1
|
Zhang L, Wen X, Zhang G, Wang X, Li X, Peng C, Jiang M, Wang M, Ma L. An Anchored Fe-Cu LDH onto a Polyvinylidene Fluoride Membrane with Strong Peroxymonosulfate Activation-Induced Degradation of Methylene Blue and Self-Cleaning Property of Oil/Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21663-21674. [PMID: 39367852 DOI: 10.1021/acs.langmuir.4c02718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Developing a strong catalytic antifouling membrane to achieve efficient sewage purification has great potential for alleviating water crisis. In this work, we designed and prepared an Fe/Cu-layered double hydroxide (Fe-Cu LDH)-coated polyvinylidene fluoride (PVDF) composite membrane (PVDF/Fe-Cu LDHs) with strong antifouling and activating peroxymonosulfate (PMS) catalytic degradation performance through polydopamine-coordination anchoring and hydrothermal reaction. The results showed that abundant hydroxyl groups of the LDH surface endowed the superhydrophilicity (water contact angle <10°) and underwater superoleophobicity (underwater-oil contact angle >150°) of the membrane surface, which displayed outstanding resistance to crude oil adhesion. With assistance of the LDH surface-bound sulfate radical of the peroxymonosulfate system, the PVDF/Fe-Cu LDH membrane demonstrated robust catalytic degradation performance for the methylene blue (MB) in the dark; the degradation rate constant (k, min-1) reached 0.96. Meanwhile, facing the oily wastewater, the selective wettability and charge effect of LDH of the surface made the PVDF/Fe-Cu LDH membrane realize the separation for the various surfactant-free and surfactant-stabilized emulsions. Importantly, the PMS-activation catalytic produced the ROS (•SO4-,•OH, •O2-, and 1O2), which enhanced the regeneration of the fouled PVDF/Fe-Cu LDH membrane and obtained a high flux recovery ratio in the dark (94.7%) after 10 cycles of separation experiments. Hence, we believed that the PVDF/Fe-Cu LDH membrane can provide inspiration for the development and further practical application of antifouling membranes.
Collapse
Affiliation(s)
- Liyun Zhang
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Xin Wen
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Guilan Zhang
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Xin Wang
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Xiang Li
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Cong Peng
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Minghang Jiang
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Mengjun Wang
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Lan Ma
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| |
Collapse
|
2
|
Zubair M, Yasir M, Machovsky M, Baig N, Saood Manzar M, Odeh JAS, K Hassan M, Hawari A, Odeh J, Cevik E, Al-Ejji M. Photocatalytically active layered double hydroxide-PVDF composite membranes for effective remediation of dyes contaminated water. CHEMOSPHERE 2024; 364:143169. [PMID: 39181459 DOI: 10.1016/j.chemosphere.2024.143169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
In this work, polyvinylidene fluoride (PVDF) intercalated CuFe layered double hydroxides (LDH) membranes were fabricated and investigated for UV-LED/persulfate degradation of methylene blue (MB), crystal violet (CV), methyl orange (MO), and Eriochrome black T (EBT) dyes from water. The PVDF-CuFe membrane exhibited improved heterogeneity, surface functionality (CuO, Fe-O, Cu-O-Fe), surface roughness, and hydrophilicity. The process parameters were optimized by response surface methodology, and maximum MB removal (100%) was achieved within 45.22-178.5 min at MB concentration (29.45-101.93 mg/L), PP concentration (0.5-2.41 g/L) and catalyst dosage (1.84-1.95 g/L). The degradation kinetics was well described by a pseudo-first-order model (R2 = 0.982) and fast reaction rate (0.029-0.089/min). The MB dye degradation mechanism is associated with HO·/SO4•- reactive species generated by Fe3+/Fe2+ or Cu2+/Cu+ in PVDF-CuFe membrane and PP dissociation. The PVDF-CuFe membrane demonstrated excellent recyclability performance with a 12% reduction after five consecutive cycles. The catalytic membrane showed excellent photocatalytic degradation of crystal violet (100%), methyl orange (79%), and Eriochrome black T (60%). The results showed that UV-LED/persulfate-assisted PVDF-CuFe membranes can be used as a recyclable catalyst for the effective degradation of dye-contaminated water streams.
Collapse
Affiliation(s)
- Mukarram Zubair
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31451, Saudi Arabia
| | - Muhammad Yasir
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001, Zlín, Czech Republic
| | - Michal Machovsky
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001, Zlín, Czech Republic
| | - Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad Saood Manzar
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31451, Saudi Arabia.
| | - Jehad Abdulfatah Sadeq Odeh
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31451, Saudi Arabia
| | - Mohamed K Hassan
- Center for Advanced Materials, Qatar University, P. O Box 2713, Doha, Qatar
| | - Alaa Hawari
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar
| | - Jehad Odeh
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31451, Saudi Arabia
| | - Emre Cevik
- Bioenergy Research Unit, Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 1982, PO Box:1982, Dammam, 31441, Saudi Arabia
| | - Maryam Al-Ejji
- Center for Advanced Materials, Qatar University, P. O Box 2713, Doha, Qatar.
| |
Collapse
|
3
|
Farhan A, Khalid A, Maqsood N, Iftekhar S, Sharif HMA, Qi F, Sillanpää M, Asif MB. Progress in layered double hydroxides (LDHs): Synthesis and application in adsorption, catalysis and photoreduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169160. [PMID: 38086474 DOI: 10.1016/j.scitotenv.2023.169160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Layered double hydroxides (LDHs), also known as anionic clays, have attracted significant attention in energy and environmental applications due to their exceptional physicochemical properties. These materials possess a unique structure with surface hydroxyl groups, tunable properties, and high stability, making them highly desirable. In this review, the synthesis and functionalization of LDHs have been explored including co-precipitation and hydrothermal methods. Furthermore, extensive research on LDH application in toxic pollutant removal has shown that modifying or functionalizing LDHs using materials such as activated carbon, polymers, and inorganics is crucial for achieving efficient pollutant adsorption, improved cyclic performance, as well as effective catalytic oxidation of organics and photoreduction. This study offers a comprehensive overview of the progress made in the field of LDHs and LDH-based composites for water and wastewater treatment. It critically discusses and explains both direct and indirect synthesis and modification techniques, highlighting their advantages and disadvantages. Additionally, this review critically discusses and explains the potential of LDH-based composites as absorbents. Importantly, it focuses on the capability of LDH and LDH-based composites in heterogeneous catalysis, including the Fenton reaction, Fenton-like reactions, photocatalysis, and photoreduction, for the removal of organic dyes, organic micropollutants, and heavy metals. The mechanisms involved in pollutant removal, such as adsorption, electrostatic interaction, complexation, and degradation, are thoroughly explained. Finally, this study outlines future research directions in the field.
Collapse
Affiliation(s)
- Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Aman Khalid
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Nimra Maqsood
- Department of Chemistry, University of Science and Technology, Hefei, China
| | - Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | | | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein, South Africa; Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand, India; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Muhammad Bilal Asif
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
4
|
Wang M, Li X, Su Y, Wu J, Sun T, Xu X, Fan F, Zhao Y, Gao W. Satisfactory degradation of tetracycline by a pH-universal CoFe-LDH/MoS 2 heterojunction catalyst in Fenton process. iScience 2024; 27:108996. [PMID: 38327796 PMCID: PMC10847731 DOI: 10.1016/j.isci.2024.108996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/06/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
Fenton or Fenton-like reactions have been widely used in various fields, including solar energy conversion to generate hydroxyl radicals, environmental remediation, biology, and life science. However, the slow Fe3+/Fe2+ cycle and narrow applicable pH range still present significant challenges. Here, a heterostructured CoFe-layered double hydroxide/MoS2 nanocomposite (CoFe-LDH/MoS2) was prepared via simple electrostatic interactions. The heterostructure establishes a robust interfacial contact, leading to an abundance of exposed Mo6+ sites. Consequently, the developed CoFe-LDH/MoS2+H2O2 system exhibited superior performance in the degradation of tetracycline (>85%) within 60 min across a wide pH range from acidic to basic. Moreover, the CoFe-LDH/MoS2 heterojunction catalysts exhibited exceptional resistance to common anions and efficiently degraded various organic pollutants. The mechanism study verified that the CoFe-LDH/MoS2 had high efficiency in producing 1O2 and ‧OH to degrade various organic pollutants. The present study will serve as a foundation for creating efficient catalyst systems for related environmental remediation.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyu Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Yanrui Su
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Jiaoge Wu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Tian Sun
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Xuan Xu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Faying Fan
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Science, Qingdao, Shandong 266101, China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wa Gao
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
5
|
Liu X, Zhou Y, Sun S, Bao S. Study on the behavior and mechanism of NiFe-LDHs used for the degradation of tetracycline in the photo-Fenton process. RSC Adv 2023; 13:31528-31540. [PMID: 37908668 PMCID: PMC10614753 DOI: 10.1039/d3ra05475f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023] Open
Abstract
An environment-friendly 3D NiFe-LDHs photocatalyst was fabricated via a simple hydrothermal method and characterized by means of SEM, XRD, BET, XPS and FT-IR. It is a highly efficient heterogeneous photo-Fenton catalyst for the degradation of TC-HCl under visible light irradiation. After exploring the effects of catalyst dosage, initial concentration of TC-HCl, solution pH and H2O2 concentrations, the optimal reaction conditions were determined. The experiment results showed that the degradation efficiency can reach 99.11% through adding H2O2 to constitute a photo-Fenton system after adsorption for 30 min and visible light for 60 min. After four cycles, the degradation rate decay is controlled within 21.2%, indicating that NiFe-LDHs have excellent reusable performance. The experimental results of environmental factors indicate that Fe2+ and Ca2+ promoted the degradation of TC-HCl, both Cl- and CO32- inhibited the degradation of TC-HCl. Two other antibiotics (OTC and FT) were selected for research and found to be effectively removed in this system, achieving effective degradation of a variety of typical new pollutants. The radical trapping tests and ESR detection showed that ·OH and ·O2- were the main active substances for TC degradation in the photo-Fenton system. By further measuring the intermediate products of photodegradation, the degradation pathway of TC-HCl was inferred. The toxicity analysis demonstrated that the overall toxicity of the identified intermediates was reduced in this system. This study provides a theoretical and practical basis for the removal of TC in aquatic environments.
