1
|
Wang Y, Xue W, Duan Q, Zhang H. Regeneratable bioinspired nanochannels for highly sensitive electrochemical detection of glycated albumin. Talanta 2025; 281:126807. [PMID: 39236518 DOI: 10.1016/j.talanta.2024.126807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Glycated albumin (GA) has been proposed as a reliable diabetes mellitus marker particularly useful in assessing intermediate glycemic control. Herein, we designed a bioinspired nanochannels for biochemical detection based on the host-guest interaction between β-cyclodextrin and azobenzene. Cyclodextrin was grafted on the inner surface of nanochannels of a nanoporous membrane and azobenzene was tagged to the terminal of GA aptamer, thereby facilitating the orientation of GA aptamer in the nanochannels. The presence of GA was monitored by recording the voltammetric signal of ferricyanide that transported across the nanochannel array. The peak current exhibited a linearity relationship with the GA concentration across a broad range of 1.0 ng mL-1 to 100 μg mL-1, along with a detection limit of 0.18 ng mL-1. Notably, the aptamer could be offloaded under ultraviolet light, regenerating the cyclodextrin functionalized nanochannels for subsequent re-immobilization of the fresh aptamer. The relative standard deviation for seven cycles of regeneration treatment was no more than 1.8 %. The remarkable reusability of the nanochannels offered a cost-effective, sensitive and reproducible aptasensing platform.
Collapse
Affiliation(s)
- Yahui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Wenwen Xue
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Qiannan Duan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Hongfang Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
2
|
Huang L, Chen G, Zhang G, Fang Y, Zhu W, Xin Y. Construction of a highly efficient adsorbent for one-step purification of recombinant proteins: Functionalized cellulose-based monolith fabricated via phase separation method. Carbohydr Polym 2024; 335:122046. [PMID: 38616085 DOI: 10.1016/j.carbpol.2024.122046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Currently, purification step in the recombinant protein manufacture is still a great challenge and its cost far outweighs those of the upstream process. In this study, a functionalized cellulose-based monolith was constructed as an efficient affinity adsorbent for one-step purification of recombinant proteins. Firstly, the fundamental cellulose monolith (CE monolith) was fabricated based on thermally induced phase separation, followed by being modified with nitrilotriacetic acid anhydride through esterification to give NCE monolith. After chelating with Ni2+, the affinity adsorbent NCE-Ni2+ monolith was obtained, which was demonstrated to possess a hierarchically porous morphology with a relatively high surface area, porosity and compressive strength. The adsorption behavior of NCE-Ni2+ monolith towards β2-microglobulin with 6 N-terminus His-tag (His-β2M) was evaluated through batch and fixed-bed column experiments. The results revealed that NCE-Ni2+ monolith exhibited a relatively fast His-β2M adsorption rate with a maximum adsorption capacity of 329.2 mg/g. The fixed-bed column adsorption implied that NCE-Ni2+ monolith showed high efficiency for His-β2M adsorption. Finally, NCE-Ni2+ monolith was demonstrated to have an excellent His-β2M purification ability from E. coli lysate with exceptional reusability. Therefore, the resultant NCE-Ni2+ monolith had large potential to be used as an efficient adsorbent for recombinant protein purification in practical applications.
