1
|
Liu C, Premcheska S, Skirtach A, Poelman D, Kaczmarek AM, Van Der Voort P. Ratiometric dual-emitting thermometers based on rhodamine B dye-incorporated (nano) curcumin periodic mesoporous organosilicas for bioapplications. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:5836-5848. [PMID: 38680544 PMCID: PMC11044629 DOI: 10.1039/d3tc04416e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/21/2024] [Indexed: 05/01/2024]
Abstract
This study explores the potential of combining periodic mesoporous organosilicas (PMOs) with a fluorescent dye to develop a ratiometric thermometry system with enhanced stability, sensitivity, and biocompatibility. PMOs, ordered porous materials known for their stability and versatility, serve as an ideal platform. Curcumin, a natural polyphenol and fluorescent dye, is incorporated into PMOs to develop curcumin-functionalized PMOs (C-PMO) and curcumin-pyrazole-functionalized PMOs (CP-PMO) via hydrolysis and co-condensation. These PMOs exhibit temperature-dependent fluorescence properties. The next step involves encapsulating rhodamine B (RhB) dye within the PMO pores to create dual-emitting PMO@dye nanocomposites, followed by a lipid bilayer (LB) coating to enhance biocompatibility and dye retention. Remarkably, within the physiological temperature range, C-PMO@RhB@LB and CP-PMO@RhB@LB demonstrate noteworthy maximum relative sensitivity (Sr) values of up to 1.69 and 2.60% K-1, respectively. This approach offers versatile means to create various ratiometric thermometers by incorporating different fluorescent dyes, holding promise for future temperature sensing applications.
Collapse
Affiliation(s)
- Chunhui Liu
- COMOC - Center for Ordered Materials Organometallics and Catalysis, Department of Chemistry, Ghent University, Ghent University Krijgslaan 281 S3 9000 Ghent Belgium
- Lumilab, Department of Solid State Sciences, Ghent University Krijgslaan 281 S1 9000 Ghent Belgium
- NanoSensing Group, Department of Chemistry, Ghent University Krijgslaan 281 S3 9000 Ghent Belgium
| | - Simona Premcheska
- NanoSensing Group, Department of Chemistry, Ghent University Krijgslaan 281 S3 9000 Ghent Belgium
- Nano-BioTechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University Ghent Belgium
| | - Andre Skirtach
- Nano-BioTechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University Ghent Belgium
| | - Dirk Poelman
- Lumilab, Department of Solid State Sciences, Ghent University Krijgslaan 281 S1 9000 Ghent Belgium
| | - Anna M Kaczmarek
- NanoSensing Group, Department of Chemistry, Ghent University Krijgslaan 281 S3 9000 Ghent Belgium
| | - Pascal Van Der Voort
- COMOC - Center for Ordered Materials Organometallics and Catalysis, Department of Chemistry, Ghent University, Ghent University Krijgslaan 281 S3 9000 Ghent Belgium
| |
Collapse
|
2
|
Kumar A, Goudar VS, Nahak BK, Tsai PH, Lin HW, Tseng FG. [Ru(dpp) 3 ]Cl 2 -Embedded Oxygen Nano Polymeric Sensors: A Promising Tool for Monitoring Intracellular and Intratumoral Oxygen Gradients with High Quantum Yield and Long Lifetime. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307955. [PMID: 38148312 DOI: 10.1002/smll.202307955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/28/2023] [Indexed: 12/28/2023]
Abstract
Unraveling the intricacies between oxygen dynamics and cellular processes in the tumor microenvironment (TME) hinges upon precise monitoring of intracellular and intratumoral oxygen levels, which holds paramount significance. The majority of these reported oxygen nanoprobes suffer compromised lifetime and quantum yield when exposed to the robust ROS activities prevalent in TME, limiting their prolonged in vitro usability. Herein, the ruthenium-embedded oxygen nano polymeric sensor (Ru-ONPS) is proposed for precise oxygen gradient monitoring within the cellular environment and TME. Ru-ONPS (≈64±7 nm) incorporates [Ru(dpp)3 ]Cl2 dye into F-127 and crosslinks it with urea and paraformaldehyde, ensuring a prolonged lifetime (5.4 µs), high quantum yield (66.65 ± 2.43% in N2 and 49.80 ± 3.14% in O2 ), superior photostability (>30 min), and excellent stability in diverse environmental conditions. Based on the Stern-Volmer plot, the Ru-ONPS shows complete linearity for a wide dynamic range (0-23 mg L-1 ), with a detection limit of 10 µg mL-1 . Confocal imaging reveals Ru-ONPS cellular uptake and intratumoral distribution. After 72 h, HCT-8 cells show 5.20±1.03% oxygen levels, while NIH3T3 cells have 7.07±1.90%. Co-culture spheroids display declining oxygen levels of 17.90±0.88%, 10.90±0.88%, and 5.10±1.18%, at 48, 120, and 216 h, respectively. Ru-ONPS advances cellular oxygen measurement and facilitates hypoxia-dependent metastatic research and therapeutic target identification.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Venkanagouda S Goudar
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Bishal Kumar Nahak
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Ping-Hsun Tsai
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Hao-Wu Lin
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
- Institute of Nano Engineering and Microsystems, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115201, Taiwan ROC
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| |
Collapse
|
3
|
Đačanin Far L, Dramićanin MD. Luminescence Thermometry with Nanoparticles: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2904. [PMID: 37947749 PMCID: PMC10647651 DOI: 10.3390/nano13212904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Luminescence thermometry has emerged as a very versatile optical technique for remote temperature measurements, exhibiting a wide range of applicability spanning from cryogenic temperatures to 2000 K. This technology has found extensive utilization across many disciplines. In the last thirty years, there has been significant growth in the field of luminous thermometry. This growth has been accompanied by the development of temperature read-out procedures, the creation of luminescent materials for very sensitive temperature probes, and advancements in theoretical understanding. This review article primarily centers on luminescent nanoparticles employed in the field of luminescence thermometry. In this paper, we provide a comprehensive survey of the recent literature pertaining to the utilization of lanthanide and transition metal nanophosphors, semiconductor quantum dots, polymer nanoparticles, carbon dots, and nanodiamonds for luminescence thermometry. In addition, we engage in a discussion regarding the benefits and limitations of nanoparticles in comparison with conventional, microsized probes for their application in luminescent thermometry.
