1
|
Wang S, Li X. Soft composites with liquid inclusions: functional properties and theoretical models. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:493003. [PMID: 39222657 DOI: 10.1088/1361-648x/ad765d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Soft materials containing liquid inclusions have emerged as a promising class of materials. Unlike solid inclusions, liquid inclusions possess intrinsic fluidity, which allows them to retain the excellent deformation ability of soft materials. This can prevent compliance mismatches between the inclusions and the matrix, thus leading to improved performance and durability. Various liquids, including metallic, water-based, and ionic liquids, have been selected as inclusions for embedding into soft materials, resulting in unique properties and functionalities that enable a wide range of applications in soft robotics, wearable devices, and other cutting-edge fields. This review provides an overview of recent studies on the functional properties of composites with liquid inclusions and discusses theoretical models used to estimate these properties, aiming to bridge the gap between the microstructure/components and the overall properties of the composite from a theoretical perspective. Furthermore, current challenges and future opportunities for the widespread application of these composites are explored, highlighting their potential in advancing technologies.
Collapse
Affiliation(s)
- Shuang Wang
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Xiying Li
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|
2
|
Wang Z, Zheng Y, Qiao L, Ma Y, Zeng H, Liang J, Ye Q, Shen K, Liu B, Sun L, Fan Z. 4D-Printed MXene-Based Artificial Nerve Guidance Conduit for Enhanced Regeneration of Peripheral Nerve Injuries. Adv Healthc Mater 2024; 13:e2401093. [PMID: 38805724 DOI: 10.1002/adhm.202401093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Indexed: 05/30/2024]
Abstract
Repairing larger defects (>5 mm) in peripheral nerve injuries (PNIs) remains a significant challenge when using traditional artificial nerve guidance conduits (NGCs). A novel approach that combines 4D printing technology with poly(L-lactide-co-trimethylene carbonate) (PLATMC) and Ti3C2Tx MXene nanosheets is proposed, thereby imparting shape memory properties to the NGCs. Upon body temperature activation, the printed sheet-like structure can quickly self-roll into a conduit-like structure, enabling optimal wrapping around nerve stumps. This design enhances nerve fixation and simplifies surgical procedures. Moreover, the integration of microchannel expertly crafted through 4D printing, along with the incorporation of MXene nanosheets, introduces electrical conductivity. This feature facilitates the guided and directional migration of nerve cells, rapidly accelerating the healing of the PNI. By leveraging these advanced technologies, the developed NGCs demonstrate remarkable potential in promoting peripheral nerve regeneration, leading to substantial improvements in muscle morphology and restored sciatic nerve function, comparable to outcomes achieved through autogenous nerve transplantation.
Collapse
Affiliation(s)
- Zhilong Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Yan Zheng
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Liang Qiao
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Yuanya Ma
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Huajing Zeng
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Jiachen Liang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Qian Ye
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Kuangyu Shen
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Luyi Sun
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| |
Collapse
|
3
|
Wan X, Xiao Z, Tian Y, Chen M, Liu F, Wang D, Liu Y, Bartolo PJDS, Yan C, Shi Y, Zhao RR, Qi HJ, Zhou K. Recent Advances in 4D Printing of Advanced Materials and Structures for Functional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312263. [PMID: 38439193 DOI: 10.1002/adma.202312263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Indexed: 03/06/2024]
Abstract
4D printing has attracted tremendous worldwide attention during the past decade. This technology enables the shape, property, or functionality of printed structures to change with time in response to diverse external stimuli, making the original static structures alive. The revolutionary 4D-printing technology offers remarkable benefits in controlling geometric and functional reconfiguration, thereby showcasing immense potential across diverse fields, including biomedical engineering, electronics, robotics, and photonics. Here, a comprehensive review of the latest achievements in 4D printing using various types of materials and different additive manufacturing techniques is presented. The state-of-the-art strategies implemented in harnessing various 4D-printed structures are highlighted, which involve materials design, stimuli, functionalities, and applications. The machine learning approach explored for 4D printing is also discussed. Finally, the perspectives on the current challenges and future trends toward further development in 4D printing are summarized.
Collapse
Affiliation(s)
- Xue Wan
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhongmin Xiao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yujia Tian
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Feng Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Dong Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Paulo Jorge Da Silva Bartolo
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hang Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
4
|
Krisnadi F, Kim S, Im S, Chacko D, Vong MH, Rykaczewski K, Park S, Dickey MD. Printable Liquid Metal Foams That Grow When Watered. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308862. [PMID: 38252810 DOI: 10.1002/adma.202308862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Pastes and "foams" containing liquid metal (LM) as the continuous phase (liquid metal foams, LMFs) exhibit metallic properties while displaying paste or putty-like rheological behavior. These properties enable LMFs to be patterned into soft and stretchable electrical and thermal conductors through processes conducted at room temperature, such as printing. The simplest LMFs, featured in this work, are made by stirring LM in air, thereby entraining oxide-lined air "pockets" into the LM. Here, it is reported that mixing small amounts of water (as low as 1 wt%) into such LMFs gives rise to significant foaming by harnessing known reactions that evolve hydrogen and produce oxides. The resulting structures can be ≈4-5× their original volume and possess a fascinating combination of attributes: porosity, electrical conductivity, and responsiveness to environmental conditions. This expansion can be utilized for a type of 4D printing in which patterned conductors "grow," fill cavities, and change shape and density with respect to time. Excessive exposure to water in the long term ultimately consumes the metal in the LMF. However, when exposure to water is controlled, the metallic properties of porous LMFs can be preserved.
Collapse
Affiliation(s)
- Febby Krisnadi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Seoyeon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Sooik Im
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dennis Chacko
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Man Hou Vong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Konrad Rykaczewski
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Sungjune Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
5
|
Skillin NP, Bauman GE, Kirkpatrick BE, McCracken JM, Park K, Vaia RA, Anseth KS, White TJ. Photothermal Actuation of Thick 3D-Printed Liquid Crystalline Elastomer Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313745. [PMID: 38482935 DOI: 10.1002/adma.202313745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/28/2024] [Indexed: 03/27/2024]
Abstract
Liquid crystalline elastomers (LCEs) are stimuli-responsive materials that transduce an input energy into a mechanical response. LCE composites prepared with photothermal agents, such as nanoinclusions, are a means to realize wireless, remote, and local control of deformation with light. Amongst photothermal agents, gold nanorods (AuNRs) are highly efficient converters when the irradiation wavelength matches the longitudinal surface plasmon resonance (LSPR) of the AuNRs. However, AuNR aggregation broadens the LSPR which also reduces photothermal efficiency. Here, the surface chemistry of AuNRs is engineered via a well-controlled two-step ligand exchange with a monofunctional poly(ethylene glycol) (PEG) thiol that greatly improves the dispersion of AuNRs in LCEs. Accordingly, LCE-AuNR nanocomposites with very low PEG-AuNR content (0.01 wt%) prepared by 3D printing are shown to be highly efficient photothermal actuators with rapid response (>60% strain s-1) upon irradiation with near-infrared (NIR; 808 nm) light. Because of the excellent dispersion of PEG-AuNR within the LCE, unabsorbed NIR light transmits through the nanocomposites and can actuate a series of samples. Further, the dispersion also allows for the optical deformation of millimeter-thick 3D printed structures without sacrificing actuation speed. The realization of well-dispersed nanoinclusions to maximize the stimulus-response of LCEs can benefit functional implementation in soft robotics or medical devices.
Collapse
Affiliation(s)
- Nathaniel P Skillin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Grant E Bauman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Joselle M McCracken
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kyoungweon Park
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, 45433, USA
- UES, Inc., Dayton, OH, 45433, USA
| | - Richard A Vaia
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
6
|
Chen M, Hou Y, An R, Qi HJ, Zhou K. 4D Printing of Reprogrammable Liquid Crystal Elastomers with Synergistic Photochromism and Photoactuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303969. [PMID: 37432879 DOI: 10.1002/adma.202303969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
4D printing of liquid crystal elastomers (LCEs) via direct ink writing has opened up great opportunities to create stimuli-responsive actuations for applications such as soft robotics. However, most 4D-printed LCEs are limited to thermal actuation and fixed shape morphing, posing a challenge for achieving multiple programmable functionalities and reprogrammability. Here, a 4D-printable photochromic titanium-based nanocrystal (TiNC)/LCE composite ink is developed, which enables the reprogrammable photochromism and photoactuation of a single 4D-printed architecture. The printed TiNC/LCE composite exhibits reversible color-switching between white and black in response to ultraviolet (UV) irradiation and oxygen exposure. Upon near-infrared (NIR) irradiation, the UV-irradiated region can undergo photothermal actuation, allowing for robust grasping and weightlifting. By precisely controlling the structural design and the light irradiation, the single 4D-printed TiNC/LCE object can be globally or locally programmed, erased, and reprogrammed to achieve desirable photocontrollable color patterns and 3D structure constructions, such as barcode patterns and origami- and kirigami-inspired structures. This work provides a novel concept for designing and engineering adaptive structures with unique and tunable multifunctionalities, which have potential applications in biomimetic soft robotics, smart construction engineering, camouflage, multilevel information storage, etc.