Collapse
Affiliation(s)
- Lanlan Huang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Guronghua Chen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Guozhi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yue Fang
- Department of Geriatrics, Jiangsu University Affiliated People's Hospital, Zhenjiang, China
| | - Wenjie Zhu
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yuanrong Xin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Wan J, Li S, Ma Y, Hu Q, Liang Y, Liang Z, Feng W, Tian Y, Hong M, Ye Z, Han D, Niu L. Boronate crosslinking-based ratiometric electrochemical assay of glycated albumin. Talanta 2024; 274:125990. [PMID: 38552477 DOI: 10.1016/j.talanta.2024.125990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 05/04/2024]
Abstract
As a product of nonenzymatic glycation, glycated albumin (GA) is a promising serum marker for the short-term glycemic monitoring in patients with diabetes. On the basis of the boronate crosslinking (BCL)-enabled direct labeling of ferrocene (Fc) tags to the nonenzymatically glycated (NEG) sites, we report herein a novel aptamer-based ratiometric electrochemical (apt-REC) platform for the point-of-care (POC) assay of GA. This apt-REC platform is based on the recognition of GA proteins by the methylene blue (MB)-modified aptamer receptors and the labeling of the Fc tags to the NEG sites via the BCL. Using MB as the reference tag and Fc as the quantification tag, the ratio of the oxidation currents (i.e., IFc/IMB) can serve as the yardstick for the ratiometric assay of GA. Due to the presence of tens of the NEG sites, each GA protein can be labeled with tens of quantification tags, permitting the amplified assay in a simple, time-saving, and low-cost manner. The ratiometric signal exhibited a good linear response over the range from 0.1 to 100 μg/mL, with a detection limit of 45.5 ng/mL. In addition to the superior reproducibility and robustness, this apt-REC platform is highly selective (capable of discriminating GA against human serum albumin (HSA)) and applicable to GA assay in serum samples. Due to its low cost, high reproducibility and robustness, simple operation, and high sensitivity and selectivity, this apt-REC platform holds great promise in the POC assay of GA for diabetes management.
Collapse
Affiliation(s)
- Jianwen Wan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Shiqi Li
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Yingming Ma
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Qiong Hu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China; School of Chemistry and Chemical Engineering, Anshun University, Anshun, 561000, PR China.
| | - Yiyi Liang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Zhiwen Liang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Wenxing Feng
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Yiyan Tian
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Mingru Hong
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Zhuojun Ye
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Dongxue Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China; School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, PR China.
| |
Collapse
|
4
|
Hatada M, Pavlidis S, Sode K. Development of a glycated albumin sensor employing dual aptamer-based extended gate field effect transistors. Biosens Bioelectron 2024; 251:116118. [PMID: 38382273 DOI: 10.1016/j.bios.2024.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Glycated albumin (GA), defined as the percentage of serum albumin glycation, is a mid-term glycemic control marker for diabetes. The concentrations of both glycated human serum albumin (GHSA) and total human serum albumin (HSA) are required to calculate GA. Here, we report the development of a GA sensor employing two albumin aptamers: anti-GHSA aptamer which is specific to GHSA and anti-HSA aptamer which recognizes both glycated and non-glycated HSA. We combine these aptamers with extended gate field effect transistors (EGFETs) to realize GA monitoring without the need to pretreat serum samples, and therefore suitable for point of care and home-testing applications. Using anti-GHSA aptamer-immobilized electrodes and EGFETs, we measured GHSA concentrations between 0.1-10 μM within 20 min. The sensor was able to measure GHSA concentration in the presence of BSA for a range of known GA levels (5-29%). With anti-HSA aptamer-immobilized electrodes and EGFETs, we measured total HSA concentrations from 1-17 μM. Furthermore, GHSA and total HSA concentrations of both healthy and diabetic-level samples were determined with GHSA and HSA sensors. The measured GHSA and total HSA concentrations in three samples were used to determine respective GA percentages, and our calculations agreed with GA levels determined by reference methods. Thus, we developed simple and rapid dual aptamer-based EGFET sensors to monitor GA through measuring GHSA and total HSA concentration, without the need for sample pretreatment, a mandatory step in the current standard of enzymatic GA monitoring.
