1
|
Tamo AK. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J Mater Chem B 2024; 12:7692-7759. [PMID: 38805188 DOI: 10.1039/d4tb00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tissue engineering has emerged as a remarkable field aiming to restore or replace damaged tissues through the use of biomimetic constructs. Among the diverse materials investigated for this purpose, nanocellulose-based hydrogels have garnered attention due to their intriguing biocompatibility, tunable mechanical properties, and sustainability. Over the past few years, numerous research works have been published focusing on the successful use of nanocellulose-based hydrogels as artificial extracellular matrices for regenerating various types of tissues. The review emphasizes the importance of tissue engineering, highlighting hydrogels as biomimetic scaffolds, and specifically focuses on the role of nanocellulose in composites that mimic the structures, properties, and functions of the native extracellular matrix for regenerating damaged tissues. It also summarizes the types of nanocellulose, as well as their structural, mechanical, and biological properties, and their contributions to enhancing the properties and characteristics of functional hydrogels for tissue engineering of skin, bone, cartilage, heart, nerves and blood vessels. Additionally, recent advancements in the application of nanocellulose-based hydrogels for tissue engineering have been evaluated and documented. The review also addresses the challenges encountered in their fabrication while exploring the potential future prospects of these hydrogel matrices for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
2
|
Pei W, Yu Y, Wang P, Zheng L, Lan K, Jin Y, Yong Q, Huang C. Research trends of bio-application of major components in lignocellulosic biomass (cellulose, hemicellulose and lignin) in orthopedics fields based on the bibliometric analysis: A review. Int J Biol Macromol 2024; 267:131505. [PMID: 38631574 DOI: 10.1016/j.ijbiomac.2024.131505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Cellulose, hemicellulose, and lignin are the major bio-components in lignocellulosic biomass (BC-LB), which possess excellent biomechanical properties and biocompatibility to satisfy the demands of orthopedic applications. To understand the basis and trends in the development of major bio-components in BC-LB in orthopedics, the bibliometric technology was applied to get unique insights based on the published papers (741) in the Web of Science (WOS) database from January 1st, 2001, to February 14th, 2023. The analysis includes the annual distributions of publications, keywords co-linearity, research hotspots exploration, author collaboration networks, published journals, and clustering of co-cited literature. The results reveal a steady growth in publications focusing on the application of BC-LB in orthopedics, with China and the United States leading in research output. The "International Journal of Biological Macromolecules" was identified as the most cited journal for BC-LB research in orthopedics. The research hotspots encompassed bone tissue engineering, cartilage tissue engineering, and drug delivery systems, indicating the fundamental research and potential development in these areas. This study also highlights the challenges associated with the clinical application of BC-LB in orthopedics and provides valuable insights for future advancements in the field.
Collapse
Affiliation(s)
- Wenhui Pei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxin Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Liming Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310000, PR China
| | - Kai Lan
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Yongcan Jin
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Malekpour K, Hazrati A, Khosrojerdi A, Roshangar L, Ahmadi M. An overview to nanocellulose clinical application: Biocompatibility and opportunities in disease treatment. Regen Ther 2023; 24:630-641. [PMID: 38034858 PMCID: PMC10682839 DOI: 10.1016/j.reth.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Recently, the demand for organ transplantation has promptly increased due to the enhanced incidence of body organ failure, the increasing efficiency of transplantation, and the improvement in post-transplant outcomes. However, due to a lack of suitable organs for transplantation to fulfill current demand, significant organ shortage problems have emerged. Developing efficient technologies in combination with tissue engineering (TE) has opened new ways of producing engineered tissue substitutes. The use of natural nanoparticles (NPs) such as nanocellulose (NC) and nano-lignin should be used as suitable candidates in TE due to their desirable properties. Many studies have used these components to form scaffolds and three-dimensional (3D) cultures of cells derived from different tissues for tissue repair. Interestingly, these natural NPs can afford scaffolds a degree of control over their characteristics, such as modifying their mechanical strength and distributing bioactive compounds in a controlled manner. These bionanomaterials are produced from various sources and are highly compatible with human-derived cells as they are derived from natural components. In this review, we discuss some new studies in this field. This review summarizes the scaffolds based on NC, counting nanocrystalline cellulose and nanofibrillated cellulose. Also, the efficient approaches that can extract cellulose with high purity and increased safety are discussed. We concentrate on the most recent research on the use of NC-based scaffolds for the restoration, enhancement, or replacement of injured organs and tissues, such as cartilage, skin, arteries, brain, and bone. Finally, we suggest the experiments and promises of NC-based TE scaffolds.
Collapse
Affiliation(s)
- Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Janmohammadi M, Nourbakhsh MS, Bahraminasab M, Tayebi L. Enhancing bone tissue engineering with 3D-Printed polycaprolactone scaffolds integrated with tragacanth gum/bioactive glass. Mater Today Bio 2023; 23:100872. [PMID: 38075257 PMCID: PMC10709082 DOI: 10.1016/j.mtbio.2023.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 02/12/2024] Open
Abstract
Tissue-engineered bone substitutes, characterized by favorable physicochemical, mechanical, and biological properties, present a promising alternative for addressing bone defects. In this study, we employed an innovative 3D host-guest scaffold model, where the host component served as a mechanical support, while the guest component facilitated osteogenic effects. More specifically, we fabricated a triangular porous polycaprolactone framework (host) using advanced 3D printing techniques, and subsequently filled the framework's pores with tragacanth gum-45S5 bioactive glass as the guest component. Comprehensive assessments were conducted to evaluate the physical, mechanical, and biological properties of the designed scaffolds. Remarkably, successful integration of the guest component within the framework was achieved, resulting in enhanced bioactivity and increased strength. Our findings demonstrated that the scaffolds exhibited ion release (Si, Ca, and P), surface apatite formation, and biodegradation. Additionally, in vitro cell culture assays revealed that the scaffolds demonstrated significant improvements in cell viability, proliferation, and attachment. Significantly, the multi-compartment scaffolds exhibited remarkable osteogenic properties, indicated by a substantial increase in the expression of osteopontin, osteocalcin, and matrix deposition. Based on our results, the framework provided robust mechanical support during the new bone formation process, while the guest component matrix created a conducive micro-environment for cellular adhesion, osteogenic functionality, and matrix production. These multi-compartment scaffolds hold great potential as a viable alternative to autografts and offer promising clinical applications for bone defect repair in the future.