Collapse
Affiliation(s)
- Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yanbei Hou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ran An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - H Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
7
|
Li X, Hou K, Long Y, Song K. LM-Gel Plasticine Based on Binary Cooperative with Kneadable Shaping and Conductivity. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38711229 DOI: 10.1021/acsami.4c03471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Liquid metal (LM)-based polymers have received growing interest for wearable health monitoring, electronic skins, and soft robotics. However, fabricating multifunctional LM-based polymers, in particular, featuring a convenient shaping ability while offering excellent deformability and conductivity remains a challenge. To overcome this obstacle, here, we propose a strategy to prepare LM-Gel "plasticine" (LGP) with great deformability, which is composed of a PVA (poly(vinyl alcohol)) soft network and an LM conductive phase. LGP can be easily constructed into different shapes such as plasticine and can be applied to different conditions (such as building a 3D circuit, circuit repair, and switch). Meanwhile, LGP has great conductivity (2.3 × 104 S/m) after surface annealing. Besides, LGP has a good electric heating performance, which shows the potential for application in wearable heating devices. Thus, this approach not only provides a way to prepare LM-polymer plasticine but also provides a novel perspective toward extending the applied range of LM-polymer composites.
Collapse
Affiliation(s)
- Xingchao Li
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kai Hou
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yue Long
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City 256606, Shandong, P. R. China
| | - Kai Song
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City 256606, Shandong, P. R. China
| |
Collapse
|
8
|
Yao DR, Kim I, Yin S, Gao W. Multimodal Soft Robotic Actuation and Locomotion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308829. [PMID: 38305065 DOI: 10.1002/adma.202308829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Diverse and adaptable modes of complex motion observed at different scales in living creatures are challenging to reproduce in robotic systems. Achieving dexterous movement in conventional robots can be difficult due to the many limitations of applying rigid materials. Robots based on soft materials are inherently deformable, compliant, adaptable, and adjustable, making soft robotics conducive to creating machines with complicated actuation and motion gaits. This review examines the mechanisms and modalities of actuation deformation in materials that respond to various stimuli. Then, strategies based on composite materials are considered to build toward actuators that combine multiple actuation modes for sophisticated movements. Examples across literature illustrate the development of soft actuators as free-moving, entirely soft-bodied robots with multiple locomotion gaits via careful manipulation of external stimuli. The review further highlights how the application of soft functional materials into robots with rigid components further enhances their locomotive abilities. Finally, taking advantage of the shape-morphing properties of soft materials, reconfigurable soft robots have shown the capacity for adaptive gaits that enable transition across environments with different locomotive modes for optimal efficiency. Overall, soft materials enable varied multimodal motion in actuators and robots, positioning soft robotics to make real-world applications for intricate and challenging tasks.
Collapse
Affiliation(s)
- Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Inho Kim
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
9
|
Jin B, Chen G, Chen Y, Yang C, Zhu Z, Weng Y, Zhao Q, Xie T. Reprogramming Photoresponsive Liquid Crystalline Elastomer via Force-Directed Evaporation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16844-16852. [PMID: 38517683 DOI: 10.1021/acsami.4c01076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Incorporating photothermal agents into thermoresponsive liquid crystalline elastomers (LCEs) offers remote and spatio-temporal control in actuation. Typically, both the light responsiveness and actuation behaviors are fixed since the agent doping and mesogen alignment are conducted before network formation. Here, we report an approach that enables programming photoresponsive LCEs after synthesis via force-directed evaporation. Different photothermal agents can be doped or removed by swelling the fully cross-linked LCEs in a specific solution, achieving the introduction and erasing of the photoresponsiveness. Moreover, the network swelling deletes the registered alignment, which allows for redefining the molecular order via re-evaporating the solvent with force imposed. This "one stone, two birds" strategy paves the way to simultaneously program/reprogram the actuation mode and responsiveness of LCEs, even in a spatio-selective manner to achieve complex actuations. Our approach is expandable to three-dimensional (3D) printed LCEs to access geometrically sophisticated shape-changing.
Collapse
Affiliation(s)
- Binjie Jin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Guancong Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yishu Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chen Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhan Zhu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yunhao Weng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
10
|
Rešetič A. Shape programming of liquid crystal elastomers. Commun Chem 2024; 7:56. [PMID: 38485773 PMCID: PMC10940691 DOI: 10.1038/s42004-024-01141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
Liquid crystal elastomers (LCEs) are shape-morphing materials that demonstrate reversible actuation when exposed to external stimuli, such as light or heat. The actuation's complexity depends heavily on the instilled liquid crystal alignment, programmed into the material using various shape-programming processes. As an unavoidable part of LCE synthesis, these also introduce geometrical and output restrictions that dictate the final applicability. Considering LCE's future implementation in real-life applications, it is reasonable to explore these limiting factors. This review offers a brief overview of current shape-programming methods in relation to the challenges of employing LCEs as soft, shape-memory components in future devices.
Collapse
Affiliation(s)
- Andraž Rešetič
- Jožef Stefan Institute, Solid State Physics Department, Jamova cesta 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Ye J, Xiang W, Cheng C, Bao W, Zhang Q. Principles and methods of liquid metal actuators. SOFT MATTER 2024; 20:2196-2211. [PMID: 38372963 DOI: 10.1039/d3sm01756g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
As a promising material, liquid metals (LMs) have gained considerable interest in the field of soft robotics due to their ability to move as designed routines or change their shape dramatically under external stimuli. Inspired by the science fiction film Terminator, tremendous efforts have been devoted to liquid robots with high compliance and intelligence. How to manipulate LM droplets is crucial to achieving this goal. Accordingly, this review is dedicated to presenting the principles driving LMs and summarizing the potential methods to develop LM actuators of high maneuverability. Moreover, the recent progress of LM robots based on these methods is overviewed. The challenges and prospects of implementing autonomous robots have been proposed.
Collapse
Affiliation(s)
- Jiao Ye
- School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Wentao Xiang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cai Cheng
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wendi Bao
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Tabrizi M, Clement JA, Babaei M, Martinez A, Gao J, Ware TH, Shankar MR. Three-dimensional blueprinting of molecular patterns in liquid crystalline polymers. SOFT MATTER 2024; 20:511-522. [PMID: 38113054 DOI: 10.1039/d3sm01374j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Exploiting the interplay of anisotropic diamagnetic susceptibility of liquid crystalline monomers and site selective photopolymerization enables the fabrication of 3D freeforms with highly refined microstructures. Utilizing chain transfer agents in the mesogenic inks presents a pathway for broadly tuning the mechanical properties of liquid crystalline polymers and their response to stimuli. In particular, the combination of 1,4-benzenedimethanethiol and tetrabromomethane is shown to enable voxelated blueprinting of molecular order, while allowing for a modulation of the crosslink density and the mechanical properties. The formulation of these monomers allows for the resolution of the voxels to approach the limits set by the coherence lengths defined by the anchoring from surfaces. These compositions demonstrate the expected thermotropic responses while allowing for their functionalization with photochromic switches to elicit photomechanical responses. Actuation strains are shown to outstrip that accomplished with prior systems that did not access chain transfer agents to modulate the structure of the macromolecular network. Test cases of this system are shown to create freeform actuators that exploit the refined director patterns during high-resolution printing. These include topological defects, hierarchically-structured light responsive grippers, and biomimetic flyers whose flight dynamics can be actively modulated via irradiation with light.
Collapse
Affiliation(s)
- Mohsen Tabrizi
- Department of Industrial Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261, USA.
| | - J Arul Clement
- Department of Industrial Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261, USA.
| | - Mahnoush Babaei
- Department of Aerospace Engineering & Engineering Mechanics, University of Texas at Austin, 2617 Wichita Street, C0600, Austin, TX 78712, USA.
| | - Angel Martinez
- Department of Applied Physics and Materials Science, Northern Arizona University, Science Annex, 525 S Beaver St, Flagstaff, AZ 86011, USA.
| | - Junfeng Gao
- Department of Industrial Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261, USA.
| | - Taylor H Ware
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, 209 Reed McDonald Building, College Station, TX 77843, USA.
| | - M Ravi Shankar
- Department of Industrial Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261, USA.
| |
Collapse
|
13
|
Yang Y, Meng L, Zhang J, Gao Y, Hao Z, Liu Y, Niu M, Zhang X, Liu X, Liu S. Near-Infrared Light-Driven MXene/Liquid Crystal Elastomer Bimorph Membranes for Closed-Loop Controlled Self-Sensing Bionic Robots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307862. [PMID: 37985651 PMCID: PMC10787073 DOI: 10.1002/advs.202307862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 11/22/2023]
Abstract
More recently, soft actuators have evoked great interest in the next generation of soft robots. Despite significant progress, the majority of current soft actuators suffer from the lack of real-time sensory feedback and self-control functions, prohibiting their effective sensing and multitasking functions. Therefore, in this work, a near-infrared-driven bimorph membrane, with self-sensing and feedback loop control functions, is produced by layer by layer (LBL) assembling MXene/PDDA (PM) onto liquid crystal elastomer (LCE) film. The versatile integration strategy successfully prevents the separation issues that arise from moduli mismatch between the sensing and the actuating layers, ultimately resulting in a stable and tightly bonded interface adhesion. As a result, the resultant membrane exhibited excellent mechanical toughness (tensile strengths equal to 16.3 MPa (||)), strong actuation properties (actuation stress equal to 1.56 MPa), and stable self-sensing (gauge factor equal to 4.72) capabilities. When applying the near-infrared (NIR) laser control, the system can perform grasping, traction, and crawling movements. Furthermore, the wing actuation and the closed-loop controlled motion are demonstrated in combination with the insect microcontroller unit (MCU) models. The remote precision control and the self-sensing capabilities of the soft actuator pave a way for complex and precise task modulation in the future.