Collapse
Affiliation(s)
- Mika Hatada
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Spyridon Pavlidis
- Department of Electrical & Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Koji Sode
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
5
|
Ghosh Dastidar M, Murugappan K, R Nisbet D, Tricoli A. Simultaneous electrochemical detection of glycated and human serum albumin for diabetes management. Biosens Bioelectron 2024; 246:115876. [PMID: 38039734 DOI: 10.1016/j.bios.2023.115876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Developing highly selective and sensitive biosensors for diabetes management blood glucose monitoring is essential to reduce the health risks associated with diabetes. Assessing the glycation (GA) of human serum albumin (HSA) serves as an indicator for medium-term glycemic control, making it suitable for assessing the efficacy of blood glucose management protocols. However, most biosensors are not capable of simultaneous detection of the relative fraction of GA to HSA in a clinically relevant range. Here, we report an effective miniaturised biosensor architecture for simultaneous electrochemical detection of HSA and GA across relevant concentration ranges. We immobilise DNA aptamers specific for the detection of HSA and GA on gold nanoislands (Au NIs) decorated screen-printed carbon electrodes (SPCEs), and effectively passivate the residual surface sites. We achieve a dynamic detection range between 20 and 60 mg/mL for HSA and 1-40 mg/mL for GA in buffer solutions. The analytical utility of our HSA and GA biosensor architectures are validated in mice serum indicating immediate potential for clinical applications. Since HSA and GA have similar structures, we extensively assess our sensor specificity, observing high selectivity of the HSA and GA sensors against each other and other commonly present interfering molecules in blood such as glucose, glycine, ampicillin, and insulin. Additionally, we determine the glycation ratio, which is a crucial metric for assessing blood glucose management efficacy, in an extensive range representing healthy and poor blood glucose management profiles. These findings provide strong evidence for the clinical potential of our biosensor architecture for point-of-care and self-assessment of diabetes management protocols.
Collapse
Affiliation(s)
- Monalisha Ghosh Dastidar
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Krishnan Murugappan
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, Australian National University, Canberra, ACT, 2601, Australia; CSIRO, Mineral Resources, Private Bag 10, Clayton South, Victoria, 3169, Australia.
| | - David R Nisbet
- The Graeme Clark Institute, The University of Melbourne, Melbourne, Australia; Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Australia; Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, Australia
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, Australian National University, Canberra, ACT, 2601, Australia; Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
6
|
Fenoy GE, Hasler R, Lorenz C, Movilli J, Marmisollé WA, Azzaroni O, Huskens J, Bäuerle P, Knoll W. Interface Engineering of "Clickable" Organic Electrochemical Transistors toward Biosensing Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10885-10896. [PMID: 36791086 PMCID: PMC9982818 DOI: 10.1021/acsami.2c21493] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
"Clickable" organic electrochemical transistors (OECTs) allow the reliable and straightforward functionalization of electronic devices through the well-known click chemistry toolbox. In this work, we study various aspects of the click chemistry-based interface engineering of "clickable" OECTs. First, different channel architectures are investigated, showing that PEDOT-N3 films can properly work as a channel of the transistors. Furthermore, the Cu(I)-catalyzed click reaction of ethynyl-ferrocene is studied under different reaction conditions, endowing the spatial control of the functionalization. The strain-promoted and catalyst-free cycloaddition of a dibenzocyclooctyne-derivatized poly-l-lysine (PLL-DBCO) is also performed on the OECTs and validated by a fiber optic (FO)-SPR setup. The further immobilization of an azido-modified HD22 aptamer yields OECT-based biosensors that are employed for the recognition of thrombin. Finally, their performance is evaluated against previously reported architectures, showing higher density of the immobilized HD22 aptamer, and originating similar KD values and higher maximum signal change upon analyte recognition.
