1
|
De la Cruz LG, Abt T, León N, Sánchez-Soto M. Radially and Axially Oriented Ammonium Alginate Aerogels Modified with Clay/Tannic Acid and Crosslinked with Glutaraldehyde. Gels 2024; 10:526. [PMID: 39195055 DOI: 10.3390/gels10080526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Lightweight materials that combine high mechanical strength, insulation, and fire resistance are of great interest to many industries. This work explores the properties of environmentally friendly alginate aerogel composites as potential sustainable alternatives to petroleum-based materials. This study analyzes the effects of two additives (tannic acid and montmorillonite clay), the orientation that results during casting, and the crosslinking of the biopolymer with glutaraldehyde on the properties of the aerogel composites. The prepared aerogels exhibited high porosities between 90% and 97% and densities in the range of 0.059-0.191 g/cm3. Crosslinking increased the density and resulted in excellent performance under loading conditions. In combination with axial orientation, Young's modulus and yield strength reached values as high as 305 MPa·cm3/g and 7 MPa·cm3/g, respectively. Moreover, the alginate-based aerogels exhibited very low thermal conductivities, ranging from 0.038 W/m·K to 0.053 W/m·K. Compared to pristine alginate, the aerogel composites' thermal degradation rate decreased substantially, enhancing thermal stability. Although glutaraldehyde promoted combustion, the non-crosslinked aerogel composites demonstrated high fire resistance. No flame was observed in these samples under cone calorimeter radiation, and a minuscule peak of heat release of 21 kW/m2 was emitted as a result of their highly efficient graphitization and fire suppression. The combination of properties of these bio-based aerogels demonstrates their potential as substituents for their fossil-based counterparts.
Collapse
Affiliation(s)
- Lucía G De la Cruz
- Centre Català del Plàstic, Universitat Politècnica de Catalunya, Barcelona Tech (EEBE-UPC), Av. d'Eduard Maristany, 16, 08019 Barcelona, Spain
| | - Tobias Abt
- Centre Català del Plàstic, Universitat Politècnica de Catalunya, Barcelona Tech (EEBE-UPC), Av. d'Eduard Maristany, 16, 08019 Barcelona, Spain
| | - Noel León
- Centre Català del Plàstic, Universitat Politècnica de Catalunya, Barcelona Tech (EEBE-UPC), Av. d'Eduard Maristany, 16, 08019 Barcelona, Spain
| | - Miguel Sánchez-Soto
- Centre Català del Plàstic, Universitat Politècnica de Catalunya, Barcelona Tech (EEBE-UPC), Av. d'Eduard Maristany, 16, 08019 Barcelona, Spain
| |
Collapse
|
2
|
G Krishnan V, Suresh S, Parukoor Thomas J, Amal Raj RB, Leuteritz A, Gowd EB. Layer-over-Layer Electrostatic Self-Assembly of Bioresourced Compounds in Thermoreversible Polylactide Gels as an Effective Approach to Enhance the Flame Retardancy of Aerogels. Biomacromolecules 2024; 25:4581-4590. [PMID: 38836359 DOI: 10.1021/acs.biomac.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Polylactide is a high potential polymer that can satisfy the growing demand for sustainable and lightweight materials in construction, packaging, and structural applications. However, their high flammability poses a serious concern. Herein, with the aid of solvent exchange and noncovalent interactions, poly(l-lactide) (PLLA) thermoreversible gel was modified with sodium alginate (SA), chitosan (CS), and phytic acid (PA) via a layer-over-layer approach. Freeze-drying of the modified hydrogel furnished a highly flame retardant aerogel with shape stability and no shrinkage. The modified PLLA aerogel (PLLA@SA@CS@PA) exhibited self-extinguishment of flame, the highest limiting oxygen index of any porous polylactide (∼32%), and a tremendous reduction in flammability parameters such as the heat release rate, heat release capacity, total heat release, etc. A comprehensive mechanism of flame retardancy was proposed. This work provides a sustainable strategy for the flame retardant modification of semicrystalline polymer-based aerogels and is expected to expand their practical applications in various industrial sectors.
Collapse
Affiliation(s)
- Vipin G Krishnan
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sruthi Suresh
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Jefin Parukoor Thomas
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - R B Amal Raj
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695 019, India
| | - Andreas Leuteritz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, Dresden D-01069, Germany
| | - E Bhoje Gowd
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
3
|
Yang C, Li A, Guo T, Cheng J, Liu Z, Hu H, Wang J. Novel organic-inorganic composite pea protein silica food-grade aerogel materials: Fabrication, mechanisms, high oil-holding property and curcumin delivery capacity. Int J Biol Macromol 2024; 273:132832. [PMID: 38834123 DOI: 10.1016/j.ijbiomac.2024.132832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/20/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
The fragility of the skeleton and poor bioaccessibility limit Silica aerogel's application in the food industry. In this study, composite gels were obtained by cross-linking pea proteins isolate (PPI) with Tetraethoxysilane (TEOS)to improve the bioavailability of silica-derived aerogels. It indicated that TEOS first condensed with H+ to form secondary particles and then complexed with PPI via hydroxyl groups to form a composite aerogel. Meanwhile, the PPI-Si composite aerogel formed a dense mesoporous structure with a specific surface area of 312.5 g/cm3. This resulted in a higher oil holding percentage of 89.67 % for the PPI (10 %)-Si aerogel, which was 34.1 % higher than other studies, leading to a more stable oleogel. Finally, as a delivery system, the composite oleogel not only could significantly increase the bioaccessibility rate by 27.4 % compared with silica aerogel, but also could efficiently inhibit the premature release of curcumin in the simulated gastric fluids, while allowed sustainably release in the simulated intestinal fluids. These results provided a theoretical basis for the application of silica-derived aerogels in food and non-food applications.
Collapse
Affiliation(s)
- Chen Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Aitong Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - TianLai Guo
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jie Cheng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ziyun Liu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haiyue Hu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jianming Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Parale VG, Kim T, Choi H, Phadtare VD, Dhavale RP, Kanamori K, Park HH. Mechanically Strengthened Aerogels through Multiscale, Multicompositional, and Multidimensional Approaches: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307772. [PMID: 37916304 DOI: 10.1002/adma.202307772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/29/2023] [Indexed: 11/03/2023]
Abstract
In recent decades, aerogels have attracted tremendous attention in academia and industry as a class of lightweight and porous multifunctional nanomaterial. Despite their wide application range, the low mechanical durability hinders their processing and handling, particularly in applications requiring complex physical structures. "Mechanically strengthened aerogels" have emerged as a potential solution to address this drawback. Since the first report on aerogels in 1931, various modified synthesis processes have been introduced in the last few decades to enhance the aerogel mechanical strength, further advancing their multifunctional scope. This review summarizes the state-of-the-art developments of mechanically strengthened aerogels through multicompositional and multidimensional approaches. Furthermore, new trends and future directions for as prevailed commercialization of aerogels as plastic materials are discussed.
Collapse
Affiliation(s)
- Vinayak G Parale
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Taehee Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Haryeong Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Varsha D Phadtare
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Rushikesh P Dhavale
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Kazuyoshi Kanamori
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hyung-Ho Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
5
|
Li SL, Wang YT, Zhang SJ, Sun MZ, Li J, Chu LQ, Hu CX, Huang YL, Gao DL, Schiraldi DA. A Novel, Controllable, and Efficient Method for Building Highly Hydrophobic Aerogels. Gels 2024; 10:121. [PMID: 38391450 PMCID: PMC10888267 DOI: 10.3390/gels10020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Aerogels prepared using freeze-drying methods have the potential to be insulation materials or absorbents in the fields of industry, architecture, agriculture, etc., for their low heat conductivity, high specific area, low density, degradability, and low cost. However, their native, poor water resistance caused by the hydrophilicity of their polymer matrix limits their practical application. In this work, a novel, controllable, and efficient templating method was utilized to construct a highly hydrophobic surface for freeze-drying aerogels. The influence of templates on the macroscopic morphology and hydrophobic properties of materials was investigated in detail. This method provided the economical and rapid preparation of a water-resistant aerogel made from polyvinyl alcohol (PVA) and montmorillonite (MMT), putting forward a new direction for the research and development of new, environmentally friendly materials.