Collapse
Affiliation(s)
| | - Miroslav D. Dramićanin
- Centre of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia;
| |
Collapse
|
4
|
Harder P, İyisan N, Wang C, Kohler F, Neb I, Lahm H, Dreßen M, Krane M, Dietz H, Özkale B. A Laser-Driven Microrobot for Thermal Stimulation of Single Cells. Adv Healthc Mater 2023; 12:e2300904. [PMID: 37229536 PMCID: PMC11468149 DOI: 10.1002/adhm.202300904] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Here, the study presents a thermally activated cell-signal imaging (TACSI) microrobot, capable of photothermal actuation, sensing, and light-driven locomotion. The plasmonic soft microrobot is specifically designed for thermal stimulation of mammalian cells to investigate cell behavior under heat active conditions. Due to the integrated thermosensitive fluorescence probe, Rhodamine B, the system allows dynamic measurement of induced temperature changes. TACSI microrobots show excellent biocompatibility over 72 h in vitro, and they are capable of thermally activating single cells to cell clusters. Locomotion in a 3D workspace is achieved by relying on thermophoretic convection, and the microrobot speed is controlled within a range of 5-65 µm s-1 . In addition, light-driven actuation enables spatiotemporal control of the microrobot temperature up to a maximum of 60 °C. Using TACSI microrobots, this study targets single cells within a large population, and demonstrates thermal cell stimulation using calcium signaling as a biological output. Initial studies with human embryonic kidney 293 cells indicate a dose dependent change in intracellular calcium content within the photothermally controlled temperature range of 37-57 °C.
Collapse
Affiliation(s)
- Philipp Harder
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Nergishan İyisan
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Chen Wang
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Fabian Kohler
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
- Laboratory for Biomolecular Nanotechnology, School of Natural Sciences, Technical University of Munich, Am Coulombwall 4a, 85748, Garching, Germany
| | - Irina Neb
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center, Technical University of Munich, 80636, Munich, Germany
| | - Harald Lahm
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center, Technical University of Munich, 80636, Munich, Germany
| | - Martina Dreßen
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center, Technical University of Munich, 80636, Munich, Germany
| | - Markus Krane
- Division of Cardiac Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
- DZHK (German Center for Cardiovascular Research), Partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Hendrik Dietz
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
- Laboratory for Biomolecular Nanotechnology, School of Natural Sciences, Technical University of Munich, Am Coulombwall 4a, 85748, Garching, Germany
| | - Berna Özkale
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| |
Collapse
|
5
|
Lee S, Jiao M, Zhang Z, Yu Y. Nanoparticles for Interrogation of Cell Signaling. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:333-351. [PMID: 37314874 PMCID: PMC10627408 DOI: 10.1146/annurev-anchem-092822-085852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell functions rely on signal transduction-the cascades of molecular interactions and biochemical reactions that relay extracellular signals to the cell interior. Dissecting principles governing the signal transduction process is critical for the fundamental understanding of cell physiology and the development of biomedical interventions. The complexity of cell signaling is, however, beyond what is accessible by conventional biochemistry assays. Thanks to their unique physical and chemical properties, nanoparticles (NPs) have been increasingly used for the quantitative measurement and manipulation of cell signaling. Even though research in this area is still in its infancy, it has the potential to yield new, paradigm-shifting knowledge of cell biology and lead to biomedical innovations. To highlight this importance, we summarize in this review studies that pioneered the development and application of NPs for cell signaling, from quantitative measurements of signaling molecules to spatiotemporal manipulation of cell signal transduction.
Collapse
Affiliation(s)
- Seonik Lee
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Mengchi Jiao
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| |
Collapse
|
6
|
Li S, Xu W, Huang Z, Jia Q. Anchoring Cu Nanoclusters on Melamine-Formaldehyde Microspheres: A New Strategy for Triggering Aggregation-Induced Emission toward Specific Enzyme-Free Methyl Parathion Sensing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14522-14530. [PMID: 36342188 DOI: 10.1021/acs.jafc.2c05194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Methyl parathion (MP) residues have aroused extensive attention on account of their significant threat to the environment and food safety. Currently reported fluorescent methods used for MP sensing largely depend upon an enzyme. Designing a facile and specific enzyme-free MP fluorescent sensor is in great demand, which remains a challenge. Here, negatively charged Cu nanoclusters (CuNCs) anchored on positively charged melamine-formaldehyde (MF) microspheres (MF@CuNCs) through an electrostatic interaction were prepared. MF microspheres triggered aggregation-induced emission (AIE) of CuNCs and successfully circumvented the shortcomings of poor stability and low luminescence of CuNCs. The fluorescence intensity of MF@CuNCs can be quenched by p-nitrophenol produced by MP under alkaline conditions. Accordingly, a specific enzyme-free MP sensing method was constructed with MF@CuNCs. In combination with a smartphone, visually quantitative analysis of MP in a fast and portable way was also achieved. For the first time, AIE of CuNCs used for enzyme-free MP sensing was successfully explored in this work, and it is believed that this method will open a new pathway for AIE of CuNCs to be applied in various applications.
Collapse
Affiliation(s)
- Songrui Li
- College of Chemistry, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Wenhui Xu
- College of Chemistry, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Zhenzhen Huang
- College of Chemistry, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, Jilin 130012, People's Republic of China
| |
Collapse
|
7
|
Liu T, Huang J, Ding H, Zhan C, Wang S. Molecular structure perspective on Temperature-Sensitive properties of rhodamine aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121166. [PMID: 35313177 DOI: 10.1016/j.saa.2022.121166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
As one of the most commonly used organic fluorescent dyes, recently rhodamines have been successfully employed in temperature sensing. However, few works have been reported on their temperature-sensitive properties, which inevitably limiting their further applications. In order to solve such problem, we investigated temperature-sensitive properties of rhodamine 110, 123, 19, 6G, B and 3B focusing on their fluorescence emission spectra; and analyzed them in the molecular structure perspective. It is demonstrated that the fluorescence emission intensities of all studied rhodamines decreased with higher temperature, which inevitably enhances the probability of collisions among molecules, thus definitely leads to energy loss in fluorescence emission. While these rhodamines still have various temperature sensitivities mainly due to the substitutes: the substitute on the benzene carboxylate has little effect; the amino substituents of the three-ring xanthene enhance the temperature sensitivity due to their rotation weakening the rigidity of the three-ring xanthene; and the methyl substituents on the three-ring xanthene reduce the temperature sensitivity by enhancing the rigidity and stability of the three-ring xanthene as well as hindering the rotation of ethylamino. These findings can also be extended to other organic fluorescent dyes proved by coumarins comparable to rhodamines. The results provided by this work can be useful reference and guidance to further develop organic fluorescent dyes especially for temperature sensing.
Collapse
Affiliation(s)
- Ting Liu
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China.
| | - Jianwei Huang
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
| | - He Ding
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
| | - Chengsen Zhan
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
| | | |
Collapse
|
8
|
Peng M, Kaczmarek AM, Van Hecke K. Ratiometric Thermometers Based on Rhodamine B and Fluorescein Dye-Incorporated (Nano) Cyclodextrin Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14367-14379. [PMID: 35312274 DOI: 10.1021/acsami.2c01332] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Macro- and nanosized core, as well as core-shell, γ-cyclodextrin metal-organic frameworks (γ-CD-MOFs) have been designed and used as platforms for the encapsulation of dye molecules to develop the first CD-MOF-based ratiometric optical thermometer materials. A novel dye combination was employed for this purpose, i.e., the duo rhodamine B (RhB) and fluorescein (FL). RhB is highly temperature-sensitive, whereas FL is less temperature-sensitive, and its luminescence emission peak is used as a reference. Promising results in terms of thermometric properties were obtained for a series of dye-encapsulated γ-CD-MOF materials based on this dye combination, with high relative sensitivities, even up to 5%K-1, for the dye-encapsulated 75%RhB-25%FL nanosized γ-CD-MOF, among the highest performance values reported so far for luminescent dual thermometers. In our study, we have additionally developed a simple yet effective preparation method for core-shell γ-CD-MOFs, allowing effective manipulation of the γ-CD-MOF shell growth. The proposed method allows incorporation of the FL and RhB dyes in the γ-CD-MOFs in a more controlled manner, enhancing the efficiency of the developed ratiometric (macro) γ-CD-MOF thermometers.
