1
|
Malode SJ, Alshehri MA, Shetti NP. Revolutionizing human healthcare with wearable sensors for monitoring human strain. Colloids Surf B Biointerfaces 2025; 246:114384. [PMID: 39579495 DOI: 10.1016/j.colsurfb.2024.114384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
With the rapid advancements in wearable sensor technology, healthcare is witnessing a transformative shift towards personalized and continuous monitoring. Wearable sensors designed for tracking human strain offer promising applications in rehabilitation, athletic performance, occupational health, and early disease detection. Recent advancements in the field have centered on the design optimization and miniaturization of wearable biosensors. Wireless communication technologies have facilitated the simultaneous, non-invasive detection of multiple analytes with high sensitivity and selectivity through wearable biosensors, significantly enhancing diagnostic accuracy. This review meticulously chronicles noteworthy advancements in wearable sensors tailored for healthcare and biomedical applications, spanning the current market landscape, challenges faced, and prospective trends, including multifunctional smart wearable sensors and integrated decision-support systems. The domain of flexible electronics has witnessed substantial progress over the past decade, particularly in flexible strain sensors, which are crucial for contemporary wearable and implantable devices. These innovations have broadened the scope of applications in human health monitoring and diagnostics. Continuous advancements in novel materials and device architectural methodologies aim to expand the utility of these sensors while meeting the increasingly stringent demands for enhanced sensing performance. This review explores the diverse array of wearable sensors-from piezoelectric, piezoresistive, and capacitive sensors to advanced optical and bioimpedance sensors-each distinguished by unique material properties and functionalities. We analyzed these technologies' sensitivity, accuracy, and response time, which were crucial for reliably capturing strain metrics in dynamic, real-world conditions. Quantitative performance comparisons across various sensor types highlighted their relative effectiveness, strengths, and limitations regarding detection precision, durability, and user comfort. Additionally, we discussed the current challenges in wearable sensor design, including energy efficiency, data transmission, and integration with machine learning models for enhanced data interpretation. Ultimately, this review emphasized the revolutionary potential of wearable strain sensors in advancing preventative healthcare and enabling proactive health management, ushering in an era where real-time health insights could lead to more timely interventions and improved health outcomes.
Collapse
Affiliation(s)
- Shweta J Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, Karnataka 580031, India.
| | | | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, Karnataka 580031, India.
| |
Collapse
|
2
|
Wang Y, Shuang Y, Kim M, Ando D, Narita F, Sutou Y. An amorphous Cr 2Ge 2Te 6/polyimide double-layer foil with an extraordinarily outstanding strain sensing ability. MATERIALS HORIZONS 2024; 11:5631-5640. [PMID: 39348034 DOI: 10.1039/d4mh00616j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
To realize a wearable health monitoring system, a piezoresistive material capable of detecting very small mechanical strains is needed. In this study, an amorphous Cr2Ge2Te6 thin film was deposited on a polyimide film by sputtering, and the piezoresistive properties were investigated. In experiments, the Cr2Ge2Te6/polyimide double-layer foil exhibited an outstanding piezoresistive performance as evidenced by the appearance of self-healing cracks during tensile tests and a remarkably large gauge factor of 60 000 in resistance change measurements. Owing to the self-healing character of cracks, the resistance change is repeatable within a specific strain range. Noteworthily, the double-layer foil is simple to prepare and does not require heat treatment. Furthermore, this double-layer foil was used to fabricate a pressure sensor comprising an extremely simple electrical circuit, and it was deployed on the wrist to monitor the artery pulse signal. As a result, the pressure sensor accurately detected artery pulse waves containing large amounts of information.
Collapse
Affiliation(s)
- Yinli Wang
- Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba-yama, Sendai, 980-8579, Japan.
| | - Yi Shuang
- WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| | - Mihyeon Kim
- Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba-yama, Sendai, 980-8579, Japan.
| | - Daisuke Ando
- Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba-yama, Sendai, 980-8579, Japan.
| | - Fumio Narita
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-02 Aoba-yama, Sendai, 980-8579, Japan
| | - Yuji Sutou
- Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba-yama, Sendai, 980-8579, Japan.
- WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| |
Collapse
|
3
|
Wu XP, Luo XM, Chen HL, Man Y, Bai YY, Qin TZ, Zhang B, Zhang GP. Fatigue crack-based strain sensors achieving flow detection and motion monitoring for reconnaissance robot applications. MATERIALS HORIZONS 2024; 11:4207-4222. [PMID: 38915265 DOI: 10.1039/d4mh00419a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Crack-based flexible strain sensors with ultra-high sensitivity under tiny strain are highly desired for environmental perception and motion detection of novel flexible and miniature robots. However, previously reported methods for fabricating crack patterns have often sacrificed the cyclic stability of the sensor, leading to a trade-off relationship between the sensitivity and the cyclic stability. Here, a universal and simple strategy based on fatigue loading with an ultra-large cumulative strain of up to ∼1.2 × 107%, rather than the traditionally quasi-static pre-overloading methods, is proposed to introduce channel cracks in the sensing layer without sacrificing the cyclic stability. The developed flexible strain sensors exhibit high strain-sensitivity (gauge factor = 5798) under tiny strain (< 3%), high cyclic stability (15 000 cycles) and a low strain detecting limit (0.02%). Furthermore, a leaf-like mechanosensor is developed using the fatigue crack-based strain sensor for the realization of multifunctional applications in environment perception and micro-motion detection. Brilliant airflow sensing performance with a wide sensing range (0.93-11.93 m s-1) and a fast response time (0.28 s) for amphibious applications is demonstrated. This work provides a new strategy for overcoming limits of crack-based flexible strain sensors and the developed leaf-like mechanosensor shows great application potential in miniature and flexible reconnaissance robots.
Collapse
Affiliation(s)
- Xu-Ping Wu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Xue-Mei Luo
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.
| | - Hong-Lei Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.
| | - Yi Man
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Yao-Yao Bai
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, 3-11 Wenhua Road, Shenyang 110819, China
| | - Tian-Ze Qin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Bin Zhang
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, 3-11 Wenhua Road, Shenyang 110819, China
| | - Guang-Ping Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
4
|
Yuan L, Gao X, Kang R, Zhang X, Meng X, Li X, Li X. Flexible Strain Sensors Based on an Interlayer Synergistic Effect of Nanomaterials for Continuous and Noninvasive Blood Pressure Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26943-26953. [PMID: 38718354 DOI: 10.1021/acsami.4c04134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The continuous, noninvasive monitoring of human blood pressure (BP) through the accurate detection of pulse waves has extremely stringent requirements on the sensitivity and stability of flexible strain sensors. In this study, a new ultrasensitive flexible strain sensor based on the interlayer synergistic effect was fabricated through drop-casting and drying silver nanowires and graphene films on polydimethylsiloxane substrates and was further successfully applied for continuous monitoring of BP. This strain sensor exhibited ultrahigh sensitivity with a maximum gauge factor of 34357.2 (∼700% sensitivity enhancement over other major sensors), satisfactory response time (∼85 ms), wide strange range (12%), and excellent stability. An interlayer fracture mechanism was proposed to elucidate the working principle of the strain sensor. The real-time BP values can be obtained by analyzing the relationship between the BP and the pulse transit time. To verify our strain sensor for real-time BP monitoring, our strain sensor was compared with a conventional electrocardiogram-photoplethysmograph method and a commercial cuff-based device and showed similar measurement results to BP values from both methods, with only minor differences of 0.693, 0.073, and 0.566 mmHg in the systolic BP, diastolic BP, and mean arterial pressure, respectively. Furthermore, the reliability of the strain sensors was validated by testing 20 human subjects for more than 50 min. This ultrasensitive strain sensor provides a new pathway for continuous and noninvasive BP monitoring.
Collapse
Affiliation(s)
- Lin Yuan
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaoguang Gao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Ranran Kang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaoliang Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xuejuan Meng
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaochun Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiujun Li
- Department of Chemistry and Biochemistry, Forensic Science, & Environmental Science & Engineering, University of Texas at El Paso, 500 W University Ave, El Paso, Texas 79968, United States
| |
Collapse
|
5
|
Del Bosque A, Sánchez-Romate XF, Sánchez M, Ureña A. Toward flexible piezoresistive strain sensors based on polymer nanocomposites: a review on fundamentals, performance, and applications. NANOTECHNOLOGY 2024; 35:292003. [PMID: 38621367 DOI: 10.1088/1361-6528/ad3e87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
The fundamentals, performance, and applications of piezoresistive strain sensors based on polymer nanocomposites are summarized herein. The addition of conductive nanoparticles to a flexible polymer matrix has emerged as a possible alternative to conventional strain gauges, which have limitations in detecting small strain levels and adapting to different surfaces. The evaluation of the properties or performance parameters of strain sensors such as the elongation at break, sensitivity, linearity, hysteresis, transient response, stability, and durability are explained in this review. Moreover, these nanocomposites can be exposed to different environmental conditions throughout their lifetime, including different temperature, humidity or acidity/alkalinity levels, that can affect performance parameters. The development of flexible piezoresistive sensors based on nanocomposites has emerged in recent years for applications related to the biomedical field, smart robotics, and structural health monitoring. However, there are still challenges to overcome in designing high-performance flexible sensors for practical implementation. Overall, this paper provides a comprehensive overview of the current state of research on flexible piezoresistive strain sensors based on polymer nanocomposites, which can be a viable option to address some of the major technological challenges that the future holds.
