrrhetinic acid (GA), have been recognized for their ability to inhibit angiogenesis and remodel the TME. Consequently, the combination of GL with other therapeutic agents offers superior therapeutic benefits. Given GL's amphiphilic structure, self-assembly capability, and liver cancer targeting capacity, various GL-based nanoscale drug delivery systems have been developed. These GL-based nanosystems exhibit angiogenesis suppression and TME regulation properties, synergistically enhancing anti-cancer effects. This review summarizes recent advances in GL-based nanosystems, including polymer-drug micelles, drug-drug assembly nanoparticles (NPs), liposomes, and nanogels, for cancer treatment and tumor postoperative care, providing new insights into the anti-cancer potential of natural compounds. Additionally, the review discusses existing challenges and future perspectives for translating GL-based nanosystems from bench to bedside.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiqing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yating Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfen Cheng
- School of Medicine, Chengdu University, Chengdu 610106, China
| | - Wui Lau Man Benson
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Sheung Mei Ng Shamay
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hong Kong 999077, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Liu C, Du W, Zhang L, Wang J. Natural synergy: Oleanolic acid-curcumin co-assembled nanoparticles combat osteoarthritis. Colloids Surf B Biointerfaces 2024; 245:114286. [PMID: 39378706 DOI: 10.1016/j.colsurfb.2024.114286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Curcumin (Cur) is a natural polyphenol that is one of the most valuable natural products. However, its use as a functional food is limited by low water solubility, chemical instability and poor bioavailability. In this study, a supramolecular co-assembly strategy was used to construct an oleanolic acid-curcumin (OLA-Cur) co-assembly composite nano-slow-release treatment system. As a co-assembled compound, OLA is a widely present pentacyclic triterpenoid compound with multiple biological activities in the plant kingdom, which is expected to jointly alleviate the damaging effects of papain-induced mouse osteoarthritis model. The OLA-Cur NPs shows the solid core-shell structure, which can effectively improve the water solubility of Cur and OLA, and has good stability and sustained release characteristics. The analysis results show that the two compounds are mainly assembled through hydrogen bonding interactions, hydrophobic interactions, and π - π stacking interactions. The OLA-Cur NPs can inhibit the release of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β induced by LPS in RAW264.7 mouse macrophages, promote the secretion of anti-inflammatory cytokine IL-10, and improve the oxidative stress index of hydrogen peroxide induced human rheumatoid arthritis synovial fibroblasts. In addition, it has a certain improvement effect on cartilage and subchondral bone damage in mouse osteoarthritis models. These findings suggest that constructing co-assembled composite nanoparticles based on pure natural compounds may break through the limitations of a variety of important nutritional ingredients in functional foods.
Collapse
Affiliation(s)
- Chen Liu
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou 225001, China
| | - Wanchun Du
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou 225001, China
| | - Liang Zhang
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou 225001, China.
| | - Jiacheng Wang
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
7
|
Lin X, Huang X, Pi W, Lu J, Wang Z, Zhang X, Zhang Y, Yang L, Yao S, Wu L, Zhao H, Lei H, Wang P. Self-assembly variation of glycyrrhetinic acid epimers: Assembly mechanism and antibacterial efficacy between 18 α-GA and 18 β-GA. Colloids Surf B Biointerfaces 2024; 242:114120. [PMID: 39059147 DOI: 10.1016/j.colsurfb.2024.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Studies have confirmed that the spatial arrangement of chiral molecules has a decisive influence on supramolecular assembly. However, the effect of epimerization caused by the change of a single chiral center on the self-assembly of chiral molecules has not been reported. Herein, we explored a pair of epimers 18 α-glycyrrhetinic acid and 18 β-glycyrrhetinic acid from Glycyrrhiza uralensis Fisch, which had completely different medicinal activities. In this study, we found that these epimers of glycyrrhetinic acid showed distinct self-assembly properties under the condition of the deionized water and a small amount of DMSO solution. Interestingly, the cis-configured 18 β-GA could form a 'head-to-tail' interlaced structure and further self-assembled to form nanoparticles, while trans-configured 18 α-GA was connected in a "head-to-head" manner, and due to the excessive steric hindrance that made it difficult to assemble. This work not only clearly demonstrates the impact of epimerization due to changes in a single chiral center on the self-assembly of chiral molecules as well as biological activity, but also provides new insights into the self-assembly of natural organic molecules in the development of nanomedicines and biofunctional materials.
Collapse
Affiliation(s)
- Xiaoyu Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Wenmin Pi
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jihui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhijia Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiang Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yaozhi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Luping Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuchang Yao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Linying Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Haoqiang Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
8
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J, Wang Y. Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403388. [PMID: 39033533 PMCID: PMC11425287 DOI: 10.1002/advs.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 07/23/2024]
Abstract
Novel biomaterials are becoming more crucial in treating human diseases. However, many materials require complex artificial modifications and synthesis, leading to potential difficulties in preparation, side effects, and clinical translation. Recently, significant progress has been achieved in terms of direct self-assembly of natural products from herbal medicine (NPHM), an important source for novel medications, resulting in a wide range of bioactive supramolecular materials including gels, and nanoparticles. The NPHM-based supramolecular bioactive materials are produced from renewable resources, are simple to prepare, and have demonstrated multi-functionality including slow-release, smart-responsive release, and especially possess powerful biological effects to treat various diseases. In this review, NPHM-based supramolecular bioactive materials have been revealed as an emerging, revolutionary, and promising strategy. The development, advantages, and limitations of NPHM, as well as the advantageous position of NPHM-based materials, are first reviewed. Subsequently, a systematic and comprehensive analysis of the self-assembly strategies specific to seven major classes of NPHM is highlighted. Insights into the influence of NPHM structural features on the formation of supramolecular materials are also provided. Finally, the drivers and preparations are summarized, emphasizing the biomedical applications, future scientific challenges, and opportunities, with the hope of igniting inspiration for future research and applications.