Collapse
Affiliation(s)
- Youwei Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Lingxian Meng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Juzhong Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yadong Gao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zijuan Hao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yang Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Mingjun Niu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaomeng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xuying Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shuiren Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
14
|
Zhang L, Huang X, Cole T, Lu H, Hang J, Li W, Tang SY, Boyer C, Davis TP, Qiao R. 3D-printed liquid metal polymer composites as NIR-responsive 4D printing soft robot. Nat Commun 2023; 14:7815. [PMID: 38016940 PMCID: PMC10684855 DOI: 10.1038/s41467-023-43667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
4D printing combines 3D printing with nanomaterials to create shape-morphing materials that exhibit stimuli-responsive functionalities. In this study, reversible addition-fragmentation chain transfer polymerization agents grafted onto liquid metal nanoparticles are successfully employed in ultraviolet light-mediated stereolithographic 3D printing and near-infrared light-responsive 4D printing. Spherical liquid metal nanoparticles are directly prepared in 3D-printed resins via a one-pot approach, providing a simple and efficient strategy for fabricating liquid metal-polymer composites. Unlike rigid nanoparticles, the soft and liquid nature of nanoparticles reduces glass transition temperature, tensile stress, and modulus of 3D-printed materials. This approach enables the photothermal-induced 4D printing of composites, as demonstrated by the programmed shape memory of 3D-printed composites rapidly recovering to their original shape in 60 s under light irradiation. This work provides a perspective on the use of liquid metal-polymer composites in 4D printing, showcasing their potential for application in the field of soft robots.
Collapse
Affiliation(s)
- Liwen Zhang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Tim Cole
- Department of Electronic, Electrical, and Systems Engineering, University of Birmingham, Birmingham, UK
| | - Hongda Lu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jiangyu Hang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Shi-Yang Tang
- School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Thomas P Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
15
|
Sun Y, Wang L, Zhu Z, Li X, Sun H, Zhao Y, Peng C, Liu J, Zhang S, Li M. A 3D-Printed Ferromagnetic Liquid Crystal Elastomer with Programmed Dual-Anisotropy and Multi-Responsiveness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302824. [PMID: 37437184 DOI: 10.1002/adma.202302824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023]
Abstract
Liquid crystal elastomers (LCE) and magnetic soft materials are promising active materials in many emerging fields, such as soft robotics. Despite the high demand for developing active materials that combine the advantages of LCE and magnetic actuation, the lack of independent programming of the LCE nematic order and magnetization in a single material still hinders the desired multi-responsiveness. In this study, a ferromagnetic LCE (magLCE) ink with nematic order and magnetization is developed that can be independently programmed to be anisotropic, referred to as "dual anisotropy", via a customized 3D-printing platform. The magLCE ink is fabricated by dispersing ferromagnetic microparticles in the LCE matrix, and a 3D-printing platform is created by integrating a magnet with 3-DoF motion into an extrusion-based 3D printer. In addition to magnetic fields, magLCEs can also be actuated by heating sources (either environmental heating or photo-heating of the embedded ferromagnetic microparticles) with a high energy density and tunable actuation temperature. A programmed magLCE strip robot is demonstrated with enhanced adaptability to complex environments (different terrains, magnetic fields, and temperatures) using a multi-actuation strategy. The magLCE also has potential applications in mechanical memory, as demonstrated by the multistable mechanical metastructure array with remote writability and stable memory.
Collapse
Affiliation(s)
- Yuxuan Sun
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Liu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Science, 15 Beisihuan West Road, Beijing, 100190, P. R. China
| | - Zhengqing Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xingxiang Li
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hong Sun
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yong Zhao
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chenhui Peng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology of China, Shenzhen, 518055, P. R. China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Shiwu Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Mujun Li
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
16
|
Qiu W, He X, Fang Z, Wang Y, Dong K, Zhang G, Xu X, Ge Q, Xiong Y. Shape-Tunable 4D Printing of LCEs via Cooling Rate Modulation: Stimulus-Free Locking of Actuated State at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47509-47519. [PMID: 37769329 DOI: 10.1021/acsami.3c10210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Liquid crystal elastomers (LCEs) have garnered considerable attention in the field of four-dimensional (4D) printing due to their large, reversible, and anisotropic shape-morphing capabilities. By utilizing direct ink writing, intricate LCE structures with programmable shape morphing can be achieved. However, the maintenance of the actuated state for LCEs requires continuous and substantial external stimuli, presenting challenges for practical applications, particularly under ambient conditions. This study reports a straightforward and effective physical approach to lock the actuated state of LCEs through rapid cooling while preserving their reversible performance. Rapid cooling significantly reduces the mobility of the lightly cross-linked network in LCEs, resulting in a notably slow recovery of mesogen alignment. As a result, the locked LCE structures retain their actuated state even at room temperature. Moreover, we demonstrate the ability to achieve tunable shapes between the original and actuated states by modulating the cooling rate, i.e., varying the temperature and type of cooling medium. The proposed method opens up new possibilities to achieve stable and tunable shape locking of soft devices for engineering applications.
Collapse
Affiliation(s)
- Wanglin Qiu
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xiangnan He
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Zeming Fang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yaohui Wang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Ke Dong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Guoquan Zhang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xuguang Xu
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Qi Ge
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yi Xiong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
17
|
Yang Y, Ai C, Chen W, Zhen J, Kong X, Jiang Y. Recent Advances in Sources of Bio-Inspiration and Materials for Robotics and Actuators. SMALL METHODS 2023; 7:e2300338. [PMID: 37381685 DOI: 10.1002/smtd.202300338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/16/2023] [Indexed: 06/30/2023]
Abstract
Bionic robotics and actuators have made dramatic advancements in structural design, material preparation, and application owing to the richness of nature and innovative material design. Appropriate and ingenious sources of bio-inspiration can stimulate a large number of different bionic systems. After millennia of survival and evolutionary exploration, the mere existence of life confirms that nature is constantly moving in an evolutionary direction of optimization and improvement. To this end, bio-inspired robots and actuators can be constructed for the completion of a variety of artificial design instructions and requirements. In this article, the advances in bio-inspired materials for robotics and actuators with the sources of bio-inspiration are reviewed. The specific sources of inspiration in bionic systems and corresponding bio-inspired applications are summarized first. Then the basic functions of materials in bio-inspired robots and actuators is discussed. Moreover, a principle of matching biomaterials is creatively suggested. Furthermore, the implementation of biological information extraction is discussed, and the preparation methods of bionic materials are reclassified. Finally, the challenges and potential opportunities involved in finding sources of bio-inspiration and materials for robotics and actuators in the future is discussed.
Collapse
Affiliation(s)
- Yue Yang
- Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao, 066004, P.R. China
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, 066004, P.R. China
| | - Chao Ai
- Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao, 066004, P.R. China
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, 066004, P.R. China
- Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University), Ministry of Education of China, Qinhuangdao, 066004, P.R. China
| | - Wenting Chen
- Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao, 066004, P.R. China
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, 066004, P.R. China
- Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University), Ministry of Education of China, Qinhuangdao, 066004, P.R. China
| | - Jinpeng Zhen
- Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao, 066004, P.R. China
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, 066004, P.R. China
| | - Xiangdong Kong
- Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao, 066004, P.R. China
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, 066004, P.R. China
- Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University), Ministry of Education of China, Qinhuangdao, 066004, P.R. China
| | - Yunhong Jiang
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Newcastle, NE1 8ST, UK
| |
Collapse
|
18
|
Lan R, Shen W, Yao W, Chen J, Chen X, Yang H. Bioinspired humidity-responsive liquid crystalline materials: from adaptive soft actuators to visualized sensors and detectors. MATERIALS HORIZONS 2023; 10:2824-2844. [PMID: 37211901 DOI: 10.1039/d3mh00392b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Inspired by nature, humidity-responsive materials and devices have attracted significant interest from scientists in multiple disciplines, ranging from chemistry, physics and materials science to biomimetics. Owing to their superiorities, including harmless stimulus and untethered control, humidity-driven materials have been widely investigated for application in soft robots, smart sensors and detectors, biomimetic devices and anticounterfeiting labels. Especially, humidity-responsive liquid crystalline materials are particularly appealing due to the combination of programmable and adaptive liquid crystal matrix and humidity-controllability, enabling the fabrication of advanced self-adaptive robots and visualized sensors. In this review, we summarize the recent progress in humidity-driven liquid crystalline materials. First, a brief introduction of liquid crystal materials, including liquid crystalline polymers, cholesteric liquid crystals, blue-phase liquid crystals and cholesteric cellulose nanocrystals is provided. Subsequently, the mechanisms of humidity-responsiveness are presented, followed by the diverse strategies for the fabrication of humidity-responsive liquid crystalline materials. The applications of humidity-driven devices will be presented ranging from soft actuators to visualized sensors and detectors. Finally, we provide an outlook on the development of humidity-driven liquid crystalline materials.
Collapse
Affiliation(s)
- Ruochen Lan
- Institute of Advanced Materials & Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
- School of Materials Science and Engineering, Peking University, Beijing 100871, China.
| | - Wenbo Shen
- Hangzhou WITLANCE Technology Co. Ltd, Hangzhou 310024, China
| | - Wenhuan Yao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jingyu Chen
- Institute of Advanced Materials & Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Xinyu Chen
- Institute of Advanced Materials & Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
19
|
Lian JJ, Guo WT, Sun QJ. Emerging Functional Polymer Composites for Tactile Sensing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4310. [PMID: 37374494 DOI: 10.3390/ma16124310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
In recent years, extensive research has been conducted on the development of high-performance flexible tactile sensors, pursuing the next generation of highly intelligent electronics with diverse potential applications in self-powered wearable sensors, human-machine interactions, electronic skin, and soft robotics. Among the most promising materials that have emerged in this context are functional polymer composites (FPCs), which exhibit exceptional mechanical and electrical properties, enabling them to be excellent candidates for tactile sensors. Herein, this review provides a comprehensive overview of recent advances in FPCs-based tactile sensors, including the fundamental principle, the necessary property parameter, the unique device structure, and the fabrication process of different types of tactile sensors. Examples of FPCs are elaborated with a focus on miniaturization, self-healing, self-cleaning, integration, biodegradation, and neural control. Furthermore, the applications of FPC-based tactile sensors in tactile perception, human-machine interaction, and healthcare are further described. Finally, the existing limitations and technical challenges for FPCs-based tactile sensors are briefly discussed, offering potential avenues for the development of electronic products.