Collapse
Affiliation(s)
- Mahsa Janmohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | | | - Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, 3513138111, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| |
Collapse
|
5
|
Ferreira FV, Souza AG, Ajdary R, de Souza LP, Lopes JH, Correa DS, Siqueira G, Barud HS, Rosa DDS, Mattoso LH, Rojas OJ. Nanocellulose-based porous materials: Regulation and pathway to commercialization in regenerative medicine. Bioact Mater 2023; 29:151-176. [PMID: 37502678 PMCID: PMC10368849 DOI: 10.1016/j.bioactmat.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023] Open
Abstract
We review the recent progress that have led to the development of porous materials based on cellulose nanostructures found in plants and other resources. In light of the properties that emerge from the chemistry, shape and structural control, we discuss some of the most promising uses of a plant-based material, nanocellulose, in regenerative medicine. Following a brief discussion about the fundamental aspects of self-assembly of nanocellulose precursors, we review the key strategies needed for material synthesis and to adjust the architecture of the materials (using three-dimensional printing, freeze-casted porous materials, and electrospinning) according to their uses in tissue engineering, artificial organs, controlled drug delivery and wound healing systems, among others. For this purpose, we map the structure-property-function relationships of nanocellulose-based porous materials and examine the course of actions that are required to translate innovation from the laboratory to industry. Such efforts require attention to regulatory aspects and market pull. Finally, the key challenges and opportunities in this nascent field are critically reviewed.
Collapse
Affiliation(s)
- Filipe V. Ferreira
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation – Rua XV de Novembro, 1452, São Carlos, SP, 13560-979, Brazil
| | - Alana G. Souza
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Rubina Ajdary
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, Aalto, Espoo, FIN-00076, Finland
| | - Lucas P. de Souza
- College of Engineering and Physical Sciences, Aston Institute of Materials Research, Aston University, Birmingham, UK
| | - João H. Lopes
- Department of Chemistry, Division of Fundamental Sciences (IEF), Technological Institute of Aeronautics (ITA), São Jose dos Campos, SP, Brazil
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation – Rua XV de Novembro, 1452, São Carlos, SP, 13560-979, Brazil
| | - Gilberto Siqueira
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Hernane S. Barud
- Biopolymers and Biomaterials Laboratory (BIOPOLMAT), University of Araraquara (UNIARA), Araraquara, 14801-340, São Paulo, Brazil
| | - Derval dos S. Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Luiz H.C. Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation – Rua XV de Novembro, 1452, São Carlos, SP, 13560-979, Brazil
| | - Orlando J. Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, Aalto, Espoo, FIN-00076, Finland
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and, Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
6
|
Feng Y, Cölfen H, Xiong R. Organized mineralized cellulose nanostructures for biomedical applications. J Mater Chem B 2023. [PMID: 36892529 DOI: 10.1039/d2tb02611b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Cellulose is the most abundant naturally-occurring polymer, and possesses a one-dimensional (1D) anisotropic crystalline nanostructure with outstanding mechanical robustness, biocompatibility, renewability and rich surface chemistry in the form of nanocellulose in nature. Such features make cellulose an ideal bio-template for directing the bio-inspired mineralization of inorganic components into hierarchical nanostructures that are promising in biomedical applications. In this review, we will summarize the chemistry and nanostructure characteristics of cellulose and discuss how these favorable characteristics regulate the bio-inspired mineralization process for manufacturing the desired nanostructured bio-composites. We will focus on uncovering the design and manipulation principles of local chemical compositions/constituents and structural arrangement, distribution, dimensions, nanoconfinement and alignment of bio-inspired mineralization over multiple length-scales. In the end, we will underline how these cellulose biomineralized composites benefit biomedical applications. It is expected that this deep understanding of design and fabrication principles will enable construction of outstanding structural and functional cellulose/inorganic composites for more challenging biomedical applications.
Collapse
Affiliation(s)
- Yanhuizhi Feng
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, Konstanz, Germany.
| | - Rui Xiong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
7
|
Patel DK, Ganguly K, Dutta SD, Patil TV, Lim KT. Cellulose nanocrystals vs. cellulose nanospheres: A comparative study of cytotoxicity and macrophage polarization potential. Carbohydr Polym 2023; 303:120464. [PMID: 36657847 DOI: 10.1016/j.carbpol.2022.120464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Nanocellulose application has been increasing owing to its appealing physicochemical properties. Monitoring of the crystallinity, surface topography, and reactivity of this high-aspect-ratio nanomaterial is crucial for efficient tissue engineering. Controlling macrophage polarization phenotype remains a challenge in regenerative medicine and tissue engineering. Herein, we monitored the effects of shape-regulated (rod and spherical) nanocellulose on the macrophage modulatory potential of RAW 246.7 cells in vitro. Spherical nanocellulose (s-NC) exhibited higher thermal stability and biocompatibility than rod nanocellulose. Macrophage polarization was profoundly affected by nanocellulose topography and incubation period. M2 polarization was observed in vitro after 1 day of treatment with s-NC, followed by M1 polarization after treatment for longer periods. Transcriptome analysis similarly revealed that M1 polarization was dominant after 1 day h of incubation with both nanocellulose types. These findings demonstrate that macrophage polarization can be controlled by selecting suitable nanocellulose shape and incubation time for desired applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tejal V Patil
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
8
|
Fatema N, Ceballos RM, Fan C. Modifications of cellulose-based biomaterials for biomedical applications. Front Bioeng Biotechnol 2022; 10:993711. [PMID: 36406218 PMCID: PMC9669591 DOI: 10.3389/fbioe.2022.993711] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Cellulose is one of the most abundant organic compounds in nature and is available from diverse sources. Cellulose features tunable properties, making it a promising substrate for biomaterial development. In this review, we highlight advances in the physical processes and chemical modifications of cellulose that enhance its properties for use as a biomaterial. Three cellulosic products are discussed, including nanofibrillated, nanocrystalline, and bacterial cellulose, with a focus on how each may serve as a platform for the development of advanced cellulose-based biomaterials for Biomedical applications. In addition to associating mechanical and chemical properties of cellulosic materials to specific applications, a prospectus is offered for the future development of cellulose-based biomaterials for biomedicine.