Collapse
Affiliation(s)
- Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lingyu Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxuan Chen
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haigang Li
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yawei Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
9
|
Zhong J, He G, Ma X, Ye J, Tao ZY, Li Z, Zhang F, Feng P, Wang Y, Lan X, Su YX. Triterpene-Based Prodrug for Self-Boosted Drug Release and Targeted Oral Squamous Cell Carcinoma Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41960-41972. [PMID: 39082953 DOI: 10.1021/acsami.4c10175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Chemotherapy is one of the main treatments for oral squamous cell carcinoma (OSCC), especially as a combined modality approach with and after surgery or radiotherapy. Limited therapeutic efficiency and serious side effects greatly restrict the clinical performance of chemotherapeutic drugs. The development of smart nanomedicines has provided new research directions, to some extent. However, the involvement of complex carrier compositions inevitably brings biosafety concerns and greatly limits the "bench-to-bed" translation of most nanomedicines reported. In this study, a carrier-free self-assembled prodrug was fabricated by two triterpenes (glycyrrhetinic acid, GA and ginsenoside Rh2, Rh2) isolated from medicinal plants, licorice, and ginseng, for the targeted and highly effective treatment of OSCC. Reactive oxygen species (ROS) self-supplied molecule TK-GA2 was synthesized with ROS-responsive thioketal linker and prodrug was prepared by a rapid-solvent-exchange method with TK-GA2 and Rh2. After administration, oral tumor cells transported large amounts of prodrugs with glucose ligands competitively. Endogenous ROS in oral tumor cells then promoted the release of GA and Rh2. GA further evoked the generation of a large number of ROS to help self-boosted drug release and increase oxidative stress, synergistically causing tumor cell apoptosis with Rh2. Overall, this carrier-free triterpene-based prodrug might provide a preeminent opinion on the design of effective chemotherapeutics with low systemic toxicity against OSCC.
Collapse
Affiliation(s)
- Jie Zhong
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Guantong He
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Xu Ma
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jinhai Ye
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhuo-Ying Tao
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhongxian Li
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fuxue Zhang
- Department of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Peijian Feng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinmiao Lan
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yu-Xiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
10
|
Teng W, Zhou Z, Cao J, Guo Q. Recent Advances of Natural Pentacyclic Triterpenoids as Bioactive Delivery System for Synergetic Biological Applications. Foods 2024; 13:2226. [PMID: 39063310 PMCID: PMC11275325 DOI: 10.3390/foods13142226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Bioactive compounds have drawn much attention according to their various health benefits. However, poor dissolvability, low stability and limited bioavailability largely narrow their applications. Although a variety of nontoxic ingredients have been rapidly developed as vehicles to deliver bioactive compounds in the last few years, most of them are non-bioactive. Pentacyclic triterpenoids, owing to their unique self-assembly and co-assembly behaviors and different physiological functions, can construct bioactive carriers due to their higher biodegradability, biocompatibility and lower toxicity. In this paper, the basic classification, biological activities and physicochemical properties of pentacyclic triterpenoids were summarized. Additionally, applications of self-assembled and co-assembled pentacyclic triterpenoids as bioactive delivery systems to load bioactive components and future research directions were discussed. This study emphasizes the potential of pentacyclic triterpenoids as bioactive delivery systems, offering a new perspective for constructing self- or co-assemblies for further synergetic biological applications.
Collapse
Affiliation(s)
- Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Zixiao Zhou
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Qing Guo
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
11
|
Wang T, Fu ZY, Li YJ, Zi L, Song CZ, Tao YX, Zhang M, Gu W, Yu J, Yang XX. Recognition on pharmacodynamic ingredients of natural products. Saudi Pharm J 2024; 32:102124. [PMID: 38933713 PMCID: PMC11201352 DOI: 10.1016/j.jsps.2024.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Natural products (NPs) play an irreplaceable role in the intervention of various diseases and have been considered a critical source of drug development. Many new pharmacodynamic compounds with potential clinical applications have recently been derived from NPs. These compounds range from small molecules to polysaccharides, polypeptides, proteins, self-assembled nanoparticles, and extracellular vesicles. This review summarizes various active substances found in NPs. The investigation of active substances in NPs can potentiate new drug development and promote the in-depth comprehension of the mechanism of action of NPs that can be beneficial in the prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Tao Wang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Zhong-Yu Fu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Yan-Juan Li
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Lei Zi
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Cheng-Zhu Song
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Yu-Xuan Tao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Mei Zhang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Wen Gu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Jie Yu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Xing-Xin Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| |
Collapse
|
12
|
Lin B, Peng X, Cheng J, Wang J. Natural gambogic acid-tuned self-assembly of nanodrugs towards synergistic chemophototherapy against breast cancer. J Mater Chem B 2024; 12:5940-5949. [PMID: 38804636 DOI: 10.1039/d4tb00364k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Gambogic acid (GA) as a naturally derived chemotherapeutic agent is of increasing interest for antitumor therapy. However, current research mainly focuses on improving the pharmacological properties to overcome the shortcomings in clinical applications or as a synergistic anticancer agent in combination with chemotherapy and chemophototherapy. Yet, the material properties of GA (e.g., self-assembly) are often neglected. Herein, we validated the self-assembly function of GA and its huge potential as a single-component active carrier for synergistic delivery using pyropheophorbide-a (PPa) as a drug model. The results showed that self-assembled GA drives the formation of nano-GA/PPa mainly through noncovalent interactions such as π-π stacking, hydrophobic interactions, and hydrogen bonding. Additionally, although no significant differences in cytotoxicity were found between the individual in vitro chemotherapy and combined chemophototherapy, the as-prepared nano-GA/PPa exhibits remarkably improved water solubility and multiple favorable therapeutic features, leading to a prominent in vivo photochemotherapy efficiency of 89.3% inhibition rate with reduced hepatotoxicity of GA. This work highlights the potential of self-assembled GA as a drug delivery carrier for synergistic biomedical applications.
Collapse
Affiliation(s)
- Baohang Lin
- Department of Thyroid, Breast and Vascular Surgery, Longgang Central Hospital of Shenzhen, Long Gang District, Shenzhen, P. R. China
| | - Xun Peng
- Department of Thyroid, Breast and Vascular Surgery, Longgang Central Hospital of Shenzhen, Long Gang District, Shenzhen, P. R. China
| | - Jianjun Cheng
- Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, P. R. China.
| | - Jiacheng Wang
- Medical College, Yangzhou University, Yangzhou, P. R. China.
| |
Collapse
|
13
|
Zhong Q, Zeng J, Jia X. Self-Assembled Aggregated Structures of Natural Products for Oral Drug Delivery. Int J Nanomedicine 2024; 19:5931-5949. [PMID: 38887690 PMCID: PMC11182358 DOI: 10.2147/ijn.s467354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
The self-assembling aggregated structures of natural products have gained significant interest due to their simple synthesis, lack of carrier-related toxicity, and excellent biological efficacy. However, the mechanisms of their assembly and their ability to traverse the gastrointestinal (GI) barrier remain unclear. This review summarizes various intermolecular non-covalent interactions and aggregated structures, drawing on research indexed in Web of Science from 2010 to 2024. Cheminformatics analysis of the self-assembly behaviors of natural small molecules and their supramolecular aggregates reveals assembly-favorable conditions, aiding drug formulation. Additionally, the review explores the self-assembly properties of macromolecules like polysaccharides, proteins, and exosomes, highlighting their role in drug delivery. Strategies to overcome gastrointestinal barriers and enhance drug bioavailability are also discussed. This work underscores the potential of natural products in oral drug delivery and offers insights for designing more effective drug delivery systems.