Collapse
Affiliation(s)
- Shu-Liang Li
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Yu-Tao Wang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Shi-Jun Zhang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Ming-Ze Sun
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7202, USA
| | - Jie Li
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Li-Qiu Chu
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Chen-Xi Hu
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Yi-Lun Huang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - Da-Li Gao
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chaoyang District, Beijing 100013, China
| | - David A Schiraldi
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7202, USA
| |
Collapse
|
6
|
Kim M, Njaramba LK, Yoon Y, Jang M, Park CM. Thermally-activated gelatin-chitosan-MOF hybrid aerogels for efficient removal of ibuprofen and naproxen. Carbohydr Polym 2024; 324:121436. [PMID: 37985070 DOI: 10.1016/j.carbpol.2023.121436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the most frequently used drugs and have been frequently detected in aquatic environments. This paper demonstrates a thermally-activated gelatin-chitosan and amine-functionalized metal-organic framework (UiO-66-NH2) aerogel (CGC-MOF), which was successfully synthesized for the efficient removal of ibuprofen (IBP) and naproxen (NPX). Various characterization tools were used to systematically analyze the microstructure and physicochemical properties of the synthesized aerogel. In addition, the effect of key reaction parameters as well as batch and continuous-flow fixed-bed column experiments were carried out to elucidate the adsorption process. Several functional groups in the biopolymer network, combined with excellent MOF properties, synergistically couple to form an adsorbent with great performance. The mesoporous aerogel activated at 200 °C (CGC-MOF200) exhibited a high specific surface area (819.6 m2/g) that is valuable in providing abundant adsorption active sites that facilitate the efficient adsorption of IBP and NPX. CGC-MOF200 exhibited an excellent removal of IBP and NPX, accounting to 99.28 % and 96.39 %, respectively. The adsorption process followed the pseudo-second-order kinetics and the Freundlich isotherm models, suggesting heterogeneous and chemisorption adsorption processes. Overall, this work provides new and valuable insights into the development of a promising biopolymer-MOF composite aerogel for environmental remediation.
Collapse
Affiliation(s)
- Minseok Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Lewis Kamande Njaramba
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC 29208, USA; Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
7
|
Zhang J, Zhang HY, Xu WR, Zhang YC. Sustainable biomass-based composite biofilm: Sodium alginate, TEMPO-oxidized chitin nanocrystals, and MXene nanosheets for fire-resistant materials and next-generation sensors. J Colloid Interface Sci 2024; 654:795-804. [PMID: 37866051 DOI: 10.1016/j.jcis.2023.10.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Efficient utilization of natural biomass for the development of fireproof materials and next-generation sensors faces various challenges in the field of fire safety and prevention. In this study, renewable sodium alginate (SA), TEMPO-oxidized chitin nanocrystals (TOChNs), and MXene nanosheets were employed to fabricate a sustainable, flexible, and flame-retardant composite biofilm, donated as STM, utilizing a simple and environmentally friendly evaporation-induced self-assembly technique. The incorporation of SA, TOChNs, and MXene in a weight ratio of 50/10/40 led to improved mechanical properties of the resulting STM-40 films, as evidenced by increased tensile strength and Young's modulus values of approximately 36 MPa and 4 GPa, respectively. Notably, these values were approximately 3 and 11 times higher than those observed for the pure SA film. Moreover, the STM-40 films demonstrated highly sensitive fire alarm capabilities, exhibiting a superior flame alarm response time of 0.6 s and a continuous alarm time of approximately 492 s when exposed to flames. The STM exhibited exceptional flame retardancy due to the synergistic carbonization between MXene and SA/TOChNs, resulting in a limiting oxygen index of 45.0 %. Furthermore, its maximum heat release rate decreased by over 90.1 % during the test. This study presents a novel approach for designing and developing fire-retardant fire alarm sensors by utilizing natural biomass.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Key Laboratory of Solid Waste Resource Utilization and Environmental Protection, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China; Hainan Health Management College, Haikou 570228, China
| | - Hui-Yuan Zhang
- Heibei Key Laboratory of Hazardous Chemicals Safety and Control Technology, School of Chemical Safety, North China Institute of Science and Technology, Langfang, Hebei 065201, China
| | - Wen-Rong Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Key Laboratory of Solid Waste Resource Utilization and Environmental Protection, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Yu-Cang Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
8
|
Vrabič-Brodnjak U. Hybrid Materials of Bio-Based Aerogels for Sustainable Packaging Solutions. Gels 2023; 10:27. [PMID: 38247750 PMCID: PMC10815338 DOI: 10.3390/gels10010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
This review explores the field of hybrid materials in the context of bio-based aerogels for the development of sustainable packaging solutions. Increasing global concern over environmental degradation and the growing demand for environmentally friendly alternatives to conventional packaging materials have led to a growing interest in the synthesis and application of bio-based aerogels. These aerogels, which are derived from renewable resources such as biopolymers and biomass, have unique properties such as a lightweight structure, excellent thermal insulation, and biodegradability. The manuscript addresses the innovative integration of bio-based aerogels with various other materials such as nanoparticles, polymers, and additives to improve their mechanical, barrier, and functional properties for packaging applications. It critically analyzes recent advances in hybridization strategies and highlights their impact on the overall performance and sustainability of packaging materials. In addition, the article identifies the key challenges and future prospects associated with the development and commercialization of hybrid bio-based aerogel packaging materials. The synthesis of this knowledge is intended to contribute to ongoing efforts to create environmentally friendly alternatives that address the current problems associated with conventional packaging while promoting a deeper understanding of the potential of hybrid materials for sustainable packaging solutions.
Collapse
Affiliation(s)
- Urška Vrabič-Brodnjak
- Department of Textiles, Graphic Arts and Design, Faculty of Natural Sciences and Engineering, University of Ljubljana, Snežniška 5, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Lopes WC, Brito FM, Neto FE, Araújo AR, Leite RC, Viana VGF, Silva-Filho EC, Silva DA. Development of a New Clay-Based Aerogel Composite from Ball Clay from Piauí, Brazil and Polysaccharides. Polymers (Basel) 2023; 15:polym15112412. [PMID: 37299211 DOI: 10.3390/polym15112412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 06/12/2023] Open
Abstract
The incorporation of polymeric components into aerogels based on clay produces a significant improvement in the physical and thermal properties of the aerogels. In this study, clay-based aerogels were produced from a ball clay by incorporation of angico gum and sodium alginate using a simple, ecologically acceptable mixing method and freeze-drying. The compression test showed a low density of spongy material. In addition, both the compressive strength and the Young's modulus of elasticity of the aerogels showed a progression associated to the decrease in pH. The microstructural characteristics of the aerogels were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The chemical structure was studied by infrared spectroscopy with Fourier transform (FTIR). The TGA curves from a non-oxidizing atmosphere indicated that the clay had a mass loss of 9% above 500 °C and that due to the presence of polysaccharides, the aerogels presented a decomposition of 20% at temperatures above 260 °C. The DSC curves of the aerogels demonstrated a displacement in higher temperatures. In conclusion, the results showed that aerogels of ball clay with the incorporation of polysaccharides, which are still minimally studied, have potential application as thermal insulation considering the mechanical and thermal results obtained.
Collapse
Affiliation(s)
- Wilton C Lopes
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, São Sebastião Avenue, Parnaíba 64202-020, PI, Brazil
| | - Francisco M Brito
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, São Sebastião Avenue, Parnaíba 64202-020, PI, Brazil
| | - Francisco E Neto
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, São Sebastião Avenue, Parnaíba 64202-020, PI, Brazil
| | - Alyne R Araújo
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, São Sebastião Avenue, Parnaíba 64202-020, PI, Brazil
| | - Rodolpho C Leite
- Postgraduate Program in Materials Engineering, Federal Institute of Piaui (IFPI), Campus Teresina Central, Teresina 64001-270, PI, Brazil
| | - Vicente G Freitas Viana
- Postgraduate Program in Materials Engineering, Federal Institute of Piaui (IFPI), Campus Teresina Central, Teresina 64001-270, PI, Brazil
| | - Edson C Silva-Filho
- LIMAV, Interdisciplinary Laboratory of Advanced Materials, Piauí Federal University, Teresina 64049-550, PI, Brazil
| | - Durcilene A Silva
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, São Sebastião Avenue, Parnaíba 64202-020, PI, Brazil
| |
Collapse
|
10
|
Wang L, Lin X, Li J, Yang H, Feng X, Wan C. Konjac Glucomannan Aerogels Modified by Hydrophilic Isocyanate and Expandable Graphite with Excellent Hydrolysis Resistance, Mechanical Strength, and Flame Retardancy. Biomacromolecules 2023. [PMID: 37141322 DOI: 10.1021/acs.biomac.3c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
At present, biomass foamlike materials are a hot research topic, but they need to be improved urgently due to their defects such as large size shrinkage rate, poor mechanical strength, and easy hydrolysis. In this study, the novel konjac glucomannan (KGM) composite aerogels modified with hydrophilic isocyanate and expandable graphite were prepared by a facile vacuum freeze-drying method. Compared with the unmodified KGM aerogel, the volume shrinkage of the KGM composite aerogel (KPU-EG) decreased from 36.36 ± 2.47% to 8.64 ± 1.46%. Additionally, the compressive strength increased by 450%, and the secondary repeated compressive strength increased by 1476%. After soaking in water for 28 days, mass retention after hydrolysis of the KPU-EG aerogel increased from 51.26 ± 2.33% to more than 85%. The UL-94 vertical combustion test showed that the KPU-EG aerogel can achieve a V-0 rating, and the limiting oxygen index (LOI) value of the modified aerogel can reach up to 67.3 ± 1.5%. To sum up, the cross-linking modification of hydrophilic isocyanate can significantly improve the mechanical properties, flame retardancy, and hydrolysis resistance of KGM aerogels. We believe that this work can provide excellent hydrolytic resistance and mechanical properties and has broad application prospects in practical packaging, heat insulation, sewage treatment, and other aspects.