Collapse
Affiliation(s)
- Nour Fatema
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Ruben Michael Ceballos
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
9
|
Xiao J, Wei Q, Xue J, Liu Z, Li Z, Zhou Z, Chen F, Zhao F. Mesoporous bioactive glass/bacterial cellulose composite scaffolds for bone support materials. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Anžlovar A, Žagar E. Cellulose Structures as a Support or Template for Inorganic Nanostructures and Their Assemblies. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1837. [PMID: 35683693 PMCID: PMC9182054 DOI: 10.3390/nano12111837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Cellulose is the most abundant natural polymer and deserves the special attention of the scientific community because it represents a sustainable source of carbon and plays an important role as a sustainable energent for replacing crude oil, coal, and natural gas in the future. Intense research and studies over the past few decades on cellulose structures have mainly focused on cellulose as a biomass for exploitation as an alternative energent or as a reinforcing material in polymer matrices. However, studies on cellulose structures have revealed more diverse potential applications by exploiting the functionalities of cellulose such as biomedical materials, biomimetic optical materials, bio-inspired mechanically adaptive materials, selective nanostructured membranes, and as a growth template for inorganic nanostructures. This article comprehensively reviews the potential of cellulose structures as a support, biotemplate, and growing vector in the formation of various complex hybrid hierarchical inorganic nanostructures with a wide scope of applications. We focus on the preparation of inorganic nanostructures by exploiting the unique properties and performances of cellulose structures. The advantages, physicochemical properties, and chemical modifications of the cellulose structures are comparatively discussed from the aspect of materials development and processing. Finally, the perspective and potential applications of cellulose-based bioinspired hierarchical functional nanomaterials in the future are outlined.
Collapse
Affiliation(s)
- Alojz Anžlovar
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia;
| | | |
Collapse
|
11
|
Guo L, Liang Z, Yang L, Du W, Yu T, Tang H, Li C, Qiu H. The role of natural polymers in bone tissue engineering. J Control Release 2021; 338:571-582. [PMID: 34481026 DOI: 10.1016/j.jconrel.2021.08.055] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/31/2022]
Abstract
Bone is a dynamic self-healing organ and a continuous remodeling ensures the restoration of the bone structure and function over time. However, bone remodeling is not able to repair large traumatic injuries. Therefore, surgical interventions and bone substitutes are required. The aim of bone tissue engineering is to repair and regenerate tissues and engineered a bone graft as a bone substitute. To met this goal, several natural or synthetic polymers have been used to develop a biocompatible and biodegradable polymeric construct. Among the polymers, natural polymers have higher biocompatibility, excellent biodegradability, and no toxicity. So far, collagen, chitosan, gelatin, silk fibroin, alginate, cellulose, and starch, alone or in combination, have been widely used in bone tissue engineering. These polymers have been used as scaffolds, hydrogels, and micro-nanospheres. The functionalization of the polymer with growth factors and bioactive glasses increases the potential use of polymers for bone regeneration. As bone is a dynamic highly vascularized tissue, the vascularization of the polymeric scaffolds is vital for successful bone regeneration. Several in vivo and in vitro strategies have been used to vascularize the polymeric scaffolds. In this review, the application of the most commonly used natural polymers is discussed.
Collapse
Affiliation(s)
- Linqi Guo
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Zhihui Liang
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Liang Yang
- Department of Orthopaedics, The People's Hospital of Daqing, Daqing 163000, China
| | - Wenyan Du
- Department of Orthopaedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Tao Yu
- Department of Orthopaedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Huayu Tang
- Department of Orthopaedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Changde Li
- Department of Orthopaedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Hongbin Qiu
- Department of Public Health, Jiamusi University, Jiamusi, 154000, China.
| |
Collapse
|
12
|
Sergi R, Bellucci D, Cannillo V. A Review of Bioactive Glass/Natural Polymer Composites: State of the Art. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5560. [PMID: 33291305 PMCID: PMC7730917 DOI: 10.3390/ma13235560] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose are biocompatible and non-cytotoxic, being attractive natural polymers for medical devices for both soft and hard tissues. However, such natural polymers have low bioactivity and poor mechanical properties, which limit their applications. To tackle these drawbacks, collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose can be combined with bioactive glass (BG) nanoparticles and microparticles to produce composites. The incorporation of BGs improves the mechanical properties of the final system as well as its bioactivity and regenerative potential. Indeed, several studies have demonstrated that polymer/BG composites may improve angiogenesis, neo-vascularization, cells adhesion, and proliferation. This review presents the state of the art and future perspectives of collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose matrices combined with BG particles to develop composites such as scaffolds, injectable fillers, membranes, hydrogels, and coatings. Emphasis is devoted to the biological potentialities of these hybrid systems, which look rather promising toward a wide spectrum of applications.
Collapse
Affiliation(s)
| | | | - Valeria Cannillo
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.)
| |
Collapse
|
13
|
Kawaguchi K, Iijima M, Muguruma T, Endo K, Mizoguchi I. Effects of bioactive glass coating by electrophoretic deposition on esthetical, bending, and frictional performance of orthodontic stainless steel wire. Dent Mater J 2020; 39:593-600. [PMID: 32092724 DOI: 10.4012/dmj.2019-085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We investigated the surface modification of orthodontic stainless steel wire using electrophoretic deposition (EPD) of bioactive glass (BG). BG coatings were characterized by spectrophotometry, three-dimensional (3D) focal laser scanning microscopy and scanning electron microscopy. The mechanical properties of the BG-coated wires were estimated nanoindentation, three-point bending and drawing friction tests. BG-coated specimens prepared at higher voltage showed higher values for both reflectance and L* compared to those prepared at lower voltage. Specimens coated at higher voltage had significantly lower surface roughness than those coated at lower voltage, and their BG layers had higher hardness and elastic modulus values. In the three-point bending test, BG-coated wires produced significantly lower elastic modulus than non-coated wires. Most BG-coated specimens produced similar frictional forces to those produced by non-coated specimens. The surface modification technique applying EPD and BG coating to orthodontic stainless steel wire could be used to develop new esthetical orthodontic wire.