Collapse
Affiliation(s)
- Qiyuan Zhong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jingqi Zeng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
14
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
15
|
Wang Z, Yang L. Natural-product-based, carrier-free, noncovalent nanoparticles for tumor chemo-photodynamic combination therapy. Pharmacol Res 2024; 203:107150. [PMID: 38521285 DOI: 10.1016/j.phrs.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Cancer, with its diversity, heterogeneity, and complexity, is a significant contributor to global morbidity, disability, and mortality, highlighting the necessity for transformative treatment approaches. Photodynamic therapy (PDT) has aroused continuous interest as a viable alternative to conventional cancer treatments that encounter drug resistance. Nanotechnology has brought new advances in medicine and has shown great potential in drug delivery and cancer treatment. For precise and efficient therapeutic utilization of such a tumor therapeutic approach with high spatiotemporal selectivity and minimal invasiveness, the carrier-free noncovalent nanoparticles (NPs) based on chemo-photodynamic combination therapy is essential. Utilizing natural products as the foundation for nanodrug development offers unparalleled advantages, including exceptional pharmacological activity, easy functionalization/modification, and well biocompatibility. The natural-product-based, carrier-free, noncovalent NPs revealed excellent synergistic anticancer activity in comparison with free photosensitizers and free bioactive natural products, representing an alternative and favorable combination therapeutic avenue to improve therapeutic efficacy. Herein, a comprehensive summary of current strategies and representative application examples of carrier-free noncovalent NPs in the past decade based on natural products (such as paclitaxel, 10-hydroxycamptothecin, doxorubicin, etoposide, combretastatin A4, epigallocatechin gallate, and curcumin) for tumor chemo-photodynamic combination therapy. We highlight the insightful design and synthesis of the smart carrier-free NPs that aim to enhance PDT efficacy. Meanwhile, we discuss the future challenges and potential opportunities associated with these NPs to provide new enlightenment, spur innovative ideas, and facilitate PDT-mediated clinical transformation.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China; School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China; Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
16
|
Zhao B, Zhang Y, Fan Z, Lin Z, Wang L, Li H, Zhen H, Wu C. Study on the Nanoaggregate Formation Mechanism and Antipyretic Effect of Maxing Shigan Decoction. ACS OMEGA 2024; 9:19311-19319. [PMID: 38708238 PMCID: PMC11064183 DOI: 10.1021/acsomega.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024]
Abstract
Traditional Chinese medicine (TCM) formula decoctions easily form nanoaggregates due to self-assembly during the decoction process. However, research on nanoaggregates in TCM is still in its infancy with limited systematic studies. Maxing Shigan Decoction (MXSGT), a TCM formula, has been commonly used for the treatment of fever for thousands of years in China. This study used MXSGT as an example to investigate the antipyretic effects of MXSGT nanoaggregates (MXSGT-NAs) in its decoction, shedding light on the compatibility mechanisms of Chinese medicine. MXSGT-NAs were isolated by using high-speed centrifugation and dialysis techniques. The morphology, particle size distribution, and electrical potential of MXSGT-NAs were characterized. High-performance liquid chromatography (HPLC) was used to detect ephedrine and pseudoephedrine in MXSGT-NAs. The self-assembly mechanism of MXSGT-NAs was investigated by deconstructing the prescription. In pharmacodynamic experiments, a rat fever model was established through the subcutaneous injection of dry yeast to investigate the antipyretic effects of MXSGT-NAs. The results showed the presence of regularly shaped spherical nanoaggregates in MXSGT. It contains carbon, oxygen (O), sulfur (S), sodium, aluminum (Al), calcium (Ca), iron, magnesium, bismuth (Bi), etc. MXSGT-NAs exerted substantial antipyretic effects on febrile rats. Furthermore, we found micrometer-sized particles composed of Ca, O, S, potassium, and Bi in Shi gao decoctions. This study is the first to provide evidence for the self-assembling property of Shi gao, elucidate the scientific connotation of dispensing Shi gao in MXSGT, and provide a novel perspective for the study of TCM decoctions.
Collapse
Affiliation(s)
- Bingbing Zhao
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yanxu Zhang
- Henan-Macquarie
University Joint Centre for Biomedical Innovation, School of Life
Sciences, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China
| | - Zhengmin Fan
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ziwei Lin
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lihong Wang
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongteng Li
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Haojie Zhen
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chunli Wu
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- School
of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
17
|
Li Q, Lianghao Y, Shijie G, Zhiyi W, Yuanting T, Cong C, Chun-Qin Z, Xianjun F. Self-assembled nanodrug delivery systems for anti-cancer drugs from traditional Chinese medicine. Biomater Sci 2024; 12:1662-1692. [PMID: 38411151 DOI: 10.1039/d3bm01451g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Traditional Chinese medicine (TCM) is a combination of raw herbs and herbal extracts with a plethora of documented beneficial bioactivities, which has unique advantages in anti-tumor therapy, and many of its major bioactive molecules have been identified in recent years due to advances in chemical separation and structural analysis. However, the major chemical classes of plant-derived bioactive compounds frequently possess chemical properties, including poor water solubility, stability, and bioavailability, that limit their therapeutic application. Alternatively, natural small molecules (NSMs) containing these components possess modifiable groups, multiple action sites, hydrophobic side chains, and a rigid skeleton with self-assembly properties that can be exploited to construct self-assembled nanoparticles with therapeutic effects superior to their individual constituents. For instance, the construction of a self-assembled nanodrug delivery system can effectively overcome the strong hydrophobicity and poor in vivo stability of NSMs, thereby greatly improving their bioavailability and enhancing their anti-tumor efficacy. This review summarizes the self-assembly methods, mechanisms, and applications of a variety of NSMs, including terpenoids, flavonoids, alkaloids, polyphenols, and saponins, providing a theoretical basis for the subsequent research on NSMs and the development of SANDDS.
Collapse
Affiliation(s)
- Qiao Li
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Yuan Lianghao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Gao Shijie
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Wang Zhiyi
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Tang Yuanting
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Chen Cong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China.
| | - Zhao Chun-Qin
- Academy of Chinese Medicine Literature and Culture, Key Laboratory of Classical Theory of Traditional Chinese Medicine, Ministry of Education, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Fu Xianjun
- Marine Traditional Chinese Medicine Research Centre, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, P. R. China.
| |
Collapse
|
18
|
Han Y, Zhang H, Zhao H, Fu S, Li R, Wang Z, Wang Y, Lu W, Yang X. Nanoparticle encapsulation using self-assembly abietic acid to improve oral bioavailability of curcumin. Food Chem 2024; 436:137676. [PMID: 37832417 DOI: 10.1016/j.foodchem.2023.137676] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/13/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
This research constructed composite nanoparticles (NPs) using abietic acid (AA) as a carrier for significantly enhancing the bioavailability of curcumin (CCM). CCM-loaded AA NPs were synthesized using a low-energy microemulsification method, and the obtained nanoparticles had a spherical morphology with an average diameter of 458.66 nm, a narrow size distribution and a negative surface charge of -19.13 mV. The encapsulation efficiency of CCM was 17.98 %, while its solubility was 20-fold that of free curcumin. FITR, UV, and MD revealed hydrogen bonds and hydrophobic forces between AA and CCM. Thein-vitrorelease profile showed sustainable release of CCM in simulated gastric and intestinal fluids up to 2 h at 37 °C. In cellular studies, CCM-loaded AA NPs with the same CCM concentration exhibited greater bioaccessibility and bioavailability than free CCM. These data suggested a possible utilization of AA NPs in improving water solubility, bioavailability and activity of lipophilic bioactive food factors.