Collapse
Affiliation(s)
- Min Peng
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| | - Anna M Kaczmarek
- NanoSensing Group, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| |
Collapse
|
9
|
Zinc Donor–Acceptor Schiff Base Complexes as Thermally Activated Delayed Fluorescence Emitters. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Four new zinc(II) Schiff base complexes with carbazole electron donor units and either a 2,3-pyrazinedicarbonitrile or a phthalonitrile acceptor unit were synthesized. The donor units are equipped with two bulky 2-ethylhexyl alkyl chains to increase the solubility of the complexes in organic solvents. Furthermore, the effect of an additional phenyl linker between donor and acceptor unit on the photophysical properties was investigated. Apart from prompt fluorescence, the Schiff base complexes show thermally activated delayed fluorescence (TADF) with quantum yields up to 47%. The dyes bearing a phthalonitrile acceptor emit in the green–yellow part of the electromagnetic spectrum and those with the stronger 2,3-pyrazinedicarbonitrile acceptor—in the orange–red part of the spectrum. The emission quantum yields decrease upon substitution of phthalonitrile with 2,3-pyrazinedicarbonitrile and upon introduction of the phenyl spacer. The TADF decay times vary between 130 µs and 3.5 ms at ambient temperature. The weaker phthalonitrile acceptor and the additional phenyl linker favor longer TADF decay times. All the complexes show highly temperature-dependent TADF decay time (temperature coefficients above −3%/K at ambient conditions) which makes them potentially suitable for application as molecular thermometers. Immobilized into cell-penetrating RL-100 nanoparticles, the best representative shows temperature coefficients of −5.4%/K at 25 °C that makes the material interesting for further application in intracellular imaging.
Collapse
|
10
|
Kolesnikov IE, Afanaseva EV, Kurochkin MA, Vaishlia EI, Kolesnikov EY, Lähderanta E. Dual-center co-doped and mixed ratiometric LuVO 4:Nd 3+/Yb 3+nanothermometers. NANOTECHNOLOGY 2022; 33:165504. [PMID: 35008067 DOI: 10.1088/1361-6528/ac49c3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
During last decade luminescence thermometry has become a widely studied research field due to its potential applications for real time contactless temperature sensing where usual thermometers cannot be used. Special attention is paid to the development of accurate and reliable thermal sensors with simple reading. To address existing problems of ratiometric thermometers based on thermally-coupled levels, LuVO4:Nd3+/Yb3+thermal sensors were studied as a proof-of-concept of dual-center thermometer obtained by co-doping or mixture. Both approaches to create a dual-center sensor were compared in terms of energy transfer efficiency, relative sensitivity, and temperature resolution. Effect of excitation mechanism and Yb3+doping concentration on thermometric performances was also investigated. The best characteristics ofSr = 0.34% K-1@298 K and ΔT = 0.2 K were obtained for mixed phosphors upon host excitation.
Collapse
Affiliation(s)
- Ilya E Kolesnikov
- St. Petersburg State University, Universitetskaya nab. 7-9, 199034, St. Petersburg, Russia
- LUT University, Skinnarilankatu 34, FI-53850, Lappeenranta, Finland
| | - Elena V Afanaseva
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str. 29, 195251, St. Petersburg, Russia
| | - Mikhail A Kurochkin
- St. Petersburg State University, Universitetskaya nab. 7-9, 199034, St. Petersburg, Russia
| | - Elena I Vaishlia
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str. 29, 195251, St. Petersburg, Russia
| | - Evgenii Yu Kolesnikov
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str. 29, 195251, St. Petersburg, Russia
| | - Erkki Lähderanta
- LUT University, Skinnarilankatu 34, FI-53850, Lappeenranta, Finland
| |
Collapse
|
11
|
Li L, Zhang C, Xu L, Ye C, Chen S, Wang X, Song Y. Luminescence Ratiometric Nanothermometry Regulated by Tailoring Annihilators of Triplet–Triplet Annihilation Upconversion Nanomicelles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lin Li
- School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Chun Zhang
- School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Lei Xu
- School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Changqing Ye
- School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Shuoran Chen
- School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Xiaomei Wang
- School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
12
|
Li L, Zhang C, Xu L, Ye C, Chen S, Wang X, Song Y. Luminescence Ratiometric Nanothermometry Regulated by Tailoring Annihilators of Triplet-Triplet Annihilation Upconversion Nanomicelles. Angew Chem Int Ed Engl 2021; 60:26725-26733. [PMID: 34623016 DOI: 10.1002/anie.202110830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 11/07/2022]
Abstract
Triplet-triplet annihilation (TTA) upconversion is a special non-linear photophysical process that converts low-energy photons into high-energy photons based on sensitizer/annihilator pairs. Here, we constructed a novel luminescence ratiometric nanothermometer based on TTA upconversion nanomicelles by encapsulating sensitizer/annihilator molecules into a temperature-sensitive amphiphilic triblock polymer and obtained good linear relationships between the luminescence ratio (integrated intensity ratio of upconverted luminescence peak to the downshifted phosphorescence peak) and the temperature. We also found chemical modification of annihilators would rule out the interference of the polymer concentration and stereochemical engineering of annihilators would readily regulate the thermal sensitivity.
Collapse
Affiliation(s)
- Lin Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Chun Zhang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Lei Xu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Shuoran Chen
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Xiaomei Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
13
|
Li J, Wang Y, Zhang X, Li L, Hao H. Up-Converting Luminescence and Temperature Sensing of Er 3+/Tm 3+/Yb 3+ Co-Doped NaYF 4 Phosphors Operating in Visible and the First Biological Window Range. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2660. [PMID: 34685101 PMCID: PMC8537159 DOI: 10.3390/nano11102660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022]
Abstract
Accurate and reliable non-contact temperature sensors are imperative for industrial production and scientific research. Here, Er3+/Tm3+/Yb3+ co-doped NaYF4 phosphors were studied as an optical thermometry material. The typical hydrothermal method was used to synthesize hexagonal Er3+/Tm3+/Yb3+ co-doped NaYF4 phosphors and the morphology was approximately rod-like. The up-conversion emissions of the samples were located at 475, 520, 550, 650, 692 and 800 nm. Thermo-responsive emissions from the samples were monitored to evaluate the relative sensing sensitivity. The thermal coupled energy level- and non-thermal coupled energy level-based luminescence intensity ratio thermometry of the sample demonstrated that these two methods can be used to test temperature. Two green emissions (520 and 550 nm), radiated from 2H11/2/4S3/2 levels, were monitored, and the maximum relative sensing sensitivities reached to 0.013 K-1 at 297 K. The emissions located in the first biological window (650, 692 and 800 nm) were monitored and the maximum relative sensing sensitivities reached to 0.027 (R692/650) and 0.028 K-1 (R692/800) at 297 K, respectively. These results indicate that Er3+/Tm3+/Yb3+ co-doped NaYF4 phosphors have potential applications for temperature determination in the visible and the first biological window ranges.