Collapse
Affiliation(s)
- Xia Liu
- Changchun Univ. Sci. & Technol., Sch Chem. & Environm. Engn. Changchun 130022 P. R. China
| | - Yuting Zhou
- Changchun Univ. Sci. & Technol., Sch Chem. & Environm. Engn. Changchun 130022 P. R. China
| | - Shuanghui Sun
- Changchun Univ. Sci. & Technol., Sch Chem. & Environm. Engn. Changchun 130022 P. R. China
| | - Siqi Bao
- Changchun Univ. Sci. & Technol., Sch Chem. & Environm. Engn. Changchun 130022 P. R. China
| |
Collapse
|
6
|
Zhang B, Zhang J, Zhang Y, Zuo Q, Zheng H. Ce(IV)-Based Metal-Organic Gel for Ultrafast Removal of Trace Arsenate from Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37515556 DOI: 10.1021/acs.langmuir.3c01079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
As a potential replacement for metal-organic frameworks (MOFs), constructing metal-organic gels (MOGs) is an appealing but challenging topic since MOGs are a kind of shapeable MOF gels. Also, the rapid adsorption of trace heavy metal ions in aqueous media remains a serious challenge. Herein, a simple strategy for the synthesis of Ce(IV)-based metal-organic gel (Ce-MOG) was first developed for the rapid adsorption of trace As(V). The (NH4)2Ce(NO3)6 obtains hydroxide bridges after adding apposite NaOH, leading to [Ce6O4(OH)4]12+ clustering and inducing fast and excessive nucleation rates, which also leads to coordination disturbance of MOF nanocrystals to obtain Ce-MOG. The Ce-OH groups are the key to gel formation through hydrogen bonding and are the active site for the ultrafast adsorption of As(V). As expected, the resultant Ce-MOG has an excellent adsorption rate, making it possible to effectively decontaminate 500 ppb of As(V) to below the World Health Organization (WHO) recommended threshold for drinking water (10 ppb) within 1 min. It achieves equilibrium adsorption in 10 min, and the final arsenate-removing efficiency reaches 99.8%. For Ce-MOF, the effluent concentration of As(V) is higher than the drinking water standard, while equilibrium adsorption takes 60 min. The initial adsorption rate of Ce-MOG, h(k2qe2) is calculated and indicated to be 67.67 mg g-1 min-1, about 19.96 times that of Ce-MOF (3.39 mg g-1 min-1). As such, the excellent As(V) decontamination rate, selectivity, and reusability of Ce-MOG indicate its great potential for practical drinking water purification.
Collapse
Affiliation(s)
- Baichao Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Jiejing Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yu Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Qi Zuo
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Hong Zheng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
7
|
Li N, He X, Ye J, Dai H, Peng W, Cheng Z, Yan B, Chen G, Wang S. H 2O 2 activation and contaminants removal in heterogeneous Fenton-like systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131926. [PMID: 37379591 DOI: 10.1016/j.jhazmat.2023.131926] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
Emerging contaminants can be removed effectively in heterogeneous Fenton-like systems. Currently, catalyst activity and contaminant removal mechanisms have been studied extensively in Fenton-like systems. However, a systematic summary was lacking. This review summarized: 1) The effects of various heterogeneous catalysts on emerging contaminants degradation by activating H2O2; 2) The role of active sites in different catalysts during the activation of H2O2 and their contribution to the generation of active species; 3) The modulation of degradation pathways of emerging contaminants. This paper will help scholars to advance the controlled construction of active sites in heterogeneous Fenton-like systems. Suitable heterogeneous Fenton catalysts can be selected in practical water treatment processes.
Collapse
Affiliation(s)
- Ning Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Xu He
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Jingya Ye
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Haoxi Dai
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Lab of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
8
|
Pacheco-Álvarez M, Picos Benítez R, Rodríguez-Narváez OM, Brillas E, Peralta-Hernández JM. A critical review on paracetamol removal from different aqueous matrices by Fenton and Fenton-based processes, and their combined methods. CHEMOSPHERE 2022; 303:134883. [PMID: 35577132 DOI: 10.1016/j.chemosphere.2022.134883] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Paracetamol (PCT), also known as acetaminophen, is a drug used to treat fever and mild to moderate pain. After consumption by animals and humans, it is excreted through the urine to the sewer systems, wastewater treatment plants, and other aquatic/natural environments. It has been detected in trace amounts in effluents of wastewater plant treatments, sewage sludge, hospital wastewaters, surface waters, and drinking water. PCT can cause genetic code damage, oxidative degradation of lipids, and denaturation of protein in cells, and its toxicity has been well-proven in bacteria, algae, macrophytes, protozoan, and fishes. To avoid its harmful health problems over living beings, powerful Fenton and Fenton-based treatments as pre-eminent advanced oxidation processes (AOPs) have been developed because of the inefficient treatment by conventional treatments. This paper presents a comprehensive and critical review over the application of such Fenton technologies to remove PCT from natural waters, synthetic wastewaters, and real wastewaters. The characteristics and main results obtained using Fenton, photo-Fenton, electro-Fenton, and photoelectro-Fenton are described, making special emphasis in the oxidative action of the generated reactive oxygen species. Hybrid processes based on the coupling with ultrasounds, gamma radiation, photocatalysis, photoelectrocatalysis, zero-valent iron-activated persulfate, adsorption, and microbial fuel cells, are analyzed. Sequential treatments involving the initiation with plasma gliding arc discharge and post-biological process are detailed. Comparative results with other available AOPs are also described and discussed. Finally, 13 aromatic by-products and 9 short-linear aliphatic carboxylic acid detected during the PCT removal by Fenton and Fenton-based processes are reported, with the proposal of three parallel pathways for its initial degradation.
Collapse
Affiliation(s)
- Martin Pacheco-Álvarez
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, Guanajuato, C.P. 36040, Mexico
| | - Ricardo Picos Benítez
- Centro de Estudios Científicos y Tecnológicos No. 18, Instituto Politécnico Nacional, 98160, Zacatecas, Zac., Mexico
| | - Oscar M Rodríguez-Narváez
- Dirección de Investigación y Soluciones Tecnológicas, Centro de Innovación Aplicado en Tecnologías Competitivas, Omega 201, Leon, Guanajuato, 37545, Mexico
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Juan M Peralta-Hernández
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, Guanajuato, C.P. 36040, Mexico.
| |
Collapse
|
9
|
Vital Role of Synthesis Temperature in Co–Cu Layered Hydroxides and Their Fenton-like Activity for RhB Degradation. Catalysts 2022. [DOI: 10.3390/catal12060646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cu and Co have shown superior catalytic performance to other transitional elements, and layered double hydroxides (LDHs) have presented advantages over other heterogeneous Fenton catalysts. However, there have been few studies about Co–Cu LDHs as catalysts for organic degradation via the Fenton reaction. Here, we prepared a series of Co–Cu LDH catalysts by a co-precipitation method under different synthesis temperatures and set Rhodamine B (RhB) as the target compound. The structure-performance relationship and the influence of reaction parameters were explored. A study of the Fenton-like reaction was conducted over Co–Cu layered hydroxide catalysts, and the variation of synthesis temperature greatly influenced their Fenton-like catalytic performance. The Co–Cut=65°C catalyst with the strongest LDH structure showed the highest RhB removal efficiency (99.3% within 30 min). The change of synthesis temperature induced bulk-phase transformation, structural distortion, and metal–oxygen (M–O) modification. An appropriate temperature improved LDH formation with defect sites and lengthened M–O bonds. Co–Cu LDH catalysts with a higher concentration of defect sites promoted surface hydroxide formation for H2O2 adsorption. These oxygen vacancies (Ovs) promoted electron transfer and H2O2 dissociation. Thus, the Co–Cu LDH catalyst is an attractive alternative organic pollutants treatment.