Collapse
Affiliation(s)
- Antonio Del Bosque
- Technology, Instruction and Design in Engineering and Education Research Group (TiDEE.rg), Catholic University of Ávila, C/Canteros s/n, E-05005 Ávila, Spain
| | - Xoan F Sánchez-Romate
- Materials Science and Engineering Area, Higher School of Experimental Sciences and Technology, Rey Juan Carlos University, C/Tulipán s/n, Móstoles, E-28933 Madrid, Spain
| | - María Sánchez
- Materials Science and Engineering Area, Higher School of Experimental Sciences and Technology, Rey Juan Carlos University, C/Tulipán s/n, Móstoles, E-28933 Madrid, Spain
- Instituto de Tecnologías Para la Sostenibilidad, Rey Juan Carlos University, C/Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Alejandro Ureña
- Materials Science and Engineering Area, Higher School of Experimental Sciences and Technology, Rey Juan Carlos University, C/Tulipán s/n, Móstoles, E-28933 Madrid, Spain
- Instituto de Tecnologías Para la Sostenibilidad, Rey Juan Carlos University, C/Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| |
Collapse
|
6
|
Lu L, Hu G, Liu J, Yang B. 5G NB-IoT System Integrated with High-Performance Fiber Sensor Inspired by Cirrus and Spider Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309894. [PMID: 38460163 PMCID: PMC11095228 DOI: 10.1002/advs.202309894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/17/2024] [Indexed: 03/11/2024]
Abstract
Real-time telemedicine detection can solve the problem of the shortage of public medical resources caused by the coming aging society. However, the development of such an integrated monitoring system is hampered by the need for high-performance sensors and the strict-requirement of long-distance signal transmission and reproduction. Here, a bionic crack-spring fiber sensor (CSFS) inspired by spider leg and cirrus whiskers for stretchable and weavable electronics is reported. Trans-scale conductive percolation networks of multilayer graphene around the surface of outer spring-like Polyethylene terephthalate (PET) fibers and printing Ag enable a high sensitivity of 28475.6 and broad sensing range over 250%. The electromechanical changes in different stretching stages are simulated by Comsol to explain the response mechanism. The CSFS is incorporated into the fabric and realized the human-machine interactions (HMIs) for robot control. Furthermore, the 5G Narrowband Internet of Things (NB-IoT) system is developed for human healthcare data collection, transmission, and reproduction together with the integration of the CSFS, illustrating the huge potential of the approach in human-machine communication interfaces and intelligent telemedicine rehabilitation and diagnosis monitoring.
Collapse
Affiliation(s)
- Lijun Lu
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001China
- National Key Laboratory of Science and Technology on Micro/Nano FabricationShanghai Jiao Tong UniversityShanghai200240China
- Department of Micro/Nano ElectronicsSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Guosheng Hu
- National Key Laboratory of Science and Technology on Micro/Nano FabricationShanghai Jiao Tong UniversityShanghai200240China
- Department of Micro/Nano ElectronicsSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano FabricationShanghai Jiao Tong UniversityShanghai200240China
| | - Bin Yang
- National Key Laboratory of Science and Technology on Micro/Nano FabricationShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
7
|
He H, Yang T, Liu T, Gao Y, Zhang Z, Yang Z, Liang F. Soft-Hard Janus Nanoparticles Triggered Hierarchical Conductors with Large Stretchability, High Sensitivity, and Superior Mechanical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312278. [PMID: 38266185 DOI: 10.1002/adma.202312278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Indexed: 01/26/2024]
Abstract
There is a long-standing conflict between the large stretchability and high sensitivity for strain sensors, a strategy of decoupling the mechanical/electrical module by constructing the hierarchical conductor has been developed in this study. The hierarchical conductor, consisting of a mechanically stretchable layer, a conductive network layer, and a strongly bonded interface, can be produced in a simple one-step process with the aid of soft-hard Janus nanoparticles (JNPs). The introduction of JNPs in the stretchable layer can evenly distribute stress and dissipate energy due to forming the rigid-flexible homogeneous networks. Specifically, JNPs can drive graphene nanosheets (GNS) to fold or curl, creating the unique JNPs-GNS building block that can further construct the conductive network. Due to its excellent deformability to hinder crack propagation, the flexible conductive network could be stretched continuously and the local conductive pathways could be reconstructed. Consequently, the hierarchical conductor could detect both subtle strain of 0-2% and large strain of up to 370%, with a gauge factor (GF) from 66.37 to 971.70, demonstrating outstanding stretchability and sensitivity. And it also owns large tensile strength (5.28 MPa) and high deformation stability. This hierarchical design will give graphene-based sensors a major boost in emerging applications.
Collapse
Affiliation(s)
- Hailing He
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Tiantian Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Tianlin Liu
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yeqi Gao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhaoyuan Zhang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fuxin Liang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Neilson J, Cataldi P, Derby B. Graphene-Based Transparent Flexible Strain Gauges with Tunable Sensitivity and Strain Range. ACS APPLIED NANO MATERIALS 2023; 6:21763-21774. [PMID: 38093805 PMCID: PMC10714313 DOI: 10.1021/acsanm.3c03967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 10/16/2024]
Abstract
Monolayers of graphene oxide, assembled into densely packed sheets at an immiscible hexane/water interface, form transparent conducting films on polydimethylsiloxane membranes after reduction in hydroiodic acid (HI) vapor to reduced graphene oxide (rGO). Prestraining and relaxing the membranes introduces cracks in the rGO film. Subsequent straining opens these cracks and induces piezoresistivity, enabling their application as transparent strain gauges. The sensitivity and strain range of these gauges is controlled by the cracked film structure that is determined by the reducing conditions used in manufacture. Reduction for 30 s in HI vapor leads to an array of parallel cracks that do not individually span the membrane. These cracks do not extend on subsequent straining, leading to a gauge with a usable strain range >0.2 and gauge factor (GF) at low strains ranging from 20 to 100, depending on the prestrain applied. The GF reduces with increasing applied strain and asymptotes to about 3, for all prestrains. Reduction for 60 s leads to cracks spanning the entire membrane and an increased film resistance but a highly sensitive strain gauge, with GF ranging from 800 to 16,000. However, the usable strain range reduces to <0.01. A simple equivalent resistor model is proposed to describe the behavior of both gauge types. The gauges show a repeatable and stable response with loading frequencies >1 kHz and have been used to detect human body strains in a simple e-skin demonstration.
Collapse
Affiliation(s)
- Joseph Neilson
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Department
of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Pietro Cataldi
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Brian Derby
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
9
|
Gong T, Guo JX, Shao HQ, Jia J, Ke K, Bao RY, Yang W. Linear Strain Sensors via a Spatial Heteromodulus Tricontinuous Structure Design for High-Resolution Recording of Snoring Breath. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56337-56346. [PMID: 37975857 DOI: 10.1021/acsami.3c14672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Porous conductive elastomer composites are very attractive for designing flexible and air-permeable mechanical sensors for healthcare, while it is challenging to achieve a linear and sensitive electromechanical response over a wide strain range for high-resolution recording of physiological activities and body motions. Here, a scalable strategy is developed to construct porous elastomer composites with a bamboo-shaped heteromodulus microstructure in the pores for the fabrication of linear stretchable strain sensors. Such a spatial heteromodulus microstructure is fabricated via phase separation and selective location of high-modulus phase during melt compounding of elastomers and thermoplastics, together with green etching of the water-soluble plastic in the tricontinuous elastomer composites. The bamboo-shaped heteromodulus microstructure is constructed on the pore struts via the fracture of a high-modulus polymer self-assembled on the pore surface and relaxation recovery of the elastomer matrix after prestretching, which blocks the propagation of cut-through microcracks upon stretching. The composites with super low resistance after in situ growth of silver nanoparticles sustain up to 110% tensile strain with a linear and sensitive electromechanical response, demonstrating potential applications in discriminating respiration status and monitoring snoring breath. This work unveils a new approach to fabricate high-performance air-permeable strain sensors in a simple and scalable way.
Collapse
Affiliation(s)
- Tao Gong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jia-Xing Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - He-Qing Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jin Jia
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
10
|
Yun T, Du J, Ji X, Tao Y, Cheng Y, Lv Y, Lu J, Wang H. Waterproof and ultrasensitive paper-based wearable strain/pressure sensor from carbon black/multilayer graphene/carboxymethyl cellulose composite. Carbohydr Polym 2023; 313:120898. [PMID: 37182981 DOI: 10.1016/j.carbpol.2023.120898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023]
Abstract
Huge electronic wastes motivated the flourishing of biodegradable electrically conductive cellulosic paper-based functional materials as flexible wearable devices. However, the relatively low sensitivity and unstable output in combination with poor wet strength under high moisture circumstances impeded the practical application. Herein, a superhydrophobic cellulosic paper with ultrahigh sensitivity was proposed by innovatively employing ionic sodium carboxymethyl cellulose (CMC) as bridge to reinforce the interfacial interaction between carbon black (CB) and multilayer graphene (MG) and SiO2 nanoparticles as superhydrophobic layer. The resultant paper-based (PB) sensor displayed excellent strain sensing behaviors, wide working range (-1.0 %-1.0 %), ultrahigh sensitivity (gauge factor, GF = 70.2), and satisfied durability (>10,000 cycles). Moreover, the superhydrophobic surface offered well waterproof and self-cleaning properties, even stable running data without encapsulation under extremely high moisture conditions. Impressively, when the fabricated PB sensor was applied for electronic-skin (E-skin), the signal capture of spatial strain of E-skin upon bodily motion was breezily achieved. Thus, our work not only provides a new pathway for reinforcing the interfacial interaction of electrically conductive carbonaceous materials, but also promises a category of unprecedentedly superhydrophobic cellulosic paper-based strain sensors with ultra-sensitivity in human-machine interfaces field.
Collapse
Affiliation(s)
- Tongtong Yun
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xingxiang Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Cheng
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yanna Lv
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
11
|
Zhou R, Zhang Y, Xu F, Song Z, Huang J, Li Z, Gao C, He J, Gao W, Pan C. Hierarchical Synergistic Structure for High Resolution Strain Sensor with Wide Working Range. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301544. [PMID: 37156739 DOI: 10.1002/smll.202301544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/29/2023] [Indexed: 05/10/2023]
Abstract
Strain sensors have been attracting tremendous attention for the promising application of wearable devices in recent years. However, the trade-off between high resolution, high sensitivity, and broad detection range is a great challenge for the application of strain sensors. Herein, a novel design of hierarchical synergistic structure (HSS) of Au micro cracks and carbon black (CB) nanoparticles is reported to overcome this challenge. The strain sensor based on the designed HSS exhibit high sensitivity (GF > 2400), high strain resolution (0.2%) even under large loading strain, broad detection range (>40%), outstanding stability (>12000 cycles), and fast response speed simultaneously. Further, the experiments and simulation results demonstrate that the carbon black layer greatly changed the morphology of Au micro-cracks, forming a hierarchical structure of micro-scale Au cracks and nano-scale carbon black particles, thus enabling synergistic effect and the double conductive network of Au micro-cracks and CB nanoparticles. Based on the excellent performance, the sensor is successfully applied to monitoring tiny signals of the carotid pulse during body movement, which illustrates the great potential in the application of health monitoring, human-machine interface, human motion detection, and electronic skin.