Collapse
Affiliation(s)
- Ying Han
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hua Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Haitian Zhao
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China
| | - Shiyao Fu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ruiling Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Zhili Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Yangxin Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Weihong Lu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China.
| |
Collapse
|
19
|
Zaiki Y, Iskandar A, Wong TW. Functionalized chitosan for cancer nano drug delivery. Biotechnol Adv 2023; 67:108200. [PMID: 37331671 DOI: 10.1016/j.biotechadv.2023.108200] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
Chitosan is a biotechnological derivative of chitin receiving a widespread pharmaceutical and biomedical applications. It can be used to encapsulate and deliver cancer therapeutics with inherent pH-dependent solubility to confer drug targeting at tumour microenvironment and anti-cancer activity synergizing cancer cytotoxic drug actions. To further reduce the off-target and by-stander adverse effects of drugs, a high targeted drug delivery efficiency at the lowest possible drug doses is clinically required. The chitosan has been functionalized with covalent conjugates or complexes and processed into nanoparticles to encapsulate and control drug release, to avoid premature drug clearance, to deliver drugs passively and actively to cancer site at tissue, cell or subcellular levels, and to promote cancer cell uptake of nanoparticles through membrane permeabilization at higher specificity and scale. Nanomedicine developed using functionalized chitosan translates to significant preclinical improvements. Future challenges related to nanotoxicity, manufacturability, selection precision of conjugates and complexes as a function of cancer omics and their biological responses from administration site to cancer target need critical assessments.
Collapse
Affiliation(s)
- Yazid Zaiki
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Athirah Iskandar
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, 136, Jiangyang Middle Road, Yangzhou, Jiangsu Province, China; Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
20
|
Huang J, Zhu Y, Xiao H, Liu J, Li S, Zheng Q, Tang J, Meng X. Formation of a traditional Chinese medicine self-assembly nanostrategy and its application in cancer: a promising treatment. Chin Med 2023; 18:66. [PMID: 37280646 DOI: 10.1186/s13020-023-00764-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/06/2023] [Indexed: 06/08/2023] Open
Abstract
Traditional Chinese medicine (TCM) has been used for centuries to prevent and treat a variety of illnesses, and its popularity is increasing worldwide. However, the clinical applications of natural active components in TCM are hindered by the poor solubility and low bioavailability of these compounds. To address these issues, Chinese medicine self-assembly nanostrategy (CSAN) is being developed. Many active components of TCM possess self-assembly properties, allowing them to form nanoparticles (NPs) through various noncovalent forces. Self-assembled NPs (SANs) are also present in TCM decoctions, and they are closely linked to the therapeutic effects of these remedies. SAN is gaining popularity in the nano research field due to its simplicity, eco-friendliness, and enhanced biodegradability and biocompatibility compared to traditional nano preparation methods. The self-assembly of active ingredients from TCM that exhibit antitumour effects or are combined with other antitumour drugs has generated considerable interest in the field of cancer therapeutics. This paper provides a review of the principles and forms of CSAN, as well as an overview of recent reports on TCM that can be used for self-assembly. Additionally, the application of CSAN in various cancer diseases is summarized, and finally, a concluding summary and thoughts are proposed. We strongly believe that CSAN has the potential to offer fresh strategies and perspectives for the modernization of TCM.
Collapse
Affiliation(s)
- Ju Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yu Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Hang Xiao
- Capital Medical University, Beijing, People's Republic of China
| | - Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Songtao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiao Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
| | - Xiangrui Meng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
| |
Collapse
|
21
|
Fu S, Wang M, Li B, Li X, Cheng J, Zhao H, Zhang H, Dong A, Lu W, Yang X. Bionic natural small molecule co-assemblies towards targeted and synergistic Chemo/PDT/CDT. Biomater Res 2023; 27:43. [PMID: 37161611 PMCID: PMC10169343 DOI: 10.1186/s40824-023-00380-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/15/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Multi-component nano-delivery systems based on chemotherapy (chemo)- photodynamic therapy (PDT)- chemodynamic therapy (CDT) have gained increased attention as a promising strategy to improve clinical outcomes in cancer treatment. However, there remains a challenge in developing biodegradable, biocompatible, less toxic, yet highly efficient multicomponent nanobased drug delivery systems (DDS). Here, our study presents the screening and development of a novel DDS based on co-assemblies natural small molecule (NSMs). These molecules (oleanolic acid, and betulinic acid) are combined with photosensitizers Chlorine6 (Ce6) and Cu2+ that are encapsulated by tumor cell membranes. This nanocarrier encapsulated in tumor cell membranes achieved good tumor targeting and a significant improvement in tumor accumulation. METHODS A reprecipitation method was used to prepare the co-assembled nanocarrier, followed by the introduction of Cu2 + into the DDS (OABACe6 NPs). Then, by wrapping the surface of NPs with the cell membranes of 4T1 which is a kind of mouse breast cancer cells (CM@OABACe6/Cu NPs). and analysis of its structure and size distribution with UV-Vis, XPS, FT-IR, SEM, TEM, and DLS. The synergistic effects of in vitro chemotherapy, CDT and PDT and targeting were also validated by cellular and animal studies. RESULTS It was shown that CM@OABACe6/Cu NPs achieved good tumor targeting and a significant improvement in tumor accumulation. In the composite nano-assembly, the NSMs work together with the Ce6 to provide effective and safe chemo and PDT. Moreover, the effect of reduced PDT due to the depletion of reactive oxygen species (ROS) by excess glutathione (GSH) in the tumor can be counteracted when Cu2 + is introduced. More importantly, it also confers CDT through a Fenton-like catalytic reaction with H2O overexpressed at the tumor site. CONCLUSIONS By constructing CM@OABACe6/Cu NPs with homologous targeting, we create a triple synergistic platform for cancer therapy using PDT, chemo, and CDT. We propose here a novel combinatorial strategy for designing more naturally co-assembled small molecules, especially for the development of multifunctional synergistic therapies that utilize NSMs.