Collapse
Affiliation(s)
- Gonzalo E. Fenoy
- AIT
Austrian Institute of Technology GmbH, Konrad-Lorenz Strasse 24, 3430 Tulln an der Donau, Austria
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)—CONICET, 64 and 113, 1900 La Plata, Argentina
| | - Roger Hasler
- AIT
Austrian Institute of Technology GmbH, Konrad-Lorenz Strasse 24, 3430 Tulln an der Donau, Austria
| | - Christoph Lorenz
- Institute
for Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jacopo Movilli
- Department
of Molecules & Materials, MESA+ Institute, Faculty of Science
and Technology, University of Twente, P.O. Box 217, AE 7500 Enschede, The Netherlands
| | - Waldemar A. Marmisollé
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)—CONICET, 64 and 113, 1900 La Plata, Argentina
| | - Omar Azzaroni
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)—CONICET, 64 and 113, 1900 La Plata, Argentina
- CEST-UNLP
Partner Lab for Bioelectronics (INIFTA), Diagonal 64 y 113, 1900 La Plata, Argentina
| | - Jurriaan Huskens
- Department
of Molecules & Materials, MESA+ Institute, Faculty of Science
and Technology, University of Twente, P.O. Box 217, AE 7500 Enschede, The Netherlands
| | - Peter Bäuerle
- Institute
for Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Wolfgang Knoll
- AIT
Austrian Institute of Technology GmbH, Konrad-Lorenz Strasse 24, 3430 Tulln an der Donau, Austria
- Danube
Private
University, Steiner Landstrasse
124, 3500 Krems, Austria
| |
Collapse
|
7
|
Rescalli A, Varoni EM, Cellesi F, Cerveri P. Analytical Challenges in Diabetes Management: Towards Glycated Albumin Point-of-Care Detection. BIOSENSORS 2022; 12:bios12090687. [PMID: 36140073 PMCID: PMC9496022 DOI: 10.3390/bios12090687] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022]
Abstract
Diabetes mellitus is a worldwide-spread chronic metabolic disease that occurs when the pancreas fails to produce enough insulin levels or when the body fails to effectively use the secreted pancreatic insulin, eventually resulting in hyperglycemia. Systematic glycemic control is the only procedure at our disposal to prevent diabetes long-term complications such as cardiovascular disorders, kidney diseases, nephropathy, neuropathy, and retinopathy. Glycated albumin (GA) has recently gained more and more attention as a control biomarker thanks to its shorter lifespan and wider reliability compared to glycated hemoglobin (HbA1c), currently the “gold standard” for diabetes screening and monitoring in clinics. Various techniques such as ion exchange, liquid or affinity-based chromatography and immunoassay can be employed to accurately measure GA levels in serum samples; nevertheless, due to the cost of the lab equipment and complexity of the procedures, these methods are not commonly available at clinical sites and are not suitable to home monitoring. The present review describes the most up-to-date advances in the field of glycemic control biomarkers, exploring in particular the GA with a special focus on the recent experimental analysis techniques, using enzymatic and affinity methods. Finally, analysis steps and fundamental reading technologies are integrated into a processing pipeline, paving the way for future point-of-care testing (POCT). In this view, we highlight how this setup might be employed outside a laboratory environment to reduce the time from measurement to clinical decision, and to provide diabetic patients with a brand-new set of tools for glycemic self-monitoring.
Collapse
Affiliation(s)
- Andrea Rescalli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
- Correspondence: (A.R.); (E.M.V.)
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy
- Correspondence: (A.R.); (E.M.V.)
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Pietro Cerveri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
8
|
Hoyo J, Bassegoda A, Tzanov T. Electrochemical quantification of biomarker myeloperoxidase. Z NATURFORSCH C 2022; 77:297-302. [PMID: 35191282 DOI: 10.1515/znc-2021-0274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/04/2022] [Indexed: 01/15/2023]
Abstract
Point of care testing (PoCT) devices permit precise and rapid detection of disease-related biomarkers contributing to an early disease diagnosis and administration of an appropriate treatment. The enzyme myeloperoxidase (MPO) is a relevant biomarker for infection and inflammation events assessment; however its direct electrochemical quantification is hindered by the limited accessibility to the iron atom in its active center. Herein, such hindrance of the MPO biomolecule is overcome using the redox mediator 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The charge involved in the electrochemical reduction of the MPO-oxidized ABTS is correlated with the concentration of MPO. The use of ABTS allowed for the electrochemical assessment of a wide range of MPO concentrations (10-1000 nM) including those reported for wound infections, chronic obstructive pulmonary disease and early adverse cardiac events. The developed electroanalytical approach is rapid and inexpensive, and thus suitable for implementation in PoCT devices.
