1
|
Lin Z, Liu H, Richardson JJ, Xu W, Chen J, Zhou J, Caruso F. Metal-phenolic network composites: from fundamentals to applications. Chem Soc Rev 2024. [PMID: 39364569 DOI: 10.1039/d3cs00273j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Composites with tailored compositions and functions have attracted widespread scientific and industrial interest. Metal-phenolic networks (MPNs), which are composed of phenolic ligands and metal ions, are amorphous adhesive coordination polymers that have been combined with various functional components to create composites with potential in chemistry, biology, and materials science. This review aims to provide a comprehensive summary of both fundamental knowledge and advancements in the field of MPN composites. The advantages of amorphous MPNs, over crystalline metal-organic frameworks, for fabricating composites are highlighted, including their mild synthesis, diverse interactions, and numerous intrinsic functionalities. The formation mechanisms and state-of-the-art synthesis strategies of MPN composites are summarized to guide their rational design. Subsequently, a detailed overview of the chemical interactions and structure-property relationships of composites based on different functional components (e.g., small molecules, polymers, biomacromolecules) is provided. Finally, perspectives are offered on the current challenges and future directions of MPN composites. This tutorial review is expected to serve as a fundamental guide for researchers in the field of metal-organic materials and to provide insights and avenues to enhance the performance of existing functional materials in applications across diverse fields.
Collapse
Affiliation(s)
- Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Hai Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Joseph J Richardson
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Wanjun Xu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
2
|
Li B, Pang C, Chen S, Hong L. Long-Lasting Antibacterial PDMS Surfaces Constructed from Photocuring of End-Functionalized Polymers. Macromol Rapid Commun 2024; 45:e2400170. [PMID: 38936823 DOI: 10.1002/marc.202400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/22/2024] [Indexed: 06/29/2024]
Abstract
A challenge remains in the development of anti-infectious coatings for the inert surfaces of biomedical devices that are prone to bacterial colonization and biofilm formation. Here, a facile photocuring method to construct functionalized polymeric coatings on inert polydimethylsiloxane (PDMS) surfaces, is developed. Using atom transfer radical polymerization (ATRP) initiator bearing thymol group, hydrophilic DMAEMA and benzophenone (BP)-containing monomers are copolymerized to form polymers with end functional groups. An end-functionalized biocidal coating is then constructed on the inert PDMS surface in one step using a photocuring reaction. The functionalized PDMS surfaces show excellent antibacterial and antifouling properties, are capable of completely eradiating MRSA within ≈6 h, and effectively inhibit the growth of biofilms. In addition, they have good stability and long-lasting antibacterial activity in body fluid environments such as 0.9% saline and urine. According to bladder model experiments, the catheter's lifespan can be extended from ≈7 to 35 days by inhibiting the growth and migration of bacteria along its inner surface. The photocuring technique is therefore very promising in terms of surface functionalization of inert biomedical devices in order to minimize the spread of infection.
Collapse
Affiliation(s)
- Biao Li
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Chuming Pang
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Shiguo Chen
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Liangzhi Hong
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
3
|
Mishra A, Aggarwal A, Khan F. Medical Device-Associated Infections Caused by Biofilm-Forming Microbial Pathogens and Controlling Strategies. Antibiotics (Basel) 2024; 13:623. [PMID: 39061305 PMCID: PMC11274200 DOI: 10.3390/antibiotics13070623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Hospital-acquired infections, also known as nosocomial infections, include bloodstream infections, surgical site infections, skin and soft tissue infections, respiratory tract infections, and urinary tract infections. According to reports, Gram-positive and Gram-negative pathogenic bacteria account for up to 70% of nosocomial infections in intensive care unit (ICU) patients. Biofilm production is a main virulence mechanism and a distinguishing feature of bacterial pathogens. Most bacterial pathogens develop biofilms at the solid-liquid and air-liquid interfaces. An essential requirement for biofilm production is the presence of a conditioning film. A conditioning film provides the first surface on which bacteria can adhere and fosters the growth of biofilms by creating a favorable environment. The conditioning film improves microbial adherence by delivering chemical signals or generating microenvironments. Microorganisms use this coating as a nutrient source. The film gathers both inorganic and organic substances from its surroundings, or these substances are generated by microbes in the film. These nutrients boost the initial growth of the adhering bacteria and facilitate biofilm formation by acting as a food source. Coatings with combined antibacterial efficacy and antifouling properties provide further benefits by preventing dead cells and debris from adhering to the surfaces. In the present review, we address numerous pathogenic microbes that form biofilms on the surfaces of biomedical devices. In addition, we explore several efficient smart antiadhesive coatings on the surfaces of biomedical device-relevant materials that manage nosocomial infections caused by biofilm-forming microbial pathogens.
Collapse
Affiliation(s)
- Akanksha Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India;
| | - Ashish Aggarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India;
| | - Fazlurrahman Khan
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
4
|
Tian G, Wang J. Biodegradable photo-crosslinked polycaprolactone/polydopamine elastomers with excellent light driven programmable shape memory and chemical degradation properties. Int J Biol Macromol 2024; 264:129768. [PMID: 38296130 DOI: 10.1016/j.ijbiomac.2024.129768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 03/10/2024]
Abstract
Fabrication of biodegradable shape memory polymer with remotely controllable shape actuation is of great significance in the biomedical field but remains challenging. Herein, we present a simple strategy to fabricate a monolayer-based stretchable and mechanically robust polycaprolactone/polydopamine elastomer via efficient thiol-ene click chemistry. The resultant elastomers exhibit desirable photothermal transfer efficiency and can enable rapid temperature increase over the melting temperature of polymeric matrix, and quantitative results demonstrate that the crosslinked film exhibited excellent shape memory properties with shape fixity (Rf) and shape recovery ratios (Rr) approaching 92.3 % and 95.6 %, respectively. Combined with photo stimuli, anisotropic polymer chain relaxation of the prestretched film can generate asymmetric contractions and eventually give rise to ut out-of-plane bending actuations upon photo stimulation, meanwhile, numerical simulation reveals the interaction mechanism of light with film. Beyond this, we further demonstrate that the bending angle is correlated with the parameters of prestretch strain, film thickness as well as irradiation time, and the maximum value can reach 158° with prestretch strain of 200 % and film thickness of 0.3 mm. In particular, the bent structures could be reversibly deformed into plane state via photo-directed corresponding opposite surfaces. Remarkably, the in vitro degradation properties of the elastomers on PBS-T buffer solutions demonstrated that the degradation was composed of induction stage and acceleration stage. This work will pave way for designing biodegradable light-induced shape memory materials toward biomedical device fields and so on.
Collapse
Affiliation(s)
- Guangming Tian
- Department of Polymer Materials and Engineering, School of Materials and Engineering, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Jingxia Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Tidim G, Guzel M, Soyer Y, Erel-Goktepe I. Layer-by-layer assembly of chitosan/alginate thin films containing Salmonella enterica bacteriophages for antibacterial applications. Carbohydr Polym 2024; 328:121710. [PMID: 38220322 DOI: 10.1016/j.carbpol.2023.121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/16/2024]
Abstract
The emergence of antibiotic resistant bacteria and the ineffectiveness of routine treatments inspired development of alternatives to biocides for antibacterial applications. Bacteriophages are natural predators of bacteria and are promising alternatives to antibiotics. This study presents fabrication of a Salmonella enterica bacteriophage containing ultra-thin multilayer film composed of chitosan and alginate and demonstrates its potential as an antibacterial coating for food packaging applications. Chitosan/alginate film was prepared through layer-by-layer (LbL) self-assembly technique. A bacteriophage, which belongs to Siphoviridae morphotype (MET P1-001_43) and infects Salmonella enterica subsp. enterica serovar Enteritidis (Salmonella Enteritidis), was post-loaded into chitosan/alginate film. The LbL growth, stability, and surface morphology of chitosan/alginate film as well as phage deposition into multilayers were analysed through ellipsometry, QCM-D and AFM techniques. The bacteriophage containing multilayers showed antibacterial activity at pH 7.0. In contrast, anti-bacterial activity was not observed at acidic conditions. We showed that wrapping a Salmonella Enteritidis contaminated chicken piece with aluminium foil whose surface was modified with phage loaded chitosan/alginate multilayers decreased the number of colonies on the chicken meat, and it was as effective as treating the meat directly with phage solution.