Collapse
Affiliation(s)
- Linsheng Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Xiang Lin
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jiajia Li
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Hongyu Yang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaming Feng
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Chaojun Wan
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
11
|
Study on the Influence of the Preparation Method of Konjac Glucomannan-Silica Aerogels on the Microstructure, Thermal Insulation, and Flame-Retardant Properties. Molecules 2023; 28:molecules28041691. [PMID: 36838679 PMCID: PMC9967830 DOI: 10.3390/molecules28041691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Natural polysaccharides with high viscosity, good thermal stability, and biocompatibility can improve the mechanical properties of inorganic silica aerogels and enhance their application safety. However, the effects of the preparation methods of polysaccharide-silica aerogels on their microstructure and application properties have not been systematically studied. To better investigate the effect of the microstructure on the properties of aerogel materials, two aerogels with different structures were prepared using Konjac glucomannan (KGM) and tetraethoxysilane (TEOS) via physical blending (KTB) and co-precursor methods (KTC), respectively. The structural differences between the KTB and KTC aerogels were characterized, and the thermal insulation and fire-retardant properties were further investigated. The compressive strength of the KTC aerogels with a cross-linked interpenetrating network (IPN) structure was three times higher than that of the KTB aerogels, while their thermal conductivity was 1/3 of that of the KTB aerogels. The maximum limiting oxygen index (LOI) of the KTC aerogels was 1.4 times, the low peak heat release rate (PHRR) was reduced by 61.45%, and the lowest total heat release (THR) was reduced by 41.35% compared with the KTB aerogels. The results showed that the KTC aerogels with the IPN have better mechanical properties, thermal insulation, and fire-retardant properties than the simple physically blending KTB aerogels. This may be due to the stronger hydrogen-bonding interactions between KGM and silica molecules in the KTC aerogels under the unique forcing effect of the IPN, thus enhancing their structural stability and achieving complementary properties. This work will provide new ideas for the microstructure design of aerogels and the research of new thermal insulation and fire-retardant aerogels.
Collapse
|
12
|
Han ZM, Sun WB, Yang KP, Yang HB, Liu ZX, Li DH, Yin CH, Liu HC, Zhao YX, Ling ZC, Guan QF, Yu SH. An All-Natural Wood-Inspired Aerogel. Angew Chem Int Ed Engl 2023; 62:e202211099. [PMID: 36416072 DOI: 10.1002/anie.202211099] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
The oriented pore structure of wood endows it with a variety of outstanding properties, among which the low thermal conductivity has attracted researchers to develop wood-like aerogels as excellent thermal insulation materials. However, the increasing demands of environmental protection have put forward new and strict requirements for the sustainability of aerogels. Here, we report an all-natural wood-inspired aerogel consisting of all-natural ingredients and develop a method to activate the surface-inert wood particles to construct the aerogel. The obtained wood-inspired aerogel has channel structure similar to that of natural wood, endowing it with superior thermal insulation properties to most existing commercial sponges. In addition, remarkable fire retardancy and complete biodegradability are integrated. With the above outstanding performances, this sustainable wood-inspired aerogel will be an ideal substitute for the existing commercial thermal insulation materials.
Collapse
Affiliation(s)
- Zi-Meng Han
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Bin Sun
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Kun-Peng Yang
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Huai-Bin Yang
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhao-Xiang Liu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - De-Han Li
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Chong-Han Yin
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Hao-Cheng Liu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Xiang Zhao
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhang-Chi Ling
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Qing-Fang Guan
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.,Institute of Innovative Materials, Department of Materials Science and Engineering, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
13
|
Guo X, Zhao H, Qiang X, Ouyang C, Wang Z, Huang D. Facile construction of agar-based fire-resistant aerogels: A synergistic strategy via in situ generations of magnesium hydroxide and cross-linked Ca-alginate. Int J Biol Macromol 2023; 227:297-306. [PMID: 36549030 DOI: 10.1016/j.ijbiomac.2022.12.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Biomass-based aerogel materials have many advantages, such as low thermal conductivity and non-toxicity. These materials are environmentally friendly and have broad development potential in the fields of packaging, cushioning and green building insulation. However, defects, such as low mechanical strength and poor fire safety, greatly limit the application of these materials. In this work, the agar/polyvinyl alcohol composite aerogel modified by the magnesium hydroxide (MH)/sodium alginate (SA) composite flame retardant system was developed by using a freeze-dried technology and the strategy of in-situ generation of MH and crosslinking of SA. The results showed that the MH/SA dramatically enhanced the mechanical and thermal stability of the composites. The compression modulus of AP-M35S15 was 2.37 MPa, which was 152.13 % higher than that of AP-M50. The limiting oxygen index value of AP-M35S15 was 34.1 % and reached V-0 level in the vertical burning test, which was better than those of the samples with a single MH effect. The cone calorimetric test showed that the MH/SA composite flame retardant system performed better in extending the ignition time, slowing down the heat release rate and reducing the total heat release and had a more complete dense carbon structure after burning.
Collapse
Affiliation(s)
- Xin Guo
- School of Material Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Hong Zhao
- School of Material Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Xiaohu Qiang
- School of Material Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Chengwei Ouyang
- School of Material Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Zhehui Wang
- School of Material Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Dajian Huang
- School of Material Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China.
| |
Collapse
|
14
|
Superior intrinsic flame-retardant phosphorylated chitosan aerogel as fully sustainable thermal insulation bio-based material. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Abstract
The growing trend of intelligent devices ranging from wearables and soft robots to artificial intelligence has set a high demand for smart batteries. Hydrogels provide opportunities for smart batteries to self-adjust their functions according to the operation conditions. Despite the progress in hydrogel-based smart batteries, a gap remains between the designable functions of diverse hydrogels and the expected performance of batteries. In this Perspective, we first briefly introduce the fundamentals of hydrogels, including formation, structure, and characteristics of the internal water and ions. Batteries that operate under unusual mechanical and temperature conditions enabled by hydrogels are highlighted. Challenges and opportunities for further development of hydrogels are outlined to propose future research in smart batteries toward all-climate power sources and intelligent wearables.
Collapse
Affiliation(s)
- Peihua Yang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Jin-Lin Yang
- School of Physical and Mathematical Science, Nanyang Technological University, Singapore 637371
| | - Kang Liu
- MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Hong Jin Fan
- School of Physical and Mathematical Science, Nanyang Technological University, Singapore 637371
| |
Collapse
|
16
|
Weng L, Zhang X. In Situ Generating CaCO 3 Nanoparticles Reinforced Nonflammable Calcium Alginate Biocomposite Fiber. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12491-12498. [PMID: 36200299 DOI: 10.1021/acs.langmuir.2c01886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Petroleum-based synthetic flame-proof fiber releases toxic volatile organic compounds in thermal decomposition process and has other problems, like tickling feeling and high density. A natural polysaccharide, calcium alginate, is an intrinsic fire-resistant biodegradable material, but its limited mechanical performance prevents it from being a practical flame-retardant fabric. To address this problem, Na2CO3 was doped into alginate spinning solution to obtain in situ generating CaCO3 nanoparticle-reinforced alginate fiber by microfluidic spinning technique. Comparative analysis illustrated that incorporation of 0.50% Na2CO3 into the fiber greatly improved its mechanical performance; meanwhile, in situ generated CaCO3 nanoparticles also throttled oxygen and heat flow in burning, endowing the fiber with excellent flame retardancy. The prepared composite fiber released less heat, smoke, and toxic volatile organic compounds in burning, which reduced the fire hazard. The formed residue char and pyrolysis products functioned as the physical barrier and displayed a synergistic effect to inhibit oxygen and heat transmission and impede the further combustion. All of the results demonstrate that the obtained fiber exhibits a good mechanical and flame-retardant performance, making it an ideal candidate as a fire-protection textile.