Collapse
|
10
|
Sierra-Sánchez AG, Linares-Hernández I, Martínez-Miranda V, Almazán-Sánchez PT, Teutli-Sequeira EA, Castañeda-Juárez M, Esparza-Soto M. Photo-electrooxidation treatment of Acetaminophen in aqueous solution using BDD-Fe and BDD-Cu systems. ENVIRONMENTAL TECHNOLOGY 2022; 43:1189-1199. [PMID: 32912062 DOI: 10.1080/09593330.2020.1822921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
In this study, acetaminophen (ACT) in aqueous solution was treated with electrooxidation and photo-electrooxidation processes (PEO). An electrochemical cell was used for the treatment of different concentrations of ACT (10, 50 and 80 mg L-1). A 23 factorial design was proposed, and the variables studied were current intensity 0.5 A (45.45 mA cm-2) and 1.0 A (90.91 mA cm-2), electrode configuration (anode:BDD, cathode:Fe or Cu) and presence/absence of UV light; NaCl 0.043 M (2.5 g L-1) was used as supporting electrolyte, the initial pH was 5.5, and the treatment time was 3 h. The aqueous solutions were characterized before and after the treatment using infrared spectroscopy (FT-IR), Ultraviolet-visible spectroscopy (UV-Vis), chemical oxygen demand (COD), total organic carbon (TOC), total carbon (TC), and fluorescence spectroscopy. The optimal operating conditions using an initial ACT concentration of 80 mg L-1 were 1.0 A, BDD-Fe configuration and UV light (254 nm). The removal efficiencies were 100% of ACT and 82.75% of TOC after 15 min of treatment. At concentrations of 50 and 10 mg L-1, 77.16% and 50.29% of TOC were removed after 10 and 5 min of treatment, respectively. Finally, the kinetic study showed an increase in the rate constants when the UV light was applied.
Collapse
Affiliation(s)
- Ana Gabriela Sierra-Sánchez
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Toluca, México
| | - Ivonne Linares-Hernández
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Toluca, México
| | - Verónica Martínez-Miranda
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Toluca, México
| | | | - Elia Alejandra Teutli-Sequeira
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Toluca, México
| | - Monserrat Castañeda-Juárez
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Toluca, México
| | - Mario Esparza-Soto
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Toluca, México
| |
Collapse
|
11
|
Huang FW, Ma K, Ni XW, Qiao SL, Chen KZ. CuCoFe Layered double hydroxides as laccase mimicking nanozymes for colorimetric detection of pheochromocytoma biomarkers. Chem Commun (Camb) 2022; 58:1982-1985. [PMID: 35044382 DOI: 10.1039/d1cc06612a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A laccase catalyzed colorimetric biosensing approach is promising for the detection of pheochromocytoma biomarkers, yet suffers from the poor stability of enzymes and high cost for production. Here we report for the first time an easy to produce, cheap, stable and reliable laccase-mimicking CuCoFe-LDHzyme, which can catalyze the oxidation of pheochromocytoma biomarkers to form a chromogenic product for smartphone-based colorimetric detection.
Collapse
Affiliation(s)
- Feng-Wei Huang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Ke Ma
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Xiu-Wen Ni
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Sheng-Lin Qiao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Ke-Zheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| |
Collapse
|
12
|
Highly efficient degradation of organic pollutant mixtures by a Fe(III)-based MOF-catalyzed Fenton-like process in subcritical water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Environmental protection by the adsorptive elimination of acetaminophen from water: A comprehensive review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Jin Q, Yan S, Hu H, Jin L, Pan Y, Zhang J, Huang J, Xiao H, Cao P. Enhanced Chemodynamic Therapy and Chemotherapy via Delivery of a Dual Threat ArtePt and Iodo-Click Reaction Mediated Glutathione Consumption. SMALL METHODS 2021; 5:e2101047. [PMID: 34928038 DOI: 10.1002/smtd.202101047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Indexed: 06/14/2023]
Abstract
Cisplatin has been used as standard regimen for hepatocellular carcinoma (HCC), but its therapeutic efficacy is greatly limited by the drug resistance. Cisplatin alone cannot achieve an ideal therapeutic outcome. Herein, a dual threat hybrid artemisinin platinum (ArtePt) is synthesized to combine chemodynamic therapy (CDT) with chemotherapy. On the one hand, artesunate can react with intracellular ferrous ion to generate reactive oxygen species (ROS) via Fenton reaction for CDT. On the other hand, cisplatin can target DNA for chemotherapy. However, GSH in cancer cells can effectively consume free radicals and detoxify cisplatin simultaneously, which compromised the efficacy of CDT and chemotherapy. Hence, an amphiphilic polymer with an iodine atom in the side chain is designed and encapsulated ArtePt to form NP(ArtePt). This iodine containing polymer NP(ArtePt) can effectively deplete intracellular GSH via an Iodo-Click reaction, thereby enhancing the effect of CDT as well as chemotherapy. Thereafter, a patient-derived xenograft model of hepatic carcinoma (PDXHCC ) is established to evaluate the therapeutic effect of NP(ArtePt), and a significant antitumor effect is achieved with NP(ArtePt). Overall, this study provides an effective strategy to combine CDT with chemotherapy to enhance the efficacy of cisplatin via Iodo-Click reaction, opening a new avenue for the cancer treatment.
Collapse
Affiliation(s)
- Qiao Jin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Siqi Yan
- Department of Oncological Radiotherapy, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, Hunan, 410006, China
| | - Hao Hu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Long Jin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yuliang Pan
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jun Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jia Huang
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peiguo Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
15
|
Li H, Ye M, Zhang X, Zhang H, Wang G, Zhang Y. Hierarchical Porous Iron Metal-Organic Gel/Bacterial Cellulose Aerogel: Ultrafast, Scalable, Room-Temperature Aqueous Synthesis, and Efficient Arsenate Removal. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47684-47695. [PMID: 34607432 DOI: 10.1021/acsami.1c14938] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rational design of advanced adsorbed materials with hierarchically porous architecture, high surface area, and macroscopic shapeability is of great significance for boosting their potential in practical applications. Herein, a monolithic iron metal-organic gel/bacterial cellulose (denoted as Fe-MOG/BC) composite has been successfully fabricated based on an ultrafast, scalable, aqueous-based synthetic strategy at room temperature. As expected, the resulting Fe-MOG/BC aerogel possesses a three-dimensional (3D) hierarchically porous microstructure and abundant active sites, being ultralight, water-fast, and mechanically robust. Benefiting from these unique structural characteristics, the resulting Fe-MOG/BC composite exhibits superb saturated sorption capacity (495 mg g-1) toward arsenate, outperforming other reported nanoadsorbents. Further, the Fe-MOG/BC aerogel enables efficient decontamination of 5 ppm of As(V) to below the permitted threshold in drinking water (10 ppb) within 30 min, accompanied by excellent selectivity and reusability. Significantly, as an efficient filter unit, the Fe-MOG/BC aerogel (0.1 g) can continuously treat 3900 mL wastewater (spiked with 1 ppm As(V)) to the safe level. Such an excellent As(V) decontamination capability of Fe-MOG/BC together with the ease, low cost, and scalable production prefigures its huge prospects for practical wastewater remediation.
Collapse
Affiliation(s)
- Huaimeng Li
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Mengxiang Ye
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xi Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Yunxia Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
16
|
Kinetic insights on the oxidation of acetaminophen and caffeine by a Mn(IV)3 complex. TRANSIT METAL CHEM 2021. [DOI: 10.1007/s11243-021-00474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Min X, Han C, Yang L, Zhou C. Enhancing As(V) and As(III) adsorption performance of low alumina fly ash with ferric citrate modification: Role of FeSiO 3 and monosodium citrate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112302. [PMID: 33714045 DOI: 10.1016/j.jenvman.2021.112302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Fly ash and arsenic species have been regarded as contaminants that pollute the environment. Herein, low alumina fly ash (LAFA) was utilized to fabricate the As(V) and As(III) adsorbent via combining the routes of alkali fusion and incipient-wetness impregnation. The characterization results suggested that the grafted ferric citrate was coordinated to LAFA by substituting a Si4+ to a Fe3+, and the compound monosodium citrate was observed. Based on the XPS analysis, the C-O and -COO- groups of monosodium citrate played the significant role in uptaking As(V) and As(III) species by chemical complexation, the FeOOH adsorbed As(V) and As(III) species via ion-exchange, and the Fe2O3 oxidize As(III) into As(V). Additionally, it was observed that the As(V) removal performance by adsorbent prepared with different modifiers was in the order of FeC6H5O7 (ca. 93.7%) > C6H8O7 (84%) > HCl (73%). And then, the optimal adsorbent synthesis condition for As(V) uptake was explored at ferric citrate loaded LAFA with 1:1 mass ratio (fly ash to NaOH) under temperature 923 K. The maximum monolayer adsorption capacities of the optimal adsorbent were 2725.0 μgAs(V)/g and 2281.9 μgAs(III)/g, and the removal efficiency of As(V) and As(III) was near 100% for their initial concentrations below 500 ppb, where the residual arsenic concentration met the required standard in drinking water (lower than 10 ppb).
Collapse
Affiliation(s)
- Xize Min
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Caiyun Han
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China.
| | - Liu Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Chundi Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| |
Collapse
|
18
|
Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115755] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Penke YK, Yadav AK, Malik I, Tyagi A, Ramkumar J, Kar KK. Insights of arsenic (III/V) adsorption and electrosorption mechanism onto multi synergistic (redox-photoelectrochemical-ROS) aluminum substituted copper ferrite impregnated rGO. CHEMOSPHERE 2021; 267:129246. [PMID: 33359983 DOI: 10.1016/j.chemosphere.2020.129246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/14/2020] [Accepted: 12/05/2020] [Indexed: 05/04/2023]
Abstract
The understanding of mechanistic insights in environmental remediation and mitigation systems is attracting larger attention, in recent days. Here in, aluminium substituted copper ferrite impregnated rGO hybrid (CAF-rGO) is verified to understand the adsorption/electrosorption mechanism of arsenic in aqueous systems. Near-surface study (XPS: As 3d, Cu 2p, Fe 2p, Al 2p, O 1s, C 1s) proposes redox, and ligand exchange reactions between contaminant, and CAF-rGO. Adsorption capacities are observed around 128.8 mg g-1 [As(III)], 153.5 mg g-1 [As(V)] with Freundlich model isotherms. Kinetics study follows the PSO model with influence of solar light (> 420 nm). Cyclic voltammetry (CV) analysis in different molarity conditions observed with signals around +0.1 and -0.6 V confirm the redox abilities, and N2/O2 purged environments understood that electrosorption occurred through both reduction and sorption. Electrosorption study with pH variation shows the effect of protonation on the redox activity of individual arsenic species. Consistent signal around -0.6 ± 0.05 V in all the CV plots (i.e., Molarity, Environment, pH) recommends the usage of CAF-rGO for arsenic mitigation. Possible influence of photo-current (∼40 μA/cm2 at ∼ 0 V) towards As(III/V) decontamination is understood though photoelectrochemical analysis. Impedance plot shows low-resistance and better diffusion of arsenic oxy-anions during light irradiation. Synergistic nature of CAF-rGO generates reactive oxygen species (i.e., ●OH/●O2-/1O2) in mitigating highly toxic As(III) species is also detailed in the present work.