Collapse
Affiliation(s)
- Gökçe Tidim
- Department of Chemistry, Middle East Technical University, 06800 Cankaya, Ankara, Turkey
| | - Mustafa Guzel
- Department of Biotechnology, Middle East Technical University, 06800 Cankaya, Ankara, Turkey; Department of Food Engineering, Hitit University, 19030, Corum, Turkey
| | - Yesim Soyer
- Department of Biotechnology, Middle East Technical University, 06800 Cankaya, Ankara, Turkey; Department of Food Engineering, Middle East Technical University, 06800 Cankaya, Ankara, Turkey
| | - Irem Erel-Goktepe
- Department of Chemistry, Middle East Technical University, 06800 Cankaya, Ankara, Turkey; Department of Biotechnology, Middle East Technical University, 06800 Cankaya, Ankara, Turkey; Center of Excellence in Biomaterials and Tissue Eng. Middle East Technical University, 06800 Cankaya, Ankara, Turkey.
| |
Collapse
|
6
|
Dai L, Fan X. Fabrication of reversible bacteria-killing and bacteria-releasing cotton fabrics with anti-bacteria adhesion capacity for potential application in reusable medical materials. Int J Biol Macromol 2024; 260:129510. [PMID: 38246472 DOI: 10.1016/j.ijbiomac.2024.129510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Nowadays, more and more smart antibacterial materials have been prepared to meet some specific application area, and most of these materials have complex fabrication processes or incompatible biocompatibility. In this paper, a smart monomer that can switch between the form of quaternary ammonium salt and zwitterionic betaine was prepared and grafted onto cotton fabric. This finished cotton was smart too, it had nice antibacterial performance (99.89 % for E. coli and 99.97 % for S. aureus) in the form of quaternary ammonium salt, and it could release most of the attached bacteria when transferred to the form of zwitterionic betaine in PBS, and the form of zwitterionic betaine could converse back to the state of quaternary ammonium salt in HAC. Simultaneously, it was biocompatible in the form of zwitterionic betaine form. Furthermore, this smart material had nice function reproducibility after repeated transformations. In general, the smart antibacterial cotton could switch between bacteria-killing and bacteria-releasing reversibly, and had good biocompatibility and nice reproducibility, showing a potential application in reusable medical protective materials.
Collapse
Affiliation(s)
- Li Dai
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xuerong Fan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, PR China.
| |
Collapse
|
7
|
Imbia AS, Ounkaew A, Mao X, Zeng H, Liu Y, Narain R. Tannic Acid-Based Coatings Containing Zwitterionic Copolymers for Improved Antifouling and Antibacterial Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38330259 DOI: 10.1021/acs.langmuir.3c03237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The prevention of biofilm formation on medical devices has become highly challenging in recent years due to its resistance to bactericidal agents and antibiotics, ultimately resulting in chronic infections to medical devices. Therefore, developing inexpensive, biocompatible, and covalently bonded coatings to combat biofilm formation is in high demand. Herein, we report a coating fabricated from tannic acid (TA) as an adhesive and a reducing agent to graft the zwitterionic polymer covalently in a one-step method. Subsequently, silver nanoparticles (AgNPs) are generated in situ to develop a coating with antifouling and antibacterial properties. To enhance the antifouling property and biocompatibility of the coating, the bioinspired zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) was copolymerized with 2-aminoethyl methacrylamide hydrochloride (AEMA) using conventional free-radical polymerization. AEMA moieties containing amino groups were used to facilitate the conjugation of the copolymer with quinone groups on TA through the Michael addition reaction. Three copolymers with different ratios of monomers were synthesized to understand their impacts on fouling resistance: PMPC100, p(MPC80-st-AEMA20), and p(MPC90-st-AEMA10). To impart antibacterial properties to the surface, AgNPs were formed in situ, utilizing the unreacted quinone groups on TA, which can reduce the silver ions. The successful coating of TA and copolymer onto the surfaces was confirmed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and its excellent wettability was verified by the water contact angle (CA). Furthermore, the functionalized coatings showed antibacterial properties against E. coli and S. aureus and remarkably decreased the adhesion of the BSA protein. The surfaces can also prevent the adhesion of bacteria cells, as confirmed by the inhibition zone test. In addition, they showed negligible cytotoxicity to normal human lung fibroblast cells (MRC-5). The as-prepared coatings are potentially valuable for biomedical applications.
Collapse
Affiliation(s)
- Adel S Imbia
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Artjima Ounkaew
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xiaohui Mao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
8
|
Wu Z, Huang T, Sathishkumar G, He X, Wu H, Zhang K, Rao X, Kang ET, Xu L. Phytic Acid-Promoted Exfoliation of Black Phosphorus Nanosheets for the Fabrication of Photothermal Antibacterial Coatings. Adv Healthc Mater 2024; 13:e2302058. [PMID: 37972607 DOI: 10.1002/adhm.202302058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/10/2023] [Indexed: 11/19/2023]
Abstract
Medical device-associated infections (MDAI) caused by planktonic pathogens are of serious concern worldwide due to the emergence of drug resistance resulting from continuous overuse or misuse of antibiotics. Therefore, the design of non-antibiotics-based treatment for MDAI is of crucial importance. Black phosphorus (BP), a novel 2D material, has recently received much attention owing to its remarkable physical, chemical, mechanical, and functional features. However, the intricacy of the fabrication process has severely hampered the development of BP in prospective applications. In this study, a simple and eco-friendly liquid-phase exfoliation method of phytic acid (PA)-promoted exfoliation of BP nanosheets (PA@BP NSs) is developed for their potential application in antibacterial photothermal therapy. To impart the antimicrobial effects, the polydimethylsiloxane surfaces are functionalized with quaternized polymer (polyquaternium-2 or PQ) and PA@BP NSs, leading to the formation of PA-BP-PQ composite coatings. In addition to the contact-killing antibacterial effect of the cationic PQ, the PA-BP-PQ coating exhibits remarkable near-infrared irradiation-triggered bactericidal effects with low cytotoxicity both in vitro and in vivo. This study proposes a simple liquid-phase exfoliation technique for the fabrication of BP NSs and a one-step approach for the construction of PA-BP-PQ composite coatings for bi-modal (contact-killing and photothermal) antimicrobial therapy.
Collapse
Affiliation(s)
- Ziyi Wu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Tao Huang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Gnanasekar Sathishkumar
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Xiaodong He
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Huajun Wu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Kai Zhang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Xi Rao
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - En-Tang Kang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, 117576, Singapore
| | - Liqun Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China
| |
Collapse
|
9
|
Hassani M, Kamankesh M, Rad-Malekshahi M, Rostamizadeh K, Rezaee F, Haririan I, Daghighi SM. Biomaterials coated with zwitterionic polymer brush demonstrated significant resistance to bacterial adhesion and biofilm formation in comparison to brush coatings incorporated with antibiotics. Colloids Surf B Biointerfaces 2024; 234:113671. [PMID: 38039822 DOI: 10.1016/j.colsurfb.2023.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
A critical problem with the use of biomaterial implants is associated with bacterial adhesion on the surface of implants and in turn the biofilm formation. Among different strategies that have been reported to resolve this dilemma, surface design combined with both antiadhesive and antimicrobial properties has proven to be highly effective. Physiochemical properties of polymer brush coatings possess non-adhesive capability against bacterial adhesion and create a niche for further functionalization. The current study aims to evaluate the effect of antibiotics incorporated into the polymer brush on bacterial adhesion and biofilm formation. Brushes made of zwitterionic polymers were synthesized, functionalized with vancomycin via both physical and chemical conjugation, and grafted onto the silicon rubber surfaces. Antibacterial and antiadhesive measurements of designed coated biomaterials were mediated through the use of a parallel plate flow chamber against biofilm growth developed by Staphylococcus aureus and Escherichia coli over a period of 24 h. The analysis of biofilm growth on designed coated biomaterials showed that the pristine coated zwitterionic brushes are significantly resistant to bacterial adhesion and biofilm formation but not in the polymer brush coating incorporated with antibiotics.
Collapse
Affiliation(s)
- Maryam Hassani
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Kamankesh
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kobra Rostamizadeh
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Farhad Rezaee
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mojtaba Daghighi
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Vojnits K, Mohseni M, Parvinzadeh Gashti M, Nadaraja AV, Karimianghadim R, Crowther B, Field B, Golovin K, Pakpour S. Advancing Antimicrobial Textiles: A Comprehensive Study on Combating ESKAPE Pathogens and Ensuring User Safety. MATERIALS (BASEL, SWITZERLAND) 2024; 17:383. [PMID: 38255551 PMCID: PMC10817529 DOI: 10.3390/ma17020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Antibiotic-resistant bacteria, ESKAPE pathogens, present a significant and alarming threat to public health and healthcare systems. This study addresses the urgent need to combat antimicrobial resistance by exploring alternative ways to reduce the health and cost implications of infections caused by these pathogens. To disrupt their transmission, integrating antimicrobial textiles into personal protective equipment (PPE) is an encouraging avenue. Nevertheless, ensuring the effectiveness and safety of these textiles remains a persistent challenge. To achieve this, we conduct a comprehensive study that systematically compares the effectiveness and potential toxicity of five commonly used antimicrobial agents. To guide decision making, a MULTIMOORA method is employed to select and rank the optimal antimicrobial textile finishes. Through this approach, we determine that silver nitrate is the most suitable choice, while a methoxy-terminated quaternary ammonium compound is deemed less favorable in meeting the desired criteria. The findings of this study offer valuable insights and guidelines for the development of antimicrobial textiles that effectively address the requirements of effectiveness, safety, and durability. Implementing these research outcomes within the textile industry can significantly enhance protection against microbial infections, contribute to the improvement of public health, and mitigate the spread of infectious diseases.