Collapse
Affiliation(s)
- Jia-Jin Lian
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wen-Tao Guo
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qi-Jun Sun
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
20
|
Chen M, Gao M, Bai L, Zheng H, Qi HJ, Zhou K. Recent Advances in 4D Printing of Liquid Crystal Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209566. [PMID: 36461147 DOI: 10.1002/adma.202209566] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Indexed: 06/09/2023]
Abstract
Liquid crystal elastomers (LCEs) are renowned for their large, reversible, and anisotropic shape change in response to various external stimuli due to their lightly cross-linked polymer networks with an oriented mesogen direction, thus showing great potential for applications in robotics, bio-medics, electronics, optics, and energy. To fully take advantage of the anisotropic stimuli-responsive behaviors of LCEs, it is preferable to achieve a locally controlled mesogen alignment into monodomain orientations. In recent years, the application of 4D printing to LCEs opens new doors for simultaneously programming the mesogen alignment and the 3D geometry, offering more opportunities and higher feasibility for the fabrication of 4D-printed LCE objects with desirable stimuli-responsive properties. Here, the state-of-the-art advances in 4D printing of LCEs are reviewed, with emphasis on both the mechanisms and potential applications. First, the fundamental properties of LCEs and the working principles of the representative 4D printing techniques are briefly introduced. Then, the fabrication of LCEs by 4D printing techniques and the advantages over conventional manufacturing methods are demonstrated. Finally, perspectives on the current challenges and potential development trends toward the 4D printing of LCEs are discussed, which may shed light on future research directions in this new field.
Collapse
Affiliation(s)
- Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ming Gao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lichun Bai
- School of Traffic and Transportation Engineering, Central South University, Changsha, 410075, China
| | - Han Zheng
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - H Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
21
|
Vinciguerra MR, Patel DK, Zu W, Tavakoli M, Majidi C, Yao L. Multimaterial Printing of Liquid Crystal Elastomers with Integrated Stretchable Electronics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24777-24787. [PMID: 37163362 DOI: 10.1021/acsami.2c23028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Liquid crystal elastomers (LCEs) have grown in popularity in recent years as a stimuli-responsive material for soft actuators and shape reconfigurable structures. To make these material systems electrically responsive, they must be integrated with soft conductive materials that match the compliance and deformability of the LCE. This study introduces a design and manufacturing methodology for combining direct ink write (DIW) 3D printing of soft, stretchable conductive inks with DIW-based "4D printing" of LCE to create fully integrated, electrically responsive, shape programmable matter. The conductive ink is composed of a soft thermoplastic elastomer, a liquid metal alloy (eutectic gallium indium, EGaIn), and silver flakes, exhibiting both high stretchability and conductivity (order of 105 S m-1). Empirical tuning of the LCE printing parameters gives rise to a smooth surface (<10 μm) for patterning the conductive ink with controlled trace dimensions. This multimaterial printing method is used to create shape reconfigurable LCE devices with on-demand circuit patterning that could otherwise not be easily fabricated through traditional means, such as an LCE bending actuator able to blink a Morse code signal and an LCE crawler with an on/off photoresistor controller. In contrast to existing fabrication methodologies, the inclusion of the conductive ink allows for stable power delivery to surface mount devices and Joule heating traces in a highly dynamic LCE system. This digital fabrication approach can be leveraged to push LCE actuators closer to becoming functional devices, such as shape programmable antennas and actuators with integrated sensing.
Collapse
Affiliation(s)
- Michael R Vinciguerra
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Dinesh K Patel
- Human Computer Interaction Institute, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Wuzhou Zu
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3090-290, Portugal
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Lining Yao
- Human Computer Interaction Institute, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
22
|
Wu D, Zhang Y, Yang H, Wei A, Zhang Y, Mensah A, Yin R, Lv P, Feng Q, Wei Q. Scalable functionalized liquid crystal elastomer fiber soft actuators with multi-stimulus responses and photoelectric conversion. MATERIALS HORIZONS 2023. [PMID: 37092244 DOI: 10.1039/d3mh00336a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Liquid crystal elastomer (LCE) fibers exhibit large deformation and reversibility, making them an ideal candidate for soft actuators. It is still challenging to develop a scalable strategy and endow fiber actuators with photoelectric functions to achieve tailorable photo-electro-thermal responsiveness and rapid large actuation deformation. Herein, we fabricated a multiresponsive actuator that consists of LCE long fibers obtained by continuous dry spinning and further coated it with polydopamine (PDA)-modified MXene ink. The designed PDA@MXene-integrated LCE fiber is used for shape-deformable and multi-trigger actuators that can be photo- and electro-thermally actuated. The proposed LCE fiber actuator combines an excellent photothermal and long-term electrically conductive PDA@MXene and a shape-morphing LCE fiber, enabling their robust mechanical flexibility, multiple fast responses (∼0.4 s), and stable and large actuation deformation (∼60%). As a proof-of-concept, we present near-infrared light-driven artificial muscle that can lift 1000 times the weight and an intelligent circuit switch with stable controllability and fast responsiveness (∼0.1 s). Importantly, an adaptive smart window system that integrates light-driven energy harvesting/conversion functions is ingeniously constructed by the integration of a propellable curtain woven by the designed fiber and solar cells. This work can provide insights into the development of advanced intelligent materials toward soft robotics, sustainable energy savings and beyond.
Collapse
Affiliation(s)
- Dingsheng Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China.
- Key Laboratory of Textile Fabrics, College of Textiles and Clothing, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Yanan Zhang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China.
| | - Hanrui Yang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China.
| | - Anfang Wei
- Key Laboratory of Textile Fabrics, College of Textiles and Clothing, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Yuxin Zhang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China.
| | - Alfred Mensah
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China.
| | - Rui Yin
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China.
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Quan Feng
- Key Laboratory of Textile Fabrics, College of Textiles and Clothing, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China.
| |
Collapse
|
23
|
Wu W, Zhou Y, Liu Q, Ren L, Chen F, Fuh JYH, Zheng A, Li X, Zhao J, Li G. Metallic 4D Printing of Laser Stimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206486. [PMID: 36683254 PMCID: PMC10131821 DOI: 10.1002/advs.202206486] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Indexed: 06/17/2023]
Abstract
4D printing of metallic shape-morphing systems can be applied in many fields, including aerospace, smart manufacturing, naval equipment, and biomedical engineering. The existing forming materials for metallic 4D printing are still very limited except shape memory alloys. Herein, a 4D printing method to endow non-shape-memory metallic materials with active properties is presented, which could overcome the shape-forming limitation of traditional material processing technologies. The thermal stress spatial control of 316L stainless steel forming parts is achieved by programming the processing parameters during a laser powder bed fusion (LPBF) process. The printed parts can realize the shape changing of selected areas during or after forming process owing to stress release generated. It is demonstrated that complex metallic shape-morphing structures can be manufactured by this method. The principles of printing parameters programmed and thermal stress pre-set are also applicable to other thermoforming materials and additive manufacturing processes, which can expand not only the materials used for 4D printing but also the applications of 4D printing technologies.
Collapse
Affiliation(s)
- Wenzheng Wu
- School of Mechanical and Aerospace EngineeringJilin UniversityChangchunJilin130025P. R. China
| | - Yiming Zhou
- School of Mechanical and Aerospace EngineeringJilin UniversityChangchunJilin130025P. R. China
| | - Qingping Liu
- Key Laboratory of Bionic Engineering (Ministry of Education)Jilin UniversityChangchun130025P. R. China
| | - Luquan Ren
- School of Mechanical and Aerospace EngineeringJilin UniversityChangchunJilin130025P. R. China
- Key Laboratory of Bionic Engineering (Ministry of Education)Jilin UniversityChangchun130025P. R. China
| | - Fan Chen
- Department of Mechanical EngineeringNational University of SingaporeSingapore117576Singapore
| | - Jerry Ying Hsi Fuh
- Department of Mechanical EngineeringNational University of SingaporeSingapore117576Singapore
| | - Aodu Zheng
- School of Mechanical and Aerospace EngineeringJilin UniversityChangchunJilin130025P. R. China
- Chongqing Research InstituteJilin University618 Liangjiang Avenue, Longxing Town, Yubei DistrictChongqing401122P. R. China
| | - Xuechao Li
- School of Mechanical and Aerospace EngineeringJilin UniversityChangchunJilin130025P. R. China
- Chongqing Research InstituteJilin University618 Liangjiang Avenue, Longxing Town, Yubei DistrictChongqing401122P. R. China
| | - Ji Zhao
- School of Mechanical Engineering and AutomationNortheastern UniversityShenyangLiaoning110004P. R. China
| | - Guiwei Li
- School of Mechanical and Aerospace EngineeringJilin UniversityChangchunJilin130025P. R. China
- Key Laboratory of Bionic Engineering (Ministry of Education)Jilin UniversityChangchun130025P. R. China
| |
Collapse
|
24
|
Hou W, Wang J, Lv JA. Bioinspired Liquid Crystalline Spinning Enables Scalable Fabrication of High-Performing Fibrous Artificial Muscles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211800. [PMID: 36812485 DOI: 10.1002/adma.202211800] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Leveraging liquid crystal elastomers (LCEs) to realize scalable fabrication of high-performing fibrous artificial muscles is of particular interest because these active soft materials can provide large, reversible, programmable deformations upon environmental stimuli. High-performing fibrous LCEs require the used processing technology to enable shaping LCEs into micro-scale fine fibers as thin as possible while achieving macroscopic LC orientation, which however remains a daunting challenge. Here, a bioinspired spinning technology is reported that allows for continuous, high-speed production (fabrication speed up to 8400 m h-1 ) of thin and aligned LCE microfibers combined with rapid deformation (actuation strain rate up to 810% s-1 ), powerful actuation (actuation stress up to 5.3 MPa), high response frequency (50 Hz), and long cycle life (250 000 cycles without obvious fatigue). Inspired by liquid crystalline spinning of spiders that takes advantage of multiple drawdowns to thin and align their dragline silks, internal drawdown via tapered-wall-induced-shearing and external drawdown via mechanical stretching are employed to shape LCEs into long, thin, aligned microfibers with the desirable actuation performances, which few processing technologies can achieve. This bioinspired processing technology capable of scalable production of high-performing fibrous LCEs would benefit the development of smart fabrics, intelligent wearable devices, humanoid robotics, and other areas.
