1
|
Martínez SR, Caverzan M, Ibarra LE, Aiassa V, Bohl L, Porporatto C, Gómez ML, Chesta CA, Palacios RE. Light-activated conjugated polymer nanoparticles to defeat pathogens associated with bovine mastitis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112971. [PMID: 38955081 DOI: 10.1016/j.jphotobiol.2024.112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Bovine mastitis (BM) represents a significant challenge in the dairy industry. Limitations of conventional treatments have prompted the exploration of alternative approaches, such as photodynamic inactivation (PDI). In this study, we developed a PDI protocol to eliminate BM-associated pathogens using porphyrin-doped conjugated polymer nanoparticles (CPN). The PDI-CPN protocol was evaluated in four mastitis isolates of Staphylococcus and in a hyper-biofilm-forming reference strain. The results in planktonic cultures demonstrated that PDI-CPN exhibited a bactericidal profile upon relatively low light doses (∼9.6 J/cm2). Furthermore, following a seven-hour incubation period, no evidence of cellular reactivation was observed, indicating a highly efficient post-photodynamic inactivation effect. The successful elimination of bacterial suspensions encouraged us to test the PDI-CPN protocol on mature biofilms. Treatment using moderate light dose (∼64.8 J/cm2) reduced biofilm biomass and metabolic activity by up to 74% and 88%, respectively. The impact of PDI-CPN therapy on biofilms was investigated using scanning electron microscopy (SEM), which revealed nearly complete removal of the extracellular matrix and cocci. Moreover, ex vivo studies conducted on bovine udder skin demonstrated the efficacy of the therapy in eliminating bacteria from these scaffolds and its potential as a prophylactic method. Notably, the histological analysis of skin revealed no signs of cellular degeneration, suggesting that the protocol is safe and effective for BM treatment. Overall, this study demonstrates the potential of PDI-CPN in treating and preventing BM pathogens. It also provides insights into the effects of PDI-CPN on bacterial growth, metabolism, and survival over extended periods, aiding the development of effective control strategies and the optimization of future treatments.
Collapse
Affiliation(s)
- Sol R Martínez
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Matías Caverzan
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Luis E Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina
| | - Virginia Aiassa
- UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Luciana Bohl
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina. Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - Carina Porporatto
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina. Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - María L Gómez
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Carlos A Chesta
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Rodrigo E Palacios
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina.
| |
Collapse
|
2
|
Xue Y, Liu H, Zhang Y, Yang W, Li H, Gong Y, Zhang Y, Li B, Liu C, Li Y. Label-Free and Ultra-Sensitive Detection of Dexamethasone Using a FRET Aptasensor Utilizing Cationic Conjugated Polymers. BIOSENSORS 2024; 14:364. [PMID: 39194593 DOI: 10.3390/bios14080364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Dexamethasone (Dex) is a widely used glucocorticoid in medical practice, with applications ranging from allergies and inflammation to cerebral edema and shock. Despite its therapeutic benefits, Dex is classified as a prohibited substance for athletes due to its potential performance-enhancing effects. Consequently, there is a critical need for a convenient and rapid detection platform to enable prompt and accurate testing of this drug. In this study, we propose a label-free Förster Resonance Energy Transfer (FRET) aptasensor platform for Dex detection utilizing conjugated polymers (CPs), cationic conjugated polymers (CCPs), and gene finder probes (GFs). The system operates by exploiting the electrostatic interactions between positively charged CCPs and negatively charged DNA, facilitating sensitive and specific Dex detection. The label-free FRET aptasensor platform demonstrated robust performance in detecting Dex, exhibiting high selectivity and sensitivity. The system effectively distinguished Dex from interfering molecules and achieved stable detection across a range of concentrations in a commonly used sports drink matrix. Overall, the label-free FRET Dex detection system offers a simple, cost-effective, and highly sensitive approach for detecting Dex in diverse sample matrices. Its simplicity and effectiveness make it a promising tool for anti-doping efforts and other applications requiring rapid and accurate Dex detection.
Collapse
Affiliation(s)
- Yizhang Xue
- Sport Coaching College, Beijing Sport University, Beijing 100084, China
| | - Hangbing Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ye Zhang
- Sport Coaching College, Beijing Sport University, Beijing 100084, China
| | - Weijun Yang
- Sport Coaching College, Beijing Sport University, Beijing 100084, China
| | - Huixin Li
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Yuxuan Gong
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Yubai Zhang
- Sport Coaching College, Beijing Sport University, Beijing 100084, China
| | - Bo Li
- Division of Sport Science and Physical Education, Tsinghua University, Beijing 100084, China
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Yi Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
3
|
Zheng S, Li J, Yan W, Zhao W, Ye C, Yu X. Biofilm formation and antioxidation were responsible for the increased resistance of N. eutropha to chloramination for drinking water treatment. WATER RESEARCH 2024; 254:121432. [PMID: 38461606 DOI: 10.1016/j.watres.2024.121432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Chloramination is an effective strategy for eliminating pathogens from drinking water and repressing their regrowth in water distribution systems. However, the inevitable release of NH4+ potentially promotes nitrification and associated ammonia-oxidizing bacteria (AOB) contamination. In this study, AOB (Nitrosomona eutropha) were isolated from environmental water and treated with two disinfection stages (chloramine disinfection and chloramine residues) to investigate the occurrence mechanisms of AOB in chloramination. The results showed that N. eutropha had considerable resistance to monochloramine compared to Escherichia coli, whose inactivation rate constant was 19.4-fold lower. The higher resistance was attributed to high levels of extracellular polymer substances (EPS) in AOB, which contribute to AOB surviving disinfection and entering the distribution system. In AOB response to the chloramine residues stage, the respiratory activity of N. eutropha remained at a high level after three days of continuous exposure to high chloramine residue concentrations (0.5-1.5 mg/L). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) suggested that the mechanism of N. eutropha tolerance involved a significantly high expression of the intracellular oxidative stress-regulating (sodB, txrA) and protein-related (NE1545, NE1546) genes. Additionally, this process enhanced EPS secretion and promoted biofilm formation. Adhesion predictions based on the XDLVO theory corroborated the trend of biofilm formation. Overall, the naturally higher resistance contributed to the survival of AOB in primary disinfection; the enhanced antioxidant response of surviving N. eutropha accompanied by biofilm formation was responsible for their increased resistance to the residual chloramines.
Collapse
Affiliation(s)
- Shikan Zheng
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China
| | - Jianguo Li
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China
| | - Wanli Yan
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China
| | - Wenya Zhao
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China.
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
4
|
Padaga SG, Bhatt H, Ch S, Paul M, Itoo AM, Ghosh B, Roy S, Biswas S. Glycol Chitosan-Poly(lactic acid) Conjugate Nanoparticles Encapsulating Ciprofloxacin: A Mucoadhesive, Antiquorum-Sensing, and Biofilm-Disrupting Treatment Modality for Bacterial Keratitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18360-18385. [PMID: 38573741 DOI: 10.1021/acsami.3c18061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Bacterial keratitis (BK) causes visual morbidity/blindness if not treated effectively. Here, ciprofloxacin (CIP)-loaded nanoparticles (NPs) using glycol chitosan (GC) and poly(lactic acid) (PLA) conjugate at three different ratios (CIP@GC(PLA) NPs (1:1,5,15)) were fabricated. CIP@GC(PLA) NPs (1:1) were more effective than other tested ratios, indicating the importance of optimal hydrophobic/hydrophilic balance for corneal penetration and preventing bacterial invasion. The CIP@GC(PLA) (NPs) (1:1) realized the highest association with human corneal epithelial cells, which were nonirritant to the hen's egg-chorioallantoic membrane test (HET-CAM test) and demonstrated significant antibacterial response in the in vitro minimum inhibitory, bactericidal, live-dead cells, zone of inhibition, and biofilm inhibition assays against the keratitis-inducing pathogen Pseudomonas aeruginosa. The antiquorum sensing activity of GC has been explored for the first time. The NPs disrupted the bacterial quorum sensing by inhibiting the production of virulence factors, including acyl homoserine lactones, pyocyanin, and motility, and caused significant downregulation of quorum sensing associated genes. In the in vivo studies, CIP@GC(PLA) NPs (1:1) displayed ocular retention in vivo (∼6 h) and decreased the opacity and the bacterial load effectively. Overall, the CIP@GC(PLA) NP (1:1) is a biofilm-disrupting antiquorum sensing treatment regimen with clinical translation potential in BK.
Collapse
Affiliation(s)
- Sri Ganga Padaga
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Himanshu Bhatt
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sanjay Ch
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Asif Mohd Itoo
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, Kallam Anji Reddy Campus, L. V. Prasad Eye Institute, Hyderabad, Telangana 500034, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| |
Collapse
|
5
|
Zhao Y, Yuan M, Yang H, Li J, Ying Y, Li J, Wang W, Wang S. Versatile Multi-Wavelength Light-Responsive Metal-Organic Frameworks Micromotor through Porphyrin Metalation for Water Sterilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305189. [PMID: 37667455 DOI: 10.1002/smll.202305189] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Indexed: 09/06/2023]
Abstract
Traditional metal-organic frameworks (MOFs) based micro/nanomotors (MOFtors) can achieve three-dimensional (3D) motion mainly depending on noble metal (e.g., Pt), toxic fuels (e.g., hydrogen peroxide), and surfactants, or under external magnetic fields. In this study, light-driven MOFtors are constructed based on PCN-224(H) and regulated their photothermal and photochemical properties responding to the light of different wavelengths through porphyrin metalation. The resulting PCN-224(Fe) MOFtors presented a strong 3D motion at a maximum speed of 1234.9 ± 367.5 µm s-1 under visible light due to the various gradient fields by the photothermal and photochemical effects. Such MOFtors exhibit excellent water sterilization performance. Under optimal conditions, the PCN-224(Cu) MOFtors presented the best antibacterial performance of 99.4%, which improved by 23.4% compared to its static counterpart and 43.7% compared to static PCN-224(H). The underlying mechanism demonstrates that metal doping could increase the production of reactive oxygen species (ROS) and result in a more positive surface charge under light, which are short-distance effective sterilizing ingredients. Furthermore, the motion of MOFtors appears very important to extend the short-distance effective sterilization and thus synergistically improve the antibacterial performance. This work provides a new idea for preparing and developing light-driven MOFtors with multi-responsive properties.