Collapse
Affiliation(s)
- Kinga Vojnits
- School of Engineering, University of British Columbia, Kelowna, BC V6T 1Z2, Canada; (K.V.); (R.K.); (B.C.)
| | - Majid Mohseni
- Research and Development Laboratory, PRE Labs, Inc., Kelowna, BC V1X 7Y5, Canada;
| | | | - Anupama Vijaya Nadaraja
- Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada; (A.V.N.); (K.G.)
| | - Ramin Karimianghadim
- School of Engineering, University of British Columbia, Kelowna, BC V6T 1Z2, Canada; (K.V.); (R.K.); (B.C.)
| | - Ben Crowther
- School of Engineering, University of British Columbia, Kelowna, BC V6T 1Z2, Canada; (K.V.); (R.K.); (B.C.)
| | - Brad Field
- PRE Labs, Inc., Kelowna, BC V1X 7Y5, Canada;
| | - Kevin Golovin
- Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada; (A.V.N.); (K.G.)
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, BC V6T 1Z2, Canada; (K.V.); (R.K.); (B.C.)
| |
Collapse
|
11
|
Feng Y, Su L, Zhang Z, Chen Y, Younis MR, Chen D, Xu J, Dong C, Que Y, Fan C, Jiao Y, Zhu H, Chang J, Dong Z, Yang C. pH-Responsive Wound Dressing Based on Biodegradable CuP Nanozymes for Treating Infected and Diabetic Wounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:95-110. [PMID: 38157482 DOI: 10.1021/acsami.3c12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Nanozymes, emerging nanomaterials for wound healing, exhibit enzyme-like activity to modulate the levels of reactive oxygen species (ROS) at wound sites. Yet, the solo regulation of endogenous ROS by nanozymes often falls short, particularly in chronic refractory wounds with complex and variable pathological microenvironments. In this study, we report the development of a multifunctional wound dressing integrating a conventional alginate (Alg) hydrogel with a newly developed biodegradable copper hydrogen phosphate (CuP) nanozyme, which possesses good near-infrared (NIR) photothermal conversion capabilities, sustained Cu ion release ability, and pH-responsive peroxidase/catalase-mimetic catalytic activity. When examining acute infected wounds characterized by a low pH environment, the engineered Alg/CuP composite hydrogels demonstrated high bacterial eradication efficacy against both planktonic bacteria and biofilms, attributed to the combined action of catalytically generated hydroxyl radicals and the sustained release of Cu ions. In contrast, when applied to chronic diabetic wounds, which typically have a high pH environment, these composite hydrogels exhibit significant angiogenic performance. This is driven by the provision of catalytically generated dissolved oxygen and a beneficial supplement of Cu ions released from the degradable CuP nanozyme. Further, a mild thermal effect induced by NIR irradiation amplifies the catalytic activities and bioactivity of Cu ions, thereby enhancing the healing process of both infected and diabetic wounds. Our study validates that the synergistic integration of photothermal effects, catalytic activity, and released Cu ions can concurrently yield high antibacterial efficiency and tissue regenerative activity, rendering it highly promising for various clinical applications in wound healing.
Collapse
Affiliation(s)
- Yanping Feng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- College of Mechanical Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Lefeng Su
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Zhaowenbin Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yanxin Chen
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Muhammad Rizwan Younis
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Dongmin Chen
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Jinfeng Xu
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Chenle Dong
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yumei Que
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Chen Fan
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yiren Jiao
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Hong Zhu
- National Key Clinical Specialty (Wound Healing), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiang Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Zhihong Dong
- College of Mechanical Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Chen Yang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- National Key Clinical Specialty (Wound Healing), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
12
|
Dai L, Yuan J, Xu J, Lou J, Fan X. Reversible bacteria-killing and bacteria-releasing cotton fabric with anti-bacteria adhesion ability for potential sustainable protective clothing applications. Int J Biol Macromol 2023; 253:126580. [PMID: 37659495 DOI: 10.1016/j.ijbiomac.2023.126580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Multifunctional antibacterial surfaces are playing an essential role in various areas. Smart antibacterial materials equipped with switchable "bacteria-killing" and "bacteria-releasing" abilities have been created by scientists. However, most of them are either biologically incompatible, or complex fabricating procedures, or cannot prevent themselves from being attached by bacteria. In this work, a double-layer smart antibacterial surface was created easily by simple surface initiate atom transfer radical polymerization: the upper layer PSBMA provides anti-bacteria adhesion capacity, the NCl bond can show bacteria-killing ability and the under layer PNIPAM can exhibit bacteria-releasing property. Remarkably, the NCl bond can interconvert with the NH bond easily, which allows switching between bacteria-killing and bacteria-releasing. As a result, the functional cotton fabrics can resist about 99.66 % of bacteria attaching, kill nearly 100 % of attached bacteria after 5 min contacting and release about 99.02 % of the formerly attached bacteria. Furthermore, the functional cotton fabric kept excellent anti-bacteria adhesion ability (about 99.27 %) and bacteria-releasing capacity (about 98.30 %) after 9 cycles of re-chlorination. In general, a reversible "bacteria-killing" and "bacteria-releasing" cotton fabric was fabricated with well anti-bacteria adhesion capacity in a simple way, and this smart multifunctional cotton fabric shows a great potential application in reusable protective clothing.
Collapse
Affiliation(s)
- Li Dai
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Jiugang Yuan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Jin Xu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Jiangfei Lou
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xuerong Fan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, PR China.
| |
Collapse
|
13
|
Kang X, Yang X, He Y, Guo C, Li Y, Ji H, Qin Y, Wu L. Strategies and materials for the prevention and treatment of biofilms. Mater Today Bio 2023; 23:100827. [PMID: 37859998 PMCID: PMC10582481 DOI: 10.1016/j.mtbio.2023.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Biofilms are aggregates of organized microbial growth that function as barriers and create a stable internal environment for cell survival. The bacteria in the biofilms exhibit characteristics that are quite different from the planktonic bacteria, such as strong resistance to antibiotics and other bactericides, getting out of host immunity, and developing in harsh environments, which all contribute to the persistent and intractable treatment. Hence, there is an urgent need to develop novel materials and strategies to combat biofilms. However, most of the reviews on anti-biofilms published in recent years are based on specific fields or materials. Microorganisms are ubiquitous, except in the context of medical and health issues; however, biofilms exert detrimental effects on the advancement and progress of various fields. Therefore, this review aims to provide a comprehensive summary of effective strategies and methodologies applicable across all industries. Firstly, the process of biofilms formation was introduced to enhance our comprehension of the "enemy". Secondly, strategies to intervene in the important links of biofilms formation were discussed, taking timely action during the early weak stages of the "enemy". Thirdly, treatment strategies for mature biofilms were summarized to deal with biofilms that break through the defense line. Finally, several substances with antibacterial properties were presented. The review concludes with the standpoint of the author about potential developments of anti-biofilms strategies. This review may help researchers quickly understand the research progress and challenges in the field of anti-biofilms to design more efficient methods and strategies to combat biofilms.
Collapse
Affiliation(s)
- Xiaoxia Kang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Xiaoxiao Yang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Yue He
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Conglin Guo
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Yuechen Li
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Haiwei Ji
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Yuling Qin
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Li Wu
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| |
Collapse
|
14
|
Li W, Chen H, Cai J, Wang M, Zhou X, Ren L. Poly(pentahydropyrimidine)‐Based Hybrid Hydrogel with Synergistic Antibacterial and Pro‐Angiogenic Ability for the Therapy of Diabetic Foot Ulcers. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202303147] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 08/16/2024]
Abstract
AbstractBacterial infection and impaired angiogenesis make the treatment of diabetic foot ulcers (DFU) extremely challenging. Cationic polymers are expected to treat infected wounds due to their excellent antibacterial properties, but still, it is difficult to meet the therapeutic needs of pro‐angiogenesis and anti‐infections due to their simple construction units and outmoded synthesis methods. Herein, a cationic poly(pentahydropyrimidine) (PPHP) library with strong modifiability is synthesized to construct a hybrid hydrogel with synergistic therapeutic effects for the treatment of infected DFUs. It is found that the as‐synthesized hybrid hydrogel can up‐regulate angiogenesis‐related gene (HIF‐1, VEGF, and bFGFR/bFGF) expression and targeted disruption of bacterial cell membranes, which finally promotes the healing of infected DFU (wound healing rate: 92%) within 10 days. This hydrogel, thus, holds great promise in developing new strategies to significantly enhance the treatment of DFU and other bacterial‐infected pathological diagnoses.