Collapse
Affiliation(s)
- Wenhao Hou
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
| | - Jiao Wang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
| | - Jiu-An Lv
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
| |
Collapse
|
25
|
Zhang C, Liao E, Li C, Zhang Y, Chen Y, Lu A, Liu Y, Geng C. 3D Printed Silicones with Shape Morphing and Low-Temperature Ultraelasticity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4549-4558. [PMID: 36642888 DOI: 10.1021/acsami.2c20392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
3D printed silicones have demonstrated great potential in diverse areas by combining the advantageous physiochemical properties of silicones with the unparalleled design freedom of additive manufacturing. However, their low-temperature performance, which is of particular importance for polar and space applications, has not been addressed. Herein, a 3D printed silicone foam with unprecedented low-temperature elasticity is presented, which is featured with extraordinary fatigue resistance, excellent shape recovery, and energy-absorbing capability down to a low temperature of -60 °C after extreme compression (an intensive load of over 66000 times its own weight). The foam is achieved by direct writing of a phenyl silicone-based pseudoplastic ink embedded with sodium chloride as sacrificial template. During the water immersion process to create pores in the printed filaments, a unique osmotic pressure-driven shape morphing strategy is also reported, which offers an attractive alternative to traditional 4D printed hydrogels in virtue of the favorable mechanical robustness of the silicone material. The underlying mechanisms for shape morphing and low-temperature elasticity are discussed in detail.
Collapse
Affiliation(s)
- Chenyang Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
| | - Enze Liao
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
| | - Changlin Li
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
| | - Yaling Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
| | | | - Ai Lu
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
| | | | - Chengzhen Geng
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
| |
Collapse
|
26
|
Tasmim S, Yousuf Z, Rahman FS, Seelig E, Clevenger AJ, VandenHeuvel SN, Ambulo CP, Raghavan S, Zimmern PE, Romero-Ortega MI, Ware TH. Liquid crystal elastomer based dynamic device for urethral support: Potential treatment for stress urinary incontinence. Biomaterials 2023; 292:121912. [PMID: 36434829 PMCID: PMC9772118 DOI: 10.1016/j.biomaterials.2022.121912] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/20/2022]
Abstract
Stress urinary incontinence (SUI) is characterized by the involuntary loss of urine due to increased intra-abdominal pressure during coughing, sneezing, or exercising. SUI affects 20-40% of the female population and is exacerbated by aging. Severe SUI is commonly treated with surgical implantation of an autologous or a synthetic sling underneath the urethra for support. These slings, however, are static, and their tension cannot be non-invasively adjusted, if needed, after implantation. This study reports the fabrication of a novel device based on liquid crystal elastomers (LCEs) capable of changing shape in response to temperature increase induced by transcutaneous IR light. The shape change of the LCE-based device was characterized in a scar tissue phantom model. An in vitro urinary tract model was designed to study the efficacy of the LCE-based device to support continence and adjust sling tension with IR illumination. Finally, the device was acutely implanted and tested for induced tension changes in female multiparous New Zealand white rabbits. The LCE device achieved 5.6% ± 1.1% actuation when embedded in an agar gel with an elastic modulus of 100 kPa. The corresponding device temperature was 44.9 °C ± 0.4 °C, and the surrounding agar temperature stayed at 42.1 °C ± 0.4 °C. Leaking time in the in vitro urinary tract model significantly decreased (p < 0.0001) when an LCE-based cuff was sutured around the model urethra from 5.2min ± 1min to 2min ±0.5min when the cuff was illuminated with IR light. Normalized leak point force (LPF) increased significantly (p = 0.01) with the implantation of an LCE-CB cuff around the bladder neck of multiparous rabbits. It decreased significantly (p = 0.023) when the device was actuated via IR light illumination. These results demonstrate that LCE material could be used to fabricate a dynamic device for treating SUI in women.
Collapse
Affiliation(s)
- Seelay Tasmim
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Zuha Yousuf
- Departments of Bioengineering and Biomedical Science, University of Houston, Houston, TX, 77004, USA
| | - Farial S Rahman
- Departments of Bioengineering and Biomedical Science, University of Houston, Houston, TX, 77004, USA
| | - Emily Seelig
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Abigail J Clevenger
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Sabrina N VandenHeuvel
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Cedric P Ambulo
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton, OH, 45433, USA
| | - Shreya Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Philippe E Zimmern
- Department of Urology, The University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Mario I Romero-Ortega
- Departments of Bioengineering and Biomedical Science, University of Houston, Houston, TX, 77004, USA
| | - Taylor H Ware
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
27
|
Sheikh A, Abourehab MAS, Kesharwani P. The clinical significance of 4D printing. Drug Discov Today 2023; 28:103391. [PMID: 36195204 DOI: 10.1016/j.drudis.2022.103391] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/11/2022] [Accepted: 09/28/2022] [Indexed: 02/02/2023]
Abstract
4D printing is the next step on from 3D printing involving the fourth dimension of 'time'. The programmed 4D-printed objects are capable of changing their shape in response to external stimuli, such as light, heat, or water, differentiating them from 3D-printed static objects. This technique promises new possibilities for cancer treatment, drug delivery, stent development, and tissue engineering. In this review, we focus on the development of 4D-printed objects, their clinical use, and the possibility of 5D printing, which could revolutionize the fields of biomedical engineering and drug delivery.
Collapse
Affiliation(s)
- Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia 61519, Egypt
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
28
|
Emerging 4D printing strategies for on-demand local actuation & micro printing of soft materials. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Tan MWM, Bark H, Thangavel G, Gong X, Lee PS. Photothermal modulated dielectric elastomer actuator for resilient soft robots. Nat Commun 2022; 13:6769. [DOI: 10.1038/s41467-022-34301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractSoft robots need to be resilient to extend their operation under unpredictable environments. While utilizing elastomers that are tough and healable is promising to achieve this, mechanical enhancements often lead to higher stiffness that deteriorates actuation strains. This work introduces liquid metal nanoparticles into carboxyl polyurethane elastomer to sensitize a dielectric elastomer actuator (DEA) with responsiveness to electric fields and NIR light. The nanocomposite can be healed under NIR illumination to retain high toughness (55 MJ m−3) and can be recycled at lower temperatures and shorter durations due to nanoparticle-elastomer interactions that minimize energy barriers. During co-stimulation, photothermal effects modulate the elastomer moduli to lower driving electric fields of DEAs. Bilayer configurations display synergistic actuation under co-stimulation to improve energy densities, and enable a DEA crawler to achieve longer strides. This work paves the way for a generation of soft robots that achieves both resilience and high actuation performance.
Collapse
|
30
|
Gan T, Xiao Q, Handschuh-Wang S, Huang X, Wang H, Deng X, Hu S, Wang B, Wu Q, Zhou X. Conformally Adhesive, Large-Area, Solidlike, yet Transient Liquid Metal Thin Films and Patterns via Gelatin-Regulated Droplet Deposition and Sintering. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42744-42756. [PMID: 36068651 DOI: 10.1021/acsami.2c12880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adhesion and spreading of liquid metals (LMs) on substrates are essential steps for the generation of flexible electronics and thermal management devices. However, the controlled deposition is limited by the high surface tension and peculiar wetting and adhesion behavior of LMs. Herein, we introduce gelatin-regulated LM droplet deposition and sintering (GLMDDS), for the upscalable production of conformally adhesive, solidlike, yet transient LM thin films and patterns on diverse substrates. This method involves four steps: homogeneous deposition of LM microdroplets, gelation of the LM-gelatin solution, toughening of the gelatin hydrogel by solvent displacement, and peeling-induced sintering of LM microdroplets. The LM thin film exhibits a three-layer structure, comprising an LM microdroplet-embedded tough organohydrogel adhesion layer, a continuous LM layer, and an oxide skin. The composite exhibits high stretchability and mechanical robustness, conformal adhesion to various substrates, high conductivity (4.35 × 105 S·m-1), and transience (86% LM recycled). Large-scale deposition (i.e., 5.6 dm2) and the potential for patterns on diverse substrates demonstrate its upscalability and broad suitability. Finally, the LM thin films and patterns are applied for flexible and wearable devices, i.e., pressure sensors, heaters, human motion tracking devices, and thermal management devices, illustrating the broad applicability of this strategy.