Collapse
Affiliation(s)
- Kyotaro Kawaguchi
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido
| | - Masahiro Iijima
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido
| | - Takeshi Muguruma
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido
| | - Kazuhiko Endo
- Division of Biomaterials and Bioengineering, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University
| |
Collapse
|
14
|
Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Natural and Synthetic Polymers for Bone Scaffolds Optimization. Polymers (Basel) 2020; 12:E905. [PMID: 32295115 PMCID: PMC7240703 DOI: 10.3390/polym12040905] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023] Open
Abstract
Bone tissue is the structural component of the body, which allows locomotion, protects vital internal organs, and provides the maintenance of mineral homeostasis. Several bone-related pathologies generate critical-size bone defects that our organism is not able to heal spontaneously and require a therapeutic action. Conventional therapies span from pharmacological to interventional methodologies, all of them characterized by several drawbacks. To circumvent these effects, tissue engineering and regenerative medicine are innovative and promising approaches that exploit the capability of bone progenitors, especially mesenchymal stem cells, to differentiate into functional bone cells. So far, several materials have been tested in order to guarantee the specific requirements for bone tissue regeneration, ranging from the material biocompatibility to the ideal 3D bone-like architectural structure. In this review, we analyse the state-of-the-art of the most widespread polymeric scaffold materials and their application in in vitro and in vivo models, in order to evaluate their usability in the field of bone tissue engineering. Here, we will present several adopted strategies in scaffold production, from the different combination of materials, to chemical factor inclusion, embedding of cells, and manufacturing technology improvement.
Collapse
Affiliation(s)
- Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy; (E.J.); (M.T.R.)
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy; (E.J.); (M.T.R.)
| | - Monica Soncini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;
| | - Manuela T. Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy; (E.J.); (M.T.R.)
| |
Collapse
|
15
|
Gao W, Sun L, Zhang Z, Li Z. Cellulose nanocrystals reinforced gelatin/bioactive glass nanocomposite scaffolds for potential application in bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:984-998. [DOI: 10.1080/09205063.2020.1735607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wenwei Gao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| | - Liying Sun
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| | - Zetian Zhang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| | - Zhengjun Li
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Chimpibul W, Nakaji-Hirabayashi T, Yuan X, Matsumura K. Controlling the degradation of cellulose scaffolds with Malaprade oxidation for tissue engineering. J Mater Chem B 2020; 8:7904-7913. [DOI: 10.1039/d0tb01015d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cellulose scaffolds, whose biodegradation can be controlled through the reaction with amine compounds in the human body, were developed for tissue engineering applications.
Collapse
Affiliation(s)
| | | | - Xida Yuan
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Ishikawa
- Japan
| | - Kazuaki Matsumura
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Ishikawa
- Japan
| |
Collapse
|
17
|
Ferreira FV, Souza LP, Martins TMM, Lopes JH, Mattos BD, Mariano M, Pinheiro IF, Valverde TM, Livi S, Camilli JA, Goes AM, Gouveia RF, Lona LMF, Rojas OJ. Nanocellulose/bioactive glass cryogels as scaffolds for bone regeneration. NANOSCALE 2019; 11:19842-19849. [PMID: 31441919 DOI: 10.1039/c9nr05383b] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A major challenge exists in the preparation of scaffolds for bone regeneration, namely, achieving simultaneously bioactivity, biocompatibility, mechanical performance and simple manufacturing. Here, cellulose nanofibrils (CNF) are introduced for the preparation of scaffolds taking advantage of their biocompatibility and ability to form strong 3D porous networks from aqueous suspensions. CNF are made bioactive for bone formation through a simple and scalable strategy that achieves highly interconnected 3D networks. The resultant materials optimally combine morphological and mechanical features and facilitate hydroxyapatite formation while releasing essential ions for in vivo bone repair. The porosity and roughness of the scaffolds favor several cell functions while the ions act in the expression of genes associated with cell differentiation. Ion release is found critical to enhance the production of the bone morphogenetic protein 2 (BMP-2) from cells within the fractured area, thus accelerating the in vivo bone repair. Systemic biocompatibility indicates no negative effects on vital organs such as the liver and kidneys. The results pave the way towards a facile preparation of advanced, high performance CNF-based scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Filipe V Ferreira
- School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970, Campinas-SP, Brazil. and Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas-SP, Brazil and Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, P.O. Box 16300, 00076, Aalto University, Finland. and Université de Lyon, Ingénierie des Matériaux Polymères CNRS, UMR 5223, INSA Lyon, F-69621 Villeurbanne, France
| | - Lucas P Souza
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas-SP, Brazil
| | - Thais M M Martins
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte-MG, Brazil
| | - João H Lopes
- Department of Chemistry, Division of Fundamental Sciences (IEF), Technological Institute of Aeronautics (ITA), 12228-900, Sao Jose dos Campos-SP, Brazil
| | - Bruno D Mattos
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, P.O. Box 16300, 00076, Aalto University, Finland.
| | - Marcos Mariano
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas-SP, Brazil
| | - Ivanei F Pinheiro
- School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970, Campinas-SP, Brazil. and Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas-SP, Brazil
| | - Thalita M Valverde
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte-MG, Brazil
| | - Sébastien Livi
- Université de Lyon, Ingénierie des Matériaux Polymères CNRS, UMR 5223, INSA Lyon, F-69621 Villeurbanne, France
| | - José A Camilli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas-SP, Brazil
| | - Alfredo M Goes
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte-MG, Brazil
| | - Rubia F Gouveia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas-SP, Brazil
| | - Liliane M F Lona
- School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970, Campinas-SP, Brazil.