Collapse
Affiliation(s)
- Yu Zhao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Mengge Yuan
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Haowei Yang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Jie Li
- Intelligent Network Research Institute, Zhejiang Lab, Hangzhou, 311100, P. R. China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Weihao Wang
- Intelligent Network Research Institute, Zhejiang Lab, Hangzhou, 311100, P. R. China
| | - Sheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
6
|
Wang L, Zhong W, Liu B, Pranantyo D, Chan-Park MB. Cationic Carbon Monoxide-Releasing Polymers as Antimicrobial and Antibiofilm Agents by the Synergetic Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41772-41782. [PMID: 37609827 DOI: 10.1021/acsami.3c02898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Recent studies indicate that carbon monoxide-releasing molecules (CORMs), a class of organometallic compounds, exert antibacterial activities through the delivery of carbon monoxide (CO) molecules. We developed a new-class CO-delivery system by conjugating classical low-molecular-weight CORMs (i.e., [Ru(CO)3Cl2]2 and Mn(CO)5Br) onto a positively charged carrier, polyimidazolium (PIM), giving cationic CO-releasing polymers Ru@PIM and Mn@PIM, respectively. Compared with low-molecular-weight CORMs, our polymeric CO vehicles showed improved water solubility, reduced cytotoxicity, significantly extended CO-releasing duration, and enhanced antimicrobial ability against both planktonic and biofilm microorganisms. Ru@PIM and Mn@PIM inhibited the growth of a broad spectrum of free Gram-positive and Gram-negative bacteria as well as fungus with the lowest minimum inhibitory concentration (MIC) at 8 μg/mL. They were effective in preventing pathogenic Pseudomonas aeruginosa biofilm formation with biofilm reduction by more than 92% at 16 μg/mL and 99% at 32 μg/mL. They also demonstrated potent dispersal efficacy on recalcitrant well-established biofilms through a synergetic activity with a biofilm log10 reduction of 2.5-3.2 ≥ 64 μg/mL and nearly 2.0 at the concentration of as low as 16 μg/mL. This CO-releasing system may retain long-time antimicrobial ability after the complete release of CO molecules owing to the cationic structure. The novel CO-releasing polymers have great potential as antimicrobial and antibiofilm agents in biomedical applications.
Collapse
Affiliation(s)
- Liping Wang
- Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Wenbin Zhong
- Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Bo Liu
- Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Dicky Pranantyo
- Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Mary B Chan-Park
- Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
7
|
Li J, Pan G, Zyryanov GV, Peng Y, Zhang G, Ma L, Li S, Chen P, Wang Z. Positively Charged Semiconductor Conjugated Polymer Nanomaterials with Photothermal Activity for Antibacterial and Antibiofilm Activities In Vitro and In Vivo. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40864-40876. [PMID: 37603418 DOI: 10.1021/acsami.3c00556] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Biofilm infections are associated with most human bacterial infections and are prone to bacterial multidrug resistance. There is an urgent need to develop an alternative approach to antibacterial and antibiofilm agents. Herein, two positively charged semiconductor conjugated polymer nanoparticles (SPPD and SPND) were prepared for additive antibacterial and antibiofilm activities with the aid of positive charge and photothermal therapy (PTT). The positive charge of SPPD and SPND was helpful in adhering to the surface of bacteria. With an 808 nm laser irradiation, the photothermal activity of SPPD and SPND could be effectively transferred to bacteria and biofilms. Under the additive effect of positive charge and PTT, the inhibition rate of Staphylococcus aureus (S. aureus) treated with SPPD and SPND (40 μg/mL) could reach more than 99.2%, and the antibacterial activities of SPPD and SPND against S. aureus biofilms were 93.5 and 95.8%. SPPD presented better biocompatibility than SPND and exhibited good antibiofilm properties in biofilm-infected mice. Overall, this additive treatment strategy of positive charge and PTT provided an optional approach to combat biofilms.
Collapse
Affiliation(s)
- Jiguang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Chemical Experimental Teaching Demonstration Center, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Guoyong Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Grigory V Zyryanov
- Russia Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Ural Federal University, Yekaterinburg 620219, Russia
| | - Yanghan Peng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lijun Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuo Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peiyu Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Zhang P, Zhou X, Wang X, Li Z. Enhanced bidirectional extracellular electron transfer based on biointerface interaction of conjugated polymers-bacteria biohybrid system. Colloids Surf B Biointerfaces 2023; 228:113383. [PMID: 37295125 DOI: 10.1016/j.colsurfb.2023.113383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
The low bacteria loading capacity and low extracellular electron transfer (EET) efficiency are two major bottlenecks restricting the performance of the bioelectrochemical systems from practical applications. Herein, we demonstrated that conjugated polymers (CPs) could enhance the bidirectional EET efficiency through the intimate biointerface interactions of CPs-bacteria biohybrid system. Upon the formation of CPs/bacteria biohybrid, thick and intact CPs-biofilm formed which ensured close biointerface interactions between bacteria-to-bacteria and bacteria-to-electrode. CPs could promote the transmembrane electron transfer through intercalating into the cell membrane of bacteria. Utilizing the CPs-biofilm biohybrid electrode as anode in microbial fuel cell (MFC), the power generation and lifetime of MFC had greatly improved based on accelerated outward EET. Moreover, using the CPs-biofilm biohybrid electrode as cathode in electrochemical cell, the current density was increased due to the enhanced inward EET. Therefore, the intimate biointerface interaction between CPs and bacteria greatly enhanced the bidirectional EET, indicating that CPs exhibit promising applications in both MFC and microbial electrosynthesis.
Collapse
Affiliation(s)
- Pengbo Zhang
- School of Chemistry and Biological Engineering, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Xin Zhou
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Zhengping Li
- School of Chemistry and Biological Engineering, University of Science & Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
9
|
Zhang Q, Zhang Z, Zou X, Liu Z, Li Q, Zhou J, Gao S, Xu H, Guo J, Yan F. Nitric oxide-releasing poly(ionic liquid)-based microneedle for subcutaneous fungal infection treatment. Biomater Sci 2023; 11:3114-3127. [PMID: 36917099 DOI: 10.1039/d2bm02096c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Poor permeation of therapeutic agents and similar eukaryotic cell metabolic and physiological properties of fungi and human cells are two major challenges that lead to the failure of current therapy for fungi-induced skin and soft tissue infections. Herein, a nitric oxide (NO)-releasing poly(ionic liquid)-based microneedle (PILMN-NO) with the capacity of deep persistent NO toward subcutaneous fungal bed is presented as a synergistic antifungal treatment strategy to treat subcutaneous fungal infection. Upon the insertion of PILMN-NO into skin, the contact fungicidal activities induced by electrostatic and hydrophobic effects of poly(ionic liquid) and the released NO sterilization resulting from the peroxidation and nitrification effect of NO achieved enhanced antifungal efficacy against fungi (Candida albicans) both in vitro and in vivo. Simultaneously, PILMN-NO showed biofilm ablation ability and efficiently eliminated mature biofilms. In vivo fungal-induced subcutaneous abscess studies revealed that PILMN-NO could effectively sterilize fungi while suppressing the inflammatory reaction, facilitating collagen deposition and angiogenesis, and promoting wound healing. This work provides a new strategy to overcome the difficulties in deep skin fungal infection treatment and has potential for further exploitation of NO-releasing microbicidal therapy.
Collapse
Affiliation(s)
- Qiuyang Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Zijun Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Xiuyang Zou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Qingning Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Jiamei Zhou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Shuna Gao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Hui Xu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
10
|
Liu X, Fan D, Feng X, Zheng Y, Wegner SV, Liu M, Chen F, Zeng W. Breaching Bacterial Biofilm Barriers: Efficient Combinatorial Theranostics for Multidrug-Resistant Bacterial Biofilms with a Novel Penetration-Enhanced AIEgen Probe. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41671-41683. [PMID: 36083296 DOI: 10.1021/acsami.2c07378] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The formation of microbial biofilms is acknowledged as a major virulence factor in a range of persistent local infections. Failures to remove biofilms with antibiotics foster the emergence of antibiotic-resistant bacteria and result in chronic infections. As a result, the construction of effective biofilm-inhibiting and biofilm-eradicating chemicals is urgently required. Herein, we designed a water-soluble probe APDIS for membrane-active fluorescence and broad-spectrum antimicrobial actions, particularly against methicillin-resistant Staphylococcus aureus (MRSA), which shows multidrug resistance. In vitro and in vivo experiments demonstrate its high antibacterial effects comparable to vancomycin. Furthermore, it inhibits biofilm formation by effectively killing planktonic bacteria at low inhibitory concentrations, without toxicity to mammalian cells. More importantly, this probe can efficiently penetrate through biofilm barriers and exterminate bacteria that are enclosed within biofilms and startle existing biofilms. In the mouse model of implant-related biofilm infections, this probe exhibits strong antibiofilm activity against MRSA biofilms, thus providing a novel theranostic strategy to disrupt biofilms in vivo effectively. Our results indicate that this probe has the potential to be used for the development of a combinatorial theranostic platform with synergistic enhanced effects for the treatment of multidrug-resistant bacterial infections and antibiofilm medications.