Collapse
Affiliation(s)
- Yaswanth K Penke
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Amit K Yadav
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Iram Malik
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Alekha Tyagi
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Janakarajan Ramkumar
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Kamal K Kar
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
20
|
Koba-Ucun O, Ölmez Hanci T, Arslan-Alaton I, Arefi-Oskoui S, Khataee A, Kobya M, Orooji Y. Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment. Molecules 2021; 26:E395. [PMID: 33451084 PMCID: PMC7828569 DOI: 10.3390/molecules26020395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium Vibrio fischeri, the freshwater microalga Pseudokirchneriella subcapitata, the freshwater crustacean Daphnia magna, and the duckweed Spirodela polyrhiza. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium.
Collapse
Affiliation(s)
- Olga Koba-Ucun
- Department of Environmental Engineering, School of Civil Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; (O.K.-U.); (T.Ö.H.)
| | - Tuğba Ölmez Hanci
- Department of Environmental Engineering, School of Civil Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; (O.K.-U.); (T.Ö.H.)
| | - Idil Arslan-Alaton
- Department of Environmental Engineering, School of Civil Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; (O.K.-U.); (T.Ö.H.)
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran;
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran;
- Department of Environmental Engineering, Gebze Technical University, 41400 Kocaeli, Gebze, Turkey;
| | - Mehmet Kobya
- Department of Environmental Engineering, Gebze Technical University, 41400 Kocaeli, Gebze, Turkey;
- Department of Environmental Engineering, Kyrgyz-Turkish Manas University, Bishkek 720038, Kyrgyzstan
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
| |
Collapse
|
21
|
Vilé G. Photocatalytic materials and light-driven continuous processes to remove emerging pharmaceutical pollutants from water and selectively close the carbon cycle. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01713b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Past and present technologies for wastewater purification and future research directions are critically discussed in this review.
Collapse
Affiliation(s)
- Gianvito Vilé
- Department of Chemistry
- Materials, and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- IT-20133 Milano
- Italy
| |
Collapse
|
22
|
Kuo SH, Wu PT, Huang JY, Chiu CP, Yu J, Liao MY. Fabrication of Anisotropic Cu Ferrite-Polymer Core-Shell Nanoparticles for Photodynamic Ablation of Cervical Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2429. [PMID: 33291730 PMCID: PMC7761902 DOI: 10.3390/nano10122429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
In this work we developed methylene blue-immobilized copper-iron nanoparticles (MB-CuFe NPs) through a facile one-step hydrothermal reaction to achieve a better phototherapeutic effect. The Fe/Cu ratio of the CuFe NPs was controllable by merely changing the loading amount of iron precursor concentration. The CuFe NPs could serve as a Fenton catalyst to convert hydrogen peroxide (H2O2) into reactive oxygen species (ROS), while the superparamagnetic properties also suggest magnetic resonance imaging (MRI) potential. Furthermore, the Food and Drug Administration (FDA)-approved MB photosensitizer could strongly adsorb onto the surface of CuFe NPs to facilitate the drug delivery into cells and improve the photodynamic therapy at 660 nm via significant generation of singlet oxygen species, leading to enhanced cancer cell-damaging efficacy. An MTT (thiazolyl blue tetrazolium bromide) assay proved the low cytotoxicity of the CuFe NPs to cervical cancer cells (HeLa cells), namely above 80% at 25 ppm of the sample dose. A slight dissolution of Cu and Fe ions from the CuFe NPs in an acidic environment was obtained, providing direct evidence for CuFe NPs being degradable without the risk of long-term retention in the body. Moreover, the tremendous photo-to-thermal conversion of CuFe NPs was examined, which might be combined with photodynamic therapy (PDT) for promising development in the depletion of cancer cells after a single pulse of deep-red light irradiation at high laser power.
Collapse
Affiliation(s)
- Shuo-Hsiu Kuo
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-H.K.); (P.-T.W.)
| | - Po-Ting Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-H.K.); (P.-T.W.)
| | - Jing-Yin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan; (J.-Y.H.); (C.-P.C.)
| | - Chin-Pao Chiu
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan; (J.-Y.H.); (C.-P.C.)
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-H.K.); (P.-T.W.)
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan; (J.-Y.H.); (C.-P.C.)
| |
Collapse
|
23
|
Wu C, Mahandra H, Radzinski R, Ghahreman A. Green catalytic process for in situ oxidation of Arsenic(III) in concentrated streams using activated carbon and oxygen gas. CHEMOSPHERE 2020; 261:127688. [PMID: 32721688 DOI: 10.1016/j.chemosphere.2020.127688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Arsenic(III) oxidation is a critical pre-treatment step for overall arsenic immobilization in concentrated industrial arsenic streams. Activated carbon (AC) catalysis is a green, economical and efficient method to oxidize As(III) from waters with high arsenic concentration prior to its removal through precipitation or adsorption. This research investigates AC-catalyzed oxidation process for oxidizing aqueous solutions of As(III) and proposed the possible reaction pathway. Batch tests were performed and efficient oxidation of 2.0 g/L acidic As(III) solution have been induced on AC surfaces in the presence of oxygen. The in-situ formation of reactive oxygen species on carbon surfaces and arsenic adsorption onto AC play important roles in As(III) oxidation. The kinetics of adsorption and catalyzed oxidation has been studied and the samples were characterized using ICP-OES, Zeta potential, TEM coupled with EDX and XPS techniques. A systematic reaction pathway was proposed, and reusability of AC has confirmed the economic viability of the proposed green process. This study offers a promising and facile solution for As(III) oxidation from waste water, mining and metal industrial waste streams under ambient conditions for arsenic immobilization.
Collapse
Affiliation(s)
- Chengqian Wu
- The Robert M. Buchan Department of Mining, Queen's University, 25 Union St., Kingston, Ontario, K7L 3N6, Canada
| | - Harshit Mahandra
- The Robert M. Buchan Department of Mining, Queen's University, 25 Union St., Kingston, Ontario, K7L 3N6, Canada.
| | - Rebecca Radzinski
- The Robert M. Buchan Department of Mining, Queen's University, 25 Union St., Kingston, Ontario, K7L 3N6, Canada
| | - Ahmad Ghahreman
- The Robert M. Buchan Department of Mining, Queen's University, 25 Union St., Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
24
|
Chen T, Zhu Z, Zhang H, Qiu Y, Yin D, Zhao G. Facile Construction of a Copper-Containing Covalent Bond for Peroxymonosulfate Activation: Efficient Redox Behavior of Copper Species via Electron Transfer Regulation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42790-42802. [PMID: 32857501 DOI: 10.1021/acsami.0c11268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Heterogeneous catalysis can be enhanced through the construction of effective atom connection for rapid electron transport on the catalyst surface. Hence, this study proposed a new strategy for electron transfer regulation to facilitate redox cycle of Cu(II)/Cu(I). The objective was achieved by successful construction of copper-containing covalent bond through the in situ growth of porous g-C3N4 with oxygen dopants and nitrogen defects (O-CND) on CuAlxOy substrate (CuAl@O-CND). On the basis of X-ray absorption fine structure (XAFS) and other characterization results, the facilitated redox behavior of copper species by electron transfer regulation was ascribed to the formation of a C-O-Cu bond on the porous-rich superficial of the catalyst; these covalent C-O-Cu bonds shortened the migration distance of electrons between Cu(II) and Cu(I) via Cu(I)-O-C-O-Cu(II) bridge. The construction of copper-containing covalent bonds in the catalyst resulted in efficient PMS activation for a rapid redox cycle of Cu(II)/Cu(I), triggering a series of reactions involving the continuous production of three highly active species (SO4·-, ·OH and 1O2). The rapid diffusion and transportation of the generated active species from porous structures directly attack typical pharmaceutically active compounds (PhACs), achieving superior catalytic performance. This study provides a new routine to construct a C-O-Cu bond for PMS activation by regulating the electron transfer to accelerate the redox behavior of copper species for environmental remediation.