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, P.O. Box 16300, 00076, Aalto University, Finland.
| |
Collapse
|
18
|
Green synthesis of bacterial cellulose/bioactive glass nanocomposites: Effect of glass nanoparticles on cellulose yield, biocompatibility and antimicrobial activity. Int J Biol Macromol 2019; 138:975-985. [PMID: 31351958 DOI: 10.1016/j.ijbiomac.2019.07.144] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/14/2019] [Accepted: 07/24/2019] [Indexed: 01/25/2023]
Abstract
Despite the advantages of bacterial cellulose (BC) over traditional cellulose, its low yield and little bioactivity makes a limitation to be used in an industrial scale. This paper was mainly dual aimed to increase the BC yield using a nanobioactive glass (NBG), and in situ synthesize BC/NBG bioactive nanocomposites by a novel and simple green method. Accordingly, the composites were prepared via in situ fermentation approach by incorporation of NBG particles into BC producing culture medium. The effect of NBG addition on the production process of cellulose, biocompatibility, bioactivity and antimicrobial activity were investigated. The results showed that NBG was enhanced and increased the BC yield and this has been achieved by maintaining these NBG on the pH value of the culture medium during the fermentation period. Moreover, it was effectively improved biocompatibility and antimicrobial properties of BC. This study evidenced that BC/NBG composite can be expected to be widely applied in biomedical industries such as bone regeneration and wound healing with the unique of being not harmful to humans.
Collapse
|
19
|
Hickey RJ, Pelling AE. Cellulose Biomaterials for Tissue Engineering. Front Bioeng Biotechnol 2019; 7:45. [PMID: 30968018 PMCID: PMC6438900 DOI: 10.3389/fbioe.2019.00045] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/25/2019] [Indexed: 12/26/2022] Open
Abstract
In this review, we highlight the importance of nanostructure of cellulose-based biomaterials to allow cellular adhesion, the contribution of nanostructure to macroscale mechanical properties, and several key applications of these materials for fundamental scientific research and biomedical engineering. Different features on the nanoscale can have macroscale impacts on tissue function. Cellulose is a diverse material with tunable properties and is a promising platform for biomaterial development and tissue engineering. Cellulose-based biomaterials offer some important advantages over conventional synthetic materials. Here we provide an up-to-date summary of the status of the field of cellulose-based biomaterials in the context of bottom-up approaches for tissue engineering. We anticipate that cellulose-based material research will continue to expand because of the diversity and versatility of biochemical and biophysical characteristics highlighted in this review.
Collapse
Affiliation(s)
- Ryan J. Hickey
- Department of Physics, STEM Complex, University of Ottawa, Ottawa, ON, Canada
| | - Andrew E. Pelling
- Department of Physics, STEM Complex, University of Ottawa, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Institute for Science Society and Policy, University of Ottawa, Ottawa, ON, Canada
- SymbioticA, School of Human Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
20
|
Influence of proteins on the corrosion behavior of a chitosan-bioactive glass coated magnesium alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:706-714. [PMID: 30948108 DOI: 10.1016/j.msec.2019.02.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 12/14/2022]
Abstract
The current study explored the degradation behavior of a WE43 Mg alloy during immersion tests in Dulbecco's Modified Eagle's Medium (DMEM) for 3d and 7d, for a bare alloy surface as well as for samples with surface pre-treatment, and finally for samples coated with chitosan-bioactive glass. The immersion tests were conducted with and without addition of serum, to study the influence of proteins on the degradation process. Mass-loss was measured to determine the corrosion rate after 3d and 7d of immersion. The samples were analyzed by SEM with respect to their surface morphology and the chemical composition was screened by high-resolution XPS. The results demonstrate not only a significant, time-dependent influence of serum addition on the corrosion behavior of the materials studied, but noteworthy is that depending on the sample type, proteins in solution were observed to either accelerate or inhibit corrosion. These results are discussed in correlation to observed changes in surface chemistry taking place upon immersion in the absence and presence of proteins.
Collapse
|
21
|
Bacakova L, Pajorova J, Bacakova M, Skogberg A, Kallio P, Kolarova K, Svorcik V. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. NANOMATERIALS 2019; 9:nano9020164. [PMID: 30699947 PMCID: PMC6410160 DOI: 10.3390/nano9020164] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/29/2022]
Abstract
Nanocellulose is cellulose in the form of nanostructures, i.e., features not exceeding 100 nm at least in one dimension. These nanostructures include nanofibrils, found in bacterial cellulose; nanofibers, present particularly in electrospun matrices; and nanowhiskers, nanocrystals, nanorods, and nanoballs. These structures can be further assembled into bigger two-dimensional (2D) and three-dimensional (3D) nano-, micro-, and macro-structures, such as nanoplatelets, membranes, films, microparticles, and porous macroscopic matrices. There are four main sources of nanocellulose: bacteria (Gluconacetobacter), plants (trees, shrubs, herbs), algae (Cladophora), and animals (Tunicata). Nanocellulose has emerged for a wide range of industrial, technology, and biomedical applications, namely for adsorption, ultrafiltration, packaging, conservation of historical artifacts, thermal insulation and fire retardation, energy extraction and storage, acoustics, sensorics, controlled drug delivery, and particularly for tissue engineering. Nanocellulose is promising for use in scaffolds for engineering of blood vessels, neural tissue, bone, cartilage, liver, adipose tissue, urethra and dura mater, for repairing connective tissue and congenital heart defects, and for constructing contact lenses and protective barriers. This review is focused on applications of nanocellulose in skin tissue engineering and wound healing as a scaffold for cell growth, for delivering cells into wounds, and as a material for advanced wound dressings coupled with drug delivery, transparency and sensorics. Potential cytotoxicity and immunogenicity of nanocellulose are also discussed.
Collapse
Affiliation(s)
- Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Julia Pajorova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Marketa Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Anne Skogberg
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Pasi Kallio
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Katerina Kolarova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6-Dejvice, Czech Republic.
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6-Dejvice, Czech Republic.