Collapse
Affiliation(s)
- Wenlong Li
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province Research Center of Biomedical Engineering of Xiamen Department of Biomaterials College of Materials Xiamen University 422 Siming Nan Road Xiamen 361005 China
| | - Haoxiang Chen
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province Research Center of Biomedical Engineering of Xiamen Department of Biomaterials College of Materials Xiamen University 422 Siming Nan Road Xiamen 361005 China
| | - Jingfeng Cai
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province Research Center of Biomedical Engineering of Xiamen Department of Biomaterials College of Materials Xiamen University 422 Siming Nan Road Xiamen 361005 China
| | - Miao Wang
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province Research Center of Biomedical Engineering of Xiamen Department of Biomaterials College of Materials Xiamen University 422 Siming Nan Road Xiamen 361005 China
| | - Xi Zhou
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province Research Center of Biomedical Engineering of Xiamen Department of Biomaterials College of Materials Xiamen University 422 Siming Nan Road Xiamen 361005 China
| | - Lei Ren
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province Research Center of Biomedical Engineering of Xiamen Department of Biomaterials College of Materials Xiamen University 422 Siming Nan Road Xiamen 361005 China
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
15
|
Cao W, Lin Z, Zheng D, Zhang J, Heng W, Wei Y, Gao Y, Qian S. Metal-organic gels: recent advances in their classification, characterization, and application in the pharmaceutical field. J Mater Chem B 2023; 11:10566-10594. [PMID: 37916468 DOI: 10.1039/d3tb01612a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Metal-organic gels (MOGs) are a type of functional soft substance with a three-dimensional (3D) network structure and solid-like rheological behavior, which are constructed by metal ions and bridging ligands formed under the driving force of coordination interactions or other non-covalent interactions. As the homologous substances of metal-organic frameworks (MOFs) and gels, they exhibit the potential advantages of high porosity, flexible structure, and adjustable mechanical properties, causing them to attract extensive research interest in the pharmaceutical field. For instance, MOGs are often used as excellent vehicles for intelligent drug delivery and programmable drug release to improve the clinical curative effect with reduced side effects. Also, MOGs are often applied as advanced biomedical materials for the repair and treatment of pathological tissue and sensitive detection of drugs or other molecules. However, despite the vigorous research on MOGs in recent years, there is no systematic summary of their applications in the pharmaceutical field to date. The present review systematically summarize the recent research progress on MOGs in the pharmaceutical field, including drug delivery systems, drug detection, pharmaceutical materials, and disease therapies. In addition, the formation principles and classification of MOGs are complemented and refined, and the techniques for the characterization of the structures/properties of MOGs are overviewed in this review.
Collapse
Affiliation(s)
- Wei Cao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Zezhi Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Daoyi Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| |
Collapse
|
16
|
Mo F, Zhong S, You T, Lu J, Sun D. Aptamer and DNAzyme-Functionalized Cu-MOF Hybrid Nanozymes for the Monitoring and Management of Bacteria-Infected Wounds. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37921634 DOI: 10.1021/acsami.3c10682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Metal-organic frameworks (MOFs) with peroxidase (POD)-like activity have great potential for combating drug-resistant bacterial infections. However, the use of POD-like activities is severely limited by low oxygen levels and high levels of glutathione (GSH) within the microenvironment of bacterial infection. Herein, G-quadruplex/hemin DNAzyme-aptamer probes and tannic acid-chelated Au nanoparticle (Au-TA)-decorated Cu-based MOF nanosheets (termed GATC) with triple-enzyme activities were developed for visual detection and efficient antibacterial therapy. First, the monometallic MOFs (Cu-ZIF) showed the best catalytic and loading capacity performance compared with the bimetallic MOFs (CoCu-ZIF and ZnCu-ZIF). Then, Cu-MOFs, Au-TA, and DNAzyme improve the POD-like activity to generate more hydroxyl radicals (•OH) to kill bacteria. GATC can bind to bacteria through aptamer recognition, increasing the bacterial surface contact area for efficient antibacterial activity. GATC can decompose H2O2 into O2 to alleviate hypoxia and improve the microenvironment due to its catalase (CAT)-like activity. In addition, GATC exhibited GSH peroxidase-like activity, which can avoid the loss of •OH and result in bacterial death more easily. Compared with previous studies, GATC exhibited extraordinary bactericidal ability at an extremely low dosage of 3 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA). Notably, the GATC-catalyzed chromogenic reaction could accurately monitor the MRSA infection treatment process. Overall, this work could establish a therapeutic platform for the monitoring and management of bacteria-infected wounds.
Collapse
Affiliation(s)
- Fayin Mo
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, Guangdong, China
| | - Sheng Zhong
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Tianhui You
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, Guangdong, China
| |
Collapse
|
17
|
Lin Y, Lu K, Zhang H, Zou Y, Chen H, Zhang Y, Yu Q. Multifunctional coatings based on candle soot with photothermal bactericidal property and desired biofunctionality. J Colloid Interface Sci 2023; 649:986-995. [PMID: 37392688 DOI: 10.1016/j.jcis.2023.06.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/11/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
Functional coatings with desired bioactivities are required for various biomedical applications. Candle soot (CS) composed of carbon nanoparticles has attracted significant attention as a versatile component of functional coatings because of its unique physical and structural characteristics. However, the application of CS-based coatings in the biomedical field is still limited due to the lack of modification methods that can endow them with specific biofunctionality. Herein, a facile and widely applicable approach to fabricate multifunctional CS-based coatings is developed by grafting functional polymer brushes on the silica-stabilized CS. The resulting coatings not only exhibited excellent near-infrared-activated biocidal ability (the killing efficiency was over 99.99 %) due to the inherent photothermal property of CS but also showed desired biofunctions (such as antifouling property or controllable bioadhesion; the repelling efficiency and bacterial release ratio were nearly 90 %) originated from the grafted polymers. Moreover, these biofunctions were enhanced by the nanoscale structure of CS. Because the deposition of CS is a simple substrate-independent process while the grafting of polymer brushes via surface-initiated polymerization is applicable to a wide range of vinyl monomers, the proposed approach can be potentially used for the fabrication of multifunctional coatings and would extend the applications of CS in the biomedical field.
Collapse
Affiliation(s)
- Yuancheng Lin
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, PR China; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Haixin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, PR China.
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
18
|
He X, Wu H, Wang Y, Xiang Y, Zhang K, Rao X, Kang E, Xu L. Bimodal Antimicrobial Surfaces of Phytic Acid-Prussian Blue Nanoparticles-Cationic Polymer Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300354. [PMID: 37026671 PMCID: PMC10238204 DOI: 10.1002/advs.202300354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/07/2023] [Indexed: 06/04/2023]
Abstract
Surface modification plays a pivotal role in tailoring the functionalities of a solid material. Introduction of antimicrobial function on material surfaces can provide additional protection against life-threatening bacterial infections. Herein, a simple and universal surface modification method based on surface adhesion and electrostatic interaction of phytic acid (PA) is developed. PA is first functionalized with Prussian blue nanoparticles (PB NPs) via metal chelation and then conjugates with cationic polymers (CPs) through electrostatic interaction. With the aid of surface adherent PA and gravitation effect, the as-formed PA-PB-CP network aggregates are deposited on the solid materials in a substrate-independent manner. Synergistic bactericidal effects of "contact-killing" induced by the CPs and localized photothermal effect caused by the PB NPs endow the substrates with strong antibacterial performance. Membrane integrity, enzymatic activity, and metabolism function of the bacteria are disturbed in contact with the PA-PB-CP coating under near-infrared (NIR) irradiation. The PA-PB-CP modified biomedical implant surfaces exhibit good biocompatibility and synergistic antibacterial effect under NIR irradiation, and eliminate the adhered bacteria both in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaodong He
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean EnergiesSchool of Materials and EnergySouthwest UniversityChongqing400715P. R. China
| | - HuaJun Wu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean EnergiesSchool of Materials and EnergySouthwest UniversityChongqing400715P. R. China
| | - Yan Wang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean EnergiesSchool of Materials and EnergySouthwest UniversityChongqing400715P. R. China
| | - Yunjie Xiang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean EnergiesSchool of Materials and EnergySouthwest UniversityChongqing400715P. R. China
| | - Kai Zhang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean EnergiesSchool of Materials and EnergySouthwest UniversityChongqing400715P. R. China
| | - Xi Rao
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean EnergiesSchool of Materials and EnergySouthwest UniversityChongqing400715P. R. China
| | - En‐Tang Kang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean EnergiesSchool of Materials and EnergySouthwest UniversityChongqing400715P. R. China
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeKent Ridge117576Singapore
| | - Liqun Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean EnergiesSchool of Materials and EnergySouthwest UniversityChongqing400715P. R. China
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan ProvinceCollege of Chemistry and Chemical EngineeringHainan Normal UniversityHaikou571158P. R. China
| |
Collapse
|
19
|
Iskandar K, Pecastaings S, LeGac C, Salvatico S, Feuillolay C, Guittard M, Marchin L, Verelst M, Roques C. Demonstrating the In Vitro and In Situ Antimicrobial Activity of Oxide Mineral Microspheres: An Innovative Technology to Be Incorporated into Porous and Nonporous Materials. Pharmaceutics 2023; 15:pharmaceutics15041261. [PMID: 37111747 PMCID: PMC10144421 DOI: 10.3390/pharmaceutics15041261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The antimicrobial activity of surfaces treated with zinc and/or magnesium mineral oxide microspheres is a patented technology that has been demonstrated in vitro against bacteria and viruses. This study aims to evaluate the efficiency and sustainability of the technology in vitro, under simulation-of-use conditions, and in situ. The tests were undertaken in vitro according to the ISO 22196:2011, ISO 20473:2013, and NF S90-700:2019 standards with adapted parameters. Simulation-of-use tests evaluated the robustness of the activity under worst-case scenarios. The in situ tests were conducted on high-touch surfaces. The in vitro results show efficient antimicrobial activity against referenced strains with a log reduction of >2. The sustainability of this effect was time-dependent and detected at lower temperatures (20 ± 2.5 °C) and humidity (46%) conditions for variable inoculum concentrations and contact times. The simulation of use proved the microsphere's efficiency under harsh mechanical and chemical tests. The in situ studies showed a higher than 90% reduction in CFU/25 cm2 per treated surface versus the untreated surfaces, reaching a targeted value of <50 CFU/cm2. Mineral oxide microspheres can be incorporated into unlimited surface types, including medical devices, to efficiently and sustainably prevent microbial contamination.