Collapse
Affiliation(s)
- Runhui Zhou
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yufei Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, P. R. China
| | - Fan Xu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Zhuoyu Song
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Jiaoya Huang
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Zemin Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Chen Gao
- School of Physics, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jiang He
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, P. R. China
| | - Wenchao Gao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
12
|
Ding J, Gao B, Mei X. Preparation of photothermal responsive, antibacterial hydrogel by using PVA-Alg and silver nanofibers as building blocks. Front Bioeng Biotechnol 2023; 11:1222723. [PMID: 37409166 PMCID: PMC10319420 DOI: 10.3389/fbioe.2023.1222723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction: Photothermal responsive, antimicrobial hydrogels are very attractive and have great potential in the field of tissue engineering. The defective wound environment and metabolic abnormalities in diabetic skin would lead to bacterial infections. Therefore, multifunctional composites with antimicrobial properties are urgently needed to improve the current therapeutic outcomes of diabetic wounds. We prepared an injectable hydrogel loaded with silver nanofibers for efficient and sustained bactericidal activity. Methods: To construct this hydrogel with good antimicrobial activity, homogeneous silver nanofibers were first prepared by solvothermal method and then dispersed in PVA-lg solution. After homogeneous mixing and gelation, injectable hydrogels (Ag@H) wrapped with silver nanofibers were obtained. Results: By virtue of Ag nanofibers, Ag@H exhibited good photothermal conversion efficiency and good antibacterial activity against drug-resistant bacteria, while the in vivo antibacterial also showed excellent performance. The results of antibacterial experiments showed that Ag@H had significant bactericidal effects on MRSA and E. coli with 88.4% and 90.3% inhibition rates, respectively. Discussion: The above results indicate that Ag@H with photothermal reactivity and antibacterial activity is very promising for biomedical applications, such as wound healing and tissue engineering.
Collapse
|
13
|
Xu X, Zhao Y, Liu Y. Wearable Electronics Based on Stretchable Organic Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206309. [PMID: 36794301 DOI: 10.1002/smll.202206309] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/25/2022] [Indexed: 05/18/2023]
Abstract
Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stretchability, dissolubility, compatibility with flexible substrates, easy tuning of electrical properties, low cost, and low temperature solution processability for large-area printing. Considerable efforts have been dedicated to the fabrication of SOS-based wearable electronics and their potential applications in various areas, including chemical sensors, organic light emitting diodes (OLEDs), organic photodiodes (OPDs), and organic photovoltaics (OPVs), have been demonstrated. In this review, some recent advances of SOS-based wearable electronics based on the classification by device functionality and potential applications are presented. In addition, a conclusion and potential challenges for further development of SOS-based wearable electronics are also discussed.
Collapse
Affiliation(s)
- Xinzhao Xu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
14
|
Nazari P, Bäuerle R, Zimmermann J, Melzer C, Schwab C, Smith A, Kowalsky W, Aghassi-Hagmann J, Hernandez-Sosa G, Lemmer U. Piezoresistive Free-standing Microfiber Strain Sensor for High-resolution Battery Thickness Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212189. [PMID: 36872845 DOI: 10.1002/adma.202212189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Indexed: 05/26/2023]
Abstract
Highly sensitive microfiber strain sensors are promising for the detection of mechanical deformations in applications where limited space is available. In particular for in situ battery thickness monitoring where high resolution and low detection limit are key requirements. Herein, the realization of a highly sensitive strain sensor for in situ lithium-ion (Li-ion) battery thickness monitoring is presented. The compliant fiber-shaped sensor is fabricated by an upscalable wet-spinning method employing a composite of microspherical core-shell conductive particles embedded in an elastomer. The electrical resistance of the sensor changes under applied strain, exhibiting a high strain sensitivity and extremely low strain detection limit of 0.00005 with high durability of 10 000 cycles. To demonstrate the accuracy and ease of applicability of this sensor, the real-time thickness change of a Li-ion battery pouch cell is monitored during the charge and discharge cycles. This work introduces a promising approach with the least material complexity for soft microfiber strain gauges.
Collapse
Affiliation(s)
- Pariya Nazari
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany
| | - Rainer Bäuerle
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany
- Institute of High Frequency Technology, Technical University of Braunschweig, Universitätsplatz 2, 38106, Braunschweig, Germany
| | | | | | - Christopher Schwab
- Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Anna Smith
- Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Wolfgang Kowalsky
- InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany
- Institute of High Frequency Technology, Technical University of Braunschweig, Universitätsplatz 2, 38106, Braunschweig, Germany
| | - Jasmin Aghassi-Hagmann
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Gerardo Hernandez-Sosa
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
- InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Uli Lemmer
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
- InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
15
|
Karlapudi MC, Vahdani M, Bandari SM, Peng S, Wu S. A Comparative Study on the Effects of Spray Coating Methods and Substrates on Polyurethane/Carbon Nanofiber Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:3245. [PMID: 36991956 PMCID: PMC10054467 DOI: 10.3390/s23063245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Thermoplastic polyurethane (TPU) has been widely used as the elastic polymer substrate to be combined with conductive nanomaterials to develop stretchable strain sensors for a variety of applications such as health monitoring, smart robotics, and e-skins. However, little research has been reported on the effects of deposition methods and the form of TPU on their sensing performance. This study intends to design and fabricate a durable, stretchable sensor based on composites of thermoplastic polyurethane and carbon nanofibers (CNFs) by systematically investigating the influences of TPU substrates (i.e., either electrospun nanofibers or solid thin film) and spray coating methods (i.e., either air-spray or electro-spray). It is found that the sensors with electro-sprayed CNFs conductive sensing layers generally show a higher sensitivity, while the influence of the substrate is not significant and there is no clear and consistent trend. The sensor composed of a TPU solid thin film with electro-sprayed CNFs exhibits an optimal performance with a high sensitivity (gauge factor ~28.2) in a strain range of 0-80%, a high stretchability of up to 184%, and excellent durability. The potential application of these sensors in detecting body motions has been demonstrated, including finger and wrist-joint movements, by using a wooden hand.
Collapse
Affiliation(s)
| | - Mostafa Vahdani
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shuying Wu
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
16
|
Yang C, Zhang D, Wang D, Luan H, Chen X, Yan W. In Situ Polymerized MXene/Polypyrrole/Hydroxyethyl Cellulose-Based Flexible Strain Sensor Enabled by Machine Learning for Handwriting Recognition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5811-5821. [PMID: 36648277 DOI: 10.1021/acsami.2c18989] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Flexible strain sensors have significant progress in the fields of human-computer interaction, medical monitoring, and handwriting recognition, but they also face many challenges such as the capture of weak signals, comprehensive acquisition of the information, and accurate recognition. Flexible strain sensors can sense externally applied deformations, accurately measure human motion and physiological signals, and record signal characteristics of handwritten text. Herein, we prepare a sandwich-structured flexible strain sensor based on an MXene/polypyrrole/hydroxyethyl cellulose (MXene/PPy/HEC) conductive material and a PDMS flexible substrate. The sensor features a wide linear strain detection range (0-94%), high sensitivity (gauge factor 357.5), reliable repeatability (>1300 cycles), ultrafast response-recovery time (300 ms), and other excellent sensing properties. The MXene/PPy/HEC sensor can detect human physiological activities, exhibiting excellent performance in measuring external strain changes and real-time motion detection. In addition, the signals of English words, Arabic numerals, and Chinese characters handwritten by volunteers measured by the MXene/PPy/HEC sensor have unique characteristics. Through machine learning technology, different handwritten characters are successfully identified, and the recognition accuracy is higher than 96%. The results show that the MXene/PPy/HEC sensor has a significant impact in the fields of human motion detection, medical and health monitoring, and handwriting recognition.
Collapse
Affiliation(s)
- Chunqing Yang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongzhi Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongyue Wang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Huixin Luan
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoya Chen
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Weiyu Yan
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
17
|
2D Materials towards sensing technology: From fundamentals to applications. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
18
|
Kim J, Choi C. Elastomeric Core/Conductive Sheath Fibers for Tensile and Torsional Strain Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:8934. [PMID: 36433531 PMCID: PMC9693023 DOI: 10.3390/s22228934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Motion sensing, aimed at detecting and monitoring mechanical deformation, has received significant attention in various industrial and research fields. In particular, fiber-structured mechanical strain sensors with carbon-based materials have emerged as promising alternatives for wearable applications owing to their wearability and adaptability to the human body. Various materials, structures, sensing mechanisms, and fabrication methods have been used to fabricate high-performance fiber strain sensors. Nevertheless, developing multi-modal strain sensors that can monitor multiple deformations remains to be accomplished. This study established core/sheath fiber multi-modal strain sensors using polymer and carbon nanotubes (CNTs). Specifically, a flexible and conductive CNT sheet was wrapped onto the elastomeric core fiber at a certain angle. This wrapping angle allowed the CNTs to mechanically deform under tensile and torsional deformations without fatal structural damage. The CNTs could sense both tensile and torsional strains through reversible structural changes during deformations. The fiber strain sensor exhibited an increase of 124.9% and 9.6% in the resistance during tensile and torsional deformations of 100% and 1250 rad/m, respectively.
Collapse
|
19
|
Lee G, Zarei M, Wei Q, Zhu Y, Lee SG. Surface Wrinkling for Flexible and Stretchable Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203491. [PMID: 36047645 DOI: 10.1002/smll.202203491] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Recent advances in nanolithography, miniaturization, and material science, along with developments in wearable electronics, are pushing the frontiers of sensor technology into the large-scale fabrication of highly sensitive, flexible, stretchable, and multimodal detection systems. Various strategies, including surface engineering, have been developed to control the electrical and mechanical characteristics of sensors. In particular, surface wrinkling provides an effective alternative for improving both the sensing performance and mechanical deformability of flexible and stretchable sensors by releasing interfacial stress, preventing electrical failure, and enlarging surface areas. In this study, recent developments in the fabrication strategies of wrinkling structures for sensor applications are discussed. The fundamental mechanics, geometry control strategies, and various fabricating methods for wrinkling patterns are summarized. Furthermore, the current state of wrinkling approaches and their impacts on the development of various types of sensors, including strain, pressure, temperature, chemical, photodetectors, and multimodal sensors, are reviewed. Finally, existing wrinkling approaches, designs, and sensing strategies are extrapolated into future applications.