Collapse
Affiliation(s)
- Ting Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China
| | - Zhiliang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
25
|
Accelerated Redox Cycles of Fe(III)/Fe(II) and Cu(III)/Cu(II) by Photo-Induced Electron from N-CQDs for Enhanced Photo-Fenton Capability of CuFe-LDH. Catalysts 2020. [DOI: 10.3390/catal10090960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Layered double hydroxide (LDH) materials have shown charming photo-Fenton capability for the treatment of refractory organic wastewater. In this study, CuFe-LDH hybridized with N-doped carbon quantum dots (N-CQDs) was investigated to further enhance the photo-Fenton capability. The results showed that the assembly techniques of coprecipitation and the hydrothermal method could synthesize the target material, CuFe-LDH/N-CQDs, successfully. CuFe-LDH/N-CQDs could possess a 13.5% higher methylene blue (MB) removal rate than CuFe-LDH in 30 min due to the accelerated redox cycles of Fe(III)/Fe(II) and Cu(III)/Cu(II), resulting from the photo-induced electron transfer from N-CQDs to CuFe-LDH via a d–π conjugation electronic bridge. Moreover, CuFe-LDH/N-CQDs has excellent photo-Fenton capability in the pH range of 2–11, even after being reused five times. This study would provide an efficient and stable photo-Fenton catalyst for the treatment of refractory organic wastewater.
Collapse
|
26
|
Li J, Pham AN, Dai R, Wang Z, Waite TD. Recent advances in Cu-Fenton systems for the treatment of industrial wastewaters: Role of Cu complexes and Cu composites. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122261. [PMID: 32066018 DOI: 10.1016/j.jhazmat.2020.122261] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Cu-based Fenton systems have been recognized as a promising suite of technologies for the treatment of industrial wastewaters due to their high catalytic oxidation capacity. Rapid progress regarding Cu Fenton systems has been made not only in fundamental mechanistic aspects of these systems but also with regard to applications over the past decade. Based on available literature, this review synthesizes the recent advances regarding both the understanding and applications of Cu-based Fenton processes for industrial wastewater treatment. Cu-based catalysts that are essential to the effectiveness of use of Cu Fenton reactions for oxidation of target species are mainly classified into two types: (i) Cu complexes with organic or inorganic ligands, and (ii) Cu composites with inorganic materials. Performance of the Cu-based catalysts for the removal of organic pollutants in industrial wastewaters are reviewed, with the key operating parameters illustrated. Furthermore, the roles of Cu complexes and composites in both homogeneous and heterogeneous Cu-Fenton systems are critically examined with particular focus on the mechanisms involved. Perspectives and future efforts needed for Cu-based Fenton systems using Cu complexes and composites for industrial wastewater treatment are presented.
Collapse
Affiliation(s)
- Jiayi Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - A Ninh Pham
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - T David Waite
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
27
|
Wang Z, Zhang Y, Li K, Sun Z, Wang J. Enhanced mineralization of reactive brilliant red X-3B by UV driven photocatalytic membrane contact ozonation. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122194. [PMID: 32044632 DOI: 10.1016/j.jhazmat.2020.122194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/08/2020] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
The partial oxidation on refractory organics in ozonation process and the poor performance of mass transfer between ozone (O3) phase and liquid phase by common O3 distribution techniques inhibit the practical application of O3. To overcome these defects, hollow fiber membrane was applied in membrane contact ozonation (MCO)-UV process for the reactive brilliant red X-3B (RBRX-3B) degradation. The efficiency of mass transfer was guaranteed due to the enormous gas/liquid contact area supplied in this bubble-less O3 transfer process. UV photolysis not only significantly improved the O3 utilization efficiency but also accelerated the mineralization of RBRX-3B by promoting O3 to decompose to hydroxyl radicals (OH). When 15 mg/L of O3 was supplied at flow rate of 0.2 L/min, and a liquid velocity of 0.453 m/s, the chemical oxygen demand (COD) removal and total organic carbon (TOC) removal reached 90 % and 77 %, respectively. The rate constant for TOC removal in the MCO-UV process (7.89 × 10-3 min-1) was 3.08 and 6.12 times higher than that in MCO and UV photolysis processes, respectively. Furthermore, the mineralization efficiency (ΔCOD/ΔO3 = 0.84 mg/mg) and electrical energy per mass (EEM = 4.7 kW h/kg) were calculated and these results indicated a promising future for the MCO-UV process.
Collapse
Affiliation(s)
- Zhiyong Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Kuiling Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Zhengguang Sun
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei University, Wuhan, 430062, China
| | - Jun Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
28
|
Motlagh PY, Khataee A, Hassani A, Sadeghi Rad T. ZnFe-LDH/GO nanocomposite coated on the glass support as a highly efficient catalyst for visible light photodegradation of an emerging pollutant. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112532] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Aguilar CAH, Narayanan J, López JAB, Flores-Alamo M, Contreras EFV, Gastélum KAL, Alonzo FR, Cabrera CBP, Cuevas AJS. Enhanced photocatalytic degradation of 2-thiobenzimidazole by the tris(8-quinolinolato)cobalt( iii) complex through peroxide adduct formation: theoretical and experimental investigations. NEW J CHEM 2020. [DOI: 10.1039/c9nj04027g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HOMO–LUMO influenced photocatalytic degradation of 2-thiobenzimidazole through a thermodynamically favored route has been achieved by the cobalt(iii) Schiff base complex.
Collapse
Affiliation(s)
- Carlos Alberto Huerta Aguilar
- División de Ingeniería en Nanotecnología
- Universidad Politécnica del Valle de México
- Av. Mexiquense s/n esquina Av. Universidad Politécnica
- Tultitlan
- Mexico
| | - Jayanthi Narayanan
- División de Ingeniería en Nanotecnología
- Universidad Politécnica del Valle de México
- Av. Mexiquense s/n esquina Av. Universidad Politécnica
- Tultitlan
- Mexico
| | | | - Marcos Flores-Alamo
- Facultad de Química
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- México D. F
- Mexico
| | | | | | - Fernando Rocha Alonzo
- Departamento de Investigación en Polímeros y Materiales
- Universidad de Sonora
- Hermosillo
- Mexico
| | - Cristian Brayan Palacios Cabrera
- División de Ingeniería en Nanotecnología
- Universidad Politécnica del Valle de México
- Av. Mexiquense s/n esquina Av. Universidad Politécnica
- Tultitlan
- Mexico
| | - Alan Javier Santiago Cuevas
- División de Ingeniería en Nanotecnología
- Universidad Politécnica del Valle de México
- Av. Mexiquense s/n esquina Av. Universidad Politécnica
- Tultitlan
- Mexico
| |
Collapse
|
30
|
Zhong C, Zhao H, Cao H, Huang Q. Polymerization of micropollutants in natural aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133751. [PMID: 31462391 DOI: 10.1016/j.scitotenv.2019.133751] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 05/19/2023]
Abstract
Micropollutants with high ecotoxicological risks are frequently detected in aquatic environments, which has aroused great concern in recent years. Humification is one of the most important natural detoxification processes of aquatic micropollutants, and the core reactions of this process are polymerization and coupling. During humification, micropollutants are incorporated into the macrostructures of humic substances and precipitated from aqueous systems into sediments. However, the similarities and differences among the polymerization/coupling pathways of micropollutants in different oxidative systems have not been systematically summarized in a review. This article reviews the current knowledge on the weak oxidation-induced spontaneous polymerization/coupling transformation of micropollutants. First, four typical weak oxidative conditions for the initiation of micropollutant polymerization reactions in aquatic environments are compared: enzymatic catalysis, biomimetic catalysis, metal oxide oxidation, and photo-initiated oxidation. Second, three major subsequent spontaneous transformation pathways of micropollutants are elucidated: radical polymerization, nucleophilic addition/substitution and cyclization. Different solution conditions are also summarized. Furthermore, the importance of toxicity evolution during the weak oxidation-induced coupling/polymerization of micropollutants is particularly emphasized. This review provides a new perspective for the transformation mechanism and pathways of micropollutants from aquatic systems into sediments and the atmosphere and offers theoretical support for developing micropollutant control technologies.
Collapse
Affiliation(s)
- Chen Zhong
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, China; Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, China; Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, China.
| | - Hongbin Cao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, China; Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, China
| | - Qingguo Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
31
|
The Sonophotocatalytic Degradation of Pharmaceuticals in Water by MnOx-TiO2 Systems with Tuned Band-Gaps. Catalysts 2019. [DOI: 10.3390/catal9110949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Advanced oxidation processes (AOPs) are technologies to degrade organic pollutants to carbon dioxide and water with an eco-friendly approach to form reactive hydroxyl radicals. Photocatalysis is an AOP whereby TiO2 is the most adopted photocatalyst. However, TiO2 features a wide (3.2 eV) and fast electron-hole recombination. When Mn is embedded in TiO2, it shifts the absorption wavelength towards the visible region of light, making it active for natural light applications. We present a systematic study of how the textural and optical properties of Mn-doped TiO2 vary with ultrasound applied during synthesis. We varied ultrasound power, pulse length, and power density (by changing the amount of solvent). Ultrasound produced mesoporous MnOx-TiO2 powders with a higher surface area (101–158 m2 g−1), pore volume (0-13–0.29 cc g−1), and smaller particle size (4–10 µm) than those obtained with a conventional sol-gel method (48–129 m2 g−1, 0.14–0.21 cc g−1, 181 µm, respectively). Surprisingly, the catalysts obtained with ultrasound had a content of brookite that was at least 28%, while the traditional sol-gel samples only had 7%. The samples synthesized with ultrasound had a wider distribution of the band-gaps, in the 1.6–1.91 eV range, while traditional ones ranged from 1.72 eV to 1.8 eV. We tested activity in the sonophotocatalytic degradation of two model pollutants (amoxicillin and acetaminophen). The catalysts synthesized with ultrasound were up to 50% more active than the traditional samples.