Collapse
Affiliation(s)
- Lin Weng
- Department of Chemical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi710049, People's Republic of China
| | - Xiaolin Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi710048, People's Republic of China
- Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University), Ministry of Education, Xi'an, Shaanxi710048, People's Republic of China
| |
Collapse
|
17
|
Aramid Pulp Reinforced Clay Aerogel Composites: Mechanical, Thermal and Combustion Behavior. Gels 2022; 8:gels8100654. [PMID: 36286155 PMCID: PMC9601384 DOI: 10.3390/gels8100654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 11/04/2022] Open
Abstract
In this work, we reported that aramid pulps (AP) reinforced clay aerogel composites with improved mechanical strength, good thermal insulation and fire resistance based on the combination of AP, Poly(vinyl alcohol) (PVA) and sodium montmorillonite (MMT), which present a promising prospect in the thermal insulation application. The PVA-MMT-APx (x: denotes the mass content of AP) aerogel composites present an isotropic “lamella-honeycomb” porous structure, which endows them with excellent comprehensive performance. With the AP content increasing, the extremely low density is kept, ranging between 67–73 mg/cm3, and the low thermal conductivity is maintained within 40.9–47.9 mW·m−1·K−1. The mechanical strength is significantly improved with the maximum compressive modulus increasing from 2.95 to 5.96 MPa and the specific modulus rising from 44.03 to 81.64 MPa∙cm3/g. Their detailed heat transfer process has been analyzed, which provides a deep understanding to the low thermal conductivity of the PVA-MMT-APx aerogel composites. Based on the combination of thermogravimetric analysis and combustion behavior, the PVA-MMT-APx aerogel composites are demonstrated to possess improved thermal stability and fire resistance. This study puts forward a facile approach to utilizing AP to reinforce clay aerogel composites, which provides new insight into the development of thermal-insulating, fire-safe and high-strength thermal insulation materials.
Collapse
|
18
|
Schiff base cross-linked dialdehyde cellulose/gelatin composite aerogels as porous structure templates for oleogels preparation. Int J Biol Macromol 2022; 224:667-675. [DOI: 10.1016/j.ijbiomac.2022.10.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
19
|
Zhang X, Wang X, Fan W, Liu Y, Wang Q, Weng L. Fabrication, Property and Application of Calcium Alginate Fiber: A Review. Polymers (Basel) 2022; 14:3227. [PMID: 35956740 PMCID: PMC9371111 DOI: 10.3390/polym14153227] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022] Open
Abstract
As a natural linear polysaccharide, alginate can be gelled into calcium alginate fiber and exploited for functional material applications. Owing to its high hygroscopicity, biocompatibility, nontoxicity and non-flammability, calcium alginate fiber has found a variety of potential applications. This article gives a comprehensive overview of research on calcium alginate fiber, starting from the fabrication technique of wet spinning and microfluidic spinning, followed by a detailed description of the moisture absorption ability, biocompatibility and intrinsic fire-resistant performance of calcium alginate fiber, and briefly introduces its corresponding applications in biomaterials, fire-retardant and other advanced materials that have been extensively studied over the past decade. This review assists in better design and preparation of the alginate bio-based fiber and puts forward new perspectives for further study on alginate fiber, which can benefit the future development of the booming eco-friendly marine biomass polysaccharide fiber.
Collapse
Affiliation(s)
- Xiaolin Zhang
- School of Textile-Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product, Xi’an Polytechnic University, Ministry of Education, Xi’an 710048, China
| | - Xinran Wang
- School of Textile-Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product, Xi’an Polytechnic University, Ministry of Education, Xi’an 710048, China
| | - Wei Fan
- School of Textile-Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product, Xi’an Polytechnic University, Ministry of Education, Xi’an 710048, China
| | - Yi Liu
- School of Textile-Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product, Xi’an Polytechnic University, Ministry of Education, Xi’an 710048, China
| | - Qi Wang
- School of Textile-Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product, Xi’an Polytechnic University, Ministry of Education, Xi’an 710048, China
| | - Lin Weng
- Department of Chemical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
20
|
Akgün IS, Demir E, Işık M, Ekmekçiyan N, Şenses E, Erkey C. Protective coating of highly porous alginate aerogel particles in a Wurster fluidized bed. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Shen J, Hu R, Jiang X, You F, Yao C, Yang H, Yu P. Enhanced Toughness and Sound Absorption Performance of Bio-Aerogel via Incorporation of Elastomer. Polymers (Basel) 2022; 14:1344. [PMID: 35406218 PMCID: PMC9003560 DOI: 10.3390/polym14071344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, Arabic gum/ carboxylic butadiene-acrylonitrite latex aerogels (AG/XNBRL) hybrid aerogel was successfully prepared by a green method, i.e., the combination of latex compounding and vacuum freeze-drying process. After that, the obtained composites were subjected to a high temperature treatment to crosslink the rubber phase. It was found that the AG in the AG/XNBRL hybrid aerogel could act as a framework to improve the dimensional stability of the aerogel, while the XNBRL phase could significantly improve the mechanical flexibility of the ensuing composite. Compared to the AG aerogel which is highly brittle in nature, the AG/XNBRL hybrid aerogel not only exhibits significantly enhanced toughness, but also shows improved thermal stability and sound absorption performances; for instance, the half weight loss (50%) temperature and average sound adsorption coefficient for aerogel containing 30 wt% XNBRL is 344 °C and 0.585, respectively, which are superior to those of neat AG aerogel. Overall, this work provides novel inspiration to prepare the mechanical robust bio-based aerogel for the sound absorption application.
Collapse
Affiliation(s)
- Junshi Shen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.S.); (F.Y.); (C.Y.); (H.Y.)
| | - Ruofei Hu
- Department of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.S.); (F.Y.); (C.Y.); (H.Y.)
- Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Feng You
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.S.); (F.Y.); (C.Y.); (H.Y.)
| | - Chu Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.S.); (F.Y.); (C.Y.); (H.Y.)
| | - Huan Yang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.S.); (F.Y.); (C.Y.); (H.Y.)
| | - Peng Yu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.S.); (F.Y.); (C.Y.); (H.Y.)
| |
Collapse
|
22
|
He H, Liu J, Wang Y, Zhao Y, Qin Y, Zhu Z, Yu Z, Wang J. An Ultralight Self-Powered Fire Alarm e-Textile Based on Conductive Aerogel Fiber with Repeatable Temperature Monitoring Performance Used in Firefighting Clothing. ACS NANO 2022; 16:2953-2967. [PMID: 35084187 DOI: 10.1021/acsnano.1c10144] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Firefighting protective clothing is an essential equipment that can protect firefighters from burn injuries during the firefighting process. However, it is still a challenge to detect the damage of firefighting protective clothing at an early stage when firefighters are exposed to excessively high temperature in fire cases. Herein, an ultralight self-powered fire alarm electronic textile (SFA e-textile) based on conductive aerogel fiber that comprises calcium alginate (CA), Fe3O4 nanoparticles (Fe3O4 NPs), and silver nanowires (Ag NWs) was developed, which achieved ultrasensitive temperature monitoring and energy harvesting in firefighting clothing. The resulting SFA e-textile was integrated into firefighting protective clothing to realize wide-range temperature sensing at 100-400 °C and repeatable fire warning capability, which could timely transmit an alarm signal to the wearer before the firefighting protective clothing malfunctioned in extreme fire environments. In addition, a self-powered fire self-rescue location system was further established based on the SFA e-textile that can help rescuers search and rescue trapped firefighters in fire cases. The power in the self-powered fire location system was offered by an SFA e-textile-based triboelectric nanogenerator (TENG). This work provided a useful design strategy for the preparation of ultralight wearable temperature-monitoring SFA e-textile used in firefighting protective clothing.