Collapse
Affiliation(s)
- Giwon Lee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Mohammad Zarei
- Department of Chemistry, University of Ulsan, Ulsan, 44776, South Korea
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Seung Goo Lee
- Department of Chemistry, University of Ulsan, Ulsan, 44776, South Korea
| |
Collapse
|
20
|
Zhou Y, Lian H, Li Z, Yin L, Ji Q, Li K, Qi F, Huang Y. Crack engineering boosts the performance of flexible sensors. VIEW 2022. [DOI: 10.1002/viw.20220025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yunlei Zhou
- School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan China
- State Key Laboratory of Digital Manufacturing Equipment and Technology Flexible Electronics Research Center Huazhong University of Science and Technology Wuhan China
| | - Haoxiang Lian
- School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan China
- State Key Laboratory of Digital Manufacturing Equipment and Technology Flexible Electronics Research Center Huazhong University of Science and Technology Wuhan China
| | - Zhenlei Li
- School of Mechanical and Electric Engineering Soochow University Suzhou China
| | - Liting Yin
- School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan China
- State Key Laboratory of Digital Manufacturing Equipment and Technology Flexible Electronics Research Center Huazhong University of Science and Technology Wuhan China
| | - Qian Ji
- School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan China
| | - Kan Li
- School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan China
- State Key Laboratory of Digital Manufacturing Equipment and Technology Flexible Electronics Research Center Huazhong University of Science and Technology Wuhan China
| | - Fei Qi
- School of Mechanical and Electric Engineering Soochow University Suzhou China
| | - YongAn Huang
- School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan China
- State Key Laboratory of Digital Manufacturing Equipment and Technology Flexible Electronics Research Center Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
21
|
Wang W, Ma Y, Wang T, Ding K, Zhao W, Jiao L, Shu D, Li C, Hua F, Jiang H, Tong S, Yang S, Ni Y, Cheng B. Double-Layered Conductive Network Design of Flexible Strain Sensors for High Sensitivity and Wide Working Range. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36611-36621. [PMID: 35926517 DOI: 10.1021/acsami.2c08285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For flexible strain sensors, the optimization between sensitivity and working range is a significant challenge due to the fact that high sensitivity and high working range are usually difficult to obtain at the same time. Herein, a breathable flexible strain sensor with a double-layered conductive network structure was designed and developed, which consists of a thermoplastic polyurethane (TPU)/carbon nanotube (CNT) layer (as a substrate layer) and a Ag nanowire (AgNW) layer. The TPU/CNT layer is made of electrospinning TPU with CNTs deposited onto the surface of TPU fibers, and the flexible TPU/CNT mat guarantees the integrity of the conductive path under a large strain. The AgNW layer was prepared by depositing different amounts of AgNWs on the surface of the TPU/CNT layer, and the high-conductivity AgNWs offer a low initial resistance. Benefitting from the synergistic two-layer structure, the as-obtained flexible strain sensor exhibits a very high sensitivity (up to 1477.7) and a very wide working range (up to 150%). Besides, the fabricated sensor exhibits fast response (88 ms), excellent dynamical stability (7000 cycles), and excellent breathability. The working mechanism of the strain sensor was further investigated using various techniques (microscopy, equivalent circuit, and thermal effects of current). Furthermore, the as-fabricated flexible strain sensors accurately detect the omnidirectional human motions, including subtle and large human motions. This work provides an efficient approach to achieve the optimization between high sensitivity and large working range of strain sensors, which may have great potential applications in health monitoring, body motion detection, and human-machine interactions.
Collapse
Affiliation(s)
- Wei Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuying Ma
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tianyi Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Kai Ding
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Zhao
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Jiao
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dengkun Shu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chenyang Li
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Feiguo Hua
- Zhejiang Jinjiahao Green Nanomaterial Co., Ltd., Longyou 324404, China
- Zhejiang Jinchang Specialty Paper Co., Ltd., Longyou 324404, China
| | - Hong Jiang
- Jiangxi Changshuo Outdoor Leisured Articles Co.,Ltd, Shangrao 334000, China
| | - Shuhua Tong
- Zhejiang Jinchang Specialty Paper Co., Ltd., Longyou 324404, China
| | - Shuo Yang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
- Zhejiang Jinchang Specialty Paper Co., Ltd., Longyou 324404, China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Bowen Cheng
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
22
|
Ullah H, Wahab MA, Will G, Karim MR, Pan T, Gao M, Lai D, Lin Y, Miraz MH. Recent Advances in Stretchable and Wearable Capacitive Electrophysiological Sensors for Long-Term Health Monitoring. BIOSENSORS 2022; 12:bios12080630. [PMID: 36005025 PMCID: PMC9406032 DOI: 10.3390/bios12080630] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 05/27/2023]
Abstract
Over the past several years, wearable electrophysiological sensors with stretchability have received significant research attention because of their capability to continuously monitor electrophysiological signals from the human body with minimal body motion artifacts, long-term tracking, and comfort for real-time health monitoring. Among the four different sensors, i.e., piezoresistive, piezoelectric, iontronic, and capacitive, capacitive sensors are the most advantageous owing to their reusability, high durability, device sterilization ability, and minimum leakage currents between the electrode and the body to reduce the health risk arising from any short circuit. This review focuses on the development of wearable, flexible capacitive sensors for monitoring electrophysiological conditions, including the electrode materials and configuration, the sensing mechanisms, and the fabrication strategies. In addition, several design strategies of flexible/stretchable electrodes, body-to-electrode signal transduction, and measurements have been critically evaluated. We have also highlighted the gaps and opportunities needed for enhancing the suitability and practical applicability of wearable capacitive sensors. Finally, the potential applications, research challenges, and future research directions on stretchable and wearable capacitive sensors are outlined in this review.
Collapse
Affiliation(s)
- Hadaate Ullah
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Md A. Wahab
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, George St Brisbane, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Geoffrey Will
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, George St Brisbane, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Mohammad R. Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center, Riyadh 11451, Saudi Arabia
| | - Taisong Pan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Min Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dakun Lai
- Biomedical Imaging and Electrophysiology Laboratory, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Corporation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Mahdi H. Miraz
- School of Computing and Data Science, Xiamen University Malaysia, Bandar Sunsuria, Sepang 43900, Malaysia
- School of Computing, Faculty of Arts, Science and Technology, Wrexham Glyndŵr University, Wrexham LL112AW, UK
| |
Collapse
|
23
|
The preparation and characterization of the novel mono-/binuclear boron-based materials for supercapacitor electrode applications. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Zhang X, Ke L, Zhang X, Xu F, Hu Y, Lin H, Zhu J. Breathable and Wearable Strain Sensors Based on Synergistic Conductive Carbon Nanotubes/Cotton Fabrics for Multi-directional Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25753-25762. [PMID: 35621731 DOI: 10.1021/acsami.2c04790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible strain-sensitive sensors have been receiving intensive attention in many aspects ranging from human motion capture to health-related signal monitoring. However, the fabric strain sensor with multi-directional sensing capability, besides having a wide strain range and high response sensitivity, is still very challenging and deserves further exploration. Here, we have prepared a wearable cotton fabric strain sensor uniformly decorated with single-walled carbon nanotubes through a facile solution process. The unique hierarchical architecture of the cotton fabric woven from twisted yarns combined with the conductive carbon nanotube network endows the fabric strain sensors with attractive performance, including low detection limit, large workable strain range, fascinating stability and durability, excellent direction-dependent strain response, and good air permeability. The strain sensor without polymer encapsulation can not only monitor subtle and large multi-directional motions but also fit well to the human body with satisfactory comfort, demonstrating its potential application in wearable electronics and intelligent clothing.
Collapse
Affiliation(s)
- Xiaopei Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Longwei Ke
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaomin Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Feng Xu
- Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yunfeng Hu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Huijuan Lin
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jixin Zhu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
25
|
Raman S, Arunagirinathan RS. Silver Nanowires in Stretchable Resistive Strain Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1932. [PMID: 35683788 PMCID: PMC9182513 DOI: 10.3390/nano12111932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Silver nanowires (AgNWs), having excellent electrical conductivity, transparency, and flexibility in polymer composites, are reliable options for developing various sensors. As transparent conductive electrodes (TCEs), AgNWs are applied in optoelectronics, organic electronics, energy devices, and flexible electronics. In recent times, research groups across the globe have been concentrating on developing flexible and stretchable strain sensors with a specific focus on material combinations, fabrication methods, and performance characteristics. Such sensors are gaining attention in human motion monitoring, wearable electronics, advanced healthcare, human-machine interfaces, soft robotics, etc. AgNWs, as a conducting network, enhance the sensing characteristics of stretchable strain-sensing polymer composites. This review article presents the recent developments in resistive stretchable strain sensors with AgNWs as a single or additional filler material in substrates such as polydimethylsiloxane (PDMS), thermoplastic polyurethane (TPU), polyurethane (PU), and other substrates. The focus is on the material combinations, fabrication methods, working principles, specific applications, and performance metrics such as sensitivity, stretchability, durability, transparency, hysteresis, linearity, and additional features, including self-healing multifunctional capabilities.
Collapse
Affiliation(s)
- Srinivasan Raman
- School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT), Chennai, Tamil Nadu 600127, India;
| | - Ravi Sankar Arunagirinathan
- School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT), Chennai, Tamil Nadu 600127, India;
- Centre for Innovation and Product Development (CIPD), Chennai Campus, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu 600127, India
| |
Collapse
|
26
|
Babu VJ, Anusha M, Sireesha M, Sundarrajan S, Abdul Haroon Rashid SSA, Kumar AS, Ramakrishna S. Intelligent Nanomaterials for Wearable and Stretchable Strain Sensor Applications: The Science behind Diverse Mechanisms, Fabrication Methods, and Real-Time Healthcare. Polymers (Basel) 2022; 14:2219. [PMID: 35683893 PMCID: PMC9182624 DOI: 10.3390/polym14112219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
It has become a scientific obligation to unveil the underlying mechanisms and the fabrication methods behind wearable/stretchable strain sensors based on intelligent nanomaterials in order to explore their possible potential in the field of biomedical and healthcare applications. This report is based on an extensive literature survey of fabrication of stretchable strain sensors (SSS) based on nanomaterials in the fields of healthcare, sports, and entertainment. Although the evolution of wearable strain sensors (WSS) is rapidly progressing, it is still at a prototype phase and various challenges need to be addressed in the future in special regard to their fabrication protocols. The biocalamity of COVID-19 has brought a drastic change in humans' lifestyles and has negatively affected nations in all capacities. Social distancing has become a mandatory rule to practice in common places where humans interact with each other as a basic need. As social distancing cannot be ruled out as a measure to stop the spread of COVID-19 virus, wearable sensors could play a significant role in technologically impacting people's consciousness. This review article meticulously describes the role of wearable and strain sensors in achieving such objectives.