Collapse
|
32
|
Magnetite nanoparticles modified β-cyclodextrin PolymerCoupled with KMnO4 oxidation for adsorption and degradation of acetaminophen. Carbohydr Polym 2019; 222:114972. [DOI: 10.1016/j.carbpol.2019.114972] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/03/2023]
|
33
|
|
34
|
Degradation of bisphenol A by Fe-Al layered double hydroxides: A new synergy of homo- and heterogeneous Fenton systems. J Colloid Interface Sci 2019; 552:122-133. [DOI: 10.1016/j.jcis.2019.05.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/03/2019] [Accepted: 05/12/2019] [Indexed: 12/22/2022]
|
35
|
Li S, Li X, Wu H, Sun X, Gu F, Zhang L, He H, Li L. Mechanism of Synergistic Effect on Electron Transfer over Co-Ce/MCM-48 during Ozonation of Pharmaceuticals in Water. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23957-23971. [PMID: 31179682 DOI: 10.1021/acsami.9b02143] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The same amount of metal was deposited on the surface of three-dimensional mesoporous MCM-48 by a facile impregnation-calcination method for catalytic ozonation of pharmaceutical and personal-care products in the liquid phase. At 120 min reaction time, Co/MCM-48 and Ce/MCM-48 showed 46.6 and 63.8% mineralization for clofibric acid (CA) degradation, respectively. Less than 33% mineralization was achieved with Co/MCM-48 and Ce/MCM-48 during sulfamethazine (SMZ) ozonation. In the presence of monometallic oxides modified MCM-48 catalysts, total organic carbon (TOC) removal of diclofenac sodium (DCF) was around 80%. The composite Co-Ce/MCM-48 catalyst exhibited significantly higher activity in terms of TOC removal of CA (83.6%), SMZ (51.7%) and DCF (86.8%). Co-Ce/MCM-48 inhibited efficiently the accumulation of small molecular carboxyl acids during ozonation. A detailed research was conducted to detect the nature of material structure and mechanism of catalytic ozonation by using a series of characterizations. The main reaction pathway of CA was determined by the analysis of liquid chromatography-mass spectrometry, in line with the results of frontier electron density calculations that reactive oxygen species (ROSs) were easy to attack negative regions of pharmaceuticals. The Si-O-Si, Co···HO-Si-O-Si-OH···Ce, and O3···Co-HO-Si-O-Si-OH···Ce-OH···O3 basic units in catalysts were constructed to detect the orbit-energy-level difference. The results revealed that a synergistic effect existed at the interface between cobalt and cerium oxides over MCM-48, which facilitated the ROSs sequence in solution with ozone. Therefore, the multivalence redox coupling of Ce4+/Ce3+ and Co3+/Co2+ along with electron transfer played an important role in catalytic ozonation process.
Collapse
Affiliation(s)
- Shangyi Li
- School of Chemistry & Environment , South China Normal University , Guangzhou 510006 , China
| | - Xukai Li
- School of Chemistry & Environment , South China Normal University , Guangzhou 510006 , China
- Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety , Guangzhou 510006 , China
- Key Laboratory of Theoretical Chemistry of Environment , Ministry of Education, Higher Education Mega Center , Guangzhou 510006 , China
| | - Haotian Wu
- School of Chemistry & Environment , South China Normal University , Guangzhou 510006 , China
| | - Xianglin Sun
- School of Chemistry & Environment , South China Normal University , Guangzhou 510006 , China
| | - Fenglong Gu
- School of Chemistry & Environment , South China Normal University , Guangzhou 510006 , China
- Key Laboratory of Theoretical Chemistry of Environment , Ministry of Education, Higher Education Mega Center , Guangzhou 510006 , China
| | - Limin Zhang
- School of Environment , Nanjing Normal University , Nanjing 210023 , China
| | - Huan He
- School of Environment , Nanjing Normal University , Nanjing 210023 , China
| | - Laisheng Li
- School of Chemistry & Environment , South China Normal University , Guangzhou 510006 , China
- Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety , Guangzhou 510006 , China
- Key Laboratory of Theoretical Chemistry of Environment , Ministry of Education, Higher Education Mega Center , Guangzhou 510006 , China
| |
Collapse
|
36
|
Liu J, Wu P, Li S, Chen M, Cai W, Zou D, Zhu N, Dang Z. Synergistic deep removal of As(III) and Cd(II) by a calcined multifunctional MgZnFe-CO 3 layered double hydroxide: Photooxidation, precipitation and adsorption. CHEMOSPHERE 2019; 225:115-125. [PMID: 30870628 DOI: 10.1016/j.chemosphere.2019.03.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
A high removal rate (>99.7%) of combined arsenite (As(III)) and Cd (Cd(II)) in low concentration (1000 μg/L) from contaminated water was achieved by a calcined MgZnFe-CO3 layered double hydroxide (CMZF) adsorbent. Batch control studies and a series of spectroscopy detection technologies were employed to investigate the removal mechanism and interactions between As(III) and Cd(II) on the interface of water/CMZF. Synergistic adsorption and photooxidation occurred based on the systematical kinetic and isotherm studies. The enhanced removal of As(III) was achieved by the photooxidation, formation of ternary As(III)Cd(II) surface complexes and enhanced hydrogen bond. Meanwhile, oxidative formed negative charged As(V) could reduce the electrostatic repulsion force between Cd(II) cations and play a role as anion bridging, consequently resulted in a stronger attraction between CMZF and Cd(II). Combined with the verdicts of relevant characterizations such as XRD, XPS and EPR, it was assumed that the deep co-removal mechanism could be attributed to the coupling of various processes including intercalation, complexation, photooxidation of As(III) and precipitation of CdCO3. Moreover, the successful removal of As(III) and Cd(II) from real water matrix qualified the CMZF a potentially attractive adsorbent for both As(III) and Cd(II) deep treatment in practical engineering.
Collapse
Affiliation(s)
- Junqin Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, PR China.
| | - Shuaishuai Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China
| | - Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China
| | - Wentin Cai
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Dinghui Zou
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| |
Collapse
|
37
|
Cao W, Han M, Lyu L, Hu C, Xiao F. Efficient Fenton-like Process Induced by Fortified Electron-Rich O Microcenter on the Reduction State Cu-Doped CNO Polymer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16496-16505. [PMID: 30997796 DOI: 10.1021/acsami.9b00195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The discharge of organic pollutants threatens the environment and health and is also a waste of organic energy. Here, the reduction state Cu (RSC) species-doped carbon-nitrogen-oxygen polymer (RSC-CNOP) is synthesized from high-temperature polymerization of a Cu-polyimide precursor, which is used as a Fenton-like catalyst and exhibits excellent performance for pollutant degradation, accompanied by the utilization of the electron energy of the pollutants. Experiments and theoretical calculations reveal the promotion mechanism. The formed Cu(RSC)-O-C(π) electron-transfer bridges in RSC-CNOP induce the bidirectional electron transfers from RSC to O and from C(π) to O (RSC → O ← π), forming the polarized reaction micro-areas (reinforced electron-rich O microcenters and electron-poor C(π) microcenters). The free electrons in electron-rich centers of RSC-CNOP are as many as ∼8 times that of the pure CNOP sample from the electron paramagnetic resonance measurement. Pollutants are oxidized by supplying electrons to electron-poor microcenters, and H2O2 can be selectively reduced to •OH (also destruct pollutants) in the electron-rich microcenter over RSC-CNOP. This work reveals that the energy and electrons of pollutants can be efficiently utilized in the Fenton-like system through constructing and reinforcing the polarized dual reaction microcenters.
Collapse
Affiliation(s)
| | | | - Lai Lyu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Chun Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Feng Xiao
- School of Renewable Energy , North China Electric Power University , Beijing 102206 , China
| |
Collapse
|
38
|
Penke YK, Anantharaman G, Ramkumar J, Kar KK. Redox synergistic Mn-Al-Fe and Cu-Al-Fe ternary metal oxide nano adsorbents for arsenic remediation with environmentally stable As(0) formation. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:519-530. [PMID: 30388635 DOI: 10.1016/j.jhazmat.2018.10.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 05/04/2023]
Abstract
Arsenic mitigation behavior in aqueous systems is being evaluated for Mn-Al-Fe, Cu-Al-Fe nano adsorbents. Morphological, and vibrational spectroscopy analysis are observed with As-OH, and As-O surface complexes. XPS study of individual As(3d) spectra at different parameters is observed with multiplet peak behavior attributed to redox behavior of Mn-Al-Fe, Cu-Al-Fe. Significant proportions of As(0) signal (∼25 at.% in pH 7, ∼78 at.% in pH 2, ∼58 at.% in pH 12) implicate an environmentally stable behavior of these adsorbents to address the arsenic leaching issue. Adsorption kinetics are observed with Pseudo Second Order (PSO) model, and Freundlich model supported multilayer adsorption behavior is observed for adsorption isotherms. Trace metal voltammetry studies are observed with 75-90 % of As(III) mitigation in aliquot samples. Detailed study of Mn(2p), Cu(2p), Fe(2p), and O(1 s) spectra explains redox active, and surface ligand exchange synergism in arsenic adsorption. Low equilibrium concentrations (Ce < 10 ppb) in As(V) systems (Ci ∼ 100 and 500 ppb) indicate the drinking water application of these systems. Cyclic-voltammetry (CV) studies implicate the mitigation and immobilization of arsenic species onto adsorbent by both reduction, and sorption phenomenon.