| |
Collapse
|
22
|
Patel DK, Seo YR, Dutta SD, Lim KT. Enhanced osteogenesis of mesenchymal stem cells on electrospun cellulose nanocrystals/poly(ε-caprolactone) nanofibers on graphene oxide substrates. RSC Adv 2019; 9:36040-36049. [PMID: 35540570 PMCID: PMC9075163 DOI: 10.1039/c9ra06260b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/27/2019] [Indexed: 11/28/2022] Open
Abstract
Cellulose nanocrystals (CNCs) have received a great amount of attention to the production of micro/nano-platforms for tissue engineering applications. CNCs were extracted from rice husk biomass and characterized by different spectroscopic techniques. The biocompatibility of the extracted CNCs was revealed by the WST-1 assay technique in the presence of human mesenchymal stem cells (hMSCs) after different time intervals. An improvement in the mechanical properties was observed in the fabricated scaffolds (PCL/CNC) compared to PCL scaffolds. Graphene oxide (GO)-coated (PCL/CNC) electrospun scaffolds (GPC) were prepared by the deposition of PCL/CNC composite nanofibers on the surface of GO for tissue engineering. Notably, better cell proliferation and differentiation were observed in the presence of the fabricated scaffolds. This enhancement of the properties of the fabricated scaffolds was due to the presence of conductive GO moieties which facilitated the cellular response. Therefore, the fabricated materials have the potential to be used as a biomaterial for enhanced cell proliferation and osteogenic differentiation. Cellulose nanocrystals (CNCs) have received a great amount of attention to the production of micro/nano-platforms for tissue engineering applications.![]()
Collapse
Affiliation(s)
- Dinesh K. Patel
- The Institute of Forest Science
- Kangwon National University
- Chuncheon 24341
- Republic of Korea
| | - Yu-Ri Seo
- Department of Biosystems Engineering
- College of Agriculture and Life Sciences
- Kangwon National University
- Chuncheon 24341
- Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering
- College of Agriculture and Life Sciences
- Kangwon National University
- Chuncheon 24341
- Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering
- College of Agriculture and Life Sciences
- Kangwon National University
- Chuncheon 24341
- Republic of Korea
| |
Collapse
|
23
|
Oguzlu H, Jiang F. Nanopolysaccharides in Surface Coating. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/978-981-15-0913-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Taale M, Schütt F, Zheng K, Mishra YK, Boccaccini AR, Adelung R, Selhuber-Unkel C. Bioactive Carbon-Based Hybrid 3D Scaffolds for Osteoblast Growth. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43874-43886. [PMID: 30395704 PMCID: PMC6302313 DOI: 10.1021/acsami.8b13631] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/05/2018] [Indexed: 05/22/2023]
Abstract
Bone, nerve, and heart tissue engineering place high demands on the conductivity of three-dimensional (3D) scaffolds. Fibrous carbon-based scaffolds are excellent material candidates to fulfill these requirements. Here, we show that highly porous (up to 94%) hybrid 3D framework structures with hierarchical architecture, consisting of microfiber composites of self-entangled carbon nanotubes (CNTs) and bioactive nanoparticles are highly suitable for growing cells. The hybrid 3D structures are fabricated by infiltrating a combination of CNTs and bioactive materials into a porous (∼94%) zinc oxide (ZnO) sacrificial template, followed by the removal of the ZnO backbone via a H2 thermal reduction process. Simultaneously, the bioactive nanoparticles are sintered. In this way, conductive and mechanically stable 3D composites of free-standing CNT-based microfibers and bioactive nanoparticles are formed. The adopted strategy demonstrates great potential for implementing low-dimensional bioactive materials, such as hydroxyapatite (HA) and bioactive glass nanoparticles (BGN), into 3D carbon-based microfibrous networks. It is demonstrated that the incorporation of HA nanoparticles and BGN promotes the biomineralization ability and the protein adsorption capacity of the scaffolds significantly, as well as fibroblast and osteoblast adhesion. These results demonstrate that the developed carbon-based bioactive scaffolds are promising materials for bone tissue engineering and related applications.
Collapse
Affiliation(s)
- Mohammadreza Taale
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Fabian Schütt
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Kai Zheng
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Yogendra Kumar Mishra
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Rainer Adelung
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Christine Selhuber-Unkel
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| |
Collapse
|
25
|
Yang H, Zhu Q, Qi H, Liu X, Ma M, Chen Q. A Facile Flow-Casting Production of Bioactive Glass Coatings on Porous Titanium for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1540. [PMID: 30150523 PMCID: PMC6163300 DOI: 10.3390/ma11091540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 11/16/2022]
Abstract
Additive manufacturing enabled the fabrication of porous titanium (PT) with customized porosity and mechanical properties. However, functionalization of PT surfaces with bioactive coatings is being challenged due to sophisticated geometry and highly porous structure. In this study, a facile flow-casting technique was developed to produce homogeneous 45S5 bioactive glass (BG) coatings on the entire surface of PT. The coating weight as a function of BG concentration in a BG-PVA slurry was investigated to achieve controllable coating yield without blocking macropore structure. The annealing-treated BG coating not only exhibited compact adhesion confirmed by qualitative sonication treatment, but also enhanced the mechanical properties of PT scaffolds. Moreover, in-vitro assessments of BG-coated PT cultured with MC3T3-E1 cells was carried out having in mind their potential as bioactive bone implants. The experimental results in this study offer a simple and versatile approach for the bio-functionalization of PT and other porous biomedical devices.
Collapse
Affiliation(s)
- Haiou Yang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Qijie Zhu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hongfei Qi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.
| | - Meixia Ma
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
26
|
Ryu SM, Kim SY, Song IH, Ahn MW, Lee CH, Jeon JH, Sae Ahn H. Effect of water glass coating of tricalcium phosphate on in vitro cellular proliferation and osteogenic differentiation. J Biomater Appl 2018; 33:196-204. [DOI: 10.1177/0885328218783585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background In this study, the properties of the water glass (WG, sodium-silicate glass) were utilized to control the biodegradability of the beta tricalcium phosphate materials by the WG coating on the tricalcium phosphate disc surface with various coating thickness, chemistry, and heat-treatment. Methods Four types of disc specimens were prepared. A sample group A consisted of pure hydroxyapatite (HA) as a negative resorption control; a sample group B consisted of pure beta tricalcium phosphate as a positive resorption control; a sample group C consisted of beta tricalcium phosphate coated with WG as an early resorption model; and a sample group D consisted beta tricalcium phosphate coated with WG and heat-treated at 500°C as a delayed resorption model. Using human bone marrow–derived mesenchymal stem cells, for the analysis of cellular attachment and proliferative activity, 4–6-Diamidino-2-Phenylindole fluorescence technique was used. For the analysis of osteteogenic differentiation, alkaline phospastase (ALP) activity was measured. Results The mean z-scores of four groups (A, B, C, and D) in cellular attachment at 4 h after seeding were −1.21, −0.15, 0.42, and 0.94, respectively, and statistically significantly different in all groups respectively. Seven days after seeding, the mean z-scores of cellular proliferation were 1.97, 0.71, 1.48, and 1.83 in the four groups, respectively. The mean z-scores of the ALP activity per the mean z-scores of cell numbers of respective groups on the seventh day were 0.40, −1.51, 0.12, and 0.06, respectively, in four groups. Conclusion Initial cellular attachment is better on beta tricalcium phosphate than on HA and is enhanced by WG coating, especially with sintering at the high temperature. Cellular proliferation is considered to be increased by maintaining its attachment site through reduced dissolution of beta tricalcium phosphate by WG coating. Osteogenic differentiation in in-vitro study on the WG-coated beta tricalcium phosphate is thought to be as the result of increased silicon ion release from the WG.