Collapse
Affiliation(s)
- Veluru Jagadeesh Babu
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Merum Anusha
- Department of Pharmacology, S V Medical College, Dr NTR University of Health Sciences, Vijayawada 517501, India;
| | - Merum Sireesha
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Subramanian Sundarrajan
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Syed Sulthan Alaudeen Abdul Haroon Rashid
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - A. Senthil Kumar
- Advanced Manufacturing Laboratory, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Seeram Ramakrishna
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| |
Collapse
|
27
|
Ismail Z, W Idris WF, Abdullah AH. Graphene-based temperature, humidity, and strain sensor: A review on progress, characterization, and potential applications during Covid-19 pandemic. SENSORS INTERNATIONAL 2022; 3:100183. [PMID: 35633818 PMCID: PMC9126002 DOI: 10.1016/j.sintl.2022.100183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Graphene's potential as material for wearable, highly sensitive and robust sensor in various fields of technology has been widely investigated until now in order to capitalize on its unique intrinsic physical and chemical properties. In the wake of Covid-19 pandemic, it has been noticed that there are various potentials roles that can be fulfilled by graphene-based temperature, humidity and strain sensor, whose roles has not been widely explored to date. This paper takes the liberty to mainly highlight the progress layout and characterization technique for graphene-based sensor while including a brief discussion on the possible strategy of sensing data analysis that can be employed to minimize and prevent the risk of Covid-19 infection within a living community. While majority of the reported sensor is still in the in-progress status, its highlighted role in this work may provide a brief idea on how the ongoing research in graphene-based sensor may lead to the future implementation of the device for routine healthcare check-up and diagnostic point-care during and post-pandemic era. On the other hand, the sensitivity and response time data against working temperature, humidity and strain range that are provided could serve as a reference for benchmarking purpose, which certainly would help enthusiast in the development of a graphene-based sensor with a better performance for the future.
Collapse
|
28
|
Jiang Q, Li R, Wang F, Shi X, Chen F, Huang Y, Wang B, Zhang W, Wu X, Wei F, Zhang R. Ultrasensitive Airflow Sensors Based on Suspended Carbon Nanotube Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107062. [PMID: 35245967 DOI: 10.1002/adma.202107062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/25/2022] [Indexed: 06/14/2023]
Abstract
High-performance airflow sensors are in great demand in numerous fields but still face many challenges, such as slow response speed, low sensitivity, large detection threshold, and narrow sensing range. Carbon nanotubes (CNTs) exhibit many advantages in fabricating airflow sensors due to their nanoscale diameters, excellent mechanical and electrical properties, and so on. However, the intrinsic extraordinary properties of CNTs are not fully exhibited in previously reported CNT-based airflow sensors due to the mixed structures of macroscale CNT assemblies. Herein, this article presents suspended CNT networks (SCNTNs) as high-performance airflow sensors, which are self-assembled by ultralong CNTs and short CNTs in a one-step floating catalyst chemical vapor deposition process. The SCNTN-based airflow sensors achieved a record-breaking short response time of 0.021 s, a high sensitivity of 0.0124 s m-1 , a small detection threshold of 0.11 m s-1 , and a wide detection range of ≈0.11-5.51 m s-1 , superior to most of the state-of-the-art airflow sensors. To reveal the sensing mechanism, an acoustic response testing system and a mathematical model are developed. It is found that the airflow-caused intertube stress change resulted in the resistance variation of SCNTNs.
Collapse
Affiliation(s)
- Qinyuan Jiang
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| | - Run Li
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| | - Fei Wang
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| | - Xiaofei Shi
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| | - Fengxiang Chen
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| | - Ya Huang
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| | - Baoshun Wang
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| | - Wenshuo Zhang
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| | - Xueke Wu
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| | - Fei Wei
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| | - Rufan Zhang
- Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
29
|
Jhou YR, Wang CH, Tsai HP, Shan YS, Lee GB. An integrated microfluidic platform featuring real-time reverse transcription loop-mediated isothermal amplification for detection of COVID-19. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 358:131447. [PMID: 35095200 DOI: 10.1016/j.snb.2022.131497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 05/24/2023]
Abstract
An integrated microfluidic platform (IMP) utilizing real-time reverse-transcription loop-mediated isothermal amplification (RT-LAMP) was developed here for detection and quantification of three genes of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; i.e., coronavirus diseases 2019 (COVID-19)): RNA-dependent RNA polymerase, the envelope gene, and the nucleocapsid gene for molecular diagnosis. The IMP comprised a microfluidic chip, a temperature control module, a fluidic control module that collectively carried out viral lysis, RNA extraction, RT-LAMP, and the real-time detection within 90 min in an automatic format. A limit of detection of 5 × 103 copies/reaction for each gene was determined with three samples including synthesized RNAs, inactive viruses, and RNAs extracted from clinical samples; this compact platform could be a useful tool for COVID-19 diagnostics.
Collapse
Affiliation(s)
- You-Ru Jhou
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Nano Engineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
30
|
Liu MY, Hang CZ, Wu XY, Zhu LY, Wen XH, Wang Y, Zhao XF, Lu HL. Investigation of stretchable strain sensor based on CNT/AgNW applied in smart wearable devices. NANOTECHNOLOGY 2022; 33:255501. [PMID: 35299168 DOI: 10.1088/1361-6528/ac5ee6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/17/2022] [Indexed: 05/23/2023]
Abstract
Stretchable strain sensor, an important paradigm of wearable sensor which can be attached onto clothing or even human skin, is widely used in healthcare, human motion monitoring and human-machine interaction. Pattern-available and facile manufacturing process for strain sensor is pursued all the time. A carbon nanotube (CNT)/silver nanowire (AgNW)-based stretchable strain sensor fabricated by a facile process is reported here. The strain sensor exhibits a considerable Gauge factor of 6.7, long-term durability (>1000 stretching cycles), fast response and recovery (420 ms and 600 ms, respectively), hence the sensor can fulfill the measurement of finger movement. Accordingly, a smart glove comprising a sensor array and a flexible printed circuit board is assembled to detect the bending movement of five fingers simultaneously. Moreover, the glove is wireless and basically fully flexible, it can detect the finger bending of wearer and display the responses distinctly on an APP of a smart phone or a host computer. Our strain senor and smart glove will broaden the materials and applications of wearable sensors.
Collapse
Affiliation(s)
- Meng-Yang Liu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - Cheng-Zhou Hang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - Xue-Yan Wu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - Li-Yuan Zhu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - Xiao-Hong Wen
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - Yang Wang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - Xue-Feng Zhao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, 322000 Zhejiang, People's Republic of China
| |
Collapse
|
31
|
Xiao W, Wang L, Li B, Li Y, Wang Y, Luo J, Huang X, Xie A, Gao J. Interface-engineered reduced graphene oxide assembly on nanofiber surface for high performance strain and temperature sensing. J Colloid Interface Sci 2022; 608:931-941. [PMID: 34785468 DOI: 10.1016/j.jcis.2021.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022]
Abstract
Conductive polymer nanofiber composites (CPNCs) based wearable sensing electronics have aroused great attention of scientists in recent years. However, it is still difficult to obtain CPNCs with good water proof, excellent durability, and multiple sensing performance. Herein, we develop a multifunctional CPNC with a wrinkled reduced graphene oxide (RGO) shell and polymer nanofiber core, which is prepared by ultrasonication induced decoration of RGO onto the pre-stretched polyurethane (PU) nanofibers, followed by the release of the strain. The RGO assembly with a wrinkled structure not only greatly increases the surface roughness and thus the hydrophobicity but also enhances the strain sensing sensitivity (with a gauge factor of 154.8 in the strain range of 85%-100%) of the nanofibrous membrane. The obtained CPNC strain sensor also shows excellent sensing durability (over 1000 cycles) and can be used for body motion monitoring. The CPNC shows a negative temperature coefficient effect, which holds promising applications in high performance temperature sensors.
Collapse
Affiliation(s)
- Wei Xiao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Ling Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Bei Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China; Nanjing Guocai Testing Co., Ltd, Nanjing, Jiangsu, 210012, China
| | - Yiyao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Yuqing Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Junchen Luo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Xuewu Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - An Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China.
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China; Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.
| |
Collapse
|
32
|
Irani FS, Shafaghi AH, Tasdelen MC, Delipinar T, Kaya CE, Yapici GG, Yapici MK. Graphene as a Piezoresistive Material in Strain Sensing Applications. MICROMACHINES 2022; 13:119. [PMID: 35056284 PMCID: PMC8779301 DOI: 10.3390/mi13010119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
Abstract
High accuracy measurement of mechanical strain is critical and broadly practiced in several application areas including structural health monitoring, industrial process control, manufacturing, avionics and the automotive industry, to name a few. Strain sensors, otherwise known as strain gauges, are fueled by various nanomaterials, among which graphene has attracted great interest in recent years, due to its unique electro-mechanical characteristics. Graphene shows not only exceptional physical properties but also has remarkable mechanical properties, such as piezoresistivity, which makes it a perfect candidate for strain sensing applications. In the present review, we provide an in-depth overview of the latest studies focusing on graphene and its strain sensing mechanism along with various applications. We start by providing a description of the fundamental properties, synthesis techniques and characterization methods of graphene, and then build forward to the discussion of numerous types of graphene-based strain sensors with side-by-side tabular comparison in terms of figures-of-merit, including strain range and sensitivity, otherwise referred to as the gauge factor. We demonstrate the material synthesis, device fabrication and integration challenges for researchers to achieve both wide strain range and high sensitivity in graphene-based strain sensors. Last of all, several applications of graphene-based strain sensors for different purposes are described. All in all, the evolutionary process of graphene-based strain sensors in recent years, as well as the upcoming challenges and future directions for emerging studies are highlighted.