Collapse
Affiliation(s)
- Jingyun Li
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China;
| | - Yuxiao Wang
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China; (Y.W.); (X.Z.)
| | - Xueru Zhang
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China; (Y.W.); (X.Z.)
| | - Liang Li
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China;
| | - Haoyue Hao
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China; (Y.W.); (X.Z.)
| |
Collapse
|
14
|
Kalaparthi V, Peng B, Peerzade SAMA, Palantavida S, Maloy B, Dokukin ME, Sokolov I. Ultrabright fluorescent nanothermometers. NANOSCALE ADVANCES 2021; 3:5090-5101. [PMID: 36132344 PMCID: PMC9418727 DOI: 10.1039/d1na00449b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/15/2021] [Indexed: 06/15/2023]
Abstract
Here we report on the first ultrabright fluorescent nanothermometers, ∼50 nm-size particles, capable of measuring temperature in 3D and down to the nanoscale. The temperature is measured through the recording of the ratio of fluorescence intensities of fluorescent dyes encapsulated inside the nanochannels of the silica matrix of each nanothermometer. The brightness of each particle excited at 488 nm is equivalent to the fluorescence coming from 150 molecules of rhodamine 6G and 1700 molecules of rhodamine B dyes. The fluorescence of both dyes is excited with a single wavelength due to the Förster resonance energy transfer (FRET). We demonstrate repeatable measurements of temperature with the uncertainty down to 0.4 K and a constant sensitivity of ∼1%/K in the range of 20-50 °C, which is of particular interest for biomedical applications. Due to the high fluorescence brightness, we demonstrate the possibility of measurement of accurate 3D temperature distributions in a hydrogel. The accuracy of the measurements is confirmed by numerical simulations. We further demonstrate the use of single nanothermometers to measure temperature. As an example, 5-8 nanothermometers are sufficient to measure temperature with an error of 2 K (with the measurement time of >0.7 s).
Collapse
Affiliation(s)
- V Kalaparthi
- Department of Mechanical Engineering, Department of Biomedical Engineering, Tufts University 200 College Ave. Medford MA 02155 USA
| | - B Peng
- Department of Biomedical Engineering 4 Colby Str. Medford MA 02155 USA
| | - S A M A Peerzade
- Department of Biomedical Engineering 4 Colby Str. Medford MA 02155 USA
| | - S Palantavida
- Department of Mechanical Engineering, Department of Biomedical Engineering, Tufts University 200 College Ave. Medford MA 02155 USA
| | - B Maloy
- Department of Physics, Tufts University 547 Boston Ave. Medford MA 02155 USA
| | - M E Dokukin
- Department of Mechanical Engineering, Department of Biomedical Engineering, Tufts University 200 College Ave. Medford MA 02155 USA
- Sarov Physics and Technology Institute Sarov Russian Federation
- National Research Nuclear University MEPhI Moscow Russian Federation
| | - I Sokolov
- Department of Mechanical Engineering, Department of Biomedical Engineering, Tufts University 200 College Ave. Medford MA 02155 USA
- Department of Biomedical Engineering 4 Colby Str. Medford MA 02155 USA
- Department of Physics, Tufts University 547 Boston Ave. Medford MA 02155 USA
| |
Collapse
|
15
|
Ajantha J, Yuvaraj P, Karuppusamy M, Easwaramoorthi S. Single-Molecule White-Light-Emitting Starburst Donor-Acceptor Triphenylamine Derivatives and Their Application as Ratiometric Luminescent Molecular Thermometers. Chemistry 2021; 27:11319-11325. [PMID: 34043253 DOI: 10.1002/chem.202100748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 01/07/2023]
Abstract
White-light emission (WLE) from a single molecule is a highly desirable alternative to a complex mixture of complementary colour emitters, which suffers from poor stability and reproducibility for potential use in organic electronic devices and lighting applications. We report single-molecule WLE both in solution and thin films by judiciously controlled π-electron delocalisation between the triarylamine subchromophoric units. Triphenylamine (TPA) forms the central core, and the phenyl rings are substituted with the electron-deficient acceptor 3-ethylrhodanine (Rh) and electron-rich donors triphenylamine or carbazole. The enforced biphenyl configuration of the TPA core and the other donors renders the π-conjugation across the entire chromophore poor, thus the individual subchromophoric units retain their individual emission characteristics, which cover all three primary colour emissions, that is, red, green and blue (RGB). TPA-Rh units exhibit broad fluorescence in the green-red region originating from the local excited (LE) state and intramolecular charge transfer state (ICT), strongly influenced by the solvent, water, and temperature. Different fluorescence parameters, including spectral maxima, ratiometric changes in ICT emission at the expense of blue emission from terminal donor units, and changes in lifetime, have a linear relationship with temperature between 180-330 K, thus the molecules can function as a multiparameter luminescent molecular thermometer. A temperature coefficient of 0.19 K-1 in ratiometric fluorescence changes along with a spectral shift of 0.3 nm K-1 and their workability over the wide temperature makes these molecules promising materials for potential applications. At lower temperatures, individual subchromophoric properties subside because of the reduced dihedral angle of biphenyl, and fluorescence from the whole molecule becomes dominant.