Collapse
Affiliation(s)
- Xiaohui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410078, P. R. China
| | - Duoyang Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410078, P. R. China
| | - Xueping Feng
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha 410078, P. R. China
| | - Yanjun Zheng
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Meihui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410078, P. R. China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410078, P. R. China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410078, P. R. China
| |
Collapse
|
11
|
Lu Y, Wu W. Conjugated‐Polymer‐Based Photodynamic Therapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yaru Lu
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 P. R. China
| | - Wenbo Wu
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
12
|
Ponzio RA, Ibarra LE, Achilli EE, Odella E, Chesta CA, Martínez SR, Palacios RE. Sweet light o' mine: Photothermal and photodynamic inactivation of tenacious pathogens using conjugated polymers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112510. [PMID: 36049287 DOI: 10.1016/j.jphotobiol.2022.112510] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Each year a rising number of infections can not be successfully treated owing to the increasing pandemic of antibiotic resistant pathogens. The global shortage of innovative antibiotics fuels the emergence and spread of drug resistant microbes. Basic research, development, and applications of alternative therapies are urgently needed. Since the 90´s, light-mediated therapies have promised to be the next frontier combating multidrug-resistance microbes. These platforms have demonstrated to be a reliable, rapid, and efficient alternative to eliminate tenacious pathogens while avoiding the emergence of resistance mechanisms. Among the materials showing antimicrobial activity triggered by light, conjugated polymers (CPs) have risen as the most promising option to tackle this complex situation. These materials present outstanding characteristics such as high absorption coefficients, great photostability, easy processability, low cytotoxicity, among others, turning them into a powerful class of photosensitizer (PS)/photothermal agent (PTA) materials. Herein, we summarize and discuss the advances in the field of CPs with applications in photodynamic inactivation and photothermal therapy towards bacteria elimination. Additionally, a section of current challenges and needs in terms of well-defined benchmark experiments and conditions to evaluate the efficiency of phototherapies is presented.
Collapse
Affiliation(s)
- Rodrigo A Ponzio
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Física, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Luis E Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), UNRC y CONICET, Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Estefanía E Achilli
- Laboratorio de Materiales Biotecnológicos (LaMaBio), Universidad Nacional de Quilmes-IMBICE (CONICET), Bernal B1876BXD, Argentina
| | - Emmanuel Odella
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Carlos A Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Sol R Martínez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Rodrigo E Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| |
Collapse
|
13
|
Weng Y, Chen H, Chen X, Yang H, Chen CH, Tan H. Adenosine triphosphate-activated prodrug system for on-demand bacterial inactivation and wound disinfection. Nat Commun 2022; 13:4712. [PMID: 35953495 PMCID: PMC9372092 DOI: 10.1038/s41467-022-32453-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The prodrug approach has emerged as a promising solution to combat bacterial resistance and enhance treatment efficacy against bacterial infections. Here, we report an adenosine triphosphate (ATP)-activated prodrug system for on-demand treatment of bacterial infection. The prodrug system benefits from the synergistic action of zeolitic imidazolate framework-8 and polyacrylamide hydrogel microsphere, which simultaneously transports indole-3-acetic acid and horseradish peroxidase in a single carrier while preventing the premature activation of indole-3-acetic acid. The ATP-responsive characteristic of zeolitic imidazolate framework-8 allows the prodrug system to be activated by the ATP secreted by bacteria to generate reactive oxygen species (ROS), displaying exceptional broad-spectrum antimicrobial ability. Upon disruption of the bacterial membrane by ROS, the leaked intracellular ATP from dead bacteria can accelerate the activation of the prodrug system to further enhance antibacterial efficiency. In vivo experiments in a mouse model demonstrates the applicability of the prodrug system for wound disinfection with minimal side effects. Prodrugs are increasingly promising in tackling bacterial resistance and efficacy of treatment. Here, the authors encapsulated horseradish peroxidase and zeolitic imidazolate framework-8 loaded with indole-3-acetic acid in polyacrylamide hydrogel microspheres for ATP-activated wound disinfection.
Collapse
Affiliation(s)
- Yuhao Weng
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Huihong Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Xiaoqian Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Huilin Yang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Hongliang Tan
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China.
| |
Collapse
|
14
|
Rasool N, Srivastava R, Singh Y. Cationized silica ceria nanocomposites to target biofilms in chronic wounds. BIOMATERIALS ADVANCES 2022; 138:212939. [PMID: 35913235 DOI: 10.1016/j.bioadv.2022.212939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/25/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Altered wound healing is a major challenge faced by both developed and developing nations. Biofilm formation has been identified as one of the causative factors for the progression of chronic wounds. The spread of biofilm is controlled by inhibiting the biofilm formation or disrupting the mature biofilm. Functional nanomaterials/enzymes with antimicrobial effects, such as metal oxides, rare earth metals, and carbon nanoparticles have been investigated to treat biofilm and overcome the drawbacks associated with the antibiotic therapy. Cerium oxide nanoparticles (CNPs) have drawn significant attention as a promising antimicrobial agent owing to their antibacterial, enzyme-mimetic, and crystalline properties but they suffer from poor colloidal stability and dispersity in an aqueous environment and size-dependent function. In this work, we have developed a functionalized silica ceria nanocomposite (FSC), as an antibiotic-free system, to treat biofilms. The FSC possesses a high surface area of mesoporous silica nanoparticles (MSNs) combined with the intrinsic antibacterial activity of cerium oxide for biofilm inhibition. The nanocomposite was fabricated using silica and ceria precursors, and it exhibited a high surface area of 436 m2/g and an average particle size of around 450 nm. The physical and chemical properties of nanocomposite were characterized using FTIR, XRD, UV-Vis, BET, EDX, and XPS analysis. It exhibited a potent antioxidant activity (86%), positive haloperoxidase mimetic property, and broad-spectrum antibacterial activities. It showed 99.9% inhibition against S. aureus (Gram-positive) and 81% inhibition against E. coli (Gram-negative) within 12 and 24 h along with the significant inhibition of biofilm formation (80%) as well as the disruptive effect against the established biofilm (77%) of S. aureus. Cell viability assays indicated the proliferative nature of composite in normal basal conditions and increased cell viability (97%) in the presence of oxidative stress. Despite being a cationic nanomaterial, it showed a good hemocompatibility against human blood and caused complete wound closure in mouse fibroblast cell line within 24 h. The functionalized silica ceria nanocomposite developed has a strong potential in chronic wound healing applications.
Collapse
Affiliation(s)
- Nahida Rasool
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Rajendra Srivastava
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Yashveer Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India; Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India.
| |
Collapse
|
15
|
Jin Y, Zhao B, Guo W, Li Y, Min J, Miao W. Penetration and photodynamic ablation of drug-resistant biofilm by cationic Iron oxide nanoparticles. J Control Release 2022; 348:911-923. [PMID: 35760234 DOI: 10.1016/j.jconrel.2022.06.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
As we step into the post-antibiotic era, the accelerated emergence of antibiotic-resistant pathogenic bacteria poses an increasingly serious threat to public health. The formation of antibiotic-resistant biofilms further challenges currently available drugs and treatment options, calling for novel strategies for effective ablation of such biofilm with minimal concern on safety and development of resistance. Herein, we report a novel type of photodynamic nanoagent, composed of chlorin e6 (Ce6)-loaded water-soluble chitosan-coated iron oxide nanoparticles (named Ce6@WCS-IONP), for drug-resistant bacteria killing and biofilm eradication. The fabricated Ce6@WCS-IONP has negligible toxicity to mammalian cells and exhibited equivalent singlet oxygen generation capacity to free Ce6; however, its association with methicillin-resistant Staphylococcus aureus (MRSA) was greatly enhanced, as evidenced by flow cytometry analysis and transmission electron microscope. In vitro studies verified that Ce6@WCS-IONP has superior photodynamic bactericidal effect against planktonic MRSA. Furthermore, with the aid of the cationic nature and small size, Ce6@WCS-IONP could effectively penetrate into MRSA biofilm, revealed by 3D fluorescence imaging. Both biomass analysis and viable bacteria counting demonstrated that Ce6@WCS-IONP showed potent biofilm ablation efficacy, averagely 7.1 log unit lower than that in free Ce6 group upon identical light irradiation. In addition, local treatment of MRSA-infected mice with Ce6@WCS-IONP plus light irradiation resulted in significant antibacterial and wound healing effect, accompanied by good biocompatibility in vivo. Collectively, photosensitizer-loaded cationic IONP with effective biofilm penetration and photodynamic eradication potential might be a promising nano platform in fighting against antibiotic-resistant microbial pathogen and biofilm.
Collapse
Affiliation(s)
- Yangye Jin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Binbing Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Wenjing Guo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yuanyuan Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Juncheng Min
- College of Overseas Education, Nanjing Tech University, Nanjing 211816, PR China
| | - Wenjun Miao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
16
|
Guar gum propionate-kojic acid films for Escherichia coli biofilm disruption and simultaneous inhibition of planktonic growth. Int J Biol Macromol 2022; 211:57-73. [DOI: 10.1016/j.ijbiomac.2022.05.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
|
17
|
Luo H, Jiang YZ, Tan L. Positively-charged microcrystalline cellulose microparticles: Rapid killing effect on bacteria, trapping behavior and excellent elimination efficiency of biofilm matrix from water environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127299. [PMID: 34600386 DOI: 10.1016/j.jhazmat.2021.127299] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Pathogen and biofilm contamination in aqueous systems leave millions of people at risk of waterborne diseases. Herein, to address this issue, a green and highly efficient strategy is developed to concurrently trap and kill bacteria, eliminate the debris and the existing biofilm matrix in water environment via magnetic microparticles. The particles (TPFPs) were prepared from the in-situ deposition of Fe3O4 nanoparticles onto the surface of antibacterial functionalized microcrystalline cellulose (MCC). Noticeably, TPFPs can completely inactivate both S. aureus and E. coli once contacting for 30 min by disrupting the bacterial membrane. Meanwhile, the MCC-based magnetic particles retained 100% biocidal efficiency against E. coli (5 * 104E. coli/mg particles) during ten recycling procedures without any treatment. More importantly, according to the results of trapping behavior and antibiofilm assays, not only bacteria could be captured by the particles (trapping rate was over 85%), but also the residual debris from dead bacteria and fragmented biofilm was together removed based on the special structure and functions of the antibacterial particles (~ 80%), including extremely rough surfaces, surficial positive charge and magneto-responsive property. This study presents an efficient approach for microorganism management in water system which can be expectantly applied to improve the water safety.