Collapse
|
23
|
Yi Q, Lu S, Fan Y, Cheng D, Wang X, Cheng S, Xie H. Preparation and adsorption performance of cellulose nanofibrils/polyvinyl alcohol composite gel spheres with millimeter size. Carbohydr Polym 2022; 277:118850. [PMID: 34893260 DOI: 10.1016/j.carbpol.2021.118850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022]
Abstract
Wastewater treatment is a huge problem facing human beings. The development of recyclable and efficient adsorption materials is of great benefit to solve the problem. Based on the biodegradable cellulose nanofibers (CNFs) derived from biomass resources, the large sized CNFs/PVA composite hydrogel spheres (CV-HSs, 1-3 mm) were successfully prepared by the inverse suspension pellet-forming technology using the polymers as raw materials, and another hydrophobic CNFs/PVA composite aerogel spheres (HCV-ASs) were also obtained by lyophilization and followed silylation of as-prepared CV-HSs. The CV-HSs showed excellent adsorption properties for simulated pollutants, including Cu2+, phenol and aniline in water. The maximum absorption capacity of CV-HSs was 17.22 mmol/g for Cu2+, 176.72 mg/g for phenol and 341.93 mg/g for aniline respectively. The HCV-ASs exhibited good absorption properties for weak polar organic solvents, such as petroleum ether, ethyl acetate and toluene. In summary, two kinds of large-sized CNFs/PVA composite gel spheres were successfully fabricated, and exhibited good adsorption properties for organic pollutants and heavy metal ions, indicating their potential for wastewater treatment.
Collapse
Affiliation(s)
- Qing Yi
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sheng Lu
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yutong Fan
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dehua Cheng
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xumei Wang
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shaoling Cheng
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hongxiang Xie
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
24
|
Jiang S, Zhang M, Li M, Zhu J, Ge A, Liu L, Yu J. Cellulose-based composite thermal-insulating foams toward eco-friendly, flexible and flame-retardant. Carbohydr Polym 2021; 273:118544. [PMID: 34560956 DOI: 10.1016/j.carbpol.2021.118544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/02/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023]
Abstract
Cellulose nanofibrils (CNFs) have been developed as building blocks for highly porous foams which are superior in thermal insulation. Unfortunately, the flammability and poor mechanical performance of CNF foams limited their practical applications. In this strategy, biopolymer sodium alginate, together with nontoxic boric acid and borate, were explored to play the roles of flame retardants for methyltrimethoxysilane cross-linked CNF foams. Their co-effects on preventing CNF foams from being ignited were revealed. The composite foams were self-extinguish and showed a considerably increased limited oxygen index (up to 39.5%). Additionally, the foams were flexible with good resilience and bendability. The eco-friendly foams with low thermal conductivity (0.028 W m-1 K-1 at 25 °C), flexibility, and non-ignitability can meet the satisfactory in energy-conservation, wide applicability, and use safety.
Collapse
Affiliation(s)
- Shuai Jiang
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Meiling Zhang
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Mengmeng Li
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianhua Zhu
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Aixiong Ge
- Jihua Group Corporation Limited, Beijing 100020, China
| | - Lifang Liu
- College of Textiles, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
25
|
Berglund L, Nissilä T, Sivaraman D, Komulainen S, Telkki VV, Oksman K. Seaweed-Derived Alginate-Cellulose Nanofiber Aerogel for Insulation Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34899-34909. [PMID: 34255967 PMCID: PMC8323098 DOI: 10.1021/acsami.1c07954] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/01/2021] [Indexed: 05/07/2023]
Abstract
The next generation of green insulation materials is being developed to provide safer and more sustainable alternatives to conventional materials. Bio-based cellulose nanofiber (CNF) aerogels offer excellent thermal insulation properties; however, their high flammability restricts their application. In this study, the design concept for the development of a multifunctional and non-toxic insulation material is inspired by the natural composition of seaweed, comprising both alginate and cellulose. The approach includes three steps: first, CNFs were separated from alginate-rich seaweed to obtain a resource-efficient, fully bio-based, and inherently flame-retardant material; second, ice-templating, followed by freeze-drying, was employed to form an anisotropic aerogel for effective insulation; and finally, a simple crosslinking approach was applied to improve the flame-retardant behavior and stability. At a density of 0.015 g cm-3, the lightweight anisotropic aerogels displayed favorable mechanical properties, including a compressive modulus of 370 kPa, high thermal stability, low thermal conductivity (31.5 mW m-1 K-1), considerable flame retardancy (0.053 mm s-1), and self-extinguishing behavior, where the inherent characteristics were considerably improved by crosslinking. Different concentrations of the crosslinker altered the mechanical properties, while the anisotropic structure influenced the mechanical properties, combustion velocity, and to some extent thermal conductivity. Seaweed-derived aerogels possess intrinsic characteristics that could serve as a template for the future development of sustainable high-performance insulation materials.
Collapse
Affiliation(s)
- Linn Berglund
- Division
of Materials Science, Luleå University
of Technology, SE 971 87 Luleå, Sweden
| | - Tuukka Nissilä
- Fiber
and Particle Engineering Research Unit, University of Oulu, FI
90570 Oulu, Finland
| | - Deeptanshu Sivaraman
- Empa—Building
Energy Materials and Components, Swiss Federal
Laboratories for Materials Science and Technology, CH 8600 Dübendorf, Switzerland
| | | | | | - Kristiina Oksman
- Division
of Materials Science, Luleå University
of Technology, SE 971 87 Luleå, Sweden
- Mechanical
& Industrial Engineering, University
of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
26
|
Cheng W, Zhang Q, Xue Y, Wang Y, Zhou X, Li Z, Li Q. Facile synthesis of alginate‐based calcium tungstate composite: A thermally stable blue emitting phosphor. J Appl Polym Sci 2021. [DOI: 10.1002/app.50631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wen Cheng
- College of Chemistry and Chemical Engineering Qingdao University Qingdao China
| | - Qing Zhang
- College of Chemistry and Chemical Engineering Qingdao University Qingdao China
| | - Yun Xue
- College of Chemistry and Chemical Engineering Qingdao University Qingdao China
| | - Yanwei Wang
- College of Chemistry and Chemical Engineering Qingdao University Qingdao China
| | - Xiaodong Zhou
- College of Chemistry and Chemical Engineering Qingdao University Qingdao China
| | - Zichao Li
- Institute of Biomedical Engineering, College of Life Sciences Qingdao University Qingdao China
- State Key Laboratory of Bio‐Fibers and Eco‐Textiles Qingdao University Qingdao China
| | - Qun Li
- College of Chemistry and Chemical Engineering Qingdao University Qingdao China
- State Key Laboratory of Bio‐Fibers and Eco‐Textiles Qingdao University Qingdao China
- Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles Qingdao University Qingdao China
| |
Collapse
|
27
|
Akgün IS, Erkey C. Fluidization regimes for alginate aerogel particles in a laboratory scale Wurster fluidized bed. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Yu ZL, Qin B, Ma ZY, Gao YC, Guan QF, Yang HB, Yu SH. Emerging Bioinspired Artificial Woods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001086. [PMID: 32483868 DOI: 10.1002/adma.202001086] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 05/07/2023]
Abstract
As an abundant natural resource, wood has gained great attention for thousands of years, spanning from the primitive construction materials to the modern high-added-value engineering materials. The unique delicate microstructures and the wonderful properties (e.g., low-density, high strength and stiffness, good toughness, and environmental sustainability) have made wood a natural source of inspiration that guides researchers to invent various wood-inspired materials. Herein, as an emerging material system, bioinspired artificial wood, with similar cellular structures and comparable mechanical properties, is discussed in the view of the design concept, fabrication strategy, properties, and possible applications. The present challenges and further research opportunities are also presented for artificial woods to thrive. To achieve the final eco-friendly artificial wood, more endeavors should be made in biomaterials and biodegradable or recyclable engineering of polymers to gain high mechanical properties and environmental sustainability simultaneously.
Collapse
Affiliation(s)
- Zhi-Long Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Bing Qin
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zhi-Yuan Ma
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Cheng Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Qing-Fang Guan
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Huai-Bin Yang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
29
|
Xu YJ, Qu LY, Liu Y, Zhu P. An overview of alginates as flame-retardant materials: Pyrolysis behaviors, flame retardancy, and applications. Carbohydr Polym 2021; 260:117827. [DOI: 10.1016/j.carbpol.2021.117827] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
|
30
|
Polysaccharide-based aerogels for thermal insulation and superinsulation: An overview. Carbohydr Polym 2021; 266:118130. [PMID: 34044946 DOI: 10.1016/j.carbpol.2021.118130] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/13/2021] [Accepted: 04/24/2021] [Indexed: 02/02/2023]
Abstract
To reduce energy losses due to the insufficient thermal insulation is one of the current "hot" topics. Various commercial porous materials are used with the best conductivity around 0.03-0.04 W/(m·K). Aerogels are the only known materials with "intrinsic" thermal superinsulating properties, i.e. with thermal conductivity below that of air in ambient conditions (0.025 W/(m·K)). The classical thermal superinsulating aerogels are based on silica and some synthetic polymers, with conductivity 0.014-0.018 W/(m·K). Aerogels based on natural polymers are new materials created at the beginning of the 21st century. Can bio-aerogels possess thermal superinsulating properties? What are the bottlenecks in the development of bio-aerogels as new high-performance thermal insulationing materials? We try to answer these questions by analyzing thermal conductivity of bio-aerogels reported in literature.