Collapse
Affiliation(s)
- Joseph Ajantha
- Inorganic & Physical Chemistry Laboratory, CSIR-Central Leather Research Institute Adyar, Chennai, 600020, India
- University of Madras, Chepauk, Chennai, 600005, India
| | - Palani Yuvaraj
- Inorganic & Physical Chemistry Laboratory, CSIR-Central Leather Research Institute Adyar, Chennai, 600020, India
- University of Madras, Chepauk, Chennai, 600005, India
| | - Masiyappan Karuppusamy
- Inorganic & Physical Chemistry Laboratory, CSIR-Central Leather Research Institute Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CLRI Campus, Chennai, 600020, India
| | - Shanmugam Easwaramoorthi
- Inorganic & Physical Chemistry Laboratory, CSIR-Central Leather Research Institute Adyar, Chennai, 600020, India
| |
Collapse
|
16
|
Mara D, Kaczmarek AM, Artizzu F, Abalymov A, Skirtach AG, Van Hecke K, Van Deun R. Luminescent PMMA Films and PMMA@SiO 2 Nanoparticles with Embedded Ln 3+ Complexes for Highly Sensitive Optical Thermometers in the Physiological Temperature Range*. Chemistry 2021; 27:6479-6488. [PMID: 33476058 DOI: 10.1002/chem.202004951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/20/2021] [Indexed: 11/10/2022]
Abstract
In recent years, luminescent materials doped with Ln3+ ions have attracted much attention for their application as optical thermometers based on both downshifting and upconversion processes. This study presents research done on the development of highly sensitive optical thermometers in the physiological temperature range based on poly(methyl methacrylate) (PMMA) films doped with two series of visible Ln3+ complexes (Ln3+ =Tb3+ , Eu3+ , and Sm3+ ) and SiO2 nanoparticles (NPs) coated with these PMMA films. The best performing PMMA film doped with Tb3+ and Eu3+ complexes was the PMMA[TbEuL1 tppo]1 film (L1 =4,4,4-trifluoro-1-phenyl-1,3-butadionate; tppo=triphenylphosphine oxide), which showed good temperature sensing of Sr =4.21 % K-1 at 313 K, whereas for the PMMA films doped with Tb3+ and Sm3+ complexes the best performing was the PMMA[TbSmL2 tppo]3 film (L2 =4,4,4-trifluoro-1-(4-chlorophenyl)-1,3-butadionate), with Sr =3.64 % K-1 at 313 K. Additionally, SiO2 NPs coated with the best performing films from each of the series of PMMA films (Tb-Eu and Tb-Sm) and their temperature-sensing properties were studied in water, showing excellent performance in the physiological temperature range (PMMA[TbEuL1 tppo]1@SiO2 : Sr =3.84 % °C at 20 °C; PMMA[TbSmL2 tppo]3@SiO2 : Sr =3.27 % °C at 20 °C) and the toxicity of these nanoparticles on human cells was studied, showing that they were nontoxic.
Collapse
Affiliation(s)
- Dimitrije Mara
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Ghent, Belgium.,Department of Chemistry, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Anna M Kaczmarek
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Ghent, Belgium
| | - Flavia Artizzu
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Ghent, Belgium
| | - Anatolii Abalymov
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.,Educational Research Institute of Nanostructure and Biosystems, Saratov State University, Saratov, 410012, Russia
| | - Andre G Skirtach
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Kristof Van Hecke
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Ghent, Belgium
| | - Rik Van Deun
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Ghent, Belgium
| |
Collapse
|
17
|
Zakiyyan N, Darr CM, Chen B, Mathai C, Gangopadhyay K, McFarland J, Gangopadhyay S, Maschmann MR. Surface Plasmon Enhanced Fluorescence Temperature Mapping of Aluminum Nanoparticle Heated by Laser. SENSORS 2021; 21:s21051585. [PMID: 33668303 PMCID: PMC7956715 DOI: 10.3390/s21051585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022]
Abstract
Partially aggregated Rhodamine 6G (R6G) dye is used as a lights-on temperature sensor to analyze the spatiotemporal heating of aluminum nanoparticles (Al NPs) embedded within a tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride (THV) fluoropolymer matrix. The embedded Al NPs were photothermally heated using an IR laser, and the fluorescent intensity of the embedded dye was monitored in real time using an optical microscope. A plasmonic grating substrate enhanced the florescence intensity of the dye while increasing the optical resolution and heating rate of Al NPs. The fluorescence intensity was converted to temperature maps via controlled calibration. The experimental temperature profiles were used to determine the Al NP heat generation rate. Partially aggregated R6G dyes, combined with the optical benefits of a plasmonic grating, offered robust temperature sensing with sub-micron spatial resolution and temperature resolution on the order of 0.2 °C.
Collapse
Affiliation(s)
- Naadaa Zakiyyan
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA; (N.Z.); (C.M.D.); (B.C.); (C.M.); (K.G.); (S.G.)
| | - Charles M. Darr
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA; (N.Z.); (C.M.D.); (B.C.); (C.M.); (K.G.); (S.G.)
| | - Biyan Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA; (N.Z.); (C.M.D.); (B.C.); (C.M.); (K.G.); (S.G.)
| | - Cherian Mathai
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA; (N.Z.); (C.M.D.); (B.C.); (C.M.); (K.G.); (S.G.)
| | - Keshab Gangopadhyay
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA; (N.Z.); (C.M.D.); (B.C.); (C.M.); (K.G.); (S.G.)
| | - Jacob McFarland
- J. Mike Walker Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Shubhra Gangopadhyay
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA; (N.Z.); (C.M.D.); (B.C.); (C.M.); (K.G.); (S.G.)
| | - Matthew R. Maschmann
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
18
|
Andresen E, Radunz S, Resch-Genger U. Novel PET-pperated rosamine pH-sensor dyes with substitution pattern-tunable p Ka values and temperature sensitivity. NEW J CHEM 2021. [DOI: 10.1039/d1nj02505h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We present the synthesis and characterization of a family of regioisomerically pure pH-sensitive rosamine fluorophores consisting of xanthene fluorophore cores and differently substituted phenol moieties.
Collapse
Affiliation(s)
- Elina Andresen
- Federal Institute for Materials Research and Testing (BAM)
- Division Biophotonics
- D-12489 Berlin
- Germany
- Humboldt-Universität zu Berlin
| | - Sebastian Radunz
- Federal Institute for Materials Research and Testing (BAM)
- Division Biophotonics
- D-12489 Berlin
- Germany
| | - Ute Resch-Genger
- Federal Institute for Materials Research and Testing (BAM)
- Division Biophotonics
- D-12489 Berlin
- Germany
| |
Collapse
|
19
|
Meng L, Jiang S, Song M, Yan F, Zhang W, Xu B, Tian W. TICT-Based Near-Infrared Ratiometric Organic Fluorescent Thermometer for Intracellular Temperature Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26842-26851. [PMID: 32436373 DOI: 10.1021/acsami.0c03714] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluorescent thermometers with near-infrared (NIR) emission play an important role in visualizing the intracellular temperature with high resolution and investigating the cellular functions and biochemical activities. Herein, we designed and synthesized a donor-Π-acceptor luminogen, 2-([1,1'-biphenyl]-4-yl)-3-(4-((E)-4-(diphenylamino)styryl) phenyl) fumaronitrile (TBB) by Suzuki coupling reaction. TBB exhibited twisted intramolecular charge transfer-based NIR emission, aggregation-induced emission, and temperature-sensitive emission features. A ratiometric fluorescent thermometer was constructed by encapsulating thermosensitive NIR fluorophore TBB and Rhodamine 110 dye into an amphiphilic polymer matrix F127 to form TBB&R110@F127 nanoparticles (TRF NPs). TRF NPs showed a good temperature sensitivity of 2.37%·°C-1, wide temperature response ranges from 25 to 65 °C, and excellent temperature-sensitive emission reversibility. Intracellular thermometry experiments indicated that TRF NPs could monitor the cellular temperature change from 25 to 53 °C for Hep-G2 cells under the photothermal therapy agent heating process, indicating the considerable potential applications of TRF NPs in the biological thermometry field.