Collapse
Affiliation(s)
- Katia Iskandar
- Department of Pharmacy, School of Pharmacy, Lebanese International University, Bekaa P.O. Box 146404, Lebanon
- National Institute of Public Health, Clinical Epidemiology, and Toxicology-Lebanon (INSPECT-LB), Beirut 6573, Lebanon
| | - Sophie Pecastaings
- Laboratoire de Génie Chimique, Faculté de Pharmacie, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Céline LeGac
- FONDEREPHAR, Faculté de Pharmacie, 31062 Toulouse, France
| | | | | | - Mylène Guittard
- Pylote SAS, 22 Avenue de la Mouyssaguèse, 31280 Drémil-Lafage, France
| | - Loïc Marchin
- Pylote SAS, 22 Avenue de la Mouyssaguèse, 31280 Drémil-Lafage, France
| | - Marc Verelst
- CEMES, UPR CNRS 8011, 29 Rue Jeanne Marvig, CEDEX, 31055 Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Faculté de Pharmacie, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
- FONDEREPHAR, Faculté de Pharmacie, 31062 Toulouse, France
| |
Collapse
|
20
|
Simultaneous deposition of tannic acid derivative and covalent conjugation of poly(2-methyl-2-oxazoline) for the construction of antifouling coatings. Colloids Surf B Biointerfaces 2023; 224:113194. [PMID: 36758460 DOI: 10.1016/j.colsurfb.2023.113194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Bacterial adhesion and subsequent colonization play an important role in the failure of biomedical implants and devices. Thus, development of a simple surface modification strategy to combat bacterial adhesion is highly desirable. In this work, "one-pot" fabrication of antifouling coatings based on simultaneous surface adhesion of trihydroxyphenyl and dihydroxyphenyl moieties of tannic acid (TA) derivative and covalent conjugation of hydrophilic poly(2-methyl-2-oxazoline) (PMOXA) was demonstrated. Surface co-depositions of TA/PMOXA hybrids of different TA derivative to PMOXA weight ratios and different molecular weights of PMOXA were conducted. The surface hydrophilicity and deposition universality on various substrates were investigated. The anti-bacterial and anti-platelet adhesion, as well as anti-biofilm formation abilities, of the TA/PMOXA-based coating were also studied. In vitro hemolysis and cytotoxicity, and in vivo biocompatibility of the TA/PMOXA-based coating were further evaluated. All the results indicate that the TA/PMOXA-based coating could be employed as an antifouling additive on biomedical implants and devices.
Collapse
|
21
|
Xu J, Younis MR, Zhang Z, Feng Y, Su L, Que Y, Jiao Y, Fan C, Chang J, Ni S, Yang C. Mild Heat-Assisted Polydopamine/Alginate Hydrogel Containing Low-Dose Nanoselenium for Facilitating Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7841-7854. [PMID: 36719417 DOI: 10.1021/acsami.2c21516] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In clinical practice, it has become urgent to develop multifunctional wound dressings that can combat infection and prompt wound healing simultaneously. In this study, we proposed a polydopamine/alginate/nanoselenium composite hydrogel (Alg-PDA-Se) for the treatment of infected wounds. In particular, polydopamine endows the composite hydrogel with controllable near-infrared photothermal properties, while low-dosage selenium nanoparticles (Se NPs) offer excellent anti-oxidation, anti-inflammatory, pro-proliferative, pro-migration, and pro-angiogenic performances, which are verified by multiple cells, including macrophages, fibroblasts, and endothelial cells. More interestingly, the combination of mild temperature with low-dosage Se NPs produces a synergistic effect on combating both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) and promoting the healing of bacteria-infected wounds in vivo. We anticipate that the designed composite hydrogel might be a potential candidate for anti-infection bioactive dressing.
Collapse
Affiliation(s)
- Jinfeng Xu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai201620, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325000, China
| | - Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen518060, China
| | - Zhaowenbin Zhang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou325000, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai200050, China
| | - Yanping Feng
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325000, China
| | - Lefeng Su
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325000, China
| | - Yumei Que
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou325000, China
| | - Yiren Jiao
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou325000, China
| | - Chen Fan
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou325000, China
| | - Jiang Chang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou325000, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai200050, China
| | - Siyu Ni
- College of Biological Science and Medical Engineering, Donghua University, Shanghai201620, China
| | - Chen Yang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai201620, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou325000, China
| |
Collapse
|
22
|
Mai VC, Li D, Duan H. Phenolic-Compound-Based Functional Coatings: Versatile Surface Chemistry and Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1709-1718. [PMID: 36692408 DOI: 10.1021/acs.langmuir.2c03227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Phenolic-compound-based functional coatings that allow for flexible modulation of chemical and surface properties have found widespread uses in a diverse range of biomedical applications from antibiofouling and antioxidation to bioimaging, therapeutics, and controlled drug delivery. It is imperative to understand the formation mechanism of phenolic coatings to fully meet the needs of their emerging applications in controlling the surface properties of biomaterials and medical devices. In this Perspective, we highlight the versatile chemical and self-assembly approaches to generate phenolic coatings with tailored surface properties and reactivities and also discuss how the surface properties and chemical reactivities impart functional materials for translational research.
Collapse
Affiliation(s)
- Van Cuong Mai
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore
| | - Di Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore
| | - Hongwei Duan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore
| |
Collapse
|
23
|
Zhang B, Lu D, Duan H. Recent advances in responsive antibacterial materials: design and application scenarios. Biomater Sci 2023; 11:356-379. [PMID: 36408610 DOI: 10.1039/d2bm01573k] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bacterial infection is one of the leading causes of death globally, although modern medicine has made considerable strides in the past century. As traditional antibiotics are suffering from the emergence of drug resistance, new antibacterial strategies are of great interest. Responsive materials are appealing alternatives that have shown great potential in combating resistant bacteria and avoiding the side effects of traditional antibiotics. In this review, the responsive antibacterial materials are introduced in terms of stimulus signals including intrinsic (pH, enzyme, ROS, etc.) and extrinsic (light, temperature, magnetic fields, etc.) stimuli. Their biomedical applications in therapeutics and medical devices are then discussed. Finally, the author's perspective of the challenge and the future of such a system is provided.
Collapse
Affiliation(s)
- Bo Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| | - Derong Lu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| | - Hongwei Duan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| |
Collapse
|
24
|
Huo J, Jia Q, Wang K, Chen J, Zhang J, Li P, Huang W. Metal-Phenolic Networks Assembled on TiO 2 Nanospikes for Antimicrobial Peptide Deposition and Osteoconductivity Enhancement in Orthopedic Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1238-1249. [PMID: 36636753 DOI: 10.1021/acs.langmuir.2c03028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The lack of antimicrobial and osteoconductive activities of titanium (Ti) for orthopedic implants has led to problems such as infection and structural looseness, which bring physical and psychological sufferings to patients as well as economic burden on the healthcare system. To endow Ti implants with anti-infective function and bioactivity, in this study, we successfully constructed TiO2 nanospike (TNS) structure on the surface of Ti followed by assembling metal-polyphenol networks (MPNs) and depositing antimicrobial peptides (AMPs). The TNSs' structure can disrupt the bacteria by physical puncture, and it was also proved to have excellent photothermal conversion performance upon near-infrared light irradiation. Furthermore, with the assistance of contact-active chemo bactericidal efficacy of AMPs, TNS-MPN-AMP nanocoating achieved physical/photothermal/chemo triple-synergistic therapy against pathogenic bacteria. The anti-infective efficiency of this multimodal treatment was obviously improved, with an antibacterial ratio of >99.99% in vitro and 95.03% in vivo. Moreover, the spike-like nanostructure of TNSs and the bioactive groups from MPNs and AMPs not only demonstrated desirable biocompatibility but also promoted the surface hydroxyapatite formation in simulated body fluid for further osseointegration enhancement. Altogether, this multifaceted TNS-MPN-AMP nanocoating endowed Ti implants with enhanced antibacterial activity, excellent cytocompatibility, and desirable osteoconductive ability.