Collapse
Affiliation(s)
- Shiyao Fu
- School of Medicine and Health, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, 150001, China
| | - Mingao Wang
- Department of Nephrology, the First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Bin Li
- Academician Workstation, Jiangxi University of Traditional Chinese Medicine, 1088 Meiling Street, Wanli District, Nanchang, 330004, No, China
| | - Xu Li
- Department of Ophthalmology, the Second Hospital of Jilin University, Nanguan District, No. 4026 Yatai Street, Changchun, 130041, China
| | - Jianjun Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, 150001, China
| | - Haitian Zhao
- School of Medicine and Health, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Yubei District, No. 188 Jihuayuan South Road, Chongqing, 401135, China
| | - Hua Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, 150001, China
| | - Aijun Dong
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, 150001, China
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Yubei District, No. 188 Jihuayuan South Road, Chongqing, 401135, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China.
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, 150001, China.
- Chongqing Research Institute, Harbin Institute of Technology, Yubei District, No. 188 Jihuayuan South Road, Chongqing, 401135, China.
| |
Collapse
|
22
|
Fu S, Yang X. Recent advances in natural small molecules as drug delivery systems. J Mater Chem B 2023; 11:4584-4599. [PMID: 37084077 DOI: 10.1039/d3tb00070b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Drug delivery systems (DDSs) are a multidisciplinary approach toward the effective delivery of drugs to their target sites. Natural small molecule (NSM) compounds with anticancer activity, self-assembly and co-assembly functions show great potential for application as novel DDSs in the biomedical field. NSMs are widely sourced, have many modification sites, and readily form hydrogen bonds, π-π interactions, van der Waals interactions, and other non-covalent bonds in solvents, resulting in ordered structures. Moreover, their good biocompatibility and bioactivity allow compositions based on these compounds to be used in life science applications such as tissue engineering, drug delivery and cell imaging, showing the potential medical value of NSMs as DDSs. In this review, we summarise the role, assembly principles and applications of natural products such as triterpenoids, diterpenoids, sterols, alkaloids and polysaccharides in the construction of small molecule systems, which are expected to provide an important reference for the development of more active natural nanomaterials and the study of single or multi-component interactions.
Collapse
Affiliation(s)
- Shiyao Fu
- School of Medicine and Health, Harbin Institute of Technology, Nangang District, No. 92, West Dazhi Street, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Nangang District, No. 92, West Dazhi Street, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, No. 188 Jihuayuan South Road, Yubei District, Chongqing, 401135, China
| |
Collapse
|
23
|
Cheng J, Zhao H, Li B, Zhang H, Zhao Q, Fu S, Han Y, Lu W, Shi J, Yang X. Photosensitive pro-drug nanoassemblies harboring a chemotherapeutic dormancy function potentiates cancer immunotherapy. Acta Pharm Sin B 2023; 13:879-896. [PMID: 36873187 PMCID: PMC9978634 DOI: 10.1016/j.apsb.2022.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
Immunotherapy combined with effective therapeutics such as chemotherapy and photodynamic therapy have been shown to be a successful strategy to activate anti-tumor immune responses for improved anticancer treatment. However, developing multifunctional biodegradable, biocompatible, low-toxic but highly efficient, and clinically available transformed nano-immunostimulants remains a challenge and is in great demand. Herein, we report and design of a novel carrier-free photo-chemotherapeutic nano-prodrug COS-BA/Ce6 NPs by combining three multifunctional components-a self-assembled natural small molecule betulinic acid (BA), a water-soluble chitosan oligosaccharide (COS), and a low toxic photosensitizer chlorin e6 (Ce6)-to augment the antitumor efficacy of the immune adjuvant anti-PD-L1-mediated cancer immunotherapy. We show that the designed nanodrugs harbored a smart and distinctive "dormancy" characteristic in chemotherapeutic effect with desired lower cytotoxicity, and multiple favorable therapeutic features including improved 1O2 generation induced by the reduced energy gap of Ce6, pH-responsiveness, good biodegradability, and biocompatibility, ensuring a highly efficient, synergistic photochemotherapy. Moreover, when combined with anti-PD-L1 therapy, both nano-coassembly based chemotherapy and chemotherapy/photodynamic therapy (PDT) could effectively activate antitumor immunity when treating primary or distant tumors, opening up potentially attractive possibilities for clinical immunotherapy.
Collapse
Affiliation(s)
- Jianjun Cheng
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, China
| | - Haitian Zhao
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Bin Li
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hua Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Qianyu Zhao
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shiyao Fu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ying Han
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| |
Collapse
|
24
|
Cui J, Wang X, Li J, Zhu A, Du Y, Zeng W, Guo Y, Di L, Wang R. Immune Exosomes Loading Self-Assembled Nanomicelles Traverse the Blood-Brain Barrier for Chemo-immunotherapy against Glioblastoma. ACS NANO 2023; 17:1464-1484. [PMID: 36626296 DOI: 10.1021/acsnano.2c10219] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Effective drug delivery and prevention of postoperative recurrence are significant challenges for current glioblastoma (GBM) treatment. Poor drug delivery is mainly due to the presence of the blood-brain barrier (BBB), and postoperative recurrence is primarily due to the resistance of GBM cells to chemotherapeutic drugs and the presence of an immunosuppressive microenvironment. Herein, a biomimetic nanodrug delivery platform based on endogenous exosomes that could efficiently target the brain without targeting modifications and co-deliver pure drug nanomicelles and immune adjuvants for safe and efficient chemo-immunotherapy against GBM is prepared. Inspired by the self-assembly technology of small molecules, tanshinone IIA (TanIIA) and glycyrrhizic acid (GL), which are the inhibitors of signal transducers and activators of transcription 3 from traditional Chinese medicine (TCM), self-assembled to form TanIIA-GL nanomicelles (TGM). Endogenous serum exosomes are selected to coat the pure drug nanomicelles, and the CpG oligonucleotides, agonists of Toll-like receptor 9, are anchored on the exosome membrane to obtain immune exosomes loaded with TCM self-assembled nanomicelles (CpG-EXO/TGM). Our results demonstrate that CpG-EXO/TGM can bind free transferrin in blood, prolong blood circulation, and maintain intact structures when traversing the BBB and targeting GBM cells. In the GBM microenvironment, the strong anti-GBM effect of CpG-EXO/TGM is mainly attributed to two factors: (i) highly efficient uptake by GBM cells and sufficient intracellular release of drugs to induce apoptosis and (ii) stimulation of dendritic cell maturation and induction of tumor-associated macrophages polarization by CpG oligonucleotides to generate anti-GBM immune responses. Further research found that CpG-EXO/TGM can not only produce better efficacy in combination with temozolomide but also prevent a postoperative recurrence.