Collapse
Affiliation(s)
- Lingchen Meng
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Shan Jiang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Meiyu Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, Changchun 130012, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, Changchun 130012, China
| | - Wei Zhang
- Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| |
Collapse
|
20
|
NiO nanoparticle doped-PVA-MF polymer nanocomposites: Preparation, Congo red dye adsorption and antibacterial activity. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
21
|
Liu X, Liu J, Zhou H, Yan M, Liu C, Guo X, Xie J, Li S, Yang G. Ratiometric dual fluorescence tridurylboron thermometers with tunable measurement ranges and colors. Talanta 2020; 210:120630. [PMID: 31987160 DOI: 10.1016/j.talanta.2019.120630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/01/2019] [Accepted: 12/07/2019] [Indexed: 11/24/2022]
Abstract
Noncontact ratiometric fluorescent thermometers have received great interests in recent years. Besides being a sensitive and easily observable detection signal, the ratiometric dual fluorescence are also highly accurate and resistable to interference. However, organic molecular thermometers with such fluorescence property are very rare, and their measurement ranges and colors are limited. In this work, a series of ratiometric dual fluorescent tridurylboron thermometers, with tunable measurement ranges and colors, are designed and synthesized. The measurement ranges of the thermometers are -20 °C-40 °C, -10 °C-50 °C and -25 °C-30 °C in solid polymeric systems, and -50 °C-100 °C and -30 °C-110 °C in liquid organic solvent. With decreasing temperature, the fluorescence colors of tridurylboron-MOE thermometers are from green yellow to yellow red, green to green yellow, blue to green. This study provides a novel strategy for developing tunable ratiometric dual fluoresence organic molecular thermometers.
Collapse
Affiliation(s)
- Xuan Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China.
| | - Jun Liu
- Sichuan Key Laboratory of Medical Imaging & Department of Chemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Hu Zhou
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China
| | - Manling Yan
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China
| | - Canjun Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China
| | - Xudong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jiao Xie
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China
| | - Shayu Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Guoqiang Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China.
| |
Collapse
|
22
|
Yuexuan Y, Daocheng W. Research shortcomings of fluorescent nanothermometers in biological and medical fields. Nanomedicine (Lond) 2020; 15:735-738. [PMID: 32164501 DOI: 10.2217/nnm-2019-0416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yang Yuexuan
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science & Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Wu Daocheng
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science & Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| |
Collapse
|
23
|
Wang Q, Chen K, Qu Y, Li K, Zhang Y, Fu E. Hairy Fluorescent Nanospheres Based on Polyelectrolyte Brush for Highly Sensitive Determination of Cu(II). Polymers (Basel) 2020; 12:E577. [PMID: 32150845 PMCID: PMC7182828 DOI: 10.3390/polym12030577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 11/29/2022] Open
Abstract
Currently, it is an ongoing challenge to develop fluorescent nanosphere detectors that are uniform, non-toxic, stable and bearing a large number of functional groups on the surface for further applications in a variety of fields. Here, we have synthesized hairy nanospheres (HNs) with different particle sizes and a content range of carboxyl groups from 4 mmol/g to 9 mmol/g. Based on this, hairy fluorescent nanospheres (HFNs) were prepared by the traditional coupling method (TCM) or adsorption-induced coupling method (ACM). By comparison, it was found that high brightness HFNs are fabricated based on HNs with poly (acrylic acid) brushes on the surface via ACM. The fluorescence intensity of hairy fluorescent nanospheres could be controlled by tuning the content of 5-aminofluorescein (5-AF) or the carboxyl groups of HNs easily. The carboxyl content of the HFNs could be as high as 8 mmol/g for further applications. The obtained HFNs are used for the detection of heavy metal ions in environmental pollution. Among various other metal ions, the response to Cu (II) is more obvious. We demonstrated that HFNs can serve as a selective probe and for the separation and determination of Cu(II) ions with a linear range of 0-0.5 μM and a low detection limit of 64 nM.
Collapse
Affiliation(s)
- Qiaoling Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Q.W.); (K.L.); (E.F.)
| | - Kaimin Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Q.W.); (K.L.); (E.F.)
| | - Yi Qu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Q.W.); (K.L.); (E.F.)
| | - Kai Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Q.W.); (K.L.); (E.F.)
| | - Ying Zhang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Enyu Fu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Q.W.); (K.L.); (E.F.)
| |
Collapse
|
24
|
Wang XR, Wang XZ, Du J, Huang Z, Liu YY, Huo JZ, Liu K, Ding B. Post-synthetic dual-emission rhodamine B@ZIF-365 hybrid material and Enzymatic Biosensor Enzyme@ZIF-365: Ratiometric temperature sensing, Biomolecule Nicotinamide Detection and Sensing Platform for Lactose and Al3+. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.120949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Kumawat N, Singh M. Trisurfactantomethylol melamines: Synthesis, structural characterization and physicochemical properties of aqueous systems. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Liu D, Sun Z, Zhao Z, Peng Q, Zhao C. 1,1′‐Binaphthyl Consisting of Two Donor–π–Acceptor Subunits: A General Skeleton for Temperature‐Dependent Dual Fluorescence. Chemistry 2019; 25:10179-10187. [DOI: 10.1002/chem.201901719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/09/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Di‐Hong Liu
- School of Chemistry and Chemical EngineeringShandong University Jinan 250100 P. R. China
| | - Zuo‐Bang Sun
- School of Chemistry and Chemical EngineeringShandong University Jinan 250100 P. R. China
| | - Zheng‐Hua Zhao
- School of Chemistry and Chemical EngineeringShandong University Jinan 250100 P. R. China
| | - Qian Peng
- Key Laboratory of Organic SolidsBeijing National Laboratory for, Molecular Science (BNLMS) Beijing 100190 P. R. China
| | - Cui‐Hua Zhao
- School of Chemistry and Chemical EngineeringShandong University Jinan 250100 P. R. China
| |
Collapse
|
27
|
Kundu S, Mukherjee D, Maiti TK, Sarkar N. Highly Luminescent Thermoresponsive Green Emitting Gold Nanoclusters for Intracellular Nanothermometry and Cellular Imaging: A Dual Function Optical Probe. ACS APPLIED BIO MATERIALS 2019; 2:2078-2091. [DOI: 10.1021/acsabm.9b00107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Wu Y, Zhang H, Pan A, Wang Q, Zhang Y, Zhou G, He L. White-Light-Emitting Melamine-Formaldehyde Microspheres through Polymer-Mediated Aggregation and Encapsulation of Graphene Quantum Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801432. [PMID: 30693186 PMCID: PMC6343069 DOI: 10.1002/advs.201801432] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/31/2018] [Indexed: 05/23/2023]
Abstract
Graphene quantum dot (GQD) encapsulated melamine-formaldehyde (MF) polymer microspheres with uniform particle size and tunable high-quality white-light emissions are prepared via a polymer-mediated GQD assembly and encapsulation strategy. In solution, GQDs are first aggregated with MF prepolymer through electrostatic interaction and further encapsulated inside the microspheres formed by polymerization of MF prepolymer under acid catalysis and heating. During this process, the aggregated GQDs are fixed in the MF polymer matrix with their emission extended from blue to full visible range, presenting bright white luminescence under ultraviolet excitation. The prepared white-light-emitting GQD-MF microspheres exhibit uniform morphology with an average particle size of 2.0 ± 0.08 µm and their luminescence properties are effectively regulated by the doping concentration of GQDs in the MF polymer matrix. A series of white-light-emitting GQD-MF microspheres with quantum yields from 0.83 to 0.43, Commission Internationale de L'Eclairage coordinates from (0.28, 0.28) to (0.33, 0.32), and color rendering index from 0.75 to 0.88 are obtained with excellent photostability and thermal stability. By dispersing the GQD-MF microspheres in cross-linked polydimethylsiloxane matrix, flexible film with dual functions of high-quality white-light-emitting and light diffusion is obtained and successfully applied for white light-emitting diode fabrication.