Collapse
Affiliation(s)
- Javier Hoyo
- Department of Chemical Engineering, Grup de Biotecnologia Molecular i Industrial, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222, Terrasa, Spain
- Department of Physical-Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Arnau Bassegoda
- Department of Chemical Engineering, Grup de Biotecnologia Molecular i Industrial, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222, Terrasa, Spain
| | - Tzanko Tzanov
- Department of Chemical Engineering, Grup de Biotecnologia Molecular i Industrial, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222, Terrasa, Spain
| |
Collapse
|
9
|
Gandhi M, Indiramma J, Jayaprakash NS, Kumar AS. An efficient electrochemical sandwich ELISA for urinary human serum albumin-biomarker based on highly redox-active thionine surface-confined MWCNT/PEDOT.PSS platform. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Paul KD, Rani S, Luxami V, Gupta S. A novel target and biomarker benzothiazolyl-naphthalimide probes for precisely and selective detection of serum albumin and anticancer activity. NEW J CHEM 2022. [DOI: 10.1039/d1nj03650e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Benzothiazolyl-1,8-naphthalimide based fluorescence probes were designed and synthesized for selective detection of human serum albumin (HSA) and Bovine serum albumin (BSA) among various bioanalytes and further studied for their in...
Collapse
|
11
|
Li Z, Zhang J, Dai G, Luo F, Chu Z, Geng X, He P, Zhang F, Wang Q. A ratiometric electrochemical biosensor for glycated albumin detection based on enhanced nanozyme catalysis of cuprous oxide-modified reduced graphene oxide nanocomposites. J Mater Chem B 2021; 9:9324-9332. [PMID: 34710204 DOI: 10.1039/d1tb01912k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanozymes have enzyme-like characteristics and nanozyme-based electrochemical sensors have been widely studied for biomarker detection. In this work, cuprous oxide-modified reduced graphene oxide (Cu2O-rGO) nanozyme was prepared by simultaneous reduction of copper chloride and graphene oxide. This Cu2O-rGO nanozyme displayed an outstanding electrocatalytic activity to glucose oxidation and was used as the modified material of a glassy carbon electrode to fabricate an electrochemical ratiometric biosensor for glycated albumin (GA) detection. In this ratiometric biosensor, methylene blue-labeled DNA tripods (MB-tDNA) were adsorbed on the Cu2O-rGO/GCE surface to form a bioinspired electrode (MB-tDNA/Cu2O-rGO/GCE), in which the catalytic sites of Cu2O-rGO were covered by MB-tDNA. In the presence of target GA, GA could be identified by the aptamer sequence contained in MB-tDNA, and a MB-tDNA/GA complex was formed and released into the solution, so the reduced current of MB-tDNA was decreased. Simultaneously, the oxidized current of the outer added glucose was increased since more catalytic sites of Cu2O-rGO nanozyme on the substrate electrode surface were exposed. The ratio of the peak currents of glucose oxidation and methylene blue reduction (IGlu/IMB) was used to monitor the GA level and ultimately improve the accuracy of the method. The electrochemical sensor showed a low detection limit of 0.007 μg mL-1 and a wide linear range from 0.02 to 1500 μg mL-1. The proposed sensor was also successfully used to measure the GA expression level in the blood serum of a diabetic mouse model.