Collapse
Affiliation(s)
- Jingjing Huo
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an710072, China
| | - Qingyan Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an710072, China
| | - Kun Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an710072, China
| | - Jingjie Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an710072, China
| | - Jianhong Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an710072, China
| |
Collapse
|
25
|
Xie G, Du S, Huang Q, Hu Q, Bi D, Peng B, Tao J, Zhang L, Zhu J. When Iodine Meets Starch: On-Demand Generation of Photothermal Hydrogels for Mild-Temperature Photothermal-Chemo Disinfection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1914-1924. [PMID: 36583973 DOI: 10.1021/acsami.2c19667] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As an emerging antibacterial strategy, photothermal disinfection attracts increasing attention due to its advantages of high efficacy, wide pertinence, and non-drug resistance. However, the unavoidable shielding of observation by photothermal components and the possible damage to normal tissue caused by hyperthermia restrict its applications. Herein, we propose a composite hydrogel with the ability of on-demand generation of photothermal components and mild-temperature photothermal disinfection by elegantly tuning the binding and release of iodine and starch. The composite hydrogel is obtained by blending iodine-adsorbed pH-responsive ZIF-8 nanoparticles (NPs) with a starch-based hydrogel matrix. Through a convenient pH response, the composite hydrogel leverages the triple functions of iodine, which serves as a disinfectant and reacts with starch to generate a photothermal agent and color indicator, allowing photothermal-chemotherapy combined disinfection on demand. In vitro antibacterial experiments show that the composite hydrogel can respond to the acidification of the microenvironment caused by bacterial metabolism and produce corresponding color changes, realizing naked-eye observation. Meanwhile, under the combined treatment of heating/I2/Zn2+, the composite hydrogel can completely kill Escherichia coli and Staphylococcus aureus at a mild temperature of ∼41 °C. This study represents a breakthrough in on-demand generation of photothermal hydrogels for mild-temperature photothermal disinfection.
Collapse
Affiliation(s)
- Ge Xie
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Shuo Du
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Qiuyi Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan430022, China
| | - Qiao Hu
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Duohang Bi
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Bolun Peng
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan430022, China
| | - Lianbin Zhang
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Jintao Zhu
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| |
Collapse
|
26
|
Wang J, Li P, Wang N, Wang J, Xing D. Antibacterial features of material surface: strong enough to serve as antibiotics? J Mater Chem B 2023; 11:280-302. [PMID: 36533438 DOI: 10.1039/d2tb02139k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteria are small but need big efforts to control. The use of antibiotics not only produces superbugs that are increasingly difficult to inactivate, but also raises environmental concerns with the growing consumption. It is now believed that the antibacterial task can count on some physiochemical features of material surfaces, which can be anti-adhesive or bactericidal without releasing toxicants. It is necessary to evaluate to what extent can we rely on the surface design since the actual application scenarios will need the antibacterial performance to be sharp, robust, environmentally friendly, and long-lasting. Herein, we review the recent laboratory advances that have been classified based on the specific surface features, including hydrophobicity, charge potential, micromorphology, stiffness and viscosity, and photoactivity, and the antibacterial mechanisms of each feature are included to provide a basic rationale for future design. The significance of anti-biofilms is also introduced, given the big role of biofilms in bacteria-caused damage. A perspective on the potential wide application of antibacterial surface features as a substitute or supplement to antibiotics is then discussed. Surface design is no doubt a solution worthy to explore, and future success will be a result of further progress in multiple directions, including mechanism study and material preparation.
Collapse
Affiliation(s)
- Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China. .,CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, China Academy of Sciences, Qingdao 266071, China.
| | - Ping Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Ning Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, China Academy of Sciences, Qingdao 266071, China.
| | - Jing Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, China Academy of Sciences, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
27
|
Wang M, Zhou X, Li Y, Dong Y, Meng J, Zhang S, Xia L, He Z, Ren L, Chen Z, Zhang X. Triple-synergistic MOF-nanozyme for efficient antibacterial treatment. Bioact Mater 2022; 17:289-299. [PMID: 35386462 PMCID: PMC8965166 DOI: 10.1016/j.bioactmat.2022.01.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022] Open
Abstract
The abuse of antibiotics makes bacterial infection an increasingly serious global health threat. Reactive oxygen species (ROS) are the ideal alternative antibacterial approach for quick and effective sterilization. Although various antibacterial strategies based on ROS have been developed, many of them are still limited by insufficient antibacterial efficiency. Here, we have developed an acid-enhanced dual-modal antibacterial strategy based on zeolitic imidazolate frameworks-8 (ZIF8) -derived nanozyme. ZIF8, which can release Zn2+, is chosen as the carrier to integrate glucose oxidase (GOx) and gold nanoparticles (Au NPs) which can produce ROS via a cascade catalytic reaction. Thus, the bactericidal capability of ROS and Zn2+ have been integrated. More importantly, gluconic acid, a "by-product" of the catalytic reaction, can generate an acidic environment to promote both the ROS-producing and Zn2+-releasing, enhancing the overall antibacterial performance further. This triple-synergistic strategy exhibits extraordinary bactericidal ability at a low dosage of 4 μg/mL (for S. aureus) and 8 μg/mL (for E. coli), which shows a great potential of MOF-derived nanozyme for efficient bacterial eradication and diverse biomedical applications.
Collapse
Affiliation(s)
- Muxue Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xi Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yunhong Li
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yuqing Dong
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Jiashen Meng
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shuai Zhang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Linbo Xia
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhaozhi He
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Lei Ren
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhiwei Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xingcai Zhang
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
28
|
Fathi P, Roslend A, Alafeef M, Moitra P, Dighe K, Esch MB, Pan D. In Situ Surface-Directed Assembly of 2D Metal Nanoplatelets for Drug-Free Treatment of Antibiotic-Resistant Bacteria. Adv Healthc Mater 2022; 11:e2102567. [PMID: 35856392 DOI: 10.1002/adhm.202102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/01/2022] [Indexed: 01/27/2023]
Abstract
The development of antibiotic resistance among bacterial strains is a major global public health concern. To address this, drug-free antibacterial approaches are needed. Copper surfaces have long been known for their antibacterial properties. In this work, a one-step surface modification technique is used to assemble 2D copper chloride nanoplatelets directly onto copper surfaces such as copper tape, transmission electron microscopy (TEM) grids, electrodes, and granules. The nanoplatelets are formed using copper ions from the copper surfaces, enabling their direct assembly onto these surfaces in a one-step process that does not require separate nanoparticle synthesis. The synthesis of the nanoplatelets is confirmed with TEM, scanning electron microscopy, energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). Antibacterial properties of the Cu nanoplatelets are demonstrated in multidrug-resistant (MDR) Escherichia coli, MDR Acinetobacter baumannii, MDR Staphylococcus aureus, E. coli, and Streptococcus mutans. Nanoplatelets lead to a marked improvement in antibacterial properties compared to the copper surfaces alone, affecting bacterial cell morphology, preventing bacterial cell division, reducing their viability, damaging bacterial DNA, and altering protein expression. This work presents a robust method to directly assemble copper nanoplatelets onto any copper surface to imbue it with improved antibacterial properties.
Collapse
Affiliation(s)
- Parinaz Fathi
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ayman Roslend
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maha Alafeef
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Departments of Diagnostic Radiology Nuclear Medicine and Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.,Department of Nuclear Engineering and Materials Science and Engineering Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.,Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Parikshit Moitra
- Departments of Diagnostic Radiology Nuclear Medicine and Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Nuclear Engineering and Materials Science and Engineering Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ketan Dighe
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Departments of Diagnostic Radiology Nuclear Medicine and Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Mandy B Esch
- Biomedical Technologies Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Dipanjan Pan
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Departments of Diagnostic Radiology Nuclear Medicine and Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.,Department of Nuclear Engineering and Materials Science and Engineering Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
29
|
Xu X, Wang Q, Chang Y, Zhang Y, Peng H, Whittaker AK, Fu C. Antifouling and Antibacterial Surfaces Grafted with Sulfur-Containing Copolymers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41400-41411. [PMID: 36040859 DOI: 10.1021/acsami.2c09698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antifouling and antibacterial surfaces that can prevent nonspecific biological adhesion are important to support a myriad of biomedical applications. In this study, we have used an innovative photopolymerization technology to develop sulfur-containing polymer-grafted antifouling and antibacterial surfaces. The relationship between the hydrophilic property and the capability to resist protein and macrophage adsorption of the surface copolymer brushes was investigated. The sulfide monomer incorporated into the surface copolymer brushes can be further ionized to carry positive charges and impart antibacterial activity, leading to surfaces with dual antifouling and antibacterial functions. We believe that the reported sulfur-containing polymer brushes can be considered an emerging and important polymer for antifouling and antibacterial applications.
Collapse
Affiliation(s)
- Xin Xu
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Qiaoyun Wang
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yixin Chang
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yuhao Zhang
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
30
|
Xiao S, Zhao Y, Jin S, He Z, Duan G, Gu H, Xu H, Cao X, Ma C, Wu J. Regenerable bacterial killing–releasing ultrathin smart hydrogel surfaces modified with zwitterionic polymer brushes. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Building long-lasting antimicrobial and clean surfaces is one of the most effective strategies to inhibit bacterial infection, but obtaining an ideal smart surface with highly efficient, controllable, and regenerative properties still encounters many challenges. Herein, we fabricate an ultrathin brush–hydrogel hybrid coating (PSBMA-P(HEAA-co-METAC)) by integrating antifouling polyzwitterionic (PSBMA) brushes and antimicrobial polycationic (P(HEAA-co-METAC)) hydrogels. The smart bacterial killing–releasing properties can be achieved independently by the opposite volume and conformation changes between the swelling (shrinking) of P(HEAA-co-METAC) hydrogel layer and the shrinking (swelling) of PSBMA brushes. The friction test reveals that both METAC and SBMA components support great lubrication. By tuning the initial organosilane (BrTMOS:KH570) ratios, the prepared PSBMA-P(HEAA-co-METAC) coating exhibits different antibacterial abilities from single “capturing–killing” to versatile “capturing–killing–releasing.” Most importantly, 99% of the bacterial-releasing rate can be easily achieved via 0.5 M NaCl treatment. This smart surface not only possesses long-lasting antibacterial performance, only ∼1.09 × 105 cell·cm−2 bacterial residue even after 72 h exposure to bacteria solutions, but also can be regenerated and triggered between water and salt solution multiple times. This work provides a new way to fabricate antibacterial smart hydrogel coatings with bacterial “killing–releasing” functions and shows great potential for biomedical applications.