Collapse
Affiliation(s)
- Tiansheng Gan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qi Xiao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xiaoqin Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Haifei Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xiaobo Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Shuangyan Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qixing Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
31
|
Long F, Xu G, Wang J, Ren Y, Cheng Y. Variable Stiffness Conductive Composites by 4D Printing Dual Materials Alternately. MICROMACHINES 2022; 13:1343. [PMID: 36014265 PMCID: PMC9415883 DOI: 10.3390/mi13081343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Materials that can be designed with programmable properties and which change in response to external stimuli are of great importance in numerous fields of soft actuators, involving robotics, drug delivery and aerospace applications. In order to improve the interaction of human and robots, materials with variable stiffness are introduced to develop their compliance. A variable stiffness composite has been investigated in this paper, which is composed of liquid metals (LMs) and silicone elastomers. The phase changing materials (LMs) have been encapsulated into silicone elastomer by printing the dual materials alternately with three-dimensional direct ink writing. Such composites enable the control over their own stiffness between soft and rigid states through LM effective phase transition. The tested splines demonstrated that the stiffness changes approximately exceeded 1900%, and the storage modulus is 4.75 MPa and 0.2 MPa when LM is rigid and soft, respectively. In the process of heating up, the stretching strain can be enlarged by at least three times, but the load capacity is weakened. At a high temperature, the resistance of the conductive composites changes with the deformation degree, which is expected to be applied in the field of soft sensing actuators.
Collapse
Affiliation(s)
- Fei Long
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Gaojie Xu
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jing Wang
- Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Yong Ren
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Yuchuan Cheng
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Monti J, Concellón A, Dong R, Simmler M, Münchinger A, Huck C, Tegeder P, Nirschl H, Wegener M, Osuji CO, Blasco E. Two-Photon Laser Microprinting of Highly Ordered Nanoporous Materials Based on Hexagonal Columnar Liquid Crystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33746-33755. [PMID: 35849651 DOI: 10.1021/acsami.2c10106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoporous materials relying on supramolecular liquid crystals (LCs) are excellent candidates for size- and charge-selective membranes. However, whether they can be manufactured using printing technologies remained unexplored so far. In this work, we develop a new approach for the fabrication of ordered nanoporous microstructures based on supramolecular LCs using two-photon laser printing. In particular, we employ photo-cross-linkable hydrogen-bonded complexes, that self-assemble into columnar hexagonal (Colh) mesophases, as the base of our printable photoresist. The presence of photopolymerizable groups in the periphery of the molecules enables the printability using a laser. We demonstrate the conservation of the Colh arrangement and of the adsorptive properties of the materials after laser microprinting, which highlights the potential of the approach for the fabrication of functional nanoporous structures with a defined geometry. This first example of printable Colh LC should open new opportunities for the fabrication of functional porous microdevices with potential application in catalysis, filtration, separation, or molecular recognition.
Collapse
Affiliation(s)
- Joël Monti
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Alberto Concellón
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Ruiqi Dong
- Department of Chemical and Biomolecular Engineering, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mira Simmler
- Institute of Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Alexander Münchinger
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Christian Huck
- Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Petra Tegeder
- Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Hermann Nirschl
- Institute of Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Martin Wegener
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Chinedum O Osuji
- Department of Chemical and Biomolecular Engineering, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eva Blasco
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
- Center for Advanced Materials (CAM), Heidelberg University, Heidelberg 69120, Germany
- Organic Chemistry Institute, Heidelberg University, Hedelberg 69120, Germany
| |
Collapse
|
33
|
Xiao YY, Jiang ZC, Hou JB, Chen XS, Zhao Y. Electrically driven liquid crystal network actuators. SOFT MATTER 2022; 18:4850-4867. [PMID: 35730498 DOI: 10.1039/d2sm00544a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soft actuators based on liquid crystal networks (LCNs) have aroused great scientific interest for use as stimuli-controlled shape-changing and moving components for robotic devices due to their fast, large, programmable and solvent-free actuation responses. Recently, various LCN actuators have been implemented in soft robotics using stimulus sources such as heat, light, humidity and chemical reactions. Among them, electrically driven LCN actuators allow easy modulation and programming of the input electrical signals (amplitude, phase, and frequency) as well as stimulation throughout the volume, rendering them promising actuators for practical applications. Herein, the progress of electrically driven LCN actuators regarding their construction, actuation mechanisms, actuation performance, actuation programmability and the design strategies for intelligent systems is elucidated. We also discuss new robotic functions and advanced actuation control. Finally, an outlook is provided, highlighting the research challenges faced with this type of actuator.
Collapse
Affiliation(s)
- Yao-Yu Xiao
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Zhi-Chao Jiang
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Jun-Bo Hou
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Xin-Shi Chen
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Yue Zhao
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
34
|
Guan Z, Wang L, Bae J. Advances in 4D printing of liquid crystalline elastomers: materials, techniques, and applications. MATERIALS HORIZONS 2022; 9:1825-1849. [PMID: 35504034 DOI: 10.1039/d2mh00232a] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid crystalline elastomers (LCEs) are polymer networks exhibiting anisotropic liquid crystallinity while maintaining elastomeric properties. Owing to diverse polymeric forms and self-alignment molecular behaviors, LCEs have fascinated state-of-the-art efforts in various disciplines other than the traditional low-molar-mass display market. By patterning order to structures, LCEs demonstrate reversible high-speed and large-scale actuations in response to external stimuli, allowing for close integration with 4D printing and architectures of digital devices, which is scarcely observed in homogeneous soft polymer networks. In this review, we collect recent advances in 4D printing of LCEs, with emphases on synthesis and processing methods that enable microscopic changes in the molecular orientation and hence macroscopic changes in the properties of end-use objects. Promising potentials of printed complexes include fields of soft robotics, optics, and biomedical devices. Within this scope, we elucidate the relationships among external stimuli, tailorable morphologies in mesophases of liquid crystals, and programmable topological configurations of printed parts. Lastly, perspectives and potential challenges facing 4D printing of LCEs are discussed.
Collapse
Affiliation(s)
- Zhecun Guan
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Jinhye Bae
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA.
- Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
35
|
Self-Healable and Recyclable Dual-Shape Memory Liquid Metal–Elastomer Composites. Polymers (Basel) 2022; 14:polym14112259. [PMID: 35683935 PMCID: PMC9182922 DOI: 10.3390/polym14112259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Liquid metal (LM)–polymer composites that combine the thermal and electrical conductivity of LMs with the shape-morphing capability of polymers are attracting a great deal of attention in the fields of reconfigurable electronics and soft robotics. However, investigation of the synergetic effect between the shape-changing properties of LMs and polymer matrices is lacking. Herein, a self-healable and recyclable dual-shape memory composite, comprising an LM (gallium) and a Diels–Alder (DA) crosslinked crystalline polyurethane (PU) elastomer, is reported. The composite exhibits a bilayer structure and achieves excellent shape programming abilities, due to the phase transitions of the LM and the crystalline PU elastomers. To demonstrate these shape-morphing abilities, a heat-triggered soft gripper, which can grasp and release objects according to the environmental temperature, is designed and built. Similarly, combining the electrical conductivity and the dual-shape memory effect of the composite, a light-controlled reconfigurable switch for a circuit is produced. In addition, due to the reversible nature of DA bonds, the composite is self-healable and recyclable. Both the LM and PU elastomer are recyclable, demonstrating the extremely high recycling efficiency (up to 96.7%) of the LM, as well as similar mechanical properties between the reprocessed elastomers and the pristine ones.
Collapse
|
36
|
Zadan M, Patel DK, Sabelhaus AP, Liao J, Wertz A, Yao L, Majidi C. Liquid Crystal Elastomer with Integrated Soft Thermoelectrics for Shape Memory Actuation and Energy Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200857. [PMID: 35384096 DOI: 10.1002/adma.202200857] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Liquid crystal elastomers (LCEs) have attracted tremendous interest as actuators for soft robotics due to their mechanical and shape memory properties. However, LCE actuators typically respond to thermal stimulation through active Joule heating and passive cooling, which make them difficult to control. In this work, LCEs are combined with soft, stretchable thermoelectrics to create transducers capable of electrically controlled actuation, active cooling, and thermal-to-electrical energy conversion. The thermoelectric layers are composed of semiconductors embedded within a 3D printed elastomer matrix and wired together with eutectic gallium-indium (EGaIn) liquid metal interconnects. This layer is covered on both sides with LCE, which alternately heats and cools to achieve cyclical bending actuation in response to voltage-controlled Peltier activation. Moreover, the thermoelectric layer can harvest energy from thermal gradients between the two LCE layers through the Seebeck effect, allowing for regenerative energy harvesting. As demonstrations, first, closed-loop control of the transducer is performed to rapidly track a changing actuator position. Second, a soft robotic walker that is capable of walking toward a heat source and harvesting energy is introduced. Lastly, phototropic-inspired autonomous deflection of the limbs toward a heat source is shown, demonstrating an additional method to increase energy recuperation efficiency for soft systems.