Collapse
Affiliation(s)
- Zhi Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Jingwen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Ge Dai
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Feifei Luo
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Zhaohui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Xing Geng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Pingang He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| |
Collapse
|
12
|
Saengdee P, Thanapitak S, Ongwattanakul S, Srisuwan A, Pankiew A, Thornyanadacha N, Chaisriratanakul W, Jeamsaksiri W, Promptmas C. A silicon nitride ion sensitive field effect transistor‐based immunosensor for determination of urinary albumin. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Pawasuth Saengdee
- Thai Microelectronic Center (TMEC) Wangtakien National Electronics and Computer Technology Center (NECTEC) Muang Chachoengsao Chachoengsao Thailand
| | - Surachoke Thanapitak
- Department of Electrical Engineering Faculty of Engineering Mahidol University Nakhon Pathom Thailand
| | - Songpol Ongwattanakul
- Department of Biomedical Engineering Faculty of Engineering Mahidol University Nakhon Pathom Thailand
| | - Awirut Srisuwan
- Thai Microelectronic Center (TMEC) Wangtakien National Electronics and Computer Technology Center (NECTEC) Muang Chachoengsao Chachoengsao Thailand
| | - Apirak Pankiew
- Thai Microelectronic Center (TMEC) Wangtakien National Electronics and Computer Technology Center (NECTEC) Muang Chachoengsao Chachoengsao Thailand
| | - Nutthaphat Thornyanadacha
- Thai Microelectronic Center (TMEC) Wangtakien National Electronics and Computer Technology Center (NECTEC) Muang Chachoengsao Chachoengsao Thailand
| | - Woraphan Chaisriratanakul
- Thai Microelectronic Center (TMEC) Wangtakien National Electronics and Computer Technology Center (NECTEC) Muang Chachoengsao Chachoengsao Thailand
| | - Wutthinan Jeamsaksiri
- Thai Microelectronic Center (TMEC) Wangtakien National Electronics and Computer Technology Center (NECTEC) Muang Chachoengsao Chachoengsao Thailand
| | - Chamras Promptmas
- Department of Biomedical Engineering Faculty of Engineering Mahidol University Nakhon Pathom Thailand
| |
Collapse
|
13
|
Qiu HY, Hou NN, Shi JF, Liu YP, Kan CX, Han F, Sun XD. Comprehensive overview of human serum albumin glycation in diabetes mellitus. World J Diabetes 2021; 12:1057-1069. [PMID: 34326954 PMCID: PMC8311477 DOI: 10.4239/wjd.v12.i7.1057] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/06/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The presence of excess glucose in blood is regarded as a sweet hurt for patients with diabetes. Human serum albumin (HSA) is the most abundant protein in human plasma, which undergoes severe non-enzymatic glycation with glucose in patients with diabetes; this modifies the structure and function of HSA. Furthermore, the advanced glycation end products produced by glycated HSA can cause pathological damage to the human body through various signaling pathways, eventually leading to complications of diabetes. Many potential glycation sites on HSA have different degrees of sensitivity to glucose concentration. This review provides a comprehensive assessment of the in vivo glycation sites of HSA; it also discusses the effects of glycation on the structure and function of HSA. Moreover, it addresses the relationship between HSA glycation and diabetes complications. Finally, it focuses on the value of non-enzymatic glycation of HSA in diabetes-related clinical applications.
Collapse
Affiliation(s)
- Hong-Yan Qiu
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Ning-Ning Hou
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Jun-Feng Shi
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Yong-Ping Liu
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Cheng-Xia Kan
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Fang Han
- Department of Pathology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Xiao-Dong Sun
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| |
Collapse
|
14
|
Development of an Interdigitated Electrode-Based Disposable Enzyme Sensor Strip for Glycated Albumin Measurement. Molecules 2021; 26:molecules26030734. [PMID: 33572552 PMCID: PMC7866809 DOI: 10.3390/molecules26030734] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 11/18/2022] Open
Abstract
Glycated albumin (GA) is an important glycemic control marker for diabetes mellitus. This study aimed to develop a highly sensitive disposable enzyme sensor strip for GA measurement by using an interdigitated electrode (IDE) as an electrode platform. The superior characteristics of IDE were demonstrated using one microelectrode of the IDE pair as the working electrode (WE) and the other as the counter electrode, and by measuring ferrocyanide/ferricyanide redox couple. The oxidation current was immediately reached at the steady state when the oxidation potential was applied to the WE. Then, an IDE enzyme sensor strip for GA measurement was prepared. The measurement of fructosyl lysine, the protease digestion product of GA, exhibited a high, steady current immediately after potential application, revealing the highly reproducible measurement. The sensitivity (2.8 nA µM−1) and the limit of detection (1.2 µM) obtained with IDE enzyme sensor strip were superior compared with our previously reported sensor using screen printed electrode. Two GA samples, 15 or 30% GA, corresponding to healthy and diabetic levels, respectively, were measured after protease digestion with high resolution. This study demonstrated that the application of an IDE will realize the development of highly sensitive disposable-type amperometric enzyme sensors with high reproducibility.