Collapse
Affiliation(s)
- Hao Luo
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yuan-Zhang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lin Tan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
18
|
Quinteros MA, Galera ILD, Tolosa J, García-Martínez JC, Páez PL, Paraje MG. Novel antifungal activity of oligostyrylbenzenes compounds on Candida tropicalis biofilms. Med Mycol 2021; 59:244-252. [PMID: 32539092 DOI: 10.1093/mmy/myaa046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
As sessile cells of fungal biofilms are at least 500-fold more resistant to antifungal drugs than their planktonic counterparts, there is a requirement for new antifungal agents. Olygostyrylbenzenes (OSBs) are the first generation of poly(phenylene)vinylene dendrimers with a gram-positive antibacterial activity. Thus, this study aimed to investigate the antifungal activity of four OSBs (1, 2, 3, and 4) on planktonic cells and biofilms of Candida tropicalis. The minimum inhibitory concentration (MIC) for the planktonic population and the sessile minimum inhibitory concentrations (SMIC) were determined. Biofilm eradication was studied by crystal violet stain and light microscopy (LM), and confocal laser scanning microscopy (CLSM) was also utilized in conjunction with the image analysis software COMSTAT. Although all the OSBs studied had antifungal activity, the cationic OSBs were more effective than the anionic ones. A significant reduction of biofilms was observed at MIC and supraMIC50 (50 times higher than MIC) for compound 2, and at supraMIC50 with compound 3. Alterations in surface topography and the three-dimensional architecture of the biofilms were evident with LM and CLSM. The LM analysis revealed that the C. tropicalis strain produced a striking biofilm with oval blastospores, pseudohyphae, and true hyphae. CLSM images showed that a decrease occurred in the thickness of the mature biofilms treated with the OSBs at the most effective concentration for each one. The results obtained by microscopy were supported by those of the COMSTAT program. Our results revealed an antibiofilm activity, with compound 2 being a potential candidate for the treatment of C. tropicalis infections. LAY SUMMARY This study aimed to investigate the antifungal activity of four OSBs (1, 2, 3, and 4) on planktonic cells and biofilms of Candida tropicalis. Our results revealed an antibiofilm activity, with compound 2 being a potential candidate for the treatment of C. tropicalis infections.
Collapse
Affiliation(s)
- Melisa A Quinteros
- IMBIV - CONICET, Córdoba, Argentina.,Departamento de Cs. Farmacéuticas, Fac. de Cs. Químicas, Univ. Nacional de Córdoba, Argentina.,Cátedra de Microbiología, Fac. de Cs. Exactas Físicas y Naturales, Univ. Nacional de Córdoba, Argentina
| | - Ivana L D Galera
- IMBIV - CONICET, Córdoba, Argentina.,Cátedra de Microbiología, Fac. de Cs. Exactas Físicas y Naturales, Univ. Nacional de Córdoba, Argentina
| | - Juan Tolosa
- Fac. de Farmacia de Albacete, Centro Regional de Inv. Biomédicas, Univ. de Castilla-La Mancha, España
| | - Joaquín C García-Martínez
- Fac. de Farmacia de Albacete, Centro Regional de Inv. Biomédicas, Univ. de Castilla-La Mancha, España
| | - Paulina L Páez
- Departamento de Cs. Farmacéuticas, Fac. de Cs. Químicas, Univ. Nacional de Córdoba, Argentina.,Cátedra de Microbiología, Fac. de Cs. Exactas Físicas y Naturales, Univ. Nacional de Córdoba, Argentina.,UNITEFA - CONICET, Córdoba, Argentina
| | - María G Paraje
- IMBIV - CONICET, Córdoba, Argentina.,Cátedra de Microbiología, Fac. de Cs. Exactas Físicas y Naturales, Univ. Nacional de Córdoba, Argentina
| |
Collapse
|
19
|
He W, Wang Z, Bai H, Zhao Z, Kwok RTK, Lam JWY, Tang BZ. Highly efficient photothermal nanoparticles for the rapid eradication of bacterial biofilms. NANOSCALE 2021; 13:13610-13616. [PMID: 34477635 DOI: 10.1039/d1nr03471e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biofilm-related infections, such as dental plaque, chronic sinusitis, native valve endocarditis, and chronic airway infections in cystic fibrosis have brought serious suffering to patients and financial burden to society. Materials that can eliminate mature biofilms without developing drug resistance are promising tools to treat biofilm-related infections, and thus they are in urgent demand. Herein, we designed and readily prepared organic nanoparticles (NPs) with highly efficient photothermal conversion by harvesting energy via excited-state intramolecular motions and enlarging molar absorptivity. The photothermal NPs can sufficiently eliminate mature bacterial biofilms upon low-power near-infrared laser irradiation. NPs hold great promise for the rapid eradication of bacterial biofilms by photothermal therapy.
Collapse
Affiliation(s)
- Wei He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Yougbaré S, Mutalik C, Okoro G, Lin IH, Krisnawati DI, Jazidie A, Nuh M, Chang CC, Kuo TR. Emerging Trends in Nanomaterials for Antibacterial Applications. Int J Nanomedicine 2021; 16:5831-5867. [PMID: 34475754 PMCID: PMC8405884 DOI: 10.2147/ijn.s328767] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/04/2021] [Indexed: 01/11/2023] Open
Abstract
Around the globe, surges of bacterial diseases are causing serious health threats and related concerns. Recently, the metal ion release and photodynamic and photothermal effects of nanomaterials were demonstrated to have substantial efficiency in eliminating resistance and surges of bacteria. Nanomaterials with characteristics such as surface plasmonic resonance, photocatalysis, structural complexities, and optical features have been utilized to control metal ion release, generate reactive oxygen species, and produce heat for antibacterial applications. The superior characteristics of nanomaterials present an opportunity to explore and enhance their antibacterial activities leading to clinical applications. In this review, we comprehensively list three different antibacterial mechanisms of metal ion release, photodynamic therapy, and photothermal therapy based on nanomaterials. These three different antibacterial mechanisms are divided into their respective subgroups in accordance with recent achievements, showcasing prospective challenges and opportunities in clinical, environmental, and related fields.
Collapse
Affiliation(s)
- Sibidou Yougbaré
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Institut de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, Ouagadougou, Burkina Faso
| | - Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Goodluck Okoro
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - I-Hsin Lin
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | | | - Achmad Jazidie
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
- Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237, Indonesia
| | - Mohammad Nuh
- Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237, Indonesia
- Department of Biomedical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| | - Che-Chang Chang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
21
|
Li X, Fu YN, Huang L, Liu F, Moriarty TF, Tao L, Wei Y, Wang X. Combating Biofilms by a Self-Adapting Drug Loading Hydrogel. ACS APPLIED BIO MATERIALS 2021; 4:6219-6226. [PMID: 35006889 DOI: 10.1021/acsabm.1c00540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A bacterial biofilm is one of the main reasons that many diseases are difficult to cure. Herein, a teicoplanin (TPN)-loaded self-adapting chitosan-based hydrogel (CPH) system, called TPN-CPH, was prepared by encapsulating antibacterial TPN into CPH. This TPN-CPH can effectively combat preformed biofilms in vitro of Staphylococcus aureus (S. aureus). It has a good therapeutic effect on full-thickness cutaneous wounds in vivo of mice infected with biofilms. In addition, TPN-CPH can accelerate wound healing by self-adapting the wound and providing a moist environment. The operation process of TPN-CPH is simple, and no external stimulation such as light and heat is needed in the treatment process, making it more convenient for clinical application. Furthermore, this is a challenge to use self-adapting hydrogels to adapt the micro-size channels of biofilms. TPN-CPH provides a chitosan-based self-adapting hydrogel system for loading drugs to kill bacteria in biofilms, and thus it is promising for infection control.
Collapse
Affiliation(s)
- Xia Li
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ya-Nan Fu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.,AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz 7270, Switzerland
| | - Lifei Huang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fang Liu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | | | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xing Wang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
22
|
Blackman LD, Qu Y, Cass P, Locock KES. Approaches for the inhibition and elimination of microbial biofilms using macromolecular agents. Chem Soc Rev 2021; 50:1587-1616. [PMID: 33403373 DOI: 10.1039/d0cs00986e] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms are complex three-dimensional structures formed at interfaces by the vast majority of bacteria and fungi. These robust communities have an important detrimental impact on a wide range of industries and other facets of our daily lives, yet their removal is challenging owing to the high tolerance of biofilms towards conventional antimicrobial agents. This key issue has driven an urgent search for new innovative antibiofilm materials. Amongst these emerging approaches are highly promising materials that employ aqueous-soluble macromolecules, including peptides, proteins, synthetic polymers, and nanomaterials thereof, which exhibit a range of functionalities that can inhibit biofilm formation or detach and destroy organisms residing within established biofilms. In this Review, we outline the progress made in inhibiting and removing biofilms using macromolecular approaches, including a spotlight on cutting-edge materials that respond to environmental stimuli for "on-demand" antibiofilm activity, as well as synergistic multi-action antibiofilm materials. We also highlight materials that imitate and harness naturally derived species to achieve new and improved biomimetic and biohybrid antibiofilm materials. Finally, we share some speculative insights into possible future directions for this exciting and highly significant field of research.