Collapse
Affiliation(s)
- Youshen Wu
- Department of ChemistrySchool of ScienceXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Hui Zhang
- Key Laboratory of Biomedical Information Engineering of Education MinistryXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Aizhao Pan
- Department of ChemistrySchool of ScienceXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Qi Wang
- Department of ChemistrySchool of ScienceXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yanfeng Zhang
- Department of ChemistrySchool of ScienceXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Guijiang Zhou
- Department of ChemistrySchool of ScienceXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Ling He
- Department of ChemistrySchool of ScienceXi'an Jiaotong UniversityXi'an710049P. R. China
| |
Collapse
|
29
|
Zhang H, Wu Y, Gan Z, Yang Y, Liu Y, Tang P, Wu D. Accurate intracellular and in vivo temperature sensing based on CuInS2/ZnS QD micelles. J Mater Chem B 2019; 7:2835-2844. [DOI: 10.1039/c8tb03261k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We found that core–shell CuInS2/ZnS QDs have obvious temperature dependence and they can be used for accurate intracellular and in vivo temperature sensing after being encapsulated by micelles, which exhibit high intracellular and in vivo thermal sensitivity.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Youshen Wu
- Department of Chemistry
- School of Science
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Zhenhai Gan
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Yuexuan Yang
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Yiming Liu
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Peng Tang
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| |
Collapse
|
30
|
Gao LF, Lin X, Hai X, Chen XW, Wang JH. Polymeric Ionic Liquid-Based Fluorescent Amphiphilic Block Copolymer Micelle for Selective and Sensitive Detection of p-Phenylenediamine. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43049-43056. [PMID: 30457315 DOI: 10.1021/acsami.8b15837] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A highly sensitive and selective detection of p-phenylenediamine (PPD) is achieved by a fluorescence sensor, which is constructed by encapsulating the hydrophobic fluorescent 1-pyrenecarboxaldehyde (Py-CHO) into a polymeric ionic liquid (PIL)-based amphiphilic block copolymer (BCP) micelle. The amine-aldehyde condensation reaction between PPD and Py-CHO leads to the fluorescence quenching of Py-CHO, giving rise to the basis for the quantitative detection of PPD. The core cavity of the micelle formed by the self-assembly of PIL provides an excellent hydrophobic environment for the accommodation of fluorescent Py-CHO, offering significant improved sensitivity and selectivity for PPD detection. The amount of PIL in fabricating the amphiphilic BCP micelle, the BCP-Py-CHO micelle concentration, and the detection pH condition are investigated to obtain the best performance of this sensor. The accurate detection of PPD is achieved in the range of 0.02-10 μmol L-1 under optimal conditions, and the detection limit is 0.007 μmol L-1 (3σ/ s). The developed sensor is successfully applied to the determination of PPD contents in hair dyes, spiked water, and urine samples.
Collapse
Affiliation(s)
- Li-Fang Gao
- Department of Chemistry, College of Sciences , Northeastern University , Shenyang 110819 , China
| | - Xin Lin
- Department of Chemistry, College of Sciences , Northeastern University , Shenyang 110819 , China
| | - Xin Hai
- Department of Chemistry, College of Sciences , Northeastern University , Shenyang 110819 , China
| | - Xu-Wei Chen
- Department of Chemistry, College of Sciences , Northeastern University , Shenyang 110819 , China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences , Northeastern University , Shenyang 110819 , China
| |
Collapse
|
31
|
Wang C, Hu T, Thomas T, Song S, Wen Z, Wang C, Song Q, Yang M. Surface state-controlled C-dot/C-dot based dual-emission fluorescent nanothermometers for intra-cellular thermometry. NANOSCALE 2018; 10:21809-21817. [PMID: 30457150 DOI: 10.1039/c8nr07445c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fluorescence-based nanothermometers have potential to offer accuracy in the measurement of temperature using non-contact approaches. Herein, a C-dot/C-dot based dual-emission temperature sensing platform is fabricated through the electrostatic self-assembly of two kinds of fluorescent CDs with opposite charges. This dual-emission platform consists of several nearly-spherical CDs with two emission centers in blue (440 nm) and orange (590 nm) regions. The orange fluorescence exhibits discernible response to external temperatures in the range of ∼15 to 85 °C; on the other hand, the blue fluorescence remains nearly constant. A continuous fluorescence color change in response to temperature from orange to blue can be clearly observed by the naked eye. Thus, the as-prepared C-dot based dual-emission nanospheres can be used for optical thermometry with high reproducibility and sensitivity (0.93%/°C). Detailed characterization shows that temperature (in the 15-85 °C window) impacts the surface states of orange emissive CDs, leaving the blue emissive CDs unaffected. A model is proposed to explain the observations. Finally, by taking advantage of the excellent biocompatibility and stability, the CD based fluorescent nanothermometer is successfully used for the visual measurement of intracellular temperature variations.
Collapse
Affiliation(s)
- Chan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical & Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ba Z, Hu M, Zhao Y, Wang Y, Wang J, Zhang Z. Double NIR laser stimulation and enhancing the thermal sensitivity of Er 3+/Tm 3+/Nd 3+ doped multilayer core-shell nanoparticles. NANOTECHNOLOGY 2018; 29:355704. [PMID: 29863482 DOI: 10.1088/1361-6528/aac9fd] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Non-contact thermal sensors are important devices to study cellular processes and monitor temperature in vivo. Herein, a novel highly sensitive nanothermometer based on NaYF4:Yb,Er@ NaYF4@NaYF4:Yb,Tm@ NaYF4:Nd (denoted as Er@Y@Tm@Nd) was prepared by a facile solvothermal method. When excited by the near-infrared (NIR) light of 808 and 980 nm, the as-prepared Er@Y@Tm@Nd nanoparticles could emit both blue and green light, respectively, since the lanthanide cations responsible for these emissions are gathered inside this nanostructure. The green and blue light intensity ratio exhibits obvious temperature dependence in the range of the physiological temperature. Additionally, the fluorescence intensity of Er3+ and Tm3+ are also greatly enhanced due to the multilayer structure that implies avoiding the Er3+ and Tm3+ energy cross-relaxation by introduction of a NaYF4 wall between them. The as-prepared core-shell-shell-shell structure with Er3+ and Tm3+ in different layers improves dozens of times of the thermal sensitivity based on the non-thermal coupling levels of the probe: the maximum values for the sensitivity are 2.95% K-1 (I Er-521/I Tm-450) and 6.30% K-1 (I Tm-474/I Er-541) when excited by 980 and 808 nm laser sources, respectively. These values are well above those previously reported (<0.7% K-1), indicating that the prepared nanostructures are temperature sensors with excellent thermal sensitivity and sensitive to NIR wavelength excitation that makes them highly preferred for thermal detection.