Collapse
|
15
|
Shen Y, Modha S, Tsutsui H, Mulchandani A. An origami electrical biosensor for multiplexed analyte detection in body fluids. Biosens Bioelectron 2020; 171:112721. [PMID: 33091685 DOI: 10.1016/j.bios.2020.112721] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
We developed an affordable, highly sensitive, and specific paper-based microfluidic platform for fast multiplexed detections of important biomarkers in various body fluids, including urine, saliva, serum, and whole blood. The sensor array consisted of five individual sensing channels with various functionalities that only required a micro liter-sized sample, which was equally split into aliquots by the built-in paper microfluidics. We achieved the individual functionalizations of various bioreceptors by employing the use of wax barriers and 'paper bridges' in an easy and low-cost manner. Pyrene carboxylic acid-modified single-walled carbon nanotubes (PCA/SWNTs) were deposited by quantitative inkjet printing with an optimal 3-dimensional semiconductor density on a paper substrate. Multiple antibodies were immobilized onto the SWNTs surface for highly sensitive and specific field-effect transistor (FET)/chemiresistor (CR) biosensors. We explored the optimal sensing conditions for the paper-based CR biosensor to achieve high sensitivities and specificities towards the target biomarker proteins (human serum albumin (HSA) and human immunoglobulin G (HIgG)) and achieved an ultralow detectable concentration of HSA and HIgG at 1.5 pM. Besides, origami folding was employed to simplify the fabrication process further. The sensing platform described in this work was cost-effective, semi-automated, and user-friendly. It demonstrated the capability of having multiple sensing functions in one paper-based microfluidic sensing platform. It envisioned the potential of a point-of-care device with full-analysis for practical diagnostics in an ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and Deliverable to end-users) fashion for a quick test of targets of interest.
Collapse
Affiliation(s)
- Yu Shen
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Sidharth Modha
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Hideaki Tsutsui
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA; Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, 92521, USA; Stem Cell Center, University of California, Riverside, Riverside, CA, 92521, USA
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, 92521, USA; Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA, 92507, USA.
| |
Collapse
|
16
|
Teymourian H, Barfidokht A, Wang J. Electrochemical glucose sensors in diabetes management: an updated review (2010-2020). Chem Soc Rev 2020; 49:7671-7709. [PMID: 33020790 DOI: 10.1039/d0cs00304b] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While over half a century has passed since the introduction of enzyme glucose biosensors by Clark and Lyons, this important field has continued to be the focus of immense research activity. Extensive efforts during the past decade have led to major scientific and technological innovations towards tight monitoring of diabetes. Such continued progress toward advanced continuous glucose monitoring platforms, either minimal- or non-invasive, holds considerable promise for addressing the limitations of finger-prick blood testing toward tracking glucose trends over time, optimal therapeutic interventions, and improving the life of diabetes patients. However, despite these major developments, the field of glucose biosensors is still facing major challenges. The scope of this review is to present the key scientific and technological advances in electrochemical glucose biosensing over the past decade (2010-present), along with current obstacles and prospects towards the ultimate goal of highly stable and reliable real-time minimally-invasive or non-invasive glucose monitoring. After an introduction to electrochemical glucose biosensors, we highlight recent progress based on using advanced nanomaterials at the electrode-enzyme interface of three generations of glucose sensors. Subsequently, we cover recent activity and challenges towards next-generation wearable non-invasive glucose monitoring devices based on innovative sensing principles, alternative body fluids, advanced flexible materials, and novel platforms. This is followed by highlighting the latest progress in the field of minimally-invasive continuous glucose monitoring (CGM) which offers real-time information about interstitial glucose levels, by focusing on the challenges toward developing biocompatible membrane coatings to protect electrochemical glucose sensors against surface biofouling. Subsequent sections cover new analytical concepts of self-powered glucose sensors, paper-based glucose sensing and multiplexed detection of diabetes-related biomarkers. Finally, we will cover the latest advances in commercially available devices along with the upcoming future technologies.