Collapse
Affiliation(s)
- Yaswanth K Penke
- Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India.
| | - Ganapathi Anantharaman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India
| | - Janakarajan Ramkumar
- Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India; Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India.
| | - Kamal K Kar
- Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India; Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India.
| |
Collapse
|
39
|
Chen T, Zhu Z, Zhang H, Shen X, Qiu Y, Yin D. Enhanced Removal of Veterinary Antibiotic Florfenicol by a Cu-Based Fenton-like Catalyst with Wide pH Adaptability and High Efficiency. ACS OMEGA 2019; 4:1982-1994. [PMID: 31459449 PMCID: PMC6648108 DOI: 10.1021/acsomega.8b03406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/11/2019] [Indexed: 05/10/2023]
Abstract
The study on the removal of refractory veterinary antibiotic florfenicol (FF) in water is still very limited. In this study, an efficient Fenton-like catalyst was developed by synthesizing a series of Cu-based multi-metal layered double hydroxides (CuNiFeLa-LDHs) to degrade FF in aqueous solution. In the experiments, the screened CuNiFeLa-2-LDH with the molar ratio of La3+/(Fe3+ + La3+) = 0.1 exhibited high catalytic activity, achieving almost complete degradation of 5 mg L-1 FF under 5 mmol L-1 H2O2 conditions. The mechanisms revealed that the enhanced catalytic performance was ascribed to the existence of Ni which accelerated the electron transfer rate and La which served as a Lewis acidic site to provide more reactive sites in this Cu-dominated Fenton-like reaction, further generating •OH, •O2 -, and O2 1 as active species to attack pollutants directly. Interestingly, the catalyst showed a wide pH adaptability and little release of copper ions to the solution. The regenerated CuNiFeLa-2-LDH is demonstrated to be a stable and reliable material for florfenicol degradation.
Collapse
Affiliation(s)
- Ting Chen
- State
Key Laboratory of Pollution Control and Resource Reuseand Key Laboratory
of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
- Shanghai
Institute of Pollution Control and Ecological
Safety, Shanghai 200092, China
| | - Zhiliang Zhu
- State
Key Laboratory of Pollution Control and Resource Reuseand Key Laboratory
of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
- Shanghai
Institute of Pollution Control and Ecological
Safety, Shanghai 200092, China
- E-mail: . Phone: +86-21-6598 2426. Fax: +86-21-6598 4626
| | - Hua Zhang
- State
Key Laboratory of Pollution Control and Resource Reuseand Key Laboratory
of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Xiaolin Shen
- State
Key Laboratory of Pollution Control and Resource Reuseand Key Laboratory
of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
- Shanghai
Institute of Pollution Control and Ecological
Safety, Shanghai 200092, China
| | - Yanling Qiu
- State
Key Laboratory of Pollution Control and Resource Reuseand Key Laboratory
of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
- Shanghai
Institute of Pollution Control and Ecological
Safety, Shanghai 200092, China
| | - Daqiang Yin
- State
Key Laboratory of Pollution Control and Resource Reuseand Key Laboratory
of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
- Shanghai
Institute of Pollution Control and Ecological
Safety, Shanghai 200092, China
| |
Collapse
|
40
|
Ma R, Tang P, Feng Y, Li D. UV absorber co-intercalated layered double hydroxides as efficient hybrid UV-shielding materials for polypropylene. Dalton Trans 2019; 48:2750-2759. [DOI: 10.1039/c9dt00111e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UV absorber co-intercalated layered double hydroxides can efficiently shield UV light and greatly enhance the anti-photoaging performance of polypropylene.
Collapse
Affiliation(s)
- Ruoyu Ma
- State Key Laboratory of Chemical Resource Engineering
- and Beijing Engineering Center for Hierarchical Catalysts
- Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Pinggui Tang
- State Key Laboratory of Chemical Resource Engineering
- and Beijing Engineering Center for Hierarchical Catalysts
- Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering
- and Beijing Engineering Center for Hierarchical Catalysts
- Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering
- and Beijing Engineering Center for Hierarchical Catalysts
- Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| |
Collapse
|
41
|
Zhu J, Zhu Z, Zhang H, Lu H, Qiu Y. Efficient degradation of organic pollutants by peroxymonosulfate activated with MgCuFe-layered double hydroxide. RSC Adv 2019; 9:2284-2291. [PMID: 35516150 PMCID: PMC9059886 DOI: 10.1039/c8ra09841g] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/08/2019] [Indexed: 11/24/2022] Open
Abstract
In this study, MgCuFe-layered double hydroxide (MgCuFe-LDH) was for the first time used as a catalyst for peroxymonosulfate (PMS) activation towards the degradation of aqueous organic pollutants. Compared with both MgFe-LDH and MgCuAl-LDH materials, MgCuFe-LDH exhibited significantly higher catalytic activity to activate PMS for the degradation of acetaminophen. The effects of catalyst loading, PMS dosage, reaction temperature and initial solution pH on the degradation efficiency of acetaminophen were investigated. Acetaminophen (5 mg L−1) degradation at about 93.0% was achieved at 20 min by using 0.3 g L−1 MgCuFe-LDH and 0.5 mM PMS. Under the same conditions, rhodamine B (RhB, 5 mg L−1) can be almost completely decolorized (99.5%) within 45 min. Radical scavenger and electron paramagnetic resonance (EPR) experiments showed that sulfate radicals (SO4˙−) and hydroxyl radicals (·OH) existed in PMS/MgCuFe-LDH system. The generated radicals played vital roles in the catalytic degradation of organic pollutants. A possible activation mechanism of PMS on MgCuFe-LDH was put forward. This study indicates that MgCuFe-LDH is a promising catalyst to activate PMS for the efficient degradation of organic pollutants. MgCuFe-layered double hydroxide exhibited high catalytic activity to activate peroxymonosulfate for degradation of organic pollutants. SO4˙− and ·OH are the main reactive radicals involved in the degradation of organic pollutants.![]()
Collapse
Affiliation(s)
- Jianyao Zhu
- State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
- Shanghai Institute of Pollution Control and Ecological Security
| | - Zhiliang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
- Shanghai Institute of Pollution Control and Ecological Security
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Hongtao Lu
- State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education
- Tongji University
- Shanghai 200092
- China
| |
Collapse
|
42
|
Hongtao L, Shuxia L, Hua Z, Yanling Q, Daqiang Y, Jianfu Z, Zhiliang Z. Comparative study on synchronous adsorption of arsenate and fluoride in aqueous solution onto MgAlFe-LDHs with different intercalating anions. RSC Adv 2018; 8:33301-33313. [PMID: 35548142 PMCID: PMC9086567 DOI: 10.1039/c8ra05968c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/15/2018] [Indexed: 01/31/2023] Open
Abstract
In this study, a series of MgAlFe-LDHs (Cl-, NO3 -, intercalation, and calcined products of a CO3 2- interlayer) was synthesized and used for adsorption of arsenate and fluoride in individual contaminants and coexisting pollutant systems. Effects of various factors such as initial pH of solution, dosage of materials, coexisting ions, contact time, and initial pollutant concentrations were evaluated. Experimental results showed that different intercalating anions had a significant effect on adsorption performance of arsenate and fluoride in water. The adsorption of arsenate and fluoride on MgAlFe-CLDH, MgAlFe-Cl-LDH or MgAlFe-NO3-LDH can be described by different adsorption isotherm equations. During the simultaneous removal process, arsenate and fluoride competed for adsorption sites of the adsorbent materials, and the fluoride ions had advantages in the competitive adsorption on MgAlFe-Cl-LDH and MgAlFe-NO3-LDH. MgAlFe-NO3-LDH was used to adsorb arsenate and fluoride in coexisting pollution systems (the concentration of each pollutant was 2 mg L-1, the adsorbent dosage was 1.5 g L-1). The remaining arsenic concentration was reduced to less than 10 μg L-1 and the remaining fluoride ion concentration to below 20 μg L-1 which meets the World Health Organization's, EPA's and China's drinking water standards for arsenic and fluoride limits. A possible mechanism is discussed with support from further XRD, SEM, and XPS analysis of the materials after their adsorption.
Collapse
Affiliation(s)
- Lu Hongtao
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University Shanghai 200092 China
- Postdoctoral Research Station, College of Civil Engineering, Tongji University Shanghai 200092 China
| | - Liu Shuxia
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University Shanghai 200092 China
| | - Zhang Hua
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University Shanghai 200092 China
| | - Qiu Yanling
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University Shanghai 200092 China +86-21-6598 4626 +86-21-6598 2426
| | - Yin Daqiang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University Shanghai 200092 China +86-21-6598 4626 +86-21-6598 2426
| | - Zhao Jianfu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University Shanghai 200092 China
| | - Zhu Zhiliang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University Shanghai 200092 China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University Shanghai 200092 China +86-21-6598 4626 +86-21-6598 2426
| |
Collapse
|
43
|
Peng X, Wang M, Hu F, Qiu F, Zhang T, Dai H, Cao Z. Multipath fabrication of hierarchical CuAl layered double hydroxide/carbon fiber composites for the degradation of ammonia nitrogen. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 220:173-182. [PMID: 29778953 DOI: 10.1016/j.jenvman.2018.05.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/06/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
In this work, a series of flower-like CuAl layered double hydroxides (LDHs) and hierarchical CuAl/carbon fiber-LDH (CuAl/CF-LDH) materials were synthesized, and these materials were used as catalysts for the degradation of ammonia nitrogen from simulated wastewater. The morphologies and structures of the materials were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy (RS), X-ray diffraction (XRD), and the Brunauer-Emmett-Teller (BET) technique. The effects of the catalyst and H2O2 loading dosages, reaction temperature, pH, Cu/Al ratio of the samples, and contact time on the degradation process were investigated by degrading ammonia nitrogen under different conditions, and the possible degradation mechanism was discussed. CuAl/CF-LDH exhibited more effectively catalytically degradation of ammonia nitrogen than others as-prepared samples, and removal efficiency reached 99.7% under the optimized conditions. The reusing capability and stability of the materials were studied. Meanwhile, the versatility of the materials was investigated by testing their performance in the absorption of azo dye, the highest removal efficiency was found to be 99.28%. The prepared materials are promising for use as effective catalysts for the degradation of ammonia nitrogen from wastewater.