Collapse
Affiliation(s)
- Lewis D Blackman
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia and Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Peter Cass
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | | |
Collapse
|
23
|
Fedatto Abelha T, Rodrigues Lima Caires A. Light‐Activated Conjugated Polymers for Antibacterial Photodynamic and Photothermal Therapy. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Thais Fedatto Abelha
- Laboratory of Optics and Photonics Institute of Physics Federal University of Mato Grosso do Sul Campo Grande Mato Grosso do Sul 79070-900 Brazil
| | - Anderson Rodrigues Lima Caires
- Laboratory of Optics and Photonics Institute of Physics Federal University of Mato Grosso do Sul Campo Grande Mato Grosso do Sul 79070-900 Brazil
| |
Collapse
|
24
|
He D, Tan Y, Li P, Luo Y, Zhu Y, Yu Y, Chen J, Ning N, Zhang S. Surface charge-convertible quaternary ammonium salt-based micelles for in vivo infection therapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Kaizerman-Kane D, Hadar M, Joseph R, Logviniuk D, Zafrani Y, Fridman M, Cohen Y. Design Guidelines for Cationic Pillar[n]arenes that Prevent Biofilm Formation by Gram-Positive Pathogens. ACS Infect Dis 2021; 7:579-585. [PMID: 33657813 PMCID: PMC8041275 DOI: 10.1021/acsinfecdis.0c00662] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Bacterial biofilms are a major threat
to human health, causing
persistent infections that lead to millions of fatalities worldwide
every year. Biofilms also cause billions of dollars of damage annually
by interfering with industrial processes. Recently, cationic pillararenes
were found to be potent inhibitors of biofilm formation in Gram-positive
bacteria. To identify the structural features of pillararenes that
result in antibiofilm activity, we evaluated the activity of 16 cationic
pillar[5]arene derivatives including that of the first cationic water-soluble
pillar[5]arene-based rotaxane. Twelve of the derivatives were potent
inhibitors of biofilm formation by Gram-positive pathogens. Structure
activity analyses of our pillararene derivatives indicated that positively
charged head groups are critical for the observed antibiofilm activity.
Although certain changes in the lipophilicity of the substituents
on the positively charged head groups are tolerated, dramatic elevation
in the hydrophobicity of the substituents or an increase in steric
bulk on these positive charges abolishes the antibiofilm activity.
An increase in the overall positive charge from 10 to 20 did not affect
the activity significantly, but pillararenes with 5 positive charges
and 5 long alkyl chains had reduced activity. Surprisingly, the cavity
of the pillar[n]arene is not essential for the observed activity,
although the macrocyclic structure of the pillar[n]arene core, which
facilitates the clustering of the positive charges, appears important.
Interestingly, the compounds found to be efficient inhibitors of biofilm
formation were nonhemolytic at concentrations that are ∼100-fold
of their MBIC50 (the minimal concentration of a compound
at which at least 50% inhibition of biofilm formation was observed
compared to untreated cells). The structure–activity relationship
guidelines established here pave the way for a rational design of
potent cationic pillar[n]arene-based antibiofilm agents.
Collapse
Affiliation(s)
- Dana Kaizerman-Kane
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Maya Hadar
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Roymon Joseph
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Dana Logviniuk
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Yossi Zafrani
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74000, Israel
| | - Micha Fridman
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
26
|
New Approach in the Application of Conjugated Polymers: The Light-Activated Source of Versatile Singlet Oxygen Molecule. MATERIALS 2021; 14:ma14051098. [PMID: 33652904 PMCID: PMC7956640 DOI: 10.3390/ma14051098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 01/17/2023]
Abstract
For many years, the research on conjugated polymers (CPs) has been mainly focused on their application in organic electronics. Recent works, however, show that due to the unique optical and photophysical properties of CPs, such as high absorption in UV–Vis or even near-infrared (NIR) region and efficient intra-/intermolecular energy transfer, which can be relatively easily optimized, CPs can be considered as an effective light-activated source of versatile and highly reactive singlet oxygen for medical or catalytic use. The aim of this short review is to present the novel possibilities that lie dormant in those exceptional polymers with the extended system of π-conjugated bonds.
Collapse
|
27
|
Liu S, Xiong X, Ruan Z, Lin J, Chen Y. Conjugated polymer-based ratiometric fluorescent biosensor for probing the activity of protein-acetylation-related enzymes. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Li Z, Lu W, Jia S, Yuan H, Gao LH. Design and Application of Conjugated Polymer Nanomaterials for Detection and Inactivation of Pathogenic Microbes. ACS APPLIED BIO MATERIALS 2020; 4:370-386. [DOI: 10.1021/acsabm.0c01395] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zelin Li
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Wen Lu
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Shaochuan Jia
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Li-Hua Gao
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| |
Collapse
|
29
|
Chen M, Zhang S, He Z. Controlled Block Polypeptide Composed of d-Type Amino Acids: A Therapeutics Delivery Platform to Inhibit Biofilm Formation of Drug-Resistant Bacteria. ACS APPLIED BIO MATERIALS 2020; 3:6343-6350. [PMID: 35021764 DOI: 10.1021/acsabm.0c00795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibiotic resistance of bacteria has been widely developed due to biofilm protection and separating the bacteria from antibiotics. The phenomenon of biofilm inhibition or disassembly by d-amino acids (DAAs) has been reported recently, while it was also challenged by some other scientists. Presuming DAAs work for biofilms on the surface of bacteria, delivery of the DAAs to disease sites is important while small DAAs are easily removed by kidney. To resolve the above issues, it is urgent to develop a biofilm inhibitor. To achieve this goal, we synthesized d-type polypeptides via NCA ring-opening polymerization with the initiator of HMDS to generate poly(CBZ-l-lysine)33-block-poly(d-phenylalanine)14. After deprotection, the resultant polypeptides were converted into amphiphilic poly(l-lysine)33-block-poly(d-phenylalanine)14, which can be self-assembled into well-defined homogeneous nanoparticles capable of capsulizing penicillin G. For the molecular weight of polypeptides resulting in various bioeffects, we prepared similar-sized polypeptides of an l-type equivalent polypeptide as control. The data from microbial experiments indicated that poly(l-lysine)33-block-poly(d-phenylalanine)14 can inhibit biofilm formation of Bacillus subtilis at a low final concentration (24 μg/mL), much stronger than poly(l-lysine)40-block-poly(l-phenylalanine)19 at the same concentration. This is the first report in that synthetic d-type polypeptides can inhibit biofilms of bacteria. Poly(l-lysine)33-block-poly(d-phenylalanine)14 can be assembled into well-defined, biostable homogeneous nanoparticles. This research provides a potential solution to overcome bacteria antibiotic resistance from small molecules to material sciences and gives a unique angle to understand the current dispute if DAAs can disassemble the biofilms. Additionally, these nanoparticles have great potential in the development of nanomedicines with a longer circulation time in blood and this discovery has implications in developing antimicrobial nanodevices for therapy and basic scientific interest.
Collapse
Affiliation(s)
- Mingsheng Chen
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai 201508, China.,Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida 34945, United States
| | - Songhe Zhang
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida 34945, United States.,Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida 34945, United States
| |
Collapse
|
30
|
Hussain MW, Bhardwaj V, Giri A, Chande A, Patra A. Multifunctional ionic porous frameworks for CO 2 conversion and combating microbes. Chem Sci 2020; 11:7910-7920. [PMID: 34123075 PMCID: PMC8163429 DOI: 10.1039/d0sc01658f] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/01/2020] [Indexed: 01/14/2023] Open
Abstract
Porous organic frameworks (POFs) with a heteroatom rich ionic backbone have emerged as advanced materials for catalysis, molecular separation, and antimicrobial applications. The loading of metal ions further enhances Lewis acidity, augmenting the activity associated with such frameworks. Metal-loaded ionic POFs, however, often suffer from physicochemical instability, thereby limiting their scope for diverse applications. Herein, we report the fabrication of triaminoguanidinium-based ionic POFs through Schiff base condensation in a cost-effective and scalable manner. The resultant N-rich ionic frameworks facilitate selective CO2 uptake and afford high metal (Zn(ii): 47.2%) loading capacity. Owing to the ionic guanidinium core and ZnO infused mesoporous frameworks, Zn/POFs showed pronounced catalytic activity in the cycloaddition of CO2 and epoxides into cyclic organic carbonates under solvent-free conditions with high catalyst recyclability. The synergistic effect of infused ZnO and cationic triaminoguanidinium frameworks in Zn/POFs led to robust antibacterial (Gram-positive, Staphylococcus aureus and Gram-negative, Escherichia coli) and antiviral activity targeting HIV-1 and VSV-G enveloped lentiviral particles. We thus present triaminoguanidinium-based POFs and Zn/POFs as a new class of multifunctional materials for environmental remediation and biomedical applications.
Collapse
Affiliation(s)
- Md Waseem Hussain
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| | - Vipin Bhardwaj
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| | - Arkaprabha Giri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| | - Ajit Chande
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| |
Collapse
|
31
|
Ran HH, Cheng X, Bao YW, Hua XW, Gao G, Zhang X, Jiang YW, Zhu YX, Wu FG. Multifunctional quaternized carbon dots with enhanced biofilm penetration and eradication efficiencies. J Mater Chem B 2020; 7:5104-5114. [PMID: 31432881 DOI: 10.1039/c9tb00681h] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biofilm formation can lead to the treatment failure of persistent bacterial infections. Although a variety of antibacterial agents have been developed, the restricted drug penetration and the embedded bacteria's potentiated recalcitrance to these agents synergistically lead to the unsatisfactory anti-biofilm effect. Herein, we report the applications of metal-free quaternized carbon dots (CDs) in imaging and eliminating bacterial biofilms. The CDs prepared by the solvothermal treatment of dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (abbreviated as Si-QAC) and glycerol possess ultrasmall size (ca. 3.3 ± 0.4 nm) and strong positively charged (zeta potential: ca. +33.1 ± 2.5 mV) surfaces with long alkyl chain-linked quaternary ammonium groups. The small size of the CDs endows them with the penetration ability into the interior of Gram-negative and Gram-positive bacterial biofilms, which enables excellent fluorescence imaging of the biofilms. Due to the different surfaces of the two types of bacteria, the positively charged CDs selectively interact with the more negatively charged Gram-positive bacteria via electrostatic and hydrophobic interactions, which inactivates the Gram-positive bacteria and ultimately eradicates the Gram-positive bacterial biofilms. In addition, we synthesize a new type of quaternized CDs without long alkyl chains (termed TTPAC CDs), and validate that the long alkyl chains potentiate the hydrophobic adhesion between CDs and Gram-positive bacteria. Meanwhile, the crystal violet staining results reveal that the cationic CDs inhibit the formation of Gram-positive bacterial biofilms. Collectively, our work highlights the feasibility of using cationic and ultrasmall metal-free CDs to eliminate and inhibit Gram-positive bacterial biofilms, which represents a highly effective strategy to cope with refractory biofilm-associated infections.