Collapse
Affiliation(s)
- Hazhir Teymourian
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
17
|
Istif E, Mantione D, Vallan L, Hadziioannou G, Brochon C, Cloutet E, Pavlopoulou E. Thiophene-Based Aldehyde Derivatives for Functionalizable and Adhesive Semiconducting Polymers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8695-8703. [PMID: 31995987 DOI: 10.1021/acsami.9b21058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The pursuit for novelty in the field of (bio)electronics demands for new and better-performing (semi)conductive materials. Since the discovery of poly(3,4-ethylenedioxythiophene) (PEDOT), the ubiquitous golden standard, many studies have focused on its applications but only few on its structural modification and/or functionalization. This lack of structural variety strongly limits the versatility of PEDOT, thus hampering the development of novel PEDOT-based materials. In this paper, we present a short and simple strategy for introducing an aldehyde functionality in thiophene-based semiconducting polymers. First, through a two-step synthesis, an EDOT-aldehyde derivative was prepared and polymerized, both chemically and electrochemically. Next, to overcome the inability of thiophene-aldehyde to be polymerized by any means, we synthesized a trimer in which thiophene-aldehyde is enclosed between two EDOT groups. The successful chemical and electrochemical polymerization of this new trimer is presented. The polymer suspensions were characterized by ultraviolet-visible-near-infrared spectroscopy, while the corresponding films were characterized by Fourier transform infrared and four-point-probe conductivity measurements. Afterward, insoluble semiconducting films were formed by using ethylenediamine as a cross-linker, demonstrating in this way the suitability of the aldehyde group for the easy chemical modification of our material. The efficient reactivity conferred by aldehyde groups was also exploited for grafting fluorescent polyamine nanoparticles on the film surface, creating a fluorescent semiconducting polymer film. The films prepared by electropolymerization, as shown by means of a sonication test, exhibit strong surface adhesion on pristine indium tin oxide (ITO). This property paves the way for the application of these polymers as conductive electrodes for interfacing with living organisms. Thanks to the high reactivity of the aldehyde group, the aldehyde-bearing thiophene-based polymers prepared herein are extremely valuable for numerous applications requiring the facile incorporation of a functional group on thiophene, such as the functionalization with labile molecules (thermo-, photo-, and electro-labile, pH sensitive, etc.).
Collapse
Affiliation(s)
- Emin Istif
- Laboratoire de Chimie des Polymères Organiques (LCPO - UMR 5629), Bordeaux INP , Université de Bordeaux, CNRS , 16 Av. Pey-Berland , Pessac 33607 , France
| | - Daniele Mantione
- Laboratoire de Chimie des Polymères Organiques (LCPO - UMR 5629), Bordeaux INP , Université de Bordeaux, CNRS , 16 Av. Pey-Berland , Pessac 33607 , France
| | - Lorenzo Vallan
- Laboratoire de Chimie des Polymères Organiques (LCPO - UMR 5629), Bordeaux INP , Université de Bordeaux, CNRS , 16 Av. Pey-Berland , Pessac 33607 , France
| | - Georges Hadziioannou
- Laboratoire de Chimie des Polymères Organiques (LCPO - UMR 5629), Bordeaux INP , Université de Bordeaux, CNRS , 16 Av. Pey-Berland , Pessac 33607 , France
| | - Cyril Brochon
- Laboratoire de Chimie des Polymères Organiques (LCPO - UMR 5629), Bordeaux INP , Université de Bordeaux, CNRS , 16 Av. Pey-Berland , Pessac 33607 , France
| | - Eric Cloutet
- Laboratoire de Chimie des Polymères Organiques (LCPO - UMR 5629), Bordeaux INP , Université de Bordeaux, CNRS , 16 Av. Pey-Berland , Pessac 33607 , France
| | - Eleni Pavlopoulou
- Laboratoire de Chimie des Polymères Organiques (LCPO - UMR 5629), Bordeaux INP , Université de Bordeaux, CNRS , 16 Av. Pey-Berland , Pessac 33607 , France
| |
Collapse
|