Collapse
Affiliation(s)
- Seung Min Ryu
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Daegu, Korea
| | - Suk Young Kim
- Materials Science and Engineering, Yeungnam University, Gyeongbuk, Republic of Korea
| | - In Hwan Song
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, Korea
| | - Myun Whan Ahn
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Daegu, Korea
| | - Chan Hee Lee
- Department of Anesthesiology and Pain Medicine, Seoul Medical Center, Seoul, Korea
| | - Jae Hui Jeon
- Materials Science and Engineering, Yeungnam University, Gyeongbuk, Republic of Korea
| | - Hyo Sae Ahn
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Daegu, Korea
| |
Collapse
|
27
|
Jafari H, Shahrousvand M, Kaffashi B. Reinforced Poly(ε-caprolactone) Bimodal Foams via Phospho-Calcified Cellulose Nanowhisker for Osteogenic Differentiation of Human Mesenchymal Stem Cells. ACS Biomater Sci Eng 2018; 4:2484-2493. [DOI: 10.1021/acsbiomaterials.7b01020] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hafez Jafari
- School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11365-4563, Enghelab Avenue, Tehran, 1417613131, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 119-43841, Chooka Branch, Rezvanshahr, 4386156387, Guilan Province, Iran
| | - Babak Kaffashi
- School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11365-4563, Enghelab Avenue, Tehran, 1417613131, Iran
| |
Collapse
|
28
|
Chen Q, Jing J, Qi H, Ahmed I, Yang H, Liu X, Lu TL, Boccaccini AR. Electric Field-Assisted Orientation of Short Phosphate Glass Fibers on Stainless Steel for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11529-11538. [PMID: 29504741 DOI: 10.1021/acsami.8b01378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Structural and compositional modifications of metallic implant surfaces are being actively investigated to achieve improved bone-to-implant bonding. In this study, a strategy to modify bulk metallic surfaces by electrophoretic deposition (EPD) of short phosphate glass fibers (sPGF) is presented. Random and aligned orientation of sPGF embedded in a poly(acrylic acid) matrix is achieved by vertical and horizontal EPD, respectively. The influence of EPD parameters on the degree of alignment is investigated to pave the way for the fabrication of highly aligned sPGF structures in large areas. Importantly, the oriented sPGF structure in the coating, owing to the synergistic effects of bioactive composition and fiber orientation, plays an important role in directional cell migration and enhanced proliferation. Moreover, gene expression of MC3T3-E1 cells cultured with different concentrations of sPGF is thoroughly assessed to elucidate the potential stimulating effect of sPGF on osteogenic differentiation. This study represents an innovative exploitation of EPD to develop textured surfaces by orientation of fibers in the macroscale, which shows great potential for directional functionalization of metallic implants.
Collapse
Affiliation(s)
- Qiang Chen
- Institute of Biomaterials, Department of Materials Science and Engineering , University of Erlangen-Nuremberg , Cauerstrasse 6 , Erlangen 91058 , Germany
| | | | | | - Ifty Ahmed
- Faculty of Engineering, Department of Mechanical, Materials and Manufacturing Engineering , University of Nottingham , Nottingham NG 7 2RD , United Kingdom
| | | | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology , Zhengzhou University , Zhengzhou 450002 , China
| | | | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering , University of Erlangen-Nuremberg , Cauerstrasse 6 , Erlangen 91058 , Germany
| |
Collapse
|
29
|
Yao Q, Jing J, Zeng Q, Lu TL, Liu Y, Zheng X, Chen Q. Bilayered BMP2 Eluting Coatings on Graphene Foam by Electrophoretic Deposition: Electroresponsive BMP2 Release and Enhancement of Osteogenic Differentiation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39962-39970. [PMID: 29076717 DOI: 10.1021/acsami.7b10180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent development of three-dimensional graphene foam (GF) with conductive and interconnected macroporous structure is attracting particular attention as platforms for tissue engineering. However, widespread application of GF as bone scaffolds is restricted due to its poor mechanical property and inert surface character. To overcome these drawbacks, in this study, a bilayered biopolymer coating was designed and successfully deposited covering the entire surface area of GF skeleton. A poly(lactic-co-glycolic acid) layer was first dip-coated to strengthen the GF substrate, followed by the electrophoretic codeposition of a hybrid layer, consisting of chitosan and BMP2, to functionalize GF with the ability to recruit and induce osteogenic differentiation of hMSC. Our data indicated that the mechanical property of GF was significantly increased without compromising the macroporous structure. Importantly, the immobilized BMP2 exhibited sustained and electroresponsive release profiles with rapid response to the electric field exerted on GF, which is beneficial to balancing BMP2 dose in a physiological environment. Moreover, the osteogenic differentiation of hMSC was significantly improved on the functionalized GF. Taking advantage of the unique macrostructure from GF as well as the superior mechanical properties and BMP2 release profile supported by the deposited coatings, it is therefore expected that the developed GF could be a promising alternative as innovative bone-forming favorable scaffolds.