Collapse
Affiliation(s)
- Huan-Huan Ran
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
| | - Xiaotong Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
| | - Yan-Wen Bao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
| | - Xian-Wu Hua
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
| | - Ge Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
| | - Xiaodong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
| | - Yao-Wen Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
| |
Collapse
|
32
|
Wang Z, Gao D, Zhan Y, Xing C. Enhancing the Light Coverage of Photosynthetic Bacteria to Augment Photosynthesis by Conjugated Polymer Nanoparticles. ACS APPLIED BIO MATERIALS 2020; 3:3423-3429. [PMID: 35025384 DOI: 10.1021/acsabm.0c00352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By coating photosynthetic bacteria of Rhodopseudomonas palustris with conjugated polymers nanoparticles modified with positively charged peptide TAT (CPNs-TAT), a bio-optical hybrid composite of R. palustris/CPNs-TAT has been constructed. R. palustris/CPNs-TAT augments the light coverage of R. palustris to broaden the R. palustris absorption due to excellent light-harvesting properties of CPNs-TAT, especially in the ultraviolet region. It leads to converting ultraviolet light to visible light that could be absorbed by R. palustris, allowing antenna systems around the reaction center (RC) of the photosynthetic membrane to absorb more photons, thus photons are excited and transferred to the RC where the electron-hole separation occurs. Therefore, R. palustris/CPNs-TAT improves adenosine triphosphate (ATP) synthesis by increasing proton gradient, resulting in the enhancement of the photosynthetic activity. This effort combines synthetic light-harvesting materials with photosynthetic bacteria without complicated genetic techniques to obtain the hybrid bio-optical systems for augmenting photosynthesis beyond natural photosynthetic bacteria.
Collapse
Affiliation(s)
- Zijuan Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.,Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Dong Gao
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yong Zhan
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.,Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
33
|
Yuan H, Zhao H, Peng K, Qi R, Bai H, Zhang P, Huang Y, Lv F, Liu L, Bao J, Wang S. Conjugated Polymer-Quantum Dot Hybrid Materials for Pathogen Discrimination and Disinfection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21263-21269. [PMID: 31825194 DOI: 10.1021/acsami.9b17783] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this work, a new platform for pathogen discrimination and killing based on a conjugated polymer-quantum dot hybrid material was designed and constructed through the fluorescence resonance energy transfer (FRET) process. The hybrid material comprises water-soluble anionic CdSe/ZnS quantum dots (QDs) and a cationic poly(fluorene-alt-phenylene) derivative (PFP) through electrostatic interactions, thus promoting efficient FRET between PFP and QDs. Upon addition of different pathogen strains, the FRET from PFP to QDs was interrupted because of the competitive binding between PFP and the pathogens. Complexation of PFP and QDs also reduced the dark toxicity to a more desirable level, therefore potentially realizing the controllable killing of pathogens. The technique provides a promising theranostic platform in pathogen discrimination and disinfection based on FRET and phototoxicity of the PFP and QDs.
Collapse
Affiliation(s)
- Haitao Yuan
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ke Peng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ruilian Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Pengbo Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianchun Bao
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
34
|
Saini SK, Halder M, Singh Y, Nair RV. Bactericidal Characteristics of Bioinspired Nontoxic and Chemically Stable Disordered Silicon Nanopyramids. ACS Biomater Sci Eng 2020; 6:2778-2786. [PMID: 33463264 DOI: 10.1021/acsbiomaterials.9b01963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controlling bacterial growth using artificial nanostructures inspired from natural species is of immense importance in biomedical applications. In the present work, a low cost, fast processing, and scalable anisotropic wet etching technique is developed to fabricate the densely packed disordered silicon nanopyramids (SiNPs) with nanosized sharp tips. The bactericidal characteristics of SiNPs are assessed against strains implicated in nosocomial and biomaterial-related infections. Compared to the bare silicon with no antibacterial activities, SiNPs of 1.85 ± 0.28 μm height show 55 and 75% inhibition of Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive) bacteria, whereas the silicon nanowires (SiNWs) fabricated using a metal-assisted chemical etching method show 50 and 58% inhibition of E. coli and B. subtilis. The mechanistic studies using a scanning electron microscope and live/dead bacterial cell assay reveal cell rupture and predominance of dead cells on contact with SiNPs and SiNWs, which confirms their bactericidal effects. Chemical stability and cell viability studies demonstrate the biocompatible nature of SiNP and SiNW surfaces. Owing to their capability to kill both Gram-negative and positive bacteria and minimal toxicity to murine fibroblast cells, SiNPs can be used as an antibacterial coating on medical devices to prevent nosocomial and biomaterial-related infections.
Collapse
Affiliation(s)
- Sudhir K Saini
- Laboratory for Nano-scale Optics and Meta-materials (LaNOM), Department of Physics, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Moumita Halder
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India.,Center for Biomedical Engineering (CBME), Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Rajesh V Nair
- Laboratory for Nano-scale Optics and Meta-materials (LaNOM), Department of Physics, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
35
|
Xie Y, Zheng W, Jiang X. Near-Infrared Light-Activated Phototherapy by Gold Nanoclusters for Dispersing Biofilms. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9041-9049. [PMID: 32011117 DOI: 10.1021/acsami.9b21777] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A bacterial biofilm is strongly associated with chronic infections and is difficult to be eradicated, posing serious threats to public health. Development of effective therapeutic strategies to prevent and control hospital-acquired infections via eradication of bacteria shielded by biofilms is challenging. Herein, we developed deoxyribonuclease (DNase)-functionalized gold nanoclusters (AuNCs) (DNase-AuNCs), which are capable of killing Gram-positive and Gram-negative bacteria, especially dispersing the surrounding biofilms. The DNase can break down the extracellular polymeric substance matrix to expose the defenseless bacteria to photothermal therapy (PTT) and photodynamic therapy (PDT) by DNase-AuNCs under 808 nm laser irradiation. The combination of enzymolysis, PDT, and PTT can effectively remove biofilms with a dispersion rate of up to 80% and kill ∼90% of the shielded bacteria. DNase-AuNCs exhibit an outstanding therapeutic effect in treating bacterial biofilm-coated orthodontic devices (Invisalign aligners), suggesting their potential applications in medical devices.
Collapse
Affiliation(s)
- Yangzhouyun Xie
- Department of Biomedical Engineering , Southern University of Science and Technology , No. 1088 Xueyuan Rd , Nanshan District, Shenzhen , Guangdong 518055 , P. R. China
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , P. R. China
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering , Southern University of Science and Technology , No. 1088 Xueyuan Rd , Nanshan District, Shenzhen , Guangdong 518055 , P. R. China
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , P. R. China
| |
Collapse
|
36
|
Cationic conjugated polymers for enhancing beneficial bacteria adhesion and biofilm formation in gut microbiota. Colloids Surf B Biointerfaces 2020; 188:110815. [PMID: 31986332 DOI: 10.1016/j.colsurfb.2020.110815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/13/2019] [Accepted: 01/19/2020] [Indexed: 11/20/2022]
Abstract
It is important to develop efficient therapeutic methods to maintain a healthy balance among gut microbiota by increasing the beneficial bacteria and decreasing the harmful bacteria. In this work, a cationic polythiophene derivative poly(3-(3'-N,N,N-triethylamino-1'-propyloxy)-4-methyl-2,5-thiophene hydrochloride) (PMNT) with quaternary ammonium groups as side chains has been used for efficiently promoting the initial adhesion and biofilm formation of beneficial bacteria in gut microbiota. Upon addition of PMNT, three species of gut microbiota have an increased biofilm formation ability (216.5 % for Escherichia coli (E. coli), 130.7 % for Bifidobacterium infantis (B. infants) and 47.6 % for Enterococcus faecalis (E. faecalis)). As the initial adhesion of bacteria to a surface is an essential step during biofilm formation, PMNT can promote the attachment of bacteria by forming bacteria /PMNT aggregates which possess more cell-to-cell interactions. RNA sequencing results of bacteria within biofilm indicate that the utilization of carbohydrate and glycan is accelerated in the presence of PMNT, leading to enhanced quorum sensing and biofilm formation of E. coli. After forming biofilm, beneficial bacteria have an enhanced resistance to adverse environmental conditions which is significant for maintaining the balance of gut microbiota. Conjugated polymers exhibit a good potential application in modulating the balance of gut microbiota and development of new probiotics drugs.
Collapse
|
37
|
Tao G, Ji T, Wang N, Yang G, Lei X, Zheng W, Liu R, Xu X, Yang L, Yin GQ, Liao X, Li X, Ding HM, Ding X, Xu J, Yang HB, Chen G. Self-Assembled Saccharide-Functionalized Amphiphilic Metallacycles as Biofilms Inhibitor via "Sweet Talking". ACS Macro Lett 2020; 9:61-69. [PMID: 35638656 DOI: 10.1021/acsmacrolett.9b00914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacterial biofilms are troublesome in the treatment of bacterial infectious diseases due to their inherent resistance to antibiotic therapy. Exploration of alternative antibiofilm reagents provides opportunities to achieve highly effective treatments. Herein, we propose a strategy to employ self-assembled saccharide-functionalized amphiphilic metallacycles ([2+2]-Gal, [3+3]-Gal, and [6+6]-Gal) with multiple positive charges as a different type of antibacterial reagent, marrying saccharide functionalization that interact with bacteria via "sweet talking". These self-assembled glyco-metallacycles gave various nanostructures (nanoparticles, vesicles or micron-sized vesicles) with different biofilms inhibition effect on Staphylococcus aureus (S. aureus). Especially, the peculiar self-assembly mechanism, superior antibacterial effect and biofilms inhibition distinguished the [6+6]-Gal from other metallacycles. Meanwhile, in vivo S. aureus pneumonia animal model experiments suggested that [6+6]-Gal could relieve mice pneumonia aroused by S. aureus effectively. In addition, the control study of metallacycle [3+3]-EG5 confirmed the significant role of galactoside both in the self-assembly process and the antibacterial efficacy. In view of the superior effect against bacteria, the saccharide-functionalized metallacycle could be a promising candidate as biofilms inhibitor or treatment agent for pneumonia.