Collapse
|
31
|
Pan J, Li Y, Chen K, Zhang Y, Zhang H. Enhanced physical and antimicrobial properties of alginate/chitosan composite aerogels based on electrostatic interactions and noncovalent crosslinking. Carbohydr Polym 2021; 266:118102. [PMID: 34044920 DOI: 10.1016/j.carbpol.2021.118102] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 12/23/2022]
Abstract
In this study, the alginate/chitosan composite aerogels based on electrostatic interactions and noncovalent crosslinking were fabricated using sol-gel method followed by freeze-drying process. The solution property results showed that with the addition of chitosan in alginate solution, a tighter network was induced by the more entangled molecular chains. The aerogel morphology observations showed that the pore diameter decreased with the increasing weight ratio of chitosan in the aerogels, but was even much lower after the crosslinking of excess alginate with calcium ions. After crosslinking, the aerogels presented the improved thermal stability and higher mechanical properties, as well as stronger antibacterial activities against Staphylococcus aureus and Escherichia coli. Therefore, the enhanced physical and antimicrobial properties of the alginate/chitosan aerogels may be achieved by modulation of electrostatic interactions and noncovalent crosslinking, suggesting the promising applications of these composite aerogels as active food packaging materials for antimicrobial purpose.
Collapse
Affiliation(s)
- Jingjing Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kailun Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yipeng Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
32
|
Wang Y, He Y, Fan Y, Li H, Yu H, Yu J, Nie Y, Wang S. A robust anti-fouling multifunctional aerogel inspired by seaweed for efficient water purification. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118153] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Cao M, Li SL, Cheng JB, Zhang AN, Wang YZ, Zhao HB. Fully bio-based, low fire-hazard and superelastic aerogel without hazardous cross-linkers for excellent thermal insulation and oil clean-up absorption. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123977. [PMID: 33265017 DOI: 10.1016/j.jhazmat.2020.123977] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Elastic biomass aerogels have attracted widespread attention but are seriously hindered by environmentally unfriendly cross-linkers and fire hazards for functional applications. This study outlines the fabrication of a fully bio-based, low fire-hazard and superelastic aerogel without any cross-linkers for excellent thermal insulation and oil absorption, via creating highly oriented wave-shaped layer microstructures and subsequently depositing nonflammable siloxane coating on the surface of the aerogel skeleton. The resultant environmental-safety aerogel showed the combined advantages of anisotropic super-elasticity, hydrophobicity, low density and high flame retardancy (limiting oxygen index value of 42%, UL-94 V-0 rating, and extremely low heat release), thus leading to many benefits for solving environmental hazards. For instance, this fire-safety biomass aerogel can be used as the high-performance thermal insulator with low thermal conductivity and high shielding efficiency. The aerogel also exhibited a great selectively oil clean-up absorption with a high absorption capacity of 117 times its own weight and excellent recyclability. Especially, due to the highly oriented microstructures, the aerogel as a filter showed the fastest separation rates of oil/water mixture (flux rate of 145.78 L h-1 g-1) ever reported. Such a method of preparing super-elastic biomass aerogels will provide new insights into their multifunctional applications with high environmental safety.
Collapse
Affiliation(s)
- Min Cao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shu-Liang Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jin-Bo Cheng
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ai-Ning Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hai-Bo Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
34
|
Microstructure, Thermal Conductivity, and Flame Retardancy of Konjac Glucomannan Based Aerogels. Polymers (Basel) 2021; 13:polym13020258. [PMID: 33466715 PMCID: PMC7828804 DOI: 10.3390/polym13020258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/02/2021] [Accepted: 01/08/2021] [Indexed: 01/19/2023] Open
Abstract
With abundant renewable resources and good biodegradability, bio-based aerogels are considered as promising insulating materials for replacing the conventional petroleum-based foam. In this study, konjac glucomannan (KGM)-based aerogels were prepared as thermal insulation materials via a convenient sol–gel and freeze-drying progress with different content of plant polysaccharides, proteins, and wheat straw. The morphology, thermal conductivity, and flame retardancy of KGM-based aerogels were determined. The KGM-based aerogels showed a uniform three-dimensional porous microstructure. The addition of wheat straw could significantly reduce the pore size of aerogels due to its special multi-cavity structure. KGM-based aerogels showed low densities (0.0234–0.0559 g/cm−3), low thermal conductivities (0.04573–0.05127 W/mK), low peak heat release rate (PHRR, 46.7–165.5 W/g), and low total heat release (THR, 5.7–16.2 kJ/g). Compared to the conventional expanded polystyrene (EPS) and polyurethane (PU) foam, the maximum limiting oxygen index (LOI) of KGM-based aerogels increased by 24.09% and 47.59%, the lowest PHRR decreased by 79.37% and 94.26%, and the lowest THR decreased by 76.54% and 89.25%, respectively. The results demonstrated that the KGM-based aerogels had better performance on flame retardancy than PU and EPS, indicating high potential applications as heat insulation in the green advanced engineering field.
Collapse
|
35
|
Blending alginate fibers with polyester fibers for flame-retardant filling materials: Thermal decomposition behaviors and fire performance. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2020.109470] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Alekseev ES, Alentiev AY, Belova AS, Bogdan VI, Bogdan TV, Bystrova AV, Gafarova ER, Golubeva EN, Grebenik EA, Gromov OI, Davankov VA, Zlotin SG, Kiselev MG, Koklin AE, Kononevich YN, Lazhko AE, Lunin VV, Lyubimov SE, Martyanov ON, Mishanin II, Muzafarov AM, Nesterov NS, Nikolaev AY, Oparin RD, Parenago OO, Parenago OP, Pokusaeva YA, Ronova IA, Solovieva AB, Temnikov MN, Timashev PS, Turova OV, Filatova EV, Philippov AA, Chibiryaev AM, Shalygin AS. Supercritical fluids in chemistry. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4932] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Budtova T, Aguilera DA, Beluns S, Berglund L, Chartier C, Espinosa E, Gaidukovs S, Klimek-Kopyra A, Kmita A, Lachowicz D, Liebner F, Platnieks O, Rodríguez A, Tinoco Navarro LK, Zou F, Buwalda SJ. Biorefinery Approach for Aerogels. Polymers (Basel) 2020; 12:E2779. [PMID: 33255498 PMCID: PMC7760295 DOI: 10.3390/polym12122779] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/30/2022] Open
Abstract
According to the International Energy Agency, biorefinery is "the sustainable processing of biomass into a spectrum of marketable bio-based products (chemicals, materials) and bioenergy (fuels, power, heat)". In this review, we survey how the biorefinery approach can be applied to highly porous and nanostructured materials, namely aerogels. Historically, aerogels were first developed using inorganic matter. Subsequently, synthetic polymers were also employed. At the beginning of the 21st century, new aerogels were created based on biomass. Which sources of biomass can be used to make aerogels and how? This review answers these questions, paying special attention to bio-aerogels' environmental and biomedical applications. The article is a result of fruitful exchanges in the frame of the European project COST Action "CA 18125 AERoGELS: Advanced Engineering and Research of aeroGels for Environment and Life Sciences".