Collapse
Affiliation(s)
- Farid Sayar Irani
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul TR 34956, Turkey; (F.S.I.); (A.H.S.); (M.C.T.); (T.D.)
| | - Ali Hosseinpour Shafaghi
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul TR 34956, Turkey; (F.S.I.); (A.H.S.); (M.C.T.); (T.D.)
| | - Melih Can Tasdelen
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul TR 34956, Turkey; (F.S.I.); (A.H.S.); (M.C.T.); (T.D.)
| | - Tugce Delipinar
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul TR 34956, Turkey; (F.S.I.); (A.H.S.); (M.C.T.); (T.D.)
| | - Ceyda Elcin Kaya
- Department of Electrical and Computer Engineering, University of Tulsa, Tulsa, OK 74104, USA;
| | - Guney Guven Yapici
- Department of Mechanical Engineering, Ozyegin University, Istanbul TR 34794, Turkey;
| | - Murat Kaya Yapici
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul TR 34956, Turkey; (F.S.I.); (A.H.S.); (M.C.T.); (T.D.)
- Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA
- SUNUM Nanotechnology Research Center, Istanbul TR 34956, Turkey
| |
Collapse
|
33
|
Kim TG, Eom HS, Kim JH, Jung JK, Jang KS, Lee SJ. Electrically Conductive Silicone-Based Nanocomposites Incorporated with Carbon Nanotubes and Silver Nanowires for Stretchable Electrodes. ACS OMEGA 2021; 6:31876-31890. [PMID: 34870010 PMCID: PMC8638027 DOI: 10.1021/acsomega.1c04628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Stretchable electrode materials have attracted great attention as next-generation electronic materials because of their ability to maintain intrinsic properties with rare damage when undergoing repetitive deformations, such as folding, twisting, and stretching. In this study, an electrically conductive PDMS nanocomposite was manufactured by combining the hybrid nanofillers of carbon nanotubes (CNTs) and silver nanowires (AgNWs). The amphiphilic isopropyl alcohol molecules temporarily adhered simultaneously to the hydrophobic CNT and hydrophilic AgNW surfaces, thereby improving the dispersity. As the CNT/AgNW ratio (wt %/wt %) decreased under the constant nanofiller content, the tensile modulus decreased and the elongation at break increased owing to the poor interaction between the AgNWs and matrix. The shear storage moduli of all nanocomposites were higher than the loss moduli, indicating the elastic behavior with a cross-linked network. The electrical conductivities of the nanocomposite containing the hybrid nanofillers were superior to those of the nanocomposite containing either CNT or AgNW at the same filler content (4 wt %). The hybrid nanofillers were rearranged and deformed by 5000 cyclic strain tests, relaxing the PDMS matrix chain and weakening the interfacial bonding. However, the elastic behavior was maintained. The dynamic electrical conductivities gradually increased under the cyclic strain tests due to the rearrangement and tunneling effect of the nanofillers. The highest dynamic electrical conductivity (10 S/m) was obtained for the nanocomposite consisting of 2 wt % of CNTs and 2 wt % of AgNWs.
Collapse
Affiliation(s)
- Tae Gon Kim
- Department of Polymer Engineering, School of Chemical and Materials Engineering, The University of Suwon, Hwaseong, Gyeonggi 18323, Republic of Korea
| | - Hyeon Sik Eom
- Department of Polymer Engineering, School of Chemical and Materials Engineering, The University of Suwon, Hwaseong, Gyeonggi 18323, Republic of Korea
| | - Jong Hwi Kim
- Department of Polymer Engineering, School of Chemical and Materials Engineering, The University of Suwon, Hwaseong, Gyeonggi 18323, Republic of Korea
- NanoChemTech Inc., 112 Yangseong-ro, Yangseong-myeon, Anseong, Gyeonggi 17502, Republic of Korea
| | - Jik Kyo Jung
- NanoChemTech Inc., 112 Yangseong-ro, Yangseong-myeon, Anseong, Gyeonggi 17502, Republic of Korea
| | - Keon-Soo Jang
- Department of Polymer Engineering, School of Chemical and Materials Engineering, The University of Suwon, Hwaseong, Gyeonggi 18323, Republic of Korea
| | - Seong Jae Lee
- Department of Polymer Engineering, School of Chemical and Materials Engineering, The University of Suwon, Hwaseong, Gyeonggi 18323, Republic of Korea
| |
Collapse
|
34
|
Xiang S, You H, Miao X, Niu L, Yao C, Jiang Y, Zhou G. An Ultra-Sensitive Multi-Functional Optical Micro/Nanofiber Based on Stretchable Encapsulation. SENSORS (BASEL, SWITZERLAND) 2021; 21:7437. [PMID: 34833512 PMCID: PMC8618424 DOI: 10.3390/s21227437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 01/30/2023]
Abstract
Stretchable optical fiber sensors (SOFSs), which are promising and ultra-sensitive next-generation sensors, have achieved prominent success in applications including health monitoring, robotics, and biological-electronic interfaces. Here, we report an ultra-sensitive multi-functional optical micro/nanofiber embedded with a flexible polydimethylsiloxane (PDMS) membrane, which is compatible with wearable optical sensors. Based on the effect of a strong evanescent field, the as-fabricated SOFS is highly sensitive to strain, achieving high sensitivity with a peak gauge factor of 450. In addition, considering the large negative thermo-optic coefficient of PDMS, temperature measurements in the range of 30 to 60 °C were realized, resulting in a 0.02 dBm/°C response. In addition, wide-range detection of humidity was demonstrated by a peak sensitivity of 0.5 dB/% RH, with less than 10% variation at each humidity stage. The robust sensing performance, together with the flexibility, enables the real-time monitoring of pulse, body temperature, and respiration. This as-fabricated SOFS provides significant potential for the practical application of wearable healthcare sensors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guorui Zhou
- Department of Engineering Optics, Research Center of Laser Fusion CAEP, Mianyang 621900, China; (S.X.); (H.Y.); (X.M.); (L.N.); (C.Y.); (Y.J.)
| |
Collapse
|
35
|
Mai D, Mo J, Shan S, Lin Y, Zhang A. Self-Healing, Self-Adhesive Strain Sensors Made with Carbon Nanotubes/Polysiloxanes Based on Unsaturated Carboxyl-Amine Ionic Interactions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49266-49278. [PMID: 34634200 DOI: 10.1021/acsami.1c12438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Strain sensors with high sensitivity, long-term durability, and stretchability are required for flexible and wearable electronic devices. This paper reports a bilayer strain sensor consisting of carboxyl-functionalized carbon nanotubes (CNTs) and ionically crosslinked polysiloxane substrates based on unsaturated acid-amine interactions. Vacuum filtration was adopted to prepare the CNT films (2.74-4.70 μm in thickness) onto the polysiloxane substrates to prepare stretchable conductive strain sensors. The strain sensor exhibited self-healing ability, self-adhesiveness, high sensitivity, linearity, low hysteresis, and long-term durability with a gauge factor of 33.99 at 55% strain. The sensitivity and linearity could be adjusted by the thickness of the CNT layer. A crack-related mechanism was proposed in which increasing the thickness of the CNT layer led to simultaneously enhanced sensitivity and linearity. Finally, we investigated the detection of human activities (bending/unbending of fingers or knees) and subtle motions (coughing and swallowing). The fabricated strain sensor succeeded in meeting various needs with satisfactory sensing performance.
Collapse
Affiliation(s)
- Dongdong Mai
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, Guangdong, China
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Jiaheng Mo
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, Guangdong, China
| | - Shijie Shan
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, Guangdong, China
| | - Yaling Lin
- College of Material and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, Guangdong, China
| | - Anqiang Zhang
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, Guangdong, China
| |
Collapse
|
36
|
Peng S, Yu Y, Wu S, Wang CH. Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43831-43854. [PMID: 34515471 DOI: 10.1021/acsami.1c15014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stretchable electronics that can elongate elastically as well as flex are crucial to a wide range of emerging technologies, such as wearable medical devices, electronic skin, and soft robotics. Critical to stretchable electronics is their ability to withstand large mechanical strain without failure while retaining their electrical conduction properties, a feat significantly beyond traditional metals and silicon-based semiconductors. Herein, we present a review of the recent advances in stretchable conductive polymer nanocomposites with exceptional stretchability and electrical properties, which have the potential to transform a wide range of applications, including wearable sensors for biophysical signals, stretchable conductors and electrodes, and deformable energy-harvesting and -storage devices. Critical to achieving these stretching properties are the judicious selection and hybridization of nanomaterials, novel microstructure designs, and facile fabrication processes, which are the focus of this Review. To highlight the potentials of conductive nanocomposites, a summary of some recent important applications is presented, including COVID-19 remote monitoring, connected health, electronic skin for augmented intelligence, and soft robotics. Finally, perspectives on future challenges and new research opportunities are also presented and discussed.
Collapse
Affiliation(s)
- Shuhua Peng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yuyan Yu
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shuying Wu
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Chun-Hui Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
37
|
Cong Ding, Xu B, Zhang J, Sun Q, Chen Z, Liu S, Liu X, Chen J. Chitosan Wrapped Graphene/Polyurethane Composites with Improved Dielectric Properties for Capacitive Sensing. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21050035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Selamneni V, Akshaya T, Adepu V, Sahatiya P. Laser-assisted micropyramid patterned PDMS encapsulation of 1D tellurium nanowires on cellulose paper for highly sensitive strain sensor and its photodetection studies. NANOTECHNOLOGY 2021; 32:455201. [PMID: 34340228 DOI: 10.1088/1361-6528/ac19d8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
This work demonstrates the fabrication of tellurium-nanowires (Te-NWs)/paper based device encapsulated using laser assisted mircopyramid patterned polydimethylsiloxane (PDMS) films. Although there are multiple reports published on 1D Te, most of them are limited to establishing its properties and studying its behavior as a sensor and research on the utilization of Te-NWs for physical sensors remain unexplored. Further, reports on p-type photodetectors also remain scarce. The fabricated Te-NWs/paper with micropyramid structured PDMS films encapsulation was used as a strain sensor, and it exhibited considerable improvement (∼60%) in sensitivity compared to smooth PDMS films. The gauge factor of the developed strain sensor was found to be ∼15.3. In addition, fabricated Te-NWs/paper device with contacts was used as a photodetector and it showed photoresponsivity of ∼22.5 mA W-1and ∼14.5 mA W-1in visible and NIR regions, respectively. Furthermore, the device exhibited long-term mechanical stability under harsh deformations. Fabricated 1D Te-NWs/paper device was utilized as a strain sensor to monitor the angular movements in the human body and successfully monitored various human motions, including wrist bending, finger knuckle, elbow joint, and knee joint. The successful demonstration of Te-NWs based physical sensors and utilization in broadband photodetectors opens avenues of research for tellurium based flexible and wearable devices.