Collapse
Affiliation(s)
- Guoqing Tao
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Tan Ji
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes and School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ning Wang
- Shanghai Pulmonary Hospital and School of Medicine, Tongji University, Shanghai 200433, China
| | - Guang Yang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Xiaolai Lei
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Wei Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes and School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Ling Yang
- Shanghai Pulmonary Hospital and School of Medicine, Tongji University, Shanghai 200433, China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes and School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xiaojuan Liao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Hong-ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Xiaoming Ding
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jinfu Xu
- Shanghai Pulmonary Hospital and School of Medicine, Tongji University, Shanghai 200433, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes and School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
38
|
Tessier J, Schmitzer AR. Benzimidazolium salts prevent and disrupt methicillin-resistant Staphylococcus aureus biofilms. RSC Adv 2020; 10:9420-9430. [PMID: 35497239 PMCID: PMC9050073 DOI: 10.1039/d0ra00738b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/24/2020] [Indexed: 01/05/2023] Open
Abstract
Emergence of resistant bacteria encourages us to develop new antibiotics and strategies to compensate for the different mechanisms of resistance they acquire. One of the defense mechanisms of resistant bacteria is the formation of biofilms. Herein we show that benzimidazolium salts with various flexible or rigid side chains act as strong antibiotic and antibiofilm agents. We show that their antibiofilm activity is due to their capacity to destroy the biofilm matrix and the bacterial cellular membranes. These compounds are able to avoid the formation of biofilms and disperse mature biofilms showing a universal use in the treatment of biofilm-associated infections. Benzimidazolium salts impair biofilm and bacterial membrane structural integrity.![]()
Collapse
|
39
|
Namivandi-Zangeneh R, Yang Y, Xu S, Wong EHH, Boyer C. Antibiofilm Platform based on the Combination of Antimicrobial Polymers and Essential Oils. Biomacromolecules 2019; 21:262-272. [PMID: 31657209 DOI: 10.1021/acs.biomac.9b01278] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The development of potent strategies to counter microbial biofilm is an urgent priority in healthcare. The majority of bacterial infections in humans are biofilm related, however, effective treatments are still lacking especially for combating multidrug-resistant (MDR) strains. Herein, we report an effective antibiofilm platform based on the use of synthetic antimicrobial polymers in combination with essential oils, where the antimicrobial polymers play a secondary role as delivery vehicle for essential oils. Two ternary antimicrobial polymers consisting of cationic primary amines, low-fouling oligo(ethylene glycol) and hydrophobic ethylhexyl groups were synthesized in the form of random and block copolymers, and mixed with either carvacrol or eugenol. Coadministration of these compounds improved the efficacy against Pseudomonas aeruginosa biofilms compared to the individual compounds. We observed about a 60-75% and 70-85% biofilm inhibition effect for all tested combinations against wild-type P. aeruginosa PAO1 and MDR strain PA37, respectively, upon 6.5 h of incubation time. While both random and block copolymers demonstrated similar biofilm inhibition potencies in combination with essential oils, only the block copolymer acted synergistically with essential oils in killing biofilm. Treatment of PAO1 biofilm for 20 min with the block copolymer-oil combinations resulted in the killing of >99.99% of biofilm bacteria. This synergistic bactericidal activity is attributed to the targeted delivery of essential oils to the biofilm, driven by the electrostatic interaction between positively charged delivery vehicles, in the form of polymeric micelles, and negatively charged bacteria. This study thus highlights the advantage of combining essential oils and antimicrobial polymers as an effective avenue for antibacterial applications.
Collapse
Affiliation(s)
- Rashin Namivandi-Zangeneh
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering , UNSW Australia , Sydney , NSW 2052 , Australia
| | - Yiling Yang
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering , UNSW Australia , Sydney , NSW 2052 , Australia
| | - Sihao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering , UNSW Australia , Sydney , NSW 2052 , Australia
| | - Edgar H H Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering , UNSW Australia , Sydney , NSW 2052 , Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering , UNSW Australia , Sydney , NSW 2052 , Australia
| |
Collapse
|
40
|
Shi J, Wang M, Sun Z, Liu Y, Guo J, Mao H, Yan F. Aggregation-induced emission-based ionic liquids for bacterial killing, imaging, cell labeling, and bacterial detection in blood cells. Acta Biomater 2019; 97:247-259. [PMID: 31352110 DOI: 10.1016/j.actbio.2019.07.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022]
Abstract
A series of aggregation-induced emission (AIE)-based imidazolium-type ionic liquids (ILs) were designed and synthesized for bacterial killing and imaging, cell labeling, and bacterial detection in blood cells. The AIE-based ILs showed antibacterial activities against both Escherichia coli and Staphylococcus aureus. The carbon chain length of substitution at the N3 position of the imidazolium cations highly affects the antibacterial properties of ILs. Owing to their AIE characteristics, the ILs could selectively capture fluorescence image of dead bacteria while killing the bacteria. The fluorescence intensity varied with the concentration of bacteria, indicating that AIE-based ILs has potential as an antibacterial material and an efficient probe for bacterial viability assay. In addition, the synthesized AIE-based ILs exhibit relatively low cytotoxicity and hemolysis rate and therefore potential for cell labeling, as well as bacterial detection in blood cells. STATEMENT OF SIGNIFICANCE: Bacteria are ubiquitous, especially the pathogenic bacteria, which pose a serious threat to human health. There is an urgent need for materials with efficient antibacterial properties and biocompatibility and without causing drug resistance. In this work, we synthesized a series of aggregation-induced emission (AIE)-doped imidazolium type ionic liquids (ILs) with multifunction potential of bacterial killing and imaging, cell labeling, and detection of bacteria from blood cells. The synthesized AIE-based ILs can image dead bacteria at the same time of killing these bacteria, which can avoid the fluorescent dyeing process. Simultaneously, the fluorescent imaging of dead bacteria can be distinguished by the naked eye, and the fluorescence intensity from the AIE-based ILs varied with the concentration of bacteria. In addition, the AIE-based ILs exhibit relatively low cytotoxicity and hemolysis rate and therefore potential for cell labeling as well as detection of bacteria from red blood cell suspension.
Collapse
|
41
|
Chen L, Yang Y, Zhang P, Wang S, Xu JF, Zhang X. Degradable Supramolecular Photodynamic Polymer Materials for Biofilm Elimination. ACS APPLIED BIO MATERIALS 2019; 2:2920-2926. [DOI: 10.1021/acsabm.9b00284] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Linghui Chen
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yuchong Yang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Pengbo Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
42
|
Zhang H, Wang D, Zuo X, Gao C. UV-Responsive Multilayers with Multiple Functions for Biofilm Destruction and Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17283-17293. [PMID: 31013054 DOI: 10.1021/acsami.9b04428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The increasing demands of surgical implantation highlight the significance of anti-infection of medical devices, especially antibiofilm contamination on the surface of implants. The biofilms developed by colonized microbes will largely hinder the adhesion of host cells, leading to failure in long-term applications. In this work, UV-responsive multilayers were fabricated by stepwise assembly of poly(pyrenemethyl acrylate- co-acrylic acid) (P(PA- co-AA)) micelles and chitosan on different types of substrates. Under UV irradiation, the cleavage of pyrene ester bonds in the P(PA- co-AA) molecules resulted in the increase of roughness and hydrophilicity of the multilayers. During this process, reactive oxygen species were generated in situ within 10 s, which destroyed the biofilms of Staphylococcus aureus, leading to the degradation of the bacterial matrix. The antibacterial rate was above 99.999%. The UV-irradiated multilayers allowed the attachment and proliferation of fibroblasts, endothelial cells, and smooth muscle cells, benefiting tissue integration of the implants. When poly(dimethylsiloxane) slices with the multilayers were implanted in vivo and irradiated by UV, the density of bacteria and the inflammatory level (judging from the number of neutrophils) decreased significantly. Moreover, formation of neo blood vessels surrounding the implants was observed after implantation for 7 days. These results reveal that the photoresponsive multilayers endow the implants with multifunctions of simultaneous antibiofilm and tissue integration, shedding light for applications in surface modification of implants in particular for long-term use.
Collapse
Affiliation(s)
- Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Danyu Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xingang Zuo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine , Zhejiang University , Zheda Road , Hangzhou 310027 , China
| |
Collapse
|
43
|
Zhao Y, Guo Q, Dai X, Wei X, Yu Y, Chen X, Li C, Cao Z, Zhang X. A Biomimetic Non-Antibiotic Approach to Eradicate Drug-Resistant Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806024. [PMID: 30589118 PMCID: PMC6634980 DOI: 10.1002/adma.201806024] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/26/2018] [Indexed: 05/19/2023]
Abstract
The chronic infections by pathogenic Pseudomonas aeruginosa (P. aeruginosa) remain to be properly addressed. In particular, for drug-resistant strains, limited medication is available. An in vivo pneumonia model induced by a clinically isolated aminoglycoside resistant strain of P. aeruginosa is developed. Tobramycin clinically treating P. aeruginosa infections is found to be ineffective to inhibit or eliminate this drug-resistant strain. Here, a newly developed non-antibiotics based nanoformulation plus near-infrared (NIR) photothermal treatment shows a remarkable antibacterial efficacy in treating this drug-resistant pneumonia. The novel formulation contains 50-100 nm long nanorods decorated with two types of glycomimetic polymers to specifically block bacterial LecA and LecB lectins, respectively, which are essential for bacterial biofilm development. Such a 3D display of heteromultivalent glycomimetics on a large scale is inspired by the natural strengthening mechanism for the carbohydrate-lectin interaction that occurs when bacteria initially infects the host. This novel formulation shows the most efficient bacteria inhabitation and killing against P. aeruginosa infection, through lectin blocking and the near-infrared-light-induced photothermal effect of gold nanorods, respectively. Collectively, the novel biomimetic design combined with the photothermal killing capability is expected to be an alternative treatment strategy against the ever-threatening drug-resistant infectious diseases when known antibiotics have failed.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qianqian Guo
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaomei Dai
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaosong Wei
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuelei Chen
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
44
|
Chen L, Yang D, Feng J, Zhang M, Qian Q, Zhou Y. Switchable modulation of bacterial growth and biofilm formation based on supramolecular tripeptide amphiphiles. J Mater Chem B 2019; 7:6420-6427. [DOI: 10.1039/c9tb00973f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A minimalistic dual-responsive supramolecular tripeptide system was developed for switchable control of bacterial growth and biofilm formation.