Collapse
Affiliation(s)
- Jiwei Cui
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Xue Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Jinge Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Anran Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Yingjiang Du
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Wei Zeng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Yumiao Guo
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Liuqing Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| |
Collapse
|
25
|
Supermolecules as a quality markers of herbal medicinal products. Heliyon 2022; 8:e12497. [PMID: 36568034 PMCID: PMC9767884 DOI: 10.1016/j.heliyon.2022.e12497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Herbal medicines have greatly contributed to human health worldwide for thousands of years. In particular, traditional Chinese medicine plays an essential role in the prevention and treatment of COVID-19. With the exponentially increasing use and global attention to herbal medicinal products (HMPs), efficacy and safety have become major public concerns in many countries. In general, the quantification and qualification of quality markers (Q-markers) is the most common way to solve this issue. In the last few decades, small molecules, including flavonoids, terpenes, phenylpropanoids, alkaloids, phenols, and glycosides have been extensively investigated as Q-markers for HMP quality control. With the development of biotechnology in the last decade, scientists have begun to explore HMPs macromolecules, including polysaccharides and DNA, for their establishment as Q-markers. In recent years, supermolecules with stronger biological activities have been found in HMPs. In this review, we summarize and discuss the current Q-markers for HMP quality control; in particular, the possibility of using supermolecules as Q-markers based on structure and activity was discussed.
Collapse
|
26
|
Zou L, Li Q, Hou Y, Chen M, Xu X, Wu H, Sun Z, Ma G. Self-assembled glycyrrhetinic acid derivatives for functional applications: a review. Food Funct 2022; 13:12487-12509. [PMID: 36413139 DOI: 10.1039/d2fo02472a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycyrrhetinic acid (GA), a famous natural product, has been attracting more attention recently because of its remarkable biological activity, natural sweetness, and good biocompatibility. In the past few years, a considerable amount of literature has grown up around the theme of GA-based chemical modification to broaden its functional applications. Promising structures including gels, micelles, nanoparticles, liposomes, and so forth have been constantly reported. On the one hand, the assembly mechanisms of various materials based on GA derivatives have been elucidated via modern analytical techniques. On the other hand, their potential application prospects in edible additives, intelligent drug delivery, and other fields have been investigated fully due to availability, biocompatibility, and controllable degradability. Inspired by these findings, a systematic summary and classification of the materials formed by GA derivatives seems necessary and meaningful. This review sums up the new functional applications of GA derivatives for the first time and provides better prospects for their application and development.
Collapse
Affiliation(s)
- Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Yong Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Meiying Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Haifeng Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| |
Collapse
|
27
|
Liu S, Liu H, Zhang L, Ma C, Abd El-Aty AM. Edible pentacyclic triterpenes: A review of their sources, bioactivities, bioavailability, self-assembly behavior, and emerging applications as functional delivery vehicles. Crit Rev Food Sci Nutr 2022; 64:5203-5219. [PMID: 36476115 DOI: 10.1080/10408398.2022.2153238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Edible pentacyclic triterpenes (PTs) are a group of nutraceutical ingredients commonly distributed in human diets. Existing evidence has proven that they have various biological functions, including anticancer, antioxidant, anti-inflammatory and hypoglycemic activities, making them as "functional factor" for a long time. However, their properties of strong hydrophobicity, poor permeability, poor absorption, and rapid metabolism result in low oral bioavailability, which dramatically hinders their efficacy for use. Recently, free PTs have successively been found to self-assemble or co-assemble into self-contained nanostructures with enhanced water dispersibility and oral bioavailability, which seems to be an efficient processing method for increased oral efficacy. Of particular interest, formulating them into nanostructures can also be introduced as functional delivery carriers for bioactive compounds or drugs with various advantages, such as improved stability, controlled release, enhanced oral bioavailability, synergistic bioactivity, and targeted delivery. This review systematically summarized the chemical structures, plant sources, bioactivities, absorption, metabolism, and oral bioavailability of PTs. Notably, we emphasized their self-assembly properties and emerging role as functional delivery carriers for nutrients, suggesting that PT nanostructures are not only efficient oral forms when introduced into foods but also functional delivery materials for nutrients to expand their commercial food applications.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Han Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Lulu Zhang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Chao Ma
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
28
|
Lin X, Huang X, Tian X, Yuan Z, Lu J, Nie X, Wang P, Lei H, Wang P. Natural Small-Molecule-Based Carrier-Free Self-Assembly Library Originated from Traditional Chinese Herbal Medicine. ACS OMEGA 2022; 7:43510-43521. [PMID: 36506183 PMCID: PMC9730315 DOI: 10.1021/acsomega.2c04098] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
The carrier-free self-assembly of small molecules opens a new window for the development of nanomaterials. This study is dedicated to developing binary small-molecular self-assemblies derived from phytochemicals in traditional Chinese herbal medicine. Among them, Rhei Radix et Rhizoma and Coptidis Rhizoma are a common pair used in clinics for thousands of years. Here, we found that there were numerous spherical supramolecular nanoparticles (NPs) originated from Rhei Radix et Rhizoma and Coptidis Rhizoma decoction. Ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was used to analyze the composition of the supramolecules, and a total of 119 phytochemicals were identified (23 anthraquinones, 31 alkaloids, 24 organic acids, 8 tannins, and other components). Isothermal titration calorimetry (ITC) showed that the interaction between Rhei Radix et Rhizoma and Coptidis Rhizoma was a spontaneous exothermic reaction, indicating that their phytochemicals had the property of self-assembly and interacted to form supramolecules in the decocting process. Furthermore, scanning electron microscopy (SEM), UV, IR, NMR, and ITC were used to verify that rhein and coptisine could self-assemble into nanofibers (Rhe-Cop NFs), while emodin and coptisine could self-assemble into nanoparticles (Emo-Cop NPs). The formation mechanism analysis of the self-assemblies revealed that they were induced by electrostatic attraction, hydrogen bonding, and π-π stacking, forming nanospheres of about 50 nm and nanofibers. The current study not only provides an idea of discovering carrier-free self-assemblies from traditional herbal medicine decoction but also supplies a reference for the design of binary self-assembly of small molecules in the future.
Collapse
|
29
|
Li Z, Xu X, Wang Y, Kong L, Han C. Carrier-free nanoplatforms from natural plants for enhanced bioactivity. J Adv Res 2022:S2090-1232(22)00215-6. [PMID: 36208834 PMCID: PMC10403678 DOI: 10.1016/j.jare.2022.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity. AIM OF REVIEW In this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions. Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future.