Collapse
Affiliation(s)
- Mason Zadan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Dinesh K Patel
- Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Andrew P Sabelhaus
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jiahe Liao
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Anthony Wertz
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Lining Yao
- Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
37
|
Wang Y, Cui H, Esworthy T, Mei D, Wang Y, Zhang LG. Emerging 4D Printing Strategies for Next-Generation Tissue Regeneration and Medical Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109198. [PMID: 34951494 DOI: 10.1002/adma.202109198] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The rapid development of 3D printing has led to considerable progress in the field of biomedical engineering. Notably, 4D printing provides a potential strategy to achieve a time-dependent physical change within tissue scaffolds or replicate the dynamic biological behaviors of native tissues for smart tissue regeneration and the fabrication of medical devices. The fabricated stimulus-responsive structures can offer dynamic, reprogrammable deformation or actuation to mimic complex physical, biochemical, and mechanical processes of native tissues. Although there is notable progress made in the development of the 4D printing approach for various biomedical applications, its more broad-scale adoption for clinical use and tissue engineering purposes is complicated by a notable limitation of printable smart materials and the simplistic nature of achievable responses possible with current sources of stimulation. In this review, the recent progress made in the field of 4D printing by discussing the various printing mechanisms that are achieved with great emphasis on smart ink mechanisms of 4D actuation, construct structural design, and printing technologies, is highlighted. Recent 4D printing studies which focus on the applications of tissue/organ regeneration and medical devices are then summarized. Finally, the current challenges and future perspectives of 4D printing are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
38
|
Bauman GE, Koch JA, White TJ. Rheology of liquid crystalline oligomers for 3-D printing of liquid crystalline elastomers. SOFT MATTER 2022; 18:3168-3176. [PMID: 35380153 DOI: 10.1039/d2sm00166g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid crystalline monomers can be oligomerized and subsequently 3-D printed to prepare liquid crystalline elastomers (LCEs) with spatial variation of the nematic director to create soft materials that undergo complex shape change when subject to stimulus. Here, we detail the correlation of alignment in 3-D printed LCE on the shear history of the oligomeric ink. This coupling is evident both in the polymerization of sheared LCE samples as well as steady-state rheological experiments that quantify the time-dependent flow behaviors of these complex fluids. Under a steady shear flow, oligomeric LC inks transition from a nematic state with unaligned (polydomain) orientation to a uniaxially aligned (monodomain) nematic phase over a large range of applied strain. After cessation of shear flow, the oligomeric LC inks return the polydomain orientation over approximately 30 minutes. The alignment of liquid crystalline segments in the LCE (and the associated stimuli-response of the materials) is ultimately correlated to the degree of strain applied to the ink.
Collapse
Affiliation(s)
- Grant E Bauman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, 80309, USA.
| | - Jeremy A Koch
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, 80309, USA.
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, 80309, USA.
| |
Collapse
|
39
|
Li Y, Liu T, Ambrogi V, Rios O, Xia M, He W, Yang Z. Liquid Crystalline Elastomers Based on Click Chemistry. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14842-14858. [PMID: 35319184 DOI: 10.1021/acsami.1c21096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid crystalline elastomers (LCEs) have emerged as an important class of functional materials that are suitable for a wide range of applications, such as sensors, actuators, and soft robotics. The unique properties of LCEs originate from the combination between liquid crystal and elastomeric network. The control of macroscopic liquid crystalline orientation and network structure is crucial to realizing the useful functionalities of LCEs. A variety of chemistries have been developed to fabricate LCEs, including hydrosilylation, free radical polymerization of acrylate, and polyaddition of epoxy and carboxylic acid. Over the past few years, the use of click chemistry has become a more robust and energy-efficient way to construct LCEs with desired structures. This article provides an overview of emerging LCEs based on click chemistries, including aza-Michael addition between amine and acrylate, radical-mediated thiol-ene and thiol-yne reactions, base-catalyzed thiol-acrylate and thiol-epoxy reactions, copper-catalyzed azide-alkyne cycloaddition, and Diels-Alder cycloaddition. The similarities and differences of these reactions are discussed, with particular attention focused on the strengths and limitations of each reaction for the preparation of LCEs with controlled structures and orientations. The compatibility of these reactions with the traditional and emerging processing techniques, such as surface alignment and additive manufacturing, are surveyed. Finally, the challenges and opportunities of using click chemistry for the design of LCEs with advanced functionalities and applications are discussed.
Collapse
Affiliation(s)
- Yuzhan Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tuan Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Veronica Ambrogi
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Napoli 80125, Italy
| | - Orlando Rios
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Min Xia
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wanli He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhou Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
40
|
|
41
|
Allioux FM, Ghasemian MB, Xie W, O'Mullane AP, Daeneke T, Dickey MD, Kalantar-Zadeh K. Applications of liquid metals in nanotechnology. NANOSCALE HORIZONS 2022; 7:141-167. [PMID: 34982812 DOI: 10.1039/d1nh00594d] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Post-transition liquid metals (LMs) offer new opportunities for accessing exciting dynamics for nanomaterials. As entities with free electrons and ions as well as fluidity, LM-based nanomaterials are fundamentally different from their solid counterparts. The low melting points of most post-transition metals (less than 330 °C) allow for the formation of nanodroplets from bulk metal melts under mild mechanical and chemical conditions. At the nanoscale, these liquid state nanodroplets simultaneously offer high electrical and thermal conductivities, tunable reactivities and useful physicochemical properties. They also offer specific alloying and dealloying conditions for the formation of multi-elemental liquid based nanoalloys or the synthesis of engineered solid nanomaterials. To date, while only a few nanosized LM materials have been investigated, extraordinary properties have been observed for such systems. Multi-elemental nanoalloys have shown controllable homogeneous or heterogeneous core and surface compositions with interfacial ordering at the nanoscale. The interactions and synergies of nanosized LMs with polymeric, inorganic and bio-materials have also resulted in new compounds. This review highlights recent progress and future directions for the synthesis and applications of post-transition LMs and their alloys. The review presents the unique properties of these LM nanodroplets for developing functional materials for electronics, sensors, catalysts, energy systems, and nanomedicine and biomedical applications, as well as other functional systems engineered at the nanoscale.
Collapse
Affiliation(s)
- Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Wanjie Xie
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|
42
|
Guymon GG, Malakooti MH. Multifunctional liquid metal polymer composites. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gregory G. Guymon
- Department of Mechanical Engineering University of Washington Seattle Washington USA
- Institute for Nano‐Engineered Systems University of Washington Seattle Washington USA
| | - Mohammad H. Malakooti
- Department of Mechanical Engineering University of Washington Seattle Washington USA
- Institute for Nano‐Engineered Systems University of Washington Seattle Washington USA
| |
Collapse
|
43
|
Del Pozo M, Sol JAHP, Schenning APHJ, Debije MG. 4D Printing of Liquid Crystals: What's Right for Me? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104390. [PMID: 34716625 DOI: 10.1002/adma.202104390] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/20/2021] [Indexed: 05/24/2023]
Abstract
Recent years have seen major advances in the developments of both additive manufacturing concepts and responsive materials. When combined as 4D printing, the process can lead to functional materials and devices for use in health, energy generation, sensing, and soft robots. Among responsive materials, liquid crystals, which can deliver programmed, reversible, rapid responses in both air and underwater, are a prime contender for additive manufacturing, given their ease of use and adaptability to many different applications. In this paper, selected works are compared and analyzed to come to a didactical overview of the liquid crystal-additive manufacturing junction. Reading from front to back gives the reader a comprehensive understanding of the options and challenges in the field, while researchers already experienced in either liquid crystals or additive manufacturing are encouraged to scan through the text to see how they can incorporate additive manufacturing or liquid crystals into their own work. The educational text is closed with proposals for future research in this crossover field.
Collapse
Affiliation(s)
- Marc Del Pozo
- Laboratory for Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Jeroen A H P Sol
- Laboratory for Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Albert P H J Schenning
- Laboratory for Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Michael G Debije
- Laboratory for Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| |
Collapse
|
44
|
Zhang C, Lu X, Wang Z, Xia H. Progress in Utilizing Dynamic Bonds to Fabricate Structurally Adaptive Self-Healing, Shape Memory, and Liquid Crystal Polymers. Macromol Rapid Commun 2021; 43:e2100768. [PMID: 34964192 DOI: 10.1002/marc.202100768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Indexed: 11/09/2022]
Abstract
Stimuli-responsive structurally dynamic polymers are capable of mimicking the biological systems to adapt themselves to the surrounding environmental changes and subsequently exhibiting a wide range of responses ranging from self-healing to complex shape-morphing. Dynamic self-healing polymers (SHPs), shape-memory polymers (SMPs) and liquid crystal elastomers (LCEs), which are three representative examples of stimuli-responsive structurally dynamic polymers, have been attracting broad and growing interest in recent years because of their potential applications in the fields of electronic skin, sensors, soft robots, artificial muscles, and so on. We review recent advances and challenges in the developments towards dynamic SHPs, SMPs and LCEs, focusing on the chemistry strategies and the dynamic reaction mechanisms that enhance the performances of the materials including self-healing, reprocessing and reprogramming. We compare and discuss the different dynamic chemistries and their mechanisms on the enhanced functions of the materials, where three summary tables are presented: a library of dynamic bonds and the resulting characteristics of the materials. Finally, we provide a critical outline of the unresolved issues and future perspectives on the emerging developments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chun Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xili Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
45
|
Abstract
Smart soft materials are envisioned to be the building blocks of the next generation of advanced devices and digitally augmented technologies. In this context, liquid crystals (LCs) owing to their responsive and adaptive attributes could serve as promising smart soft materials. LCs played a critical role in revolutionizing the information display industry in the 20th century. However, in the turn of the 21st century, numerous beyond-display applications of LCs have been demonstrated, which elegantly exploit their controllable stimuli-responsive and adaptive characteristics. For these applications, new LC materials have been rationally designed and developed. In this Review, we present the recent developments in light driven chiral LCs, i.e., cholesteric and blue phases, LC based smart windows that control the entrance of heat and light from outdoor to the interior of buildings and built environments depending on the weather conditions, LC elastomers for bioinspired, biological, and actuator applications, LC based biosensors for detection of proteins, nucleic acids, and viruses, LC based porous membranes for the separation of ions, molecules, and microbes, living LCs, and LCs under macro- and nanoscopic confinement. The Review concludes with a summary and perspectives on the challenges and opportunities for LCs as smart soft materials. This Review is anticipated to stimulate eclectic ideas toward the implementation of the nature's delicate phase of matter in future generations of smart and augmented devices and beyond.