Collapse
Affiliation(s)
- Tatiana Budtova
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Daniel Antonio Aguilera
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Sergejs Beluns
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Linn Berglund
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden;
| | - Coraline Chartier
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Eduardo Espinosa
- Bioagres Group, Chemical Engineering Department, Faculty of Science, Universidad de Córdoba, Campus of Rabanales, 14014 Córdoba, Spain; (E.E.); (A.R.)
| | - Sergejs Gaidukovs
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Agnieszka Klimek-Kopyra
- Department of Agroecology and Plant Production, Faculty of Agriculture and Economics, University of Agriculture, Aleja Mickieiwcza 21, 31-120 Kraków, Poland;
| | - Angelika Kmita
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (D.L.)
| | - Dorota Lachowicz
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (D.L.)
| | - Falk Liebner
- Department of Chemistry, Institute for Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, A-3430 Tulln an der Donau, Austria;
| | - Oskars Platnieks
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Alejandro Rodríguez
- Bioagres Group, Chemical Engineering Department, Faculty of Science, Universidad de Córdoba, Campus of Rabanales, 14014 Córdoba, Spain; (E.E.); (A.R.)
| | - Lizeth Katherine Tinoco Navarro
- CEITEC-VUT Central European Institute of Technology—Brno university of Technology, Purkyňova 123, 612 00 Brno-Královo Pole, Czech Republic;
| | - Fangxin Zou
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Sytze J. Buwalda
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| |
Collapse
|
38
|
Mei T, Chen J, Zhao Q, Wang D. Nanofibrous Aerogels with Vertically Aligned Microchannels for Efficient Solar Steam Generation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42686-42695. [PMID: 32838517 DOI: 10.1021/acsami.0c09518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Utilizing solar energy to evaporate seawater or sewage to improve water quality is an environment-friendly and sustainable water treatment technology, which has been widely concerned. However, there are still many challenges for efficient solar vapor generation, such as incapable free floating, low water-transfer rates, low energy efficiency, serious salt precipitation, and short service life. Herein, photothermal conversion nanofibrous aerogels (PTCNFAs) with vertically aligned microchannels inside are fabricated. Because of the orderly framework structure and the good hydrophilicity, the PTCNFAs show excellent underwater compressive fatigue durability (nearly no plastic deformation after 50 compressive cycles) and water-transfer rate (0.5 cm s-1 in the first second). Furthermore, the surface temperature of the PTCNFAs could rise from 28 to 94 °C in air, after being irradiated for 30 s by 1 sun. Benefiting from the excellent mechanical properties, high water-transfer rates, and outstanding photothermal properties, the PTCNFAs are more convenient in application and exhibit an efficient solar water evaporation rate (2.89 kg m-2 h-1), while the energy efficiency under 1 sun is about 90.3%. This work provides a new approach to design and fabricate the solar steam generation materials for water treatment.
Collapse
Affiliation(s)
- Tao Mei
- Collage of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiahui Chen
- Hubei Key Laboratory of Advanced Textile Materials & Application, Institute of Science and Technology, Wuhan Textile University, Wuhan 430200, China
| | - Qinghua Zhao
- Hubei Key Laboratory of Advanced Textile Materials & Application, Institute of Science and Technology, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Collage of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
- Hubei Key Laboratory of Advanced Textile Materials & Application, Institute of Science and Technology, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
39
|
Kabir II, Sorrell CC, Mofarah SS, Yang W, Yuen ACY, Nazir MT, Yeoh GH. Alginate/Polymer-Based Materials for Fire Retardancy: Synthesis, Structure, Properties, and Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1801726] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Imrana I. Kabir
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Charles C. Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Sajjad S. Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Wei Yang
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Anthony Chun Yin Yuen
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Muhammad Tariq Nazir
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Guan Heng Yeoh
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Sydney, NSW, Australia
- Australian Nuclear Science and Technology Organization (ANSTO), Lucas Heights, NSW, Australia
| |
Collapse
|
40
|
Verma ML, Dhanya B, Sukriti, Rani V, Thakur M, Jeslin J, Kushwaha R. Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. Int J Biol Macromol 2020; 154:390-412. [DOI: 10.1016/j.ijbiomac.2020.03.105] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022]
|
41
|
The Effect of the Co‐Solvent on the Aerogel Formation Directly in Supercritical CO
2
Medium. ChemistrySelect 2020. [DOI: 10.1002/slct.201904936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Jin H, Zhou X, Xu T, Dai C, Gu Y, Yun S, Hu T, Guan G, Chen J. Ultralight and Hydrophobic Palygorskite-based Aerogels with Prominent Thermal Insulation and Flame Retardancy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11815-11824. [PMID: 32092256 DOI: 10.1021/acsami.9b20923] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Clay-based aerogel is a promising material in the field of thermal insulation and flame retardant, but obtaining clay-based aerogel with high fire resistance, low thermal conductivity, hydrophobicity, and mechanical robustness remains a challenge. In this work, palygorskite-based aerogel was successfully fabricated via combining with a very small proportion of alginate to form a distinctive hierarchically meso-microporous structure. By employing ethanol solution (EA) replacement method and freeze-drying process, the resultant aerogel exhibited ultralow density (0.035-0.052 g/cm3), practical mechanical strengths (0.7-2.1 MPa), and low thermal conductivity of 0.0332-0.165 W/mK (25-1000 °C). The hydrophobicity of aerogel was achieved by simple chemical vapor deposition of methyltrimethoxysilane (MTMS). The Pal-based aerogel showed good performance in both fire resistance with high limiting oxygen index up to 90%, and heat resistance with tolerance of flame up to 1000 °C for 10 min. This renewable Pal-based aerogel with a 3D framework is a promising material to be applied in fields of construction and aerospace for thermal insulation and high fire resistance.
Collapse
Affiliation(s)
- Huiran Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, PR China
| | - Xinyu Zhou
- School of Chemical Engineering, Huaiyin Institute of Technology, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huai'an 223003, PR China
| | - Tingting Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, PR China
| | - Chenye Dai
- School of Chemical Engineering, Huaiyin Institute of Technology, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huai'an 223003, PR China
| | - Yawei Gu
- School of Chemical Engineering, Huaiyin Institute of Technology, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huai'an 223003, PR China
| | - Shan Yun
- School of Chemical Engineering, Huaiyin Institute of Technology, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huai'an 223003, PR China
| | - Tao Hu
- School of Chemical Engineering, Huaiyin Institute of Technology, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huai'an 223003, PR China
| | - Guofeng Guan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, PR China
| | - Jing Chen
- School of Chemical Engineering, Huaiyin Institute of Technology, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huai'an 223003, PR China
| |
Collapse
|
43
|
Characterization and functional assessment of alginate fibers prepared by metal-calcium ion complex coagulation bath. Carbohydr Polym 2020; 232:115693. [DOI: 10.1016/j.carbpol.2019.115693] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/17/2022]
|
44
|
Nanoreinforcements of Two-Dimensional Nanomaterials for Flame Retardant Polymeric Composites: An Overview. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/4273253] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polymer materials are ubiquitous in daily life. While polymers are often convenient and helpful, their properties often obscure the fire hazards they may pose. Therefore, it is of great significance in terms of safety to study the flame retardant properties of polymers while still maintaining their optimal performance. Current literature shows that although traditional flame retardants can satisfy the requirements of polymer flame retardancy, due to increases in product requirements in industry, including requirements for durability, mechanical properties, and environmental friendliness, it is imperative to develop a new generation of flame retardants. In recent years, the preparation of modified two-dimensional nanomaterials as flame retardants has attracted wide attention in the field. Due to their unique layered structures, two-dimensional nanomaterials can generally improve the mechanical properties of polymers via uniform dispersion, and they can form effective physical barriers in a matrix to improve the thermal stability of polymers. For polymer applications in specialized fields, different two-dimensional nanomaterials have potential conductivity, high thermal conductivity, catalytic activity, and antiultraviolet abilities, which can meet the flame retardant requirements of polymers and allow their use in specific applications. In this review, the current research status of two-dimensional nanomaterials as flame retardants is discussed, as well as a mechanism of how they can be applied for reducing the flammability of polymers.
Collapse
|
45
|
Jiang Y, Pang X, Deng Y, Sun X, Zhao X, Xu P, Shao P, Zhang L, Li Q, Li Z. An Alginate Hybrid Sponge with High Thermal Stability: Its Flame Retardant Properties and Mechanism. Polymers (Basel) 2019; 11:polym11121973. [PMID: 31801227 PMCID: PMC6960948 DOI: 10.3390/polym11121973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 11/16/2022] Open
Abstract
The worldwide applications of polyurethane (PU) and polystyrene (PS) sponge materials have been causing massive non-renewable resource consumption and huge loss of property and life due to its high flammability. Finding a biodegradable and regenerative sponge material with desirable thermal and flame retardant properties remains challenging to date. In this study, bio-based, renewable calcium alginate hybrid sponge materials (CAS) with high thermal stability and flame retardancy were fabricated through a simple, eco-friendly, in situ, chemical-foaming process at room temperature, followed by a facile and economical post-cross-linking method to obtain the organic-inorganic (CaCO3) hybrid materials. The microstructure of CAS showed desirable porous networks with a porosity rate of 70.3%, indicating that a great amount of raw materials can be saved to achieve remarkable cost control. The sponge materials reached a limiting oxygen index (LOI) of 39, which was greatly improved compared with common sponge. Moreover, with only 5% calcium carbonate content, the initial thermal degradation temperature of CAS was increased by 70 °C (from 150 to 220 °C), compared to that of calcium alginate, which met the requirements of high-temperature resistant and nonflammable materials. The thermal degradation mechanism of CAS was supposed based on the experimental data. The combined results suggest promising prospects for the application of CAS in a range of fields and the sponge materials provide an alternative for the commonly used PU and PS sponge materials.