Collapse
Affiliation(s)
- Venkatarao Selamneni
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - T Akshaya
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Vivek Adepu
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Parikshit Sahatiya
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India
| |
Collapse
|
39
|
Kong M, You I, Lee G, Park G, Kim J, Park D, Jeong U. Transparent Omni-Directional Stretchable Circuit Lines Made by a Junction-Free Grid of Expandable Au Lines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100299. [PMID: 34155682 DOI: 10.1002/adma.202100299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/21/2021] [Indexed: 06/13/2023]
Abstract
Although various stretchable optoelectronic devices have been reported, omni-directionally stretchable transparent circuit lines have been a great challenge. Cracks are engineered and fabricated to be highly conductive patterned metal circuit lines in which gold (Au) grids are embedded. Au is deposited selectively in the cracks to form a grid without any junction between the grid lines. Since each grid line is expandable under stretching, the circuit lines are stretchable in all the directions. This study shows that a thin coating of aluminum on the oxide surface enables precise control of the cracks (crack density, crack depth) in the oxide layer. High optical transparency and high stretchability can be achieved simultaneously by controlling the grid density in the circuit line. Light-emitting diodes are integrated directly on the circuit lines and stable operation is demonstrated under 100% stretching.
Collapse
Affiliation(s)
- Minsik Kong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam, Pohang, 37673, Republic of Korea
| | - Insang You
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam, Pohang, 37673, Republic of Korea
| | - Gilwoon Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam, Pohang, 37673, Republic of Korea
| | - Gyeongbae Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam, Pohang, 37673, Republic of Korea
| | - Jaehyun Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam, Pohang, 37673, Republic of Korea
| | - Doowon Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam, Pohang, 37673, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam, Pohang, 37673, Republic of Korea
| |
Collapse
|
40
|
Zhou K, Xu W, Yu Y, Zhai W, Yuan Z, Dai K, Zheng G, Mi L, Pan C, Liu C, Shen C. Tunable and Nacre-Mimetic Multifunctional Electronic Skins for Highly Stretchable Contact-Noncontact Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100542. [PMID: 34174162 DOI: 10.1002/smll.202100542] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/10/2021] [Indexed: 05/15/2023]
Abstract
Electronic skins (e-skins) have attracted great attention for their applications in disease diagnostics, soft robots, and human-machine interaction. The integration of high sensitivity, low detection limit, large stretchability, and multiple stimulus response capacity into a single e-skin remains an enormous challenge. Herein, inspired by the structure of nacre, an ultra-stretchable and multifunctional e-skin with tunable strain detection range based on nacre-mimetic multi-layered silver nanowires /reduced graphene oxide /thermoplastic polyurethane mats is fabricated. The e-skin possesses extraordinary strain response performance with a tunable detection range (50 to 200% strain), an ultralow response limit (0.1% strain), a high sensitivity (gauge factor up to 1902.5), a fast response time (20 ms), and an excellent stability (stretching/releasing test of 11 000 cycles). These excellent response behaviors enable the e-skin to accurately monitor full-range human body motions. Additionally, the e-skin can detect relative humidity quickly and sensitively through a reversible physical adsorption/desorption of water vapor, and the assembled e-skin array exhibits excellent performance in noncontact sensing. The tunable and multifunctional e-skins show promising applications in motion monitoring and contact-noncontact human machine interaction.
Collapse
Affiliation(s)
- Kangkang Zhou
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450001, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Wangjiehao Xu
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Yunfei Yu
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Zhai
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Zuqing Yuan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Kun Dai
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Guoqiang Zheng
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Liwei Mi
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, Henan, 451191, China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Chuntai Liu
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Changyu Shen
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
41
|
Anichini C, Samorì P. Graphene-Based Hybrid Functional Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100514. [PMID: 34174141 DOI: 10.1002/smll.202100514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Indexed: 06/13/2023]
Abstract
Graphene is a 2D material combining numerous outstanding physical properties, including high flexibility and strength, extremely high thermal conductivity and electron mobility, transparency, etc., which make it a unique testbed to explore fundamental physical phenomena. Such physical properties can be further tuned by combining graphene with other nanomaterials or (macro)molecules to form hybrid functional materials, which by design can display not only the properties of the individual components but also exhibit new properties and enhanced characteristics arising from the synergic interaction of the components. The implementation of the hybrid approach to graphene also allows boosting the performances in a multitude of technological applications. This review reports the hybrids formed by graphene combined with other low-dimensional nanomaterials of diverse dimensionality (0D, 1D, and 2D) and (macro)molecules, with emphasis on the synthetic methods. The most important applications of these hybrids in the fields of sensing, water purification, energy storage, biomedical, (photo)catalysis, and opto(electronics) are also reviewed, with a special focus on the superior performances of these hybrids compared to the individual, nonhybridized components.
Collapse
Affiliation(s)
- Cosimo Anichini
- Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, Strasbourg, 67000, France
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
42
|
Nguyen T, Dinh T, Phan HP, Pham TA, Dau VT, Nguyen NT, Dao DV. Advances in ultrasensitive piezoresistive sensors: from conventional to flexible and stretchable applications. MATERIALS HORIZONS 2021; 8:2123-2150. [PMID: 34846421 DOI: 10.1039/d1mh00538c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The piezoresistive effect has been a dominant mechanical sensing principle that has been widely employed in a range of sensing applications. This transducing concept still receives great attention because of the huge demand for developing small, low-cost, and high-performance sensing devices. Many researchers have extensively explored new methods to enhance the piezoresistive effect and to make sensors more and more sensitive. Many interesting phenomena and mechanisms to enhance the sensitivity have been discovered. Numerous review papers on the piezoresistive effect have been published; however, there is no comprehensive review article that thoroughly analyses methods and approaches to enhance the piezoresistive effect. This paper comprehensively reviews and presents all the advanced enhancement methods ranging from the quantum physical effect and new materials to nanoscopic and macroscopic structures, and from conventional rigid to flexible, stretchable and wearable applications. In addition, the paper summarises results recently achieved on applying the above-mentioned innovative sensing enhancement techniques in making extremely sensitive piezoresistive transducers.
Collapse
Affiliation(s)
- Thanh Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Australia.
| | | | | | | | | | | | | |
Collapse
|
43
|
Chen L, Chen G, Bi L, Yang Z, Wu Z, Huang M, Bao J, Wang W, Ye C, Pan J, Peng Y, Ye C. A highly sensitive strain sensor with a sandwich structure composed of two silver nanoparticles layers and one silver nanowires layer for human motion detection. NANOTECHNOLOGY 2021; 32:375504. [PMID: 34111854 DOI: 10.1088/1361-6528/ac0a17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
The fabrication of strain sensors with high sensitivity, large sensing range and excellent stability is highly desirable because of their promising applications in human motion detection, human-machine interface and electric skin, etc. Herein, by introducing a highly conductive silver nanowire (AgNW) layer between two serried silver nanoparticle (AgNP) layers, forming a sandwich structure, a strain sensor with high sensitivity (a large gauge factor of 2.8 × 105), large sensing range (up to 80% strain) and excellent stability (over 1000 cycles) can be achieved. A combination of experimental and mechanism studies shows that the high performance of the obtained strain sensor is ascribed to the synergy of the highly conductive AgNW layer, astatic AgNP layers and the presence of large cracks in stretching. As a proof-of-concept application, the obtained strain sensor can be used for highly effective human motion detection ranging from large scale motions, i.e. kneel bending and wrist flexion, to subtle scale motions, i.e. pulse and swallowing.
Collapse
Affiliation(s)
- Liangjun Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Guinan Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Lili Bi
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhonglin Yang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhen Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Minchu Huang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jiashuan Bao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Wenwen Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Cui Ye
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jun Pan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Changhui Ye
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
44
|
Hu Y, Huang T, Zhang H, Lin H, Zhang Y, Ke L, Cao W, Hu K, Ding Y, Wang X, Rui K, Zhu J, Huang W. Ultrasensitive and Wearable Carbon Hybrid Fiber Devices as Robust Intelligent Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23905-23914. [PMID: 33980008 DOI: 10.1021/acsami.1c03615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The growing applications of wearable electronics, electronic textiles, and biomedical devices have sparked explosive demand for high-performance flexible sensors. Herein, we report a facile approach for fabricating a highly sensitive carbon hybrid fiber, which is composed of a graphene fiber skeleton and carbon nanotube (CNT) branches. In this hierarchical fiber, in situ grown CNTs prohibit the stacking of graphene sheets and bridge graphene layers simultaneously, making the hybrid fiber fluffy and conductive. Due to the well-designed architecture, the assembled fiber sensor exhibits satisfactory performance with a high gauge factor (up to 1127), a fast response time (less than 70 ms), and excellent reliability and stability (>2000 cycles). This work provides a feasible and scalable pathway for the fabrication of ultrasensitive fiber-based sensors, achieving the full realization of monitoring human physiological signals and architecting a real-time human-machine controlling system. Moreover, these practical sensors are used to monitor the sitting posture to prevent cervical spondylosis and lumbar disc herniation.
Collapse
Affiliation(s)
- Yunfeng Hu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Tieqi Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Hongjian Zhang
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Huijuan Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yao Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Longwei Ke
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Cao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Kang Hu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Ying Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xueyou Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Kun Rui
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jixin Zhu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
45
|
Huang CB, Yao Y, Montes-García V, Stoeckel MA, Von Holst M, Ciesielski A, Samorì P. Highly Sensitive Strain Sensors Based on Molecules-Gold Nanoparticles Networks for High-Resolution Human Pulse Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007593. [PMID: 33464719 DOI: 10.1002/smll.202007593] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/10/2020] [Indexed: 06/12/2023]
Abstract
High-performance flexible strain sensors are key components for the next generation of wearable health monitoring devices. Here, the authors have fabricated a novel strain sensor based on gold nanoparticles (AuNPs) interconnected by flexible and responsive molecular linkers. The combination of conductive AuNPs (25 nm in diameter) with tetra(ethylene glycol) dithiol (SH-TEG-SH) linkers yields a covalent 3D network which can be directly deposited onto prepatterned flexible supports exposing interdigitated Au electrodes. The electrically insulating nature of the linkers effectively defines the tunneling modulated charge transfer through the AuNPs network. When compressive/tensile strain is applied, the molecular linkers adopt a compressed/stretched conformation thus decreasing/increasing the interparticle distance, ultimately yielding an exponential increase/decrease of the tunneling current when voltage is applied. The strain sensor displays state-of-the-art performances including a highly sensitive response to both tensile and compressive strain, as quantified by a high gauge factor (GF≈126) combined with other superior sensing properties like high flexibility, short response time (16.1 ms), and good robustness (>2000 cycles). Finally, the applicability of the device for health monitoring is demonstrated: high-resolution artery pulse waves are acquired by placing the strain sensor onto the skin allowing the extraction of important physical parameters for human-health assessment.