Collapse
Affiliation(s)
- Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States.,Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
46
|
Pozo MD, Sol JAHP, van Uden SHP, Peeketi AR, Lugger SJD, Annabattula RK, Schenning APHJ, Debije MG. Patterned Actuators via Direct Ink Writing of Liquid Crystals. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59381-59391. [PMID: 34870984 PMCID: PMC8678986 DOI: 10.1021/acsami.1c20348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 05/24/2023]
Abstract
Soft actuators allowing multifunctional, multishape deformations based on single polymer films or bilayers remain challenging to produce. In this contribution, direct ink writing is used for generating patterned actuators, which are in between single- and bilayer films, with multifunctionality and a plurality of possible shape changes in a single object. The key is to use the controlled deposition of a light-responsive liquid crystal ink with direct ink writing to partially cover a foil at strategic locations. We found patterned films with 40% coverage of the passive substrate by an active material outperformed "standard" fully covered bilayers. By patterning the film as two stripes, a range of motions, including left- and right-handed twisting and bending in orthogonal directions, could be controllably induced in the same actuator. The partial coverage also left space for applying liquid crystal inks with other functionalities, exemplified by fabricating a light-responsive green reflective actuator whose reflection can be switched "on" and "off". The results presented here serve as a toolbox for the design and fabrication of patterned actuators with dramatically expanded shape deformation and functionality capabilities.
Collapse
Affiliation(s)
- Marc del Pozo
- Laboratory
for Stimuli-responsive Functional Materials & Devices (SFD), Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology (TU/e), Groene Loper 3, 5600 MB Eindhoven, The Netherlands
| | - Jeroen A. H. P. Sol
- Laboratory
for Stimuli-responsive Functional Materials & Devices (SFD), Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology (TU/e), Groene Loper 3, 5600 MB Eindhoven, The Netherlands
| | - Stefan H. P. van Uden
- Laboratory
for Stimuli-responsive Functional Materials & Devices (SFD), Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology (TU/e), Groene Loper 3, 5600 MB Eindhoven, The Netherlands
| | - Akhil R. Peeketi
- Center
for Responsive Soft Matter, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sean J. D. Lugger
- Laboratory
for Stimuli-responsive Functional Materials & Devices (SFD), Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology (TU/e), Groene Loper 3, 5600 MB Eindhoven, The Netherlands
| | - Ratna K. Annabattula
- Center
for Responsive Soft Matter, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Albert P. H. J. Schenning
- Laboratory
for Stimuli-responsive Functional Materials & Devices (SFD), Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology (TU/e), Groene Loper 3, 5600 MB Eindhoven, The Netherlands
| | - Michael G. Debije
- Laboratory
for Stimuli-responsive Functional Materials & Devices (SFD), Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology (TU/e), Groene Loper 3, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
47
|
Chen Y, Wu H, Zhou H, Miao Z, Hong F, Zhao Q, Tao Z, Ma Y, Zhao W, Zha Z. PEGylated Indium Nanoparticles: A Metallic Contrast Agent for Multiwavelength Photoacoustic Imaging and Second Near-Infrared Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46343-46352. [PMID: 34558285 DOI: 10.1021/acsami.1c13578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Indium, a low melting point metal, is well-known for constructing eutectic gallium-indium liquid metal. However, unlike liquid metal nanoparticles, the biomedical applications of metallic indium nanoparticles (In NPs) remain in their infancy. Herein, an ultrasound-assisted liquid-reduction synthesis strategy was developed to prepare PEGylated In NPs, which were then used as a high-performance contrast agent for enhancing multiwavelength photoacoustic imaging and second near-infrared (NIR-II) photothermal therapy of the 4T1 breast tumor. The obtained In NPs depicted remarkable optical absorption from the first near-infrared (NIR-I) to NIR-II region and a high photothermal conversion efficiency of 41.3% at 1064 nm, higher than the majority of conventional NIR-II photothermal agents. Upon injection into the tumor, the photoacoustic intensities of the tumor section post-injection were obviously increased by 2.59-, 2.62-, and 4.27-fold of those of pre-injection by using excitation wavelengths of 750, 808, and 970 nm, respectively, depicting an excellent multiwavelength contrast capability of photoacoustic imaging. In addition, efficient ablation of the 4T1 tumor was achieved through the photothermal performance of PEGylated In NPs under NIR-II laser irradiation. Importantly, as the widely used element in the clinic, In NPs were highly biocompatible in vitro and in vivo. Therefore, this work pioneered the biomedical applications of PEGylated In NPs for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Haitao Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hu Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhaohua Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fengqiu Hong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhenchao Tao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yan Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Weidong Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
48
|
Agarwal T, Hann SY, Chiesa I, Cui H, Celikkin N, Micalizzi S, Barbetta A, Costantini M, Esworthy T, Zhang LG, De Maria C, Maiti TK. 4D printing in biomedical applications: emerging trends and technologies. J Mater Chem B 2021; 9:7608-7632. [PMID: 34586145 DOI: 10.1039/d1tb01335a] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nature's material systems during evolution have developed the ability to respond and adapt to environmental stimuli through the generation of complex structures capable of varying their functions across direction, distances and time. 3D printing technologies can recapitulate structural motifs present in natural materials, and efforts are currently being made on the technological side to improve printing resolution, shape fidelity, and printing speed. However, an intrinsic limitation of this technology is that printed objects are static and thus inadequate to dynamically reshape when subjected to external stimuli. In recent years, this issue has been addressed with the design and precise deployment of smart materials that can undergo a programmed morphing in response to a stimulus. The term 4D printing was coined to indicate the combined use of additive manufacturing, smart materials, and careful design of appropriate geometries. In this review, we report the recent progress in the design and development of smart materials that are actuated by different stimuli and their exploitation within additive manufacturing to produce biomimetic structures with important repercussions in different but interrelated biomedical areas.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal - 721302, India.
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Irene Chiesa
- Research Center "E. Piaggio" and Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Nehar Celikkin
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Simone Micalizzi
- Research Center "E. Piaggio" and Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| | - Andrea Barbetta
- Department of Chemistry, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Marco Costantini
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA. .,Department of Electrical Engineering, The George Washington University, Washington, DC 20052, USA.,Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA.,Department of Medicine, The George Washington University, Washington, DC 20052, USA
| | - Carmelo De Maria
- Research Center "E. Piaggio" and Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal - 721302, India.
| |
Collapse
|
49
|
Zhang YF, Li Z, Li H, Li H, Xiong Y, Zhu X, Lan H, Ge Q. Fractal-Based Stretchable Circuits via Electric-Field-Driven Microscale 3D Printing for Localized Heating of Shape Memory Polymers in 4D Printing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41414-41423. [PMID: 33779155 DOI: 10.1021/acsami.1c03572] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermally responsive shape memory polymers (SMPs) used in 4D printing are often reported to be activated by external heat sources or embedded stiff heaters. However, such heating strategies impede the practical application of 4D printing due to the lack of precise control over heating or the limited ability to accommodate the stretching during shape programming. Herein, we propose a novel 4D printing paradigm by fabricating stretchable heating circuits with fractal motifs via electric-field-driven microscale 3D printing of conductive paste for seamless integration into 3D printed structures with SMP components. By regulating the fractal order and printing/processing parameters, the overall electrical resistance and areal coverage of the circuits can be tuned to produce an efficient and uniform heating performance. Compared with serpentine structures, the resistance of fractal-based circuits remains relatively stable under both uniaxial and biaxial stretching. In practice, steady-state and transient heating modes can be respectively used during the shape programming and actuation phases. We demonstrate that this approach is suitable for 4D printed structures with shape programming by either uniaxial or biaxial stretching. Notably, the biaxial stretchability of fractal-based heating circuits enables the shape change between a planar structure and a 3D one with double curvature. The proposed strategy would offer more freedom in designing 4D printed structures and enable the manipulation of the latter in a controlled and selective manner.
Collapse
Affiliation(s)
- Yuan-Fang Zhang
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Zhenghao Li
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, China
| | - Hongke Li
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, China
| | - Honggeng Li
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore 487372, Singapore
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055 P. R. China
| | - Yi Xiong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, PR China
| | - Xiaoyang Zhu
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, China
| | - Hongbo Lan
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, China
| | - Qi Ge
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055 P. R. China
| |
Collapse
|
50
|
Lv P, Yang X, Bisoyi HK, Zeng H, Zhang X, Chen Y, Xue P, Shi S, Priimagi A, Wang L, Feng W, Li Q. Stimulus-driven liquid metal and liquid crystal network actuators for programmable soft robotics. MATERIALS HORIZONS 2021; 8:2475-2484. [PMID: 34870302 DOI: 10.1039/d1mh00623a] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Sophisticated soft matter engineering has been endorsed as an emerging paradigm for developing untethered soft robots with built-in electronic functions and biomimetic adaptation capacities. However, the integration of flexible electronic components into soft robotic actuators is challenging due to strain mismatch and material incompatibilities. Herein, we report a general strategy to integrate electrically conductive liquid metals (LMs) and shape-morphing liquid crystal networks (LCNs) towards multifunctional and programmable soft robotics. A unique colloidal LM ink with superior adhesion and photothermal conversion efficiency was judiciously designed and fabricated by ultrasonicating LMs and miniature carboxylated gold nanorods (MiniGNR-COOH) in an aqueous suspension of biological bacterial cellulose. The designed nanocellulose-based colloidal LM ink is used for shape-deformable and electrically conductive LM-LCN soft robots that can be electro- and photo-thermally actuated. As proof-of-concept demonstrations, we present a light-fueled soft oscillator, an inchworm-inspired soft crawler and programmable robotic Shadow Play exhibiting multifunctional controllability. The strategy disclosed here could open up a new technological arena for advanced multifunctional soft materials with potential utility in bioinspired soft machines, integrated soft electronics, human-computer interaction and beyond.
Collapse
Affiliation(s)
- Pengfei Lv
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Xiao Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
| | - Hao Zeng
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Pan Xue
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Shukuan Shi
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin 300350, P. R. China
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|