Collapse
Affiliation(s)
- Yuhuan Jiang
- College of Life Sciences, Institute of Advanced Cross-Field Science, Qingdao University, Qingdao 266071, China; (Y.J.); (X.P.)
| | - Xuening Pang
- College of Life Sciences, Institute of Advanced Cross-Field Science, Qingdao University, Qingdao 266071, China; (Y.J.); (X.P.)
| | - Yujia Deng
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.D.); (X.S.); (X.Z.); (P.X.); (P.S.); (L.Z.)
| | - Xiaolu Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.D.); (X.S.); (X.Z.); (P.X.); (P.S.); (L.Z.)
| | - Xihui Zhao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.D.); (X.S.); (X.Z.); (P.X.); (P.S.); (L.Z.)
- Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Peng Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.D.); (X.S.); (X.Z.); (P.X.); (P.S.); (L.Z.)
| | - Peiyuan Shao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.D.); (X.S.); (X.Z.); (P.X.); (P.S.); (L.Z.)
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.D.); (X.S.); (X.Z.); (P.X.); (P.S.); (L.Z.)
| | - Qun Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.D.); (X.S.); (X.Z.); (P.X.); (P.S.); (L.Z.)
- Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
- Correspondence: (Q.L.); (Z.L.); Tel.: +86-532-8595-0705 (Q.L.)
| | - Zichao Li
- College of Life Sciences, Institute of Advanced Cross-Field Science, Qingdao University, Qingdao 266071, China; (Y.J.); (X.P.)
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.D.); (X.S.); (X.Z.); (P.X.); (P.S.); (L.Z.)
- Correspondence: (Q.L.); (Z.L.); Tel.: +86-532-8595-0705 (Q.L.)
| |
Collapse
|
46
|
Shao P, Xu P, Zhang L, Xue Y, Zhao X, Li Z, Li Q. Non-Chloride in Situ Preparation of Nano-Cuprous Oxide and Its Effect on Heat Resistance and Combustion Properties of Calcium Alginate. Polymers (Basel) 2019; 11:polym11111760. [PMID: 31717828 PMCID: PMC6918189 DOI: 10.3390/polym11111760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022] Open
Abstract
With Cu2+ complexes as precursors, nano-cuprous oxide was prepared on a sodium alginate template excluded of Cl- and based on which the calcium alginate/nano-cuprous oxide hybrid materials were prepared by a Ca2+ crosslinking and freeze-drying process. The thermal degradation and combustion behavior of the materials were studied by related characterization techniques using pure calcium alginate as a comparison. The results show that the weight loss rate, heat release rate, peak heat release rate, total heat release rate and specific extinction area of the hybrid materials were remarkably lower than pure calcium alginate, and the flame-retardant performance was significantly improved. The experimental data indicates that nano-cuprous oxide formed a dense protective layer of copper oxide, calcium carbonate and carbon by lowering the initial degradation temperature of the polysaccharide chain during thermal degradation and catalytically dehydrating to char in the combustion process, and thereby can isolate combustible gases, increase carbon residual rates, and notably reduce heat release and smoke evacuation.
Collapse
Affiliation(s)
- Peiyuan Shao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
| | - Peng Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
- College of Life Sciences, Institute of Advanced Cross-Field Science, Qingdao University, Qingdao 266071, China
| | - Yun Xue
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
| | - Xihui Zhao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
| | - Zichao Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
- College of Life Sciences, Institute of Advanced Cross-Field Science, Qingdao University, Qingdao 266071, China
- Correspondence: (Z.L.); (Q.L.); Tel.: +86-532-8595-0705 (Q.L.)
| | - Qun Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
- Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
- Correspondence: (Z.L.); (Q.L.); Tel.: +86-532-8595-0705 (Q.L.)
| |
Collapse
|
47
|
Li XL, He YR, Qin ZM, Chen MJ, Chen HB. Facile fabrication, mechanical property and flame retardancy of aerogel composites based on alginate and melamine-formaldehyde. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Wu N, Niu F, Lang W, Xia M. Highly efficient flame-retardant and low-smoke-toxicity poly(vinyl alcohol)/alginate/ montmorillonite composite aerogels by two-step crosslinking strategy. Carbohydr Polym 2019; 221:221-230. [PMID: 31227162 DOI: 10.1016/j.carbpol.2019.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023]
Abstract
A highly efficient flame-retardant and ultra-low-smoke-toxicity biodegradable material, poly(vinyl alcohol) (PVA)/alginate/montmorillonite (MMT) composite aerogel, was fabricated by a new environment-friendly two-step crosslinking strategy using borate and calcium ions. Compressive and specific moduli of the crosslinked PVA/alginate/MMT (P4A4M4/BA/Ca) aerogel increased to 7.2- and 1.9-folds those of the non-crosslinked aerogel, respectively, and the limited oxygen index value increased to 40.0%. Cone calorimeter tests revealed that the total heat release and peak heat release rate values of the P4A4M4/BA/Ca composite aerogel distinctly decreased. Remarkably, the total smoke release value of the P4A4M4/BA/Ca aerogel was considerably lower than those of non-crosslinked PVA composite aerogels, indicating its superior smoke suppression ability and high fire hazardous safety. The flame-retardancy mechanism of the crosslinked P4A4M4/BA/Ca composite aerogels involved a combination of the gaseous phase and condensed phase flame retardancy. The high-performance PVA/alginate/MMT biodegradable composite aerogels with good sustainability is a promising alternative to conventional flame-retardant foams.
Collapse
Affiliation(s)
- Ningjing Wu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City, 266042, Shandong, PR China.
| | - Fukun Niu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City, 266042, Shandong, PR China
| | - Wenchao Lang
- School of Chemistry, Sun Yat-sen University, Guangzhou City, 510275, Guangdong, PR China
| | - Mingfeng Xia
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City, 266042, Shandong, PR China
| |
Collapse
|
49
|
Yuan L, Li X, Ge L, Jia X, Lei J, Mu C, Li D. Emulsion Template Method for the Fabrication of Gelatin-Based Scaffold with a Controllable Pore Structure. ACS APPLIED MATERIALS & INTERFACES 2019; 11:269-277. [PMID: 30525427 DOI: 10.1021/acsami.8b17555] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The porous microstructure of scaffolds is an essential consideration for tissue engineering, which plays an important role for cell adhesion, migration, and proliferation. It is crucial to choose optimum pore sizes of scaffolds for the treatment of various damaged tissues. Therefore, the proper porosity is the significant factor that should be considered when designing tissue scaffolds. Herein, we develop an improved emulsion template method to fabricate gelatin-based scaffolds with controllable pore structure. Gelatin droplets were first prepared by emulsification and then solidified by genipin to prepare gelatin microspheres. The microspheres were used as a template for the fabrication of porous scaffolds, which were gathered and tightened together by dialdehyde amylose. The results showed that emulsification can produce gelatin microspheres with narrow size distribution. The size of gelatin microspheres was easily controlled by adjusting the concentration of gelatin and the speed of mechanical agitation. The gelatin-based scaffolds presented macroporous and interconnected structure. It is interesting that the pore size of scaffolds was directly related to the size of gelatin microspheres, displaying the same trend of change in size. It indicated that the gelatin microspheres can be used as the proper template to fabricate gelatin-based scaffold with a desired pore structure. In addition, the gelatin-based scaffolds possessed good blood compatibility and cytocompatibility. Overall, the gelatin-based scaffolds exhibited great potential in tissue engineering.
Collapse
Affiliation(s)
- Lun Yuan
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Xinying Li
- College of Chemistry and Environment Protection Engineering , Southwest Minzu University , Chengdu 610041 , P. R. China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Xiaoqi Jia
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Jinfeng Lei
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering , Sichuan University , Chengdu 610065 , P. R. China
| |
Collapse
|
50
|
George J, Ishida H. A review on the very high nanofiller-content nanocomposites: Their preparation methods and properties with high aspect ratio fillers. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|