Collapse
Affiliation(s)
- Shengwei Xiao
- Department of Chemistry, Zhejiang University , Hangzhou 310027 , China
- School of Pharmaceutical and Materials Engineering, Taizhou University , Taizhou 318000 , Zhejiang , China
| | - Yuyu Zhao
- School of Pharmaceutical and Materials Engineering, Taizhou University , Taizhou 318000 , Zhejiang , China
| | - Shuqi Jin
- School of Pharmaceutical and Materials Engineering, Taizhou University , Taizhou 318000 , Zhejiang , China
| | - Zhicai He
- School of Pharmaceutical and Materials Engineering, Taizhou University , Taizhou 318000 , Zhejiang , China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University , Nanjing , 210037 , China
| | - Haining Gu
- Zhejiang Benli Technology Co., LTD , Taizhou 318000 , Zhejiang , China
| | - Hongshun Xu
- Zhejiang Benli Technology Co., LTD , Taizhou 318000 , Zhejiang , China
| | - Xingyu Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Jun Wu
- Department of Chemistry, Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
31
|
Li C, Gao F, Tong Y, Chang F, Han H, Liu C, Xu M, Li H, Zhou J, Li X, Wang F, Jiang Y. NIR-Ⅱ window Triple-mode antibacterial Nanoplatform: Cationic Copper sulfide nanoparticles combined vancomycin for synergistic bacteria eradication. J Colloid Interface Sci 2022; 628:595-604. [PMID: 36027770 DOI: 10.1016/j.jcis.2022.08.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 11/27/2022]
Abstract
The widespread use of antibiotics leads to the increasing drug resistance of bacteria and poses a threat to human health. Therefore, there is an urgent need to develop new antibacterial strategies. Herein, based on the good photothermal properties of Copper sulfide (CuS) nanoparticles under near infrared (NIR) laser, we developed a NIR-Ⅱ window triple-mode synergetic antibacterial cCuS (cationic CuS) @Vancomycin (Van) nanoplatform. In the proposed nanoplatform, the positive charge on the surface makes cCuS@Van nanoplatform show better bacterial uptake and membrane damage; vancomycin induces chemical sterilization and provides a targeting effect to the nanoplatform; combined with the strong photothermal effect and deep tissue penetration at the excitation of 1064 nm laser, cCuS@Van nanoplatform can effectively kill bacterial. The photothermal conversion efficiency of the nanoplatform can reach 49.12 % and in vitro experiments show a sterilizing rate of more than 99.5 % to staphylococcus aureus (S. aureus) at the concentration of 3.0 μM, which also demonstrated the synergistic effect of cCuS@Van nanoplatform. In addition, low cytotoxicity to human cells conforms the good biocompatibility of the as-prepared cCuS@Van nanoplatform, which endows it a good application prospect in the field of antibacterial, such as wound healing and implant sterilization.
Collapse
Affiliation(s)
- Can Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, PR China
| | - Fucheng Gao
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, PR China
| | - Yao Tong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, PR China
| | - Fei Chang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Hecheng Han
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, PR China
| | - Congrui Liu
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, PR China
| | - Mengchen Xu
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, PR China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, PR China
| | - Jing Zhou
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, PR China
| | - Xiaoyan Li
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, PR China.
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, PR China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, PR China.
| |
Collapse
|
32
|
Three lines of defense: A multifunctional coating with anti-adhesion, bacteria-killing and anti-quorum sensing properties for preventing biofilm formation of Pseudomonas aeruginosa. Acta Biomater 2022; 151:254-263. [PMID: 35961522 DOI: 10.1016/j.actbio.2022.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022]
Abstract
Surfaces of synthetic materials are highly susceptible to pathogenic bacteria colonization and further biofilm formation, leading to device failure in both biomedical and industrial applications. Complete elimination of the mature biofilms formed on the surfaces, however, remains a great challenge due to the complexity of chemical composition and physical structure. Therefore, prevention of biofilm formation becomes a preferred strategy for solving the biofilm-associated problems. Herein, a multifunctional coating showing three lines of defense to prevent biofilm formation of Pseudomonas aeruginosa is fabricated by a simple and versatile method. This coating is composed of multilayers of quaternized chitosan with bactericidal property and acylase with anti-quorum sensing property and a topmost layer of hyaluronic acid with anti-adhesion property. The substrate deposited with this coating could suppress initial adhesion of a majority of bacteria, and then kill the attached bacteria and interfere with their quorum sensing systems related to biofilm formation. The results of short-term antibacterial experiments show that our coating reduced 98 ± 2% of attached live bacteria. In long-term antibiofilm experiments, this "three lines of defense" design endows the coating with enhanced antibiofilm property against the biofilm formation for at least 3 days by reducing 98 ± 1% of bacterial proliferation and 71 ± 2% of biomass production. Benefiting from the natural building blocks with good biocompatibility and the versatile and environmentally friendly preparation method, this coating shows negligible cytotoxicity and broad applicability, providing great potential for a variety of biomedical applications. STATEMENT OF SIGNIFICANCE: Pathogenic biofilms formed on the surfaces of medical devices and materials pose an urgent problem, and it remains challenging to treat and eradicate the established biofilms. Herein, we developed an antibiofilm coating showing three lines of defense to prevent biofilm formation, which could be deposited on diverse substrates via a simple and versatile method. This coating was based on three natural materials with anti-adhesive, bactericidal, and anti-quorum sensing properties and showed different function in a self-adaptive way to target the sequential stages of biofilm formation by preventing initial bacterial adhesion, killing attached bacteria and interfering with their quorum sensing system to inhibit bacterial proliferation and biofilm maturation. This coating with improved antibiofilm performance might provide a simple and reliable solution to the problems associated with biofilm on surfaces.
Collapse
|
33
|
Recent Progress on Bioinspired Antibacterial Surfaces for Biomedical Application. Biomimetics (Basel) 2022; 7:biomimetics7030088. [PMID: 35892358 PMCID: PMC9326651 DOI: 10.3390/biomimetics7030088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
Surface bacterial fouling has become an urgent global challenge that calls for resilient solutions. Despite the effectiveness in combating bacterial invasion, antibiotics are susceptible to causing microbial antibiotic resistance that threatens human health and compromises the medication efficacy. In nature, many organisms have evolved a myriad of surfaces with specific physicochemical properties to combat bacteria in diverse environments, providing important inspirations for implementing bioinspired approaches. This review highlights representative natural antibacterial surfaces and discusses their corresponding mechanisms, including repelling adherent bacteria through tailoring surface wettability and mechanically killing bacteria via engineering surface textures. Following this, we present the recent progress in bioinspired active and passive antibacterial strategies. Finally, the biomedical applications and the prospects of these antibacterial surfaces are discussed.
Collapse
|
34
|
Liu P, Quan K, Liu M, Wang H, van der Mei HC, Busscher HJ, Zhang Z. A self-cleaning surface based on UV-activatable, AgCl micropumps for bacterial killing and removal. Chem Commun (Camb) 2022; 58:7030-7033. [PMID: 35647712 DOI: 10.1039/d2cc01343f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a self-cleaning, bacterial killing surface by immobilization of AgCl microparticles on a surface, acting as chemical micropumps. The surface shows a high bacterial killing efficacy of attached bacteria and exhibits sustainable removal of bacteria as a result of UV-activatable micropumping originating from the photocatalytic reaction of AgCl microparticles. Our work provides an advance in the sustainable use of bacterial contact-killing surfaces stricto sensu through removal of dead bacteria and debris that may shield contact-killing sites.
Collapse
Affiliation(s)
- Peng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Kecheng Quan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China. .,University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, 9713 AV Groningen, The Netherlands. .,School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Miaomiao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Huaguang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, 9713 AV Groningen, The Netherlands.
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, 9713 AV Groningen, The Netherlands.
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
35
|
Cao H, Qiao S, Qin H, Jandt KD. Antibacterial Designs for Implantable Medical Devices: Evolutions and Challenges. J Funct Biomater 2022; 13:jfb13030086. [PMID: 35893454 PMCID: PMC9326756 DOI: 10.3390/jfb13030086] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022] Open
Abstract
The uses of implantable medical devices are safer and more common since sterilization methods and techniques were established a century ago; however, device-associated infections (DAIs) are still frequent and becoming a leading complication as the number of medical device implantations keeps increasing. This urges the world to develop instructive prevention and treatment strategies for DAIs, boosting the studies on the design of antibacterial surfaces. Every year, studies associated with DAIs yield thousands of publications, which here are categorized into four groups, i.e., antibacterial surfaces with long-term efficacy, cell-selective capability, tailored responsiveness, and immune-instructive actions. These innovations are promising in advancing the solution to DAIs; whereas most of these are normally quite preliminary “proof of concept” studies lacking exact clinical scopes. To help identify the flaws of our current antibacterial designs, clinical features of DAIs are highlighted. These include unpredictable onset, site-specific incidence, and possibly involving multiple and resistant pathogenic strains. The key point we delivered is antibacterial designs should meet the specific requirements of the primary functions defined by the “intended use” of an implantable medical device. This review intends to help comprehend the complex relationship between the device, pathogens, and the host, and figure out future directions for improving the quality of antibacterial designs and promoting clinical translations.