Collapse
Affiliation(s)
- Xiaoming Peng
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, Jiangxi Province, China
| | - Min Wang
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, Jiangxi Province, China
| | - Fengping Hu
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, Jiangxi Province, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, China.
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, China
| | - Hongling Dai
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, Jiangxi Province, China
| | - Zan Cao
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, Jiangxi Province, China
| |
Collapse
|
44
|
Zhao X, Niu C, Zhang L, Guo H, Wen X, Liang C, Zeng G. Co-Mn layered double hydroxide as an effective heterogeneous catalyst for degradation of organic dyes by activation of peroxymonosulfate. CHEMOSPHERE 2018; 204:11-21. [PMID: 29649659 DOI: 10.1016/j.chemosphere.2018.04.023] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 03/19/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
In this study, Co-Mn layered double hydroxide (Co-Mn LDH) was synthesized, characterized, and tested as heterogeneous catalyst to activate peroxymonosulfate (PMS) for degradation of organic dyes. The results of characterization showed that Co-Mn LDH had high purity, uniform morphology and large specific surface area (49.9379 m2/g). The degradation experiments demonstrated that five different dyes with the concentration of 50 mg/L could be decomposed completely within 240 s using only 0.025 g/L of Co-Mn LDH and 0.1 g/L of PMS. Moreover, Co-Mn LDH/PMS system presented the highest decomposition efficiency for acid orange G (AOG) compared with other related materials under the same condition. Further investigation found that Co-Mn LDH/PMS system had an excellent adaptability in a wide pH range (from 3 to 10), and the best efficiency was achieved when the solution was natural (pH = 6.87). The mineralization of AOG was assessed by Total Organic Carbon (TOC), and 52.2% of TOC was removed. Meanwhile, the good reusability and high stability of Co-Mn LDH were demonstrated by recycle tests and ion-leaching tests. The catalytic mechanism was explored through quenching tests as well as X-ray photoelectron spectroscopy (XPS) analysis. Finally, all of the results suggested that Co-Mn LDH/PMS system with high stability and decomposition efficiency was suitable for the remediation of organic dyes in wastewater.
Collapse
Affiliation(s)
- Xiufei Zhao
- College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Chenggang Niu
- College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China.
| | - Lei Zhang
- College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Hai Guo
- College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Xiaoju Wen
- College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Chao Liang
- College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Guangming Zeng
- College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| |
Collapse
|
45
|
Heterogeneous Fenton degradation of azo dye 4BS over Co–Mn–Fe ternary hydrotalcites. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0489-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
Khataee A, Arefi-Oskoui S, Samaei L. ZnFe-Cl nanolayered double hydroxide as a novel catalyst for sonocatalytic degradation of an organic dye. ULTRASONICS SONOCHEMISTRY 2018; 40:703-713. [PMID: 28946476 DOI: 10.1016/j.ultsonch.2017.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
ZnFe nanolayered double hydroxide (NLDH) with anions of Cl- in its interlayer space was synthesized using a facile co-precipitation method. The synthesized ZnFe-Cl NLDH was characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), N2 adsorption/desorption, diffuse reflectance spectroscopy (DRS) and point of zero charge pH (pHpzc) analyses. In this research, the sonocatalytic activity of the as-prepared NLDH was investigated for removal of acid red 17 as model pollutant. The effects of the operating parameters including sonocatalyst concentration, pH, initial dye concentration, intensity of ultrasonic irradiation and the presence of radical scavengers and process enhancers were studied on the sonocatalytic degradation of acid red 17. The decreased decolorization efficiency in the presence of the radical scavengers confirmed that the free radicals play the basic roll in the degradation of acid red 17 molecules. In addition a probable mechanism for degradation of acid red 17 through the sonocatalytic process was proposed according to the identified intermediates detected using gas chromatography-mass (GC-MS) spectroscopy.
Collapse
Affiliation(s)
- Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Lale Samaei
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| |
Collapse
|
47
|
Wang Y, Dou L, Zhang H. Nanosheet Array-Like Palladium-Catalysts Pd x/rGO@CoAl-LDH via Lattice Atomic-Confined in Situ Reduction for Highly Efficient Heck Coupling Reaction. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38784-38795. [PMID: 29028354 DOI: 10.1021/acsami.7b11695] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A series of novel nanosheet array-like catalysts Pdx/rGO@CoAl-LDH (x = 0.0098-1.9, refers to Pd loading in wt % on ICP, rGO: reduced graphene oxide, LDH: layered double hydroxide) were first prepared via a simple and green lattice atomic-confined in situ reduction of oxidative Pd precursors by the evenly atomic-dispersed reductive Co2+ sites on LDH layers of a nanohybrid rGO@CoAl-LDH with hexagonal LDH nanoplates (∼73 × 7 nm) interdigitated vertical to the surfaces of rGO layer in both sides, fabricated through a simple citric acid-assisted aqueous-phase coprecipitation method. The as-obtained Pd catalysts possess clean Pd nanoclusters (NCs) with tunable sizes in 1.3-1.8 nm on varied Pd loadings. All the Pdx/rGO@CoAl-LDH catalysts show excellent activities for the Heck reaction, and the Pd0.0098/rGO@CoAl-LDH with the ultrafine Pd NCs of 1.3 ± 0.2 nm yields a maximum turnover frequency of 160 000 h-1 over a heterogeneous catalyst so far. The excellent activities can be attributed to the ultrasmall Pd NCs with high dispersion and clean Pd surfaces, increased electron transfer capacity and surface area, and remarkable Pd-CoAl-LDH-rGO three-phase synergistic effect of the present unique nanosheet array-like Pd NCs catalysts. Moreover, the catalyst Pd0.33/rGO@CoAl-LDH shows a broad range of substrate applicability and can be reused more than five runs without obvious loss of activity, giving the present catalysts long-term stability. These findings make the rGO@CoAl-LDH hybrid prepared by a facile and scalable synthesis route a universal green platform to support other noble or nonprecious metal NCs via lattice atomic-confined in situ reduction strategy to construct more desired heterogeneous catalysts.
Collapse
Affiliation(s)
- Yanna Wang
- The State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , P.O. Box 98, Beijing 100029, China
| | - Liguang Dou
- The State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , P.O. Box 98, Beijing 100029, China
| | - Hui Zhang
- The State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , P.O. Box 98, Beijing 100029, China
| |
Collapse
|
48
|
Fan T, Li Y, Zhang H. Surfactant-Free Solvothermal Synthesis of 3D Flowerlike Iron Alkoxide (Fe-EG) Micro/Nanostructures: Structure, Formation Mechanism, and Fenton Oxidation of Azo Dyes. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02826] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ting Fan
- State Key Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, P. R. China
| | - Yangguang Li
- State Key Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, P. R. China
| | - Hui Zhang
- State Key Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, P. R. China
| |
Collapse
|
49
|
Constructing highly catalytic oxidation over BiOBr-based hierarchical microspheres: Importance of redox potential of doped cations. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.05.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Li H, Tran TN, Lee BJ, Zhang C, Park JD, Kang TH, Yu JS. Synthesis of Water-Dispersible Single-Layer CoAl-Carbonate Layered Double Hydroxide. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20294-20298. [PMID: 28590111 DOI: 10.1021/acsami.7b02912] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite extensive study on single-layer layered double hydroxides (SL-LDHs) with NO3- counterions, SL-LDHs with CO32- counterions (CO32- SL-LDHs) have never been prepared before. Herein, a CoAl-CO32- SL-LDH which stays stable in water and powdery state is first synthesized using ethylene glycol as a reaction medium. The SL-LDH, with thickness of ∼0.85 nm, is composed of one Co(Al)O6 layer sandwiched between two CO32- layers. The SL-LDH powder shows high specific surface area (∼289 m2/g) and excellent electrocatalytic oxygen evolution efficiency. This work provides the first simple way to prepare CO32- SL-LDHs and will open an avenue for synthesizing other SL-LDHs.
Collapse
Affiliation(s)
- Haiping Li
- Department of Energy Systems Engineering, DGIST , Daegu 42988, South of Korea
- National Engineering Research Center for Colloidal Materials, Shandong University , Jinan 250100, P.R. China
| | - Thanh-Nhan Tran
- Department of Energy Systems Engineering, DGIST , Daegu 42988, South of Korea
| | - Byong-Jun Lee
- Department of Energy Systems Engineering, DGIST , Daegu 42988, South of Korea
| | - Chunfei Zhang
- Department of Energy Systems Engineering, DGIST , Daegu 42988, South of Korea
| | - Jong-Deok Park
- Department of Energy Systems Engineering, DGIST , Daegu 42988, South of Korea
| | - Tong-Hyun Kang
- Department of Energy Systems Engineering, DGIST , Daegu 42988, South of Korea
| | - Jong-Sung Yu
- Department of Energy Systems Engineering, DGIST , Daegu 42988, South of Korea
| |
Collapse
|