Collapse
Affiliation(s)
- Zhaojing Ba
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Shananxi, Xi'an, 710049, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev 2018; 47:2873-2920. [PMID: 29568836 PMCID: PMC5926823 DOI: 10.1039/c7cs00612h] [Citation(s) in RCA: 450] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploring and understanding biological and pathological changes are of great significance for early diagnosis and therapy of diseases. Optical sensing and imaging approaches have experienced major progress in this field. Particularly, an emergence of various functional optical nanoprobes has provided enhanced sensitivity, specificity, targeting ability, as well as multiplexing and multimodal capabilities due to improvements in their intrinsic physicochemical and optical properties. However, one of the biggest challenges of conventional optical nanoprobes is their absolute intensity-dependent signal readout, which causes inaccurate sensing and imaging results due to the presence of various analyte-independent factors that can cause fluctuations in their absolute signal intensity. Ratiometric measurements provide built-in self-calibration for signal correction, enabling more sensitive and reliable detection. Optimizing nanoprobe designs with ratiometric strategies can surmount many of the limitations encountered by traditional optical nanoprobes. This review first elaborates upon existing optical nanoprobes that exploit ratiometric measurements for improved sensing and imaging, including fluorescence, surface enhanced Raman scattering (SERS), and photoacoustic nanoprobes. Next, a thorough discussion is provided on design strategies for these nanoprobes, and their potential biomedical applications for targeting specific biomolecule populations (e.g. cancer biomarkers and small molecules with physiological relevance), for imaging the tumor microenvironment (e.g. pH, reactive oxygen species, hypoxia, enzyme and metal ions), as well as for intraoperative image guidance of tumor-resection procedures.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China. and Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA. and MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Xiaohua Huang
- Department of Chemistry, University of Memphis, 213 Smith Chemistry Bldg., Memphis, TN 38152, USA
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| |
Collapse
|
35
|
Co-entrapped, N-doped mesoporous carbons prepared from melamine formaldehyde resins with CoCl2 as template for hydrogen evolution. J Colloid Interface Sci 2018; 516:416-422. [DOI: 10.1016/j.jcis.2018.01.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 11/23/2022]
|
36
|
Tang D, Li K, Zhang W, Qiao ZA, Zhu J, Zhao Z. Nitrogen-doped mesoporous carbon-armored cobalt nanoparticles as efficient hydrogen evolving electrocatalysts. J Colloid Interface Sci 2018; 514:281-288. [PMID: 29274559 DOI: 10.1016/j.jcis.2017.12.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/05/2017] [Accepted: 12/09/2017] [Indexed: 11/18/2022]
Abstract
A series of Co nanoparticles embedded, N-doped mesoporous carbons have been synthesized through chelate-assisted co-assembly strategy followed by thermal treatment. The preparation is based on an assembly process, with evaporation of an ethanol-water solution containing melamine formaldehyde resin (MF resin) as carbon source, nitrogen source, and chelating agent. Moreover, F127 and Co(NO3)2 are used as template and metallic precursor, respectively. The Co nanoparticles embedded, N-doped mesoporous carbon annealed at 800 °C (denoted as MFCo800) shows high electrocatalytic activity for hydrogen evolution reaction (HER) with high current density and low overpotential, which has the ability to operate in both acidic and alkaline electrolytes.
Collapse
Affiliation(s)
- Duihai Tang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Kuo Li
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Wenting Zhang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Junjiang Zhu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| |
Collapse
|
37
|
Xiong C, Li X, Hou T, Yang B. Stability and spinnability of modified melamine-formaldehyde resin solution for centrifugal spinning. J Appl Polym Sci 2017. [DOI: 10.1002/app.46072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chengdong Xiong
- National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Materials and Textiles; Zhejiang Sci-Tech University; Zhejiang 310018 China
| | - Xianglong Li
- National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Materials and Textiles; Zhejiang Sci-Tech University; Zhejiang 310018 China
| | - Teng Hou
- National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Materials and Textiles; Zhejiang Sci-Tech University; Zhejiang 310018 China
| | - Bin Yang
- National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Materials and Textiles; Zhejiang Sci-Tech University; Zhejiang 310018 China
| |
Collapse
|
38
|
Wu Y, Liu J, Wang Y, Li K, Li L, Xu J, Wu D. Novel Ratiometric Fluorescent Nanothermometers Based on Fluorophores-Labeled Short Single-Stranded DNA. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11073-11081. [PMID: 28263548 DOI: 10.1021/acsami.7b01554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Novel ratiometric fluorescent short single-stranded DNA (ssDNA) nanothermometers (ssDNA FT) were developed using the fluorescence resonance energy transfer (FRET) effect of the ssDNA's end labeled fluorophores. An optimal ssDNA sequence and associated ssDNA FT were determined through combined MD simulation and temperature-related FRET analysis. Their fluorescence properties and thermo-responsivities were analyzed using fluorescence spectra. The influences of ssDNA' sequence length, sequence composition and fluorescent labels for temperature sensing were investigated. Results revealed the prepared, optimized ssDNA FT showed a high average temperature sensitivity of 7.04% °C1-, wide linear response range of 0-100 °C, and excellent stability with various environmental factors. Furthermore, this ssDNA FT was successfully used for intracellular temperature sensing in cancer cells and was used for in vivo thermos-imaging during microwave hyperthermia of tumor tissue. Advantages in size, sensitivity, and stability proved the feasibility of ssDNA FT in nanoscale thermometry applications, and this novel fluorescent thermometry mechanism is of large potential in the development of FTs. This investigation of ssDNA's molecular thermosensitivity could give rise to a new prospective in the nanothermometry field.
Collapse
Affiliation(s)
- Youshen Wu
- Department of Chemistry, School of Science, Xi'an Jiaotong University , Xi'an, 710049, China
| | - Jiajun Liu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an, 710049, China
| | - Ya Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an, 710049, China
| | - Ke Li
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an, 710049, China
| | - Lei Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University , Shanghai, 200062, China
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University , Shanghai, 200062, China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an, 710049, China
| |
Collapse
|