Collapse
Affiliation(s)
| | - Jiajia Jing
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an 710072, China
| | - Qingyan Zeng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an 710072, China
| | - T L Lu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an 710072, China
| | | | | | - Qiang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an 710072, China
| |
Collapse
|
30
|
Electrophoretic Deposition as a New Bioactive Glass Coating Process for Orthodontic Stainless Steel. COATINGS 2017. [DOI: 10.3390/coatings7110199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
|
32
|
Preparation, physicochemical properties and biocompatibility of PBLG/PLGA/bioglass composite scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:118-124. [DOI: 10.1016/j.msec.2016.09.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/31/2016] [Accepted: 09/29/2016] [Indexed: 12/13/2022]
|
33
|
Song J, Chen Q, Zhang Y, Diba M, Kolwijck E, Shao J, Jansen JA, Yang F, Boccaccini AR, Leeuwenburgh SCG. Electrophoretic Deposition of Chitosan Coatings Modified with Gelatin Nanospheres To Tune the Release of Antibiotics. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13785-92. [PMID: 27167424 DOI: 10.1021/acsami.6b03454] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Orthopedic and dental implants are increasingly used in the medical field in view of their high success rates. Implant-associated infections, however, still occur and are difficult to treat. To combat these infections, the application of an active coating to the implant surface is advocated as an effective strategy to facilitate sustained release of antibacterial drugs from implant surfaces. Control over this release is, however, still a major challenge. To overcome this problem, we deposited composite coatings composed of a chitosan matrix containing gelatin nanospheres loaded with antibiotics onto stainless steel plates by means of the electrophoretic deposition technique. The gelatin nanospheres were distributed homogeneously throughout the coatings. The surface roughness and wettability of the coatings could be tuned by a simple adjustment of the weight ratio between the gelatin nanospheres and chitosan. Vancomycin and moxifloxacin were released in sustained and burst-type manners, respectively, while the coatings were highly cytocompatible. The antibacterial efficacy of the coatings containing different amounts of antibiotics was tested using a zone of inhibition test against Staphylococcus aureus, which showed that the coatings containing moxifloxacin exhibited an obvious inhibition zone. The coatings containing a high amount of vancomycin were able to kill bacteria in direct contact with the implant surface. These results suggest that the antibacterial capacity of metallic implants can be tuned by orthogonal control over the release of (multiple) antibiotics from electrophoretically deposited composite coatings, which offers a new strategy to prevent orthopedic implant-associated infections.
Collapse
Affiliation(s)
- Jiankang Song
- Department of Biomaterials, Radboud University Medical Centre , Nijmegen, The Netherlands
| | - Qiang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an 710072, China
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg , 91058 Erlangen, Germany
| | - Yang Zhang
- Department of Biomaterials, Radboud University Medical Centre , Nijmegen, The Netherlands
| | - Mani Diba
- Department of Biomaterials, Radboud University Medical Centre , Nijmegen, The Netherlands
| | - Eva Kolwijck
- Department of Medical Microbiology, Radboud University Medical Centre , Nijmegen, The Netherlands
| | - Jinlong Shao
- Department of Biomaterials, Radboud University Medical Centre , Nijmegen, The Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Centre , Nijmegen, The Netherlands
| | - Fang Yang
- Department of Biomaterials, Radboud University Medical Centre , Nijmegen, The Netherlands
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg , 91058 Erlangen, Germany
| | | |
Collapse
|
34
|
Chen Q, Li W, Yao Q, Liang R, Pérez-Garcia R, Munoz J, Boccaccini AR. Multilayered drug delivery coatings composed of daidzein-loaded PHBV microspheres embedded in a biodegradable polymer matrix by electrophoretic deposition. J Mater Chem B 2016; 4:5035-5045. [DOI: 10.1039/c6tb00113k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Drug encapsulation with predetermined loading, and the fabrication of multilayered drug delivery coatings by a combination of EPD and LbL deposition.
Collapse
Affiliation(s)
- Qiang Chen
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi’an
- China
| | - Wei Li
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Qingqing Yao
- Institute of Advanced Materials for Nano-Bio Applications
- School of Ophthalmology & Optometry
- Wenzhou Medical University
- Wenzhou
- China
| | - Ruifang Liang
- Department of Internal Medicine 3 and Institute for Clinical Immunology
- University of Erlangen-Nuremberg
- Erlangen
- Germany
| | | | - Josemari Munoz
- CIDETEC
- Parque Tecnológico de Miramón
- 20009 San Sebastian
- Spain
| | - Aldo R. Boccaccini
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| |
Collapse
|
35
|
Cui N, Qian J, Wang J, Wang Y, Xu W, Wang H. Physicochemical properties and biocompatibility of PZL/PLGA/bioglass composite scaffolds for bone tissue engineering. RSC Adv 2016. [DOI: 10.1039/c6ra20781b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Foamy poly(Nε-Cbz-l-lysine)/poly(lactic-co-glycolic acid)/bioglass composite scaffolds had appropriate physicochemical properties, good biomineralization ability, excellent cytocompatibility and histocompatibility, and desirable osteogenic ability.
Collapse
Affiliation(s)
- Ning Cui
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Jinlei Wang
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Yaping Wang
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Hongjie Wang
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| |
Collapse
|
36
|
Zheng K, Taccardi N, Beltrán AM, Sui B, Zhou T, Marthala VRR, Hartmann M, Boccaccini AR. Timing of calcium nitrate addition affects morphology, dispersity and composition of bioactive glass nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra05548f] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bioactive glass nanoparticles (BGN) are promising materials for a number of biomedical applications.
Collapse
Affiliation(s)
- Kai Zheng
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen–Nuremberg
- 91058 Erlangen
- Germany
| | - Nicola Taccardi
- Institute of Chemical Reaction Engineering
- University of Erlangen–Nuremberg
- 91058 Erlangen
- Germany
| | - Ana Maria Beltrán
- Instituto de Ciencia de Materiales de Sevilla (CSIC-Universidad de Sevilla)
- 41092 Sevilla
- Spain
| | - Baiyan Sui
- Shanghai Biomaterials Research & Testing Center
- Shanghai Key Laboratory of Stomatology
- Ninth People's Hospital
- Shanghai Jiaotong University
- School of Medicine
| | - Tian Zhou
- Shanghai Biomaterials Research & Testing Center
- Shanghai Key Laboratory of Stomatology
- Ninth People's Hospital
- Shanghai Jiaotong University
- School of Medicine
| | - V. R. Reddy Marthala
- Erlangen Catalysis Resource Center
- University of Erlangen–Nuremberg
- 91058 Erlangen
- Germany
| | - Martin Hartmann
- Erlangen Catalysis Resource Center
- University of Erlangen–Nuremberg
- 91058 Erlangen
- Germany
| | - Aldo. R. Boccaccini
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen–Nuremberg
- 91058 Erlangen
- Germany
| |
Collapse
|