Collapse
Affiliation(s)
- Limin Chen
- School of Ophthalmology and Optometry
- Eye Hospital
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou 325000
| | - Dan Yang
- School of Ophthalmology and Optometry
- Eye Hospital
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou 325000
| | - Jie Feng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou 325000
- P. R. China
| | - Min Zhang
- School of Ophthalmology and Optometry
- Eye Hospital
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou 325000
| | - Qiuping Qian
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou 325000
- P. R. China
| | - Yunlong Zhou
- School of Ophthalmology and Optometry
- Eye Hospital
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou 325000
| |
Collapse
|
45
|
Li R, Lian X, Wang Z, Wang Y. Radical Cation Initiated Surface Polymerization on Photothermal Rubber for Smart Antifouling Coatings. Chemistry 2018; 25:183-188. [PMID: 30325541 DOI: 10.1002/chem.201804526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 12/13/2022]
Abstract
Biofouling on surfaces of various materials has attracted considerable attention in biomedical and marine industries. Surface grafting based on covalent surface-initiated polymerization offers a popular route to address this problem by providing diverse robust polymer coatings capable of preventing the biofouling in complex environments. However, the existing methods for synthesizing polymer coatings are complicated and rigorous, or require special catalysts, greatly limiting their practical applications. In this work, a radical-cation-based surface-initiated polymerization protocol to graft the surface of darkened trans-polyisoprene (TPI) rubber with a thermo-responsive smart polymer, poly(N-isopropylacrylamide) (PNIPAM), through a simple iodine doping process is reported. A series of characterizations were performed to provide adequate evidence to confirm the successful grafting. Combining the thermal sensitivity of PNIPAM with the photothermal conversion ability of the darkened rubber, efficient bacteria-killing and antifouling capabilities were successfully achieved as a result of temperature-controlled iodine release and switchable amphiphilicity of PNIPAM.
Collapse
Affiliation(s)
- Ruiting Li
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xiaodong Lian
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Zhen Wang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yapei Wang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
46
|
Gide M, Nimmagadda A, Su M, Wang M, Teng P, Li C, Gao R, Xu H, Li Q, Cai J. Nano-Sized Lipidated Dendrimers as Potent and Broad-Spectrum Antibacterial Agents. Macromol Rapid Commun 2018; 39:e1800622. [PMID: 30408252 DOI: 10.1002/marc.201800622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/06/2018] [Indexed: 12/18/2022]
Abstract
There is considerable interest in the development of antimicrobial polymers including dendrimers due to the ease of synthesis and low manufacturing cost compared to host defense peptides (HDPs). Herein, a new class of nanomaterials-lipidated amphiphilic dendrimers-is presented that mimic the antibacterial mechanism of HDPs by compromising bacterial cell membranes. Unlike conventional dendrimers that are prepared generation by generation symmetrically with molecular weight distribution, these lipidated dendrimers are prepared on the solid phase with a hanging lipid tail and precisely controlled structure. It is shown through rational design that these lipidated dendrimers display potent and selective antimicrobial activity against both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. In addition to antibacterial activity against planktonic bacteria, these dendrimers are also shown to inhibit bacterial biofilms effectively. This class of dendrimers as a new class of biomaterials may lead to a useful generation of antibiotic agents with practical applications.
Collapse
Affiliation(s)
- Mussie Gide
- M. Gide, Dr. A. Nimmagadda, M. Su, M. Wang, Dr. P. Teng, C. Li, R. Gao, Dr. J. Cai, Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Alekhya Nimmagadda
- M. Gide, Dr. A. Nimmagadda, M. Su, M. Wang, Dr. P. Teng, C. Li, R. Gao, Dr. J. Cai, Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Ma Su
- M. Gide, Dr. A. Nimmagadda, M. Su, M. Wang, Dr. P. Teng, C. Li, R. Gao, Dr. J. Cai, Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Minghui Wang
- M. Gide, Dr. A. Nimmagadda, M. Su, M. Wang, Dr. P. Teng, C. Li, R. Gao, Dr. J. Cai, Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Peng Teng
- M. Gide, Dr. A. Nimmagadda, M. Su, M. Wang, Dr. P. Teng, C. Li, R. Gao, Dr. J. Cai, Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Chunpu Li
- M. Gide, Dr. A. Nimmagadda, M. Su, M. Wang, Dr. P. Teng, C. Li, R. Gao, Dr. J. Cai, Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA.,Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Ruixuan Gao
- M. Gide, Dr. A. Nimmagadda, M. Su, M. Wang, Dr. P. Teng, C. Li, R. Gao, Dr. J. Cai, Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Hai Xu
- College of Chemistry and Chemical Engineering, Central South University, South Lushan Road, Changsha, Hunan, 410083, P. R. China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Jianfeng Cai
- M. Gide, Dr. A. Nimmagadda, M. Su, M. Wang, Dr. P. Teng, C. Li, R. Gao, Dr. J. Cai, Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| |
Collapse
|
47
|
Dai X, Zhao Y, Yu Y, Chen X, Wei X, Zhang X, Li C. All-in-one NIR-activated nanoplatforms for enhanced bacterial biofilm eradication. NANOSCALE 2018; 10:18520-18530. [PMID: 30211421 DOI: 10.1039/c8nr04748k] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The chronic infection of humans by antibiotic-resistant bacteria and their related biofilm have, so far, not been properly addressed. In the present work, we developed a novel antibacterial nanoplatform showing the most efficient antibiotic-resistant bacteria inhibition and biofilm eradication. This particular formulation contains tobramycin-conjugated graphene oxide, for efficiently capturing bacteria through electrostatic interactions and eliminating bacteria as a "nano-knife", and copper sulphide nanoparticles for enhancing the photothermal and photodynamic properties. This novel formulation can selectively eliminate bacteria over NIH 3T3 cells, and the biofilm eradication capacity was up to 70%. Importantly, the nanoplatforms can inhibit bacterial growth and promote the repair of antibiotic-resistant bacteria-infected wounds on rats without non-specific damage to normal tissue. This work provides an effective, simple, and rapid method for the design and fabrication of near-infrared light-induced nanoplatforms that offer possibilities to treat biofilm-related infections.
Collapse
Affiliation(s)
- Xiaomei Dai
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | |
Collapse
|
48
|
Zhao Y, Lu Z, Dai X, Wei X, Yu Y, Chen X, Zhang X, Li C. Glycomimetic-Conjugated Photosensitizer for Specific Pseudomonas aeruginosa Recognition and Targeted Photodynamic Therapy. Bioconjug Chem 2018; 29:3222-3230. [DOI: 10.1021/acs.bioconjchem.8b00600] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhentan Lu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaomei Dai
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaosong Wei
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuelei Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
49
|
Carmona-Ribeiro AM. Self-Assembled Antimicrobial Nanomaterials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1408. [PMID: 29973521 PMCID: PMC6069395 DOI: 10.3390/ijerph15071408] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022]
Abstract
Nanotechnology came to stay improving the quality of human life by reducing environmental contamination of earth and water with pathogens. This review discusses how self-assembled antimicrobial nanomaterials can contribute to maintain humans, their water and their environment inside safe boundaries to human life even though some of these nanomaterials display an overt toxicity. At the core of their strategic use, the self-assembled antimicrobial nanomaterials exhibit optimal and biomimetic organization leading to activity at low doses of their toxic components. Antimicrobial bilayer fragments, bilayer-covered or multilayered nanoparticles, functionalized inorganic or organic polymeric materials, coatings and hydrogels disclose their potential for environmental and public health applications in this review.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Instituto de Química, Universidade de São Paulo; Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil.
| |
Collapse
|
50
|
Zhao Y, Dai X, Wei X, Yu Y, Chen X, Zhang X, Li C. Near-Infrared Light-Activated Thermosensitive Liposomes as Efficient Agents for Photothermal and Antibiotic Synergistic Therapy of Bacterial Biofilm. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14426-14437. [PMID: 29651836 DOI: 10.1021/acsami.8b01327] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biofilm is closely related to chronic infections and is difficult to eradicate. Development of effective therapy strategies to control biofilm infection is still challenging. Aiming at biofilm architecture, we designed and prepared near-infrared-activated thermosensitive liposomes with photothermal and antibiotic synergistic therapy capacity to eliminate Pseudomonas aeruginosa biofilm. The liposomes with positive charge and small size aided to enter the biofilm microchannels and locally released antibiotics in infection site. The liposomes could remain stable at 37 °C and release about 80% antibiotics over 45 °C. The biofilm dispersion rate was up to 80%, which was a 7- to 8-fold rise compared to excess antibiotic alone, indicating that the localized antibiotic release and photothermal co-therapy improved the antimicrobial efficiency. In vivo drug-loaded liposomes in treating P. aeruginosa-induced abscess exhibited an outstanding therapeutic effect. Furthermore, photothermal treatment could stimulate the expression of bcl2-associated athanogene 3 to prevent normal tissue from thermal damage. The near-infrared-activated nanoparticle carriers had the tremendous therapeutic potential to dramatically enhance the efficacy of antibiotics through thermos-triggered drug release and photothermal therapy.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xiaomei Dai
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xiaosong Wei
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xuelei Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| |
Collapse
|