Collapse
Affiliation(s)
- Zhongrui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, 101 longmian Avenue, Nanjing 211166, PR China
| | - Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Yun Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| | - Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
30
|
Liu Y, Liu K, Wang X, Shao Y, Li X, Hao L, Zhang X, Yi J, Lu J. Co-assembling nanoparticles of Asiatic acid and Caffeic acid phenethyl ester: characterization, stability and bioactivity in vitro. Food Chem 2022; 402:134409. [DOI: 10.1016/j.foodchem.2022.134409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
|
31
|
Yu L, Jin Y, Song M, Zhao Y, Zhang H. When Natural Compounds Meet Nanotechnology: Nature-Inspired Nanomedicines for Cancer Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14081589. [PMID: 36015215 PMCID: PMC9412684 DOI: 10.3390/pharmaceutics14081589] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Recent significant strides of natural compounds in immunomodulation have highlighted their great potential against cancer. Despite many attempts being made for cancer immunotherapy, the biomedical application of natural compounds encounters a bottleneck because of their unclear mechanisms, low solubility and bioavailability, and limited efficacy. Herein, we summarize the immune regulatory mechanisms of different natural compounds at each step of the cancer-immunity cycle and highlight their anti-tumor potential and current limitations. We then propose and present various drug delivery strategies based on nanotechnology, including traditional nanoparticles (NPs)-based delivery strategies (lipid-based NPs, micelles, and polysaccharide/peptide/protein-based NPs) and novel delivery strategies (cell-derived NPs and carrier-free NPs), thus providing solutions to break through existing bottlenecks. Furthermore, representative applications of nature-inspired nanomedicines are also emphasized in detail with the advantages and disadvantages discussed. Finally, the challenges and prospects of natural compounds for cancer immunotherapy are provided, hopefully, to facilitate their far-reaching development toward clinical translation.
Collapse
Affiliation(s)
- Linna Yu
- People’s Hospital of Qianxinan Buyi and Miao Minority Autonomous Prefecture, Xingyi 562400, China;
| | - Yi Jin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; (Y.J.); (M.S.)
| | - Mingjie Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; (Y.J.); (M.S.)
| | - Yu Zhao
- People’s Hospital of Qianxinan Buyi and Miao Minority Autonomous Prefecture, Xingyi 562400, China;
- Correspondence: (Y.Z.); (H.Z.)
| | - Huaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; (Y.J.); (M.S.)
- Correspondence: (Y.Z.); (H.Z.)
| |
Collapse
|
32
|
Hou Y, Zou L, Li Q, Chen M, Ruan H, Sun Z, Xu X, Yang J, Ma G. Supramolecular assemblies based on natural small molecules: Union would be effective. Mater Today Bio 2022; 15:100327. [PMID: 35757027 PMCID: PMC9214787 DOI: 10.1016/j.mtbio.2022.100327] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 12/03/2022] Open
Abstract
Natural products have been used to prevent and treat human diseases for thousands of years, especially the extensive natural small molecules (NSMs) such as terpenoids, steroids and glycosides. A quantity of studies are confined to concern about their chemical structures and pharmacological activities at the monomolecular level, whereas the spontaneous assemblies of them in liquids yielding supramolecular structures have not been clearly understood deeply. Compared to the macromolecules or synthetic small molecular compounds, NSMs have the inherent advantages of lower toxicity, better biocompatibility, biodegradability and biological activity. Self-assembly of single component and multicomponent co-assembly are unique techniques for designing supramolecular entities. Assemblies are of special significance due to their range of applications in the areas of drug delivery systems, pollutants capture, materials synthesis, etc. The assembled mechanism of supramolecular NSMs which are mainly driven by multiple non-covalent interactions are summarized. Furthermore, a new hypothesis aimed to interpret the integration effects of multi-components of traditional Chinese medicines (TCMs) inspired on the theory of supramolecular assembly is proposed. Generally, this review can enlighten us to achieve the qualitative leap for understanding natural products from monomolecule to supramolecular structures and multi-component interactions, which is valuable for the intensive research and application.
Collapse
Affiliation(s)
- Yong Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Meiying Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Haonan Ruan
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Junshan Yang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| |
Collapse
|
33
|
Qiao L, Yang H, Gao S, Li L, Fu X, Wei Q. Research progress on self-assembled nanodrug delivery systems. J Mater Chem B 2022; 10:1908-1922. [DOI: 10.1039/d1tb02470a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, nanodrug delivery systems have attracted increasing attention due to their advantages, such as the high drug loading, low toxicity and side effects, improved bioavailability, long half-life, well...
Collapse
|
34
|
Zhang J, Hu K, Di L, Wang P, Liu Z, Zhang J, Yue P, Song W, Zhang J, Chen T, Wang Z, Zhang Y, Wang X, Zhan C, Cheng YC, Li X, Li Q, Fan JY, Shen Y, Han JY, Qiao H. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Adv Drug Deliv Rev 2021; 178:113964. [PMID: 34499982 DOI: 10.1016/j.addr.2021.113964] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Traditional herbal medicine (THM), an ancient science, is a gift from nature. For thousands of years, it has helped humans fight diseases and protect life, health, and reproduction. Nanomedicine, a newer discipline has evolved from exploitation of the unique nanoscale morphology and is widely used in diagnosis, imaging, drug delivery, and other biomedical fields. Although THM and nanomedicine differ greatly in time span and discipline dimensions, they are closely related and are even evolving toward integration and convergence. This review begins with the history and latest research progress of THM and nanomedicine, expounding their respective developmental trajectory. It then discusses the overlapping connectivity and relevance of the two fields, including nanoaggregates generated in herbal medicine decoctions, the application of nanotechnology in the delivery and treatment of natural active ingredients, and the influence of physiological regulatory capability of THM on the in vivo fate of nanoparticles. Finally, future development trends, challenges, and research directions are discussed.