Collapse
Affiliation(s)
- Chang-Bo Huang
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Alleé Gaspard Monge, Strasbourg, F-67000, France
| | - Yifan Yao
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Alleé Gaspard Monge, Strasbourg, F-67000, France
| | - Verónica Montes-García
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Alleé Gaspard Monge, Strasbourg, F-67000, France
| | - Marc-Antoine Stoeckel
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Alleé Gaspard Monge, Strasbourg, F-67000, France
| | - Miriam Von Holst
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Alleé Gaspard Monge, Strasbourg, F-67000, France
| | - Artur Ciesielski
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Alleé Gaspard Monge, Strasbourg, F-67000, France
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Alleé Gaspard Monge, Strasbourg, F-67000, France
| |
Collapse
|
46
|
The Effect of Encapsulation on Crack-Based Wrinkled Thin Film Soft Strain Sensors. MATERIALS 2021; 14:ma14020364. [PMID: 33450998 PMCID: PMC7828450 DOI: 10.3390/ma14020364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
Practical wearable applications of soft strain sensors require sensors capable of not only detecting subtle physiological signals, but also of withstanding large scale deformation from body movement. Encapsulation is one technique to protect sensors from both environmental and mechanical stressors. We introduced an encapsulation layer to crack-based wrinkled metallic thin film soft strain sensors as an avenue to improve sensor stretchability, linear response, and robustness. We demonstrate that encapsulated sensors have increased mechanical robustness and stability, displaying a significantly larger linear dynamic range (~50%) and increased stretchability (260% elongation). Furthermore, we discovered that these sensors have post-fracture signal recovery. They maintained conductivity to the 50% strain with stable signal and demonstrated increased sensitivity. We studied the crack formation behind this phenomenon and found encapsulation to lead to higher crack density as the source for greater stretchability. As crack formation plays an important role in subsequent electrical resistance, understanding the crack evolution in our sensors will help us better address the trade-off between high stretchability and high sensitivity.
Collapse
|
47
|
Ye S, Feng S, Huang L, Bian S. Recent Progress in Wearable Biosensors: From Healthcare Monitoring to Sports Analytics. BIOSENSORS 2020; 10:E205. [PMID: 33333888 PMCID: PMC7765261 DOI: 10.3390/bios10120205] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
Abstract
Recent advances in lab-on-a-chip technology establish solid foundations for wearable biosensors. These newly emerging wearable biosensors are capable of non-invasive, continuous monitoring by miniaturization of electronics and integration with microfluidics. The advent of flexible electronics, biochemical sensors, soft microfluidics, and pain-free microneedles have created new generations of wearable biosensors that explore brand-new avenues to interface with the human epidermis for monitoring physiological status. However, these devices are relatively underexplored for sports monitoring and analytics, which may be largely facilitated by the recent emergence of wearable biosensors characterized by real-time, non-invasive, and non-irritating sensing capacities. Here, we present a systematic review of wearable biosensing technologies with a focus on materials and fabrication strategies, sampling modalities, sensing modalities, as well as key analytes and wearable biosensing platforms for healthcare and sports monitoring with an emphasis on sweat and interstitial fluid biosensing. This review concludes with a summary of unresolved challenges and opportunities for future researchers interested in these technologies. With an in-depth understanding of the state-of-the-art wearable biosensing technologies, wearable biosensors for sports analytics would have a significant impact on the rapidly growing field-microfluidics for biosensing.
Collapse
Affiliation(s)
- Shun Ye
- Microfluidics Research & Innovation Laboratory, School of Sport Science, Beijing Sport University, Beijing 100084, China;
- Biomedical Engineering Department, College of Engineering, Pennsylvania State University, University Park, PA 16802, USA
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Liang Huang
- School of Instrument Science and Opto–Electronics Engineering, Hefei University of Technology, Hefei 230009, China;
| | - Shengtai Bian
- Microfluidics Research & Innovation Laboratory, School of Sport Science, Beijing Sport University, Beijing 100084, China;
| |
Collapse
|
48
|
Liu GS, Yang F, Xu J, Kong Y, Zheng H, Chen L, Chen Y, Wu MX, Yang BR, Luo Y, Chen Z. Ultrasonically Patterning Silver Nanowire-Acrylate Composite for Highly Sensitive and Transparent Strain Sensors Based on Parallel Cracks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47729-47738. [PMID: 32967418 DOI: 10.1021/acsami.0c11815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It has long been a challenge to develop strain sensors with large gauge factor (GF) and high transparency for a broad strain range, to which field silver nanowires (AgNWs) have recently been applied. A dense nanowire (NW) network benefits achieving large stretchability, while a sparse NW network favors realizing high transparency and sensitive response to small strains. Herein, a patterned AgNW-acrylate composite-based strain sensor is developed to circumvent the above trade-off issue via a novel ultrasonication-based patterning technique, where a water-soluble, UV-curable acrylate composite was blended with AgNWs as both a tackifier and a photoresist for finely patterning dense AgNWs to achieve high transparency, while maintaining good stretchability. Moreover, the UV-cured AgNW-acrylate patterns are brittle and capable of forming parallel cracks which effectively evade the Poisson effect and thus increase the GF by more than 200-fold compared to that of the bulk AgNW film-based strain sensor. As a result, the AgNW-based strain sensor possesses a GF of ∼10,486 at a large strain (8%), a high transparency of 90.3%, and a maximum stretchability of 20% strain. The precise monitoring of human radial pulse and throat movements proves the great potential of this sensor as a measurement module for wearable healthcare systems.
Collapse
Affiliation(s)
- Gui-Shi Liu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
| | - Fan Yang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
| | - Jiazhe Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yifei Kong
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Huajian Zheng
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
| | - Lei Chen
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
| | - Yaofei Chen
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
| | - Mei X Wu
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yunhan Luo
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
| | - Zhe Chen
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
49
|
Shi W, Han G, Chang Y, Song H, Hou W, Chen Q. Using Stretchable PPy@PVA Composites as a High-Sensitivity Strain Sensor To Monitor Minute Motion. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45373-45382. [PMID: 32926611 DOI: 10.1021/acsami.0c14503] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the rapid development of flexible and wearable electronic devices, research on high-sensitivity strain sensors has been attracting much attention. Here, glutaraldehyde is used as a cross-linking reagent to precross-link poly(vinyl alcohol); then FeCl3·6H2O is added into the precross-linked poly(vinyl alcohol) to obtain composite films of FeCl3@PVA after gelatinization and freeze drying. Elastic conductive films of polypyrrole@poly(vinyl alcohol) (PPy@PVA) are prepared by immersing FeCl3@PVA into a solution of pyrrole in acetonitrile and water to complete the polymerization in situ. The effects of the concentrations of glutaraldehyde and FeCl3·6H2O on the film's structure and properties have been studied in detail; the results show that the strain sensor prepared from the optimized film has excellent stretchability (strain up to 309.5%), mechanical property (tensile strength of 32.8 MPa), and relatively high sensitivity (gauge factor can reach 5.07 under 1.0% strain). It can be used to detect various tiny physiological signals, for example, detecting the number of pulse beats, bending of the knuckles at different frequencies, and recognizing the pronunciation of different words by vocal cord vibration. These good properties mean that this kind of PPy@PVA strain sensor has great application prospects in physiological monitoring.
Collapse
Affiliation(s)
| | | | | | | | | | - Qi Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, BIT, Beijing 100081, P. R. China
| |
Collapse
|
50
|
Qu M, Qin Y, Sun Y, Xu H, Schubert DW, Zheng K, Xu W, Nilsson F. Biocompatible, Flexible Strain Sensor Fabricated with Polydopamine-Coated Nanocomposites of Nitrile Rubber and Carbon Black. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42140-42152. [PMID: 32816448 DOI: 10.1021/acsami.0c11937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A flexible, biocompatible, nitrile butadiene rubber (NBR)-based strain sensor with high stretchability, good sensitivity, and excellent repeatability is presented for the first time. Carbon black (CB) particles were embedded into an NBR matrix via a dissolving-coating technique, and the obtained NBR/CB composite was coated with polydopamine (PDA) to preserve the CB layer. The mechanical properties of the NBR films were found to be significantly improved with the addition of CB and PDA, and the produced composite films were noncytotoxic and highly biocompatible. Strain-sensing tests showed that the uncoated CB/NBR films possess a high sensing range (strain of ∼550%) and good sensitivity (gauge factor of 52.2), whereas the PDA/NBR/CB films show a somewhat reduced sensing range (strain of ∼180%) but significantly improved sensitivity (gauge factor of 346). The hysteresis curves obtained from cyclic strain-sensing tests demonstrate the prominent robustness of the sensor material. Three novel equations were developed to accurately describe the uniaxial and cyclic strain-sensing behavior observed for the investigated strain sensors. Gloves and knee/elbow covers were produced from the films, revealing that the signals generated by different finger, elbow, and knee movements are easily distinguishable, thus confirming that the PDA/NBR/CB composite films can be used in a wide range of wearable strain sensor applications.
Collapse
Affiliation(s)
- Muchao Qu
- School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, 510450 Guangzhou, China
- Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen, Germany
| | - Yijing Qin
- Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen, Germany
| | - Yue Sun
- Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen, Germany
| | - Huagen Xu
- Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen, Germany
| | - Dirk W Schubert
- Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen, Germany
| | - Kai Zheng
- Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Wei Xu
- School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, 510450 Guangzhou, China
| | - Fritjof Nilsson
- School of Chemical Science and Engineering, Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|