Collapse
|
35
|
Liu S, Zhang J, Fu R, Feng H, Chu Y, Huang D, Liu H, Li C, Ma C, Abd El-Aty AM. Improved stability and aqueous solubility of β-carotene via encapsulation in self-assembled bioactive oleanolic acid nanoparticles. Food Chem 2021; 373:131498. [PMID: 34753075 DOI: 10.1016/j.foodchem.2021.131498] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022]
Abstract
Poor water solubility and stability of β-carotene (Car) greatly hinder its application in foods. Herein, naturally occurring bioactive oleanolic acid (OA) was used as a nanocarrier to overcome these shortcomings by fabricating Car-loaded OA nanoparticles (Car/OA NPs). Through optimization, the encapsulation efficiency and loading capacity reached 80.7% and 32.6%, respectively. Systematic characterization suggested that Car was successfully encapsulated, and hydrogen bonding and hydrophobic interactions are the main forces facilitating the self-assembly and encapsulation. Compared with free Car, Car/OA NPs exhibited significantly improved water dispersibility and enhanced stability against UV radiation, heat, ionic strength, and acidic conditions. Further, Car/OA NPs provided gastric protection, delayed-release in simulated gastric fluid (SGF) and controlled release in simulated intestinal fluid (SIF). Additionally, both OA NPs and Car/OA NPs showed markedly inherent hepatoprotective effects. This work demonstrates that OA NPs can be used as inherent bioactive nanocarriers to deliver hydrophobic nutrients and bioactive food components.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Jing Zhang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Rao Fu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Hao Feng
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yibing Chu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Dong Huang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Han Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Chaonan Li
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Chao Ma
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
36
|
Xie Y, Ma C, Yang X, Wang J, Long G, Zhou J. Phytonanomaterials as therapeutic agents and drug delivery carriers. Adv Drug Deliv Rev 2021; 176:113868. [PMID: 34303754 PMCID: PMC8482412 DOI: 10.1016/j.addr.2021.113868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/12/2021] [Accepted: 07/11/2021] [Indexed: 11/21/2022]
Abstract
Medicinal plants have been a major resource for drug discovery. Emerging evidence shows that in addition to pharmacologically active components, medicinal plants also contain phytochemical nanomaterials, or phytonanomaterials, which form nanoparticles for drug delivery. In this review, we examine the evidence supporting the existence of phytonanomaterials. Next, we review identification, isolation, and classification of phytonanomaterials, characteristics of phytonanomaterial-derived nanoparticles, and molecular mechanisms of phytonanomaterial assembly. We will then summarize the current progress in exploring phytonanomaterial-derived NPs as therapeutic agents and drug delivery carriers for disease treatment. Last, we will provide perspectives on future discovery and applications of phytonanomaterials.
Collapse
Affiliation(s)
- Ying Xie
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Chao Ma
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jiacheng Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China
| | - Gretchen Long
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
37
|
Cheng J, Wang S, Zhao H, Liu Y, Yang X. Exploring the self-assembly mechanism and effective synergistic antitumor chemophototherapy of a biodegradable and glutathione responsive ursolic acid prodrug mediated photosensitive nanodrug. Biomater Sci 2021; 9:3762-3775. [PMID: 33871500 DOI: 10.1039/d1bm00369k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supermolecularly assembled photochemotherapeutic nanocomposites composed of pure drug small molecules are promising for synergistically improved tumor therapy, yet potential multiple challenges remain to be addressed. Herein, we rationally designed a novel multifunctional small molecule disulfide modified natural pentacyclic triterpene of ursolic acid (UASS) that simultaneously possesses self-assembly ability, glutathione (GSH) responsivity, anticancer activity, biocompatibility and biodegradability and further constructed carrier-free GSH-sensitive photosensitive nanocomposite UASS-Ce6 NPs for safe and synergistically improved chemophototherapy. Specifically, UASS-Ce6 NPs exhibit improved 1O2 generation by reducing the energy gap (ΔEST) of Ce6 as determined by density functional theory. Meanwhile, molecular dynamics simulation revealed the possible reasons why free UASS self-assembles and UASS-Ce6 NPs with different assembled morphologies may be primarily attributed to the coplanar arrangement of UASS dimer units. Importantly, via noncovalent π-stacking and hydrophobic interactions, the resulting co-assemblies showed improved water solubility, increased intercellular ROS generation, desirable GSH sensibility, excellent biocompatibility, and enhanced tumor accumulation accompanied by rapid biodegradation, thus leading to significant in vitro and in vivo synergistic antitumor efficacy with favorable biosafety. This study provides a promising insight into the development of a self-assembled active single component platform with desirable stimuli responsiveness and biosafety toward synergistic antitumor therapy based on terpenoid natural small molecules.
Collapse
Affiliation(s)
- Jianjun Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang, China.
| | - Shu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang, China.
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang, China.
| | - Yan Liu
- Department of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang, China.
| |
Collapse
|
38
|
Chen X, Xie B, Huang L, Wan J, Wang Y, Shi X, Qiao Y, Song H, Wang H. Quantitative self-assembly of pure drug cocktails as injectable nanomedicines for synergistic drug delivery and cancer therapy. Theranostics 2021; 11:5713-5727. [PMID: 33897877 PMCID: PMC8058735 DOI: 10.7150/thno.55250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
New strategies to fabricate nanomedicines with high translational capacity are urgently desired. Herein, a new class of self-assembled drug cocktails that addresses the multiple challenges of manufacturing clinically useful cancer nanomedicines was reported. Methods: With the aid of a molecular targeted agent, dasatinib (DAS), cytotoxic cabazitaxel (CTX) forms nanoassemblies (CD NAs) through one-pot process, with nearly quantitative entrapment efficiency and ultrahigh drug loading of up to 100%. Results: Surprisingly, self-assembled CD NAs show aggregation-induced emission, enabling particle trafficking and drug release in living cells. In preclinical models of human cancer, including a patient-derived melanoma xenograft, CD NAs demonstrated striking therapeutic synergy to produce a durable recession in tumor growth. Impressively, CD NAs alleviated the toxicity of the parent CTX agent and showed negligible immunotoxicity in animals. Conclusions: Overall, this approach does not require any carrier matrices, offering a scalable and cost-effective methodology to create a new generation of nanomedicines for the safe and efficient delivery of drug combinations.
Collapse
|
39
|
Cheng J, Li X, Wang S, Han Y, Zhao H, Yang X. Carrier-Free Triterpene Prodrugs with Glutathione Response and Biosafety for Synergistically Enhanced Photochemotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:245-256. [PMID: 33373182 DOI: 10.1021/acsami.0c19214] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carrier-free pure drug self-assembled nanosystems have been proposed as a promising strategy for synergetic anticancer therapy. Herein, we purposefully designed and synthesized disulfide-modified glutathione (GSH)-responsive natural pentacyclic triterpene betulinic acid (BA) with better biodegradability and biocompatibility to construct carrier-free photosensitive prodrugs BA-S-S/Ce6 NPs for synergistically enhanced and biosafe photochemotherapy. The molecular dynamics simulation elucidates the possible coassembly mechanism that the coplanar arrangement of BA-S-S dimeric may be primarily responsible for the formation of a long lamella-like or spherical morphology. The density functional theory calculations demonstrate that the reduced energy gap (ΔEST) of Ce6 facilitates the improved singlet oxygen generation of BA-S-S/Ce6 nanoparticles (NPs). The assembled prodrugs exhibited remarkable GSH-responsive property and multiple favorable therapeutic features, leading to enhanced synergistic antitumor efficacy without noticeable toxicity. Additionally, evaluation of the antitumor efficacy of another tetracyclic triterpene stigmasterol (ST)-mediated ST-S-S/Ce6 NPs further confirmed the effectiveness of this rational design. This work provides a promising insight for exploring the pure drug self-assembly behavior and construction of GSH-responsive carrier-free triterpenoid prodrugs toward improved multiple combination antitumor therapies.
Collapse
Affiliation(s)
- Jianjun Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, China
| | - Xinyu Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, China
| | - Shu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, China
| | - Ying Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, China
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, China
| |
Collapse
|