Collapse
Affiliation(s)
- Huiliang Cao
- Interfacial Electrochemistry and Biomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science & Technology, Shanghai 200237, China
- Chair of Materials Science, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Shichong Qiao
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Hui Qin
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Klaus D. Jandt
- Chair of Materials Science, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| |
Collapse
|
36
|
Yi Y, Jiang R, Liu Z, Dou H, Song L, Tian L, Ming W, Ren L, Zhao J. Bioinspired nanopillar surface for switchable mechano-bactericidal and releasing actions. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128685. [PMID: 35338932 DOI: 10.1016/j.jhazmat.2022.128685] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Constructing safe and effective antibacterial surfaces has continuously received great attention, especially in healthcare-related fields. Bioinspired mechano-bactericidal nanostructure surfaces could serve as a promising strategy to reduce surface bacterial contamination while avoiding the development of antibiotic resistance. Although effective, these nanostructure surfaces are prone to be contaminated by the accumulation of dead bacteria, inevitably compromising their long-term antibacterial activity. Herein, a bioinspired nanopillar surface with both mechano-bactericidal and releasing actions is developed, via grafting zwitterionic polymer (poly(sulfobetaine methacrylate) (PSBMA)) on ZnO nanopillars. Under dry conditions, this nanopillar surface displays remarkable mechano-bactericidal activity, because the collapsed zwitterionic polymer layer makes no essential influence on nanopillar structure. Once being incubated with aqueous solution, the surface could readily detach the killed bacteria and debris, owing to the swelling of the zwitterionic layer. Consequentially, the surface antibacterial performances can be rapidly and controllably switched between mechano-bactericidal action and bacteria-releasing activity, guaranteeing a long-lasting antibacterial performance. Notably, these collaborative antibacterial behaviors are solely based on physical actions, avoiding the risk of triggering bacteria resistance. The resultant nanopillar surface also enjoys the advantages of substrate-independency and good biocompatibility, offering potential antibacterial applications for biomedical devices and hospital surfaces.
Collapse
Affiliation(s)
- Yaozhen Yi
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Rujian Jiang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Ziting Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Haixu Dou
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Limei Tian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Weihua Ming
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, United States
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.
| |
Collapse
|
37
|
Park E, Selvaraj R, Kim Y. High-efficiency photothermal sterilization on PDMS film with Au@CuS yolk-shell nanoparticles. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Zhang Y, Wang Y, Chen L, Zheng J, Fan X, Xu X, Zhou G, Ullah N, Feng X. An injectable antibacterial chitosan-based cryogel with high absorbency and rapid shape recovery for noncompressible hemorrhage and wound healing. Biomaterials 2022; 285:121546. [DOI: 10.1016/j.biomaterials.2022.121546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/10/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
|
39
|
Wang Y, He X, Cheng Y, Li L, Zhang K, Kang ET, Xu L. Surface co-deposition of polypyrrole nanoparticles and tannic acid for photothermal bacterial eradication. Colloids Surf B Biointerfaces 2022; 212:112381. [PMID: 35123196 DOI: 10.1016/j.colsurfb.2022.112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
Abstract
Bacterial infections on implantable materials can cause severe complications for affected patients, posing a serious threat to human health. Therefore, the development of appropriate surface modification strategies to construct the antibacterial platforms on medical implants are urgently needed. In this work, the poly(vinyl alcohol) (PVA)-stabilized polypyrrole nanoparticles (PVA-PPy NPs) were prepared by oxidative polymerization using FeCl3 as the oxidant. Subsequent mixing of the PVA-PPy NPs solution mixture with tannic acid (TA) was facilitated by hydrogen bonding. The as-formed TA/PVA-PPy NPs can be deposited with good adhesion onto solid materials in a substrate-independent manner. The hydrophilic TA/PVA-PPy NPs-deposited titanium (Ti-TPP) surface can reduce the adhesion of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). In addition, the Ti-TPP surface had photothermal property under 808 nm near-infrared (NIR) irradiation, which can kill the adhered bacteria via the hyperthermal effect. Upon exposure to NIR, the respective survival rates of S. aureus and E. coli on the Ti-TPP surfaces were only 1.66% and 2.78%, in comparison to those on the pristine Ti surfaces. Furthermore, the Ti-TPP surface could prevent the formation of early-stage biofilm under NIR irradiation. The TA/PVA-PPy NPs composites can be utilized as a contact-photoactive antibacterial coating for biomedical applications.
Collapse
Affiliation(s)
- Yan Wang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University, Chongqing, 400715, PR China
| | - Xiaodong He
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University, Chongqing, 400715, PR China
| | - Yanfang Cheng
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University, Chongqing, 400715, PR China
| | - Lin Li
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University, Chongqing, 400715, PR China
| | - Kai Zhang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University, Chongqing, 400715, PR China
| | - En-Tang Kang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University, Chongqing, 400715, PR China; Department of Chemical and Biomolecular Engineering National University of Singapore, Kent Ridge 117576, Singapore
| | - Liqun Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University, Chongqing, 400715, PR China; Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province College of Chemistry and Chemical Engineering Hainan Normal University, Haikou, 571158, PR China.
| |
Collapse
|
40
|
Li G, Li L, Wang Z, Zhong S, Li M, Wang H, Yuan L. The construct of triple responsive nanocomposite and its antibacterial effect. Colloids Surf B Biointerfaces 2022; 212:112378. [PMID: 35121427 DOI: 10.1016/j.colsurfb.2022.112378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 12/23/2022]
Abstract
The current serious mismatch between the increasing severity of bacterial infections and antibiotic production capacity urgently requires the emergence of novel antimicrobial materials. In this paper, dopamine methacrylamide (DMA) and N-isopropylacrylamide (NIPAM) were polymerized as the monomers into a block copolymer poly(dopamine methacrylamide-block-N-isopropylacrylamide) (P(DA-NIP)) and then encapsulated with polydopamine-coated magnetic nanoparticle clusters (MNC) to produce an antibacterial nanocomposite (MNC@P(DA-NIP)). This nanocomposite has triple responses respectively to light, heat and magnetism, which endow MNC@P(DA-NIP) with the abilities to kill bacteria effectively and capture/release bacteria conveniently. Under near-infrared (NIR) light irradiation, MNC@P(DA-NIP) could significantly elevate the temperature through photothermal conversion. The increased temperature favored both the capture of bacteria on MNC@P(DA-NIP), and the damage of bacterial cells, causing bacterial death almost completely. While low temperatures could promote the release of dead bacteria from the nanocomposites, might through the recovery of the hydrophilic state of the outlayer PNIPAM. Moreover, thanks to the magnetic responsibility, MNC@P(DA-NIP) could be easily separated from the bacterial cells and perform better biofilm penetration. The results showed that the antibacterial effect of MNC@P(DA-NIP) was 3.5 times higher than that of MNC, and the recycling capacity of MNC@P(DA-NIP) was better than MNC@PDA. What's more, MNC@P(DA-NIP) possessed the excellent anti-biofilm properties under magnetic field (MF) and NIR. The most important features of the triple-responsive nanocomposites are excellent antibacterial effect, good recyclability and easy preparation, which provide the nanocomposites with great potential in eliminating harmful bacterial cells.
Collapse
Affiliation(s)
- Guize Li
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Luohuizi Li
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Zhiqiang Wang
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Siqing Zhong
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Mingkang Li
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hongwei Wang
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Lin Yuan
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
41
|
Cuadrado CF, Díaz-Barrios A, Campaña KO, Romani EC, Quiroz F, Nardecchia S, Debut A, Vizuete K, Niebieskikwiat D, Ávila CE, Salazar MA, Garzón-Romero C, Blasco-Zúñiga A, Rivera MR, Romero MP. Broad-Spectrum Antimicrobial ZnMintPc Encapsulated in Magnetic-Nanocomposites with Graphene Oxide/MWCNTs Based on Bimodal Action of Photodynamic and Photothermal Effects. Pharmaceutics 2022; 14:705. [PMID: 35456539 PMCID: PMC9028436 DOI: 10.3390/pharmaceutics14040705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 01/10/2023] Open
Abstract
Microbial diseases have been declared one of the main threats to humanity, which is why, in recent years, great interest has been generated in the development of nanocomposites with antimicrobial capacity. The present work studied two magnetic nanocomposites based on graphene oxide (GO) and multiwall carbon nanotubes (MWCNTs). The synthesis of these magnetic nanocomposites consisted of three phases: first, the synthesis of iron magnetic nanoparticles (MNPs), second, the adsorption of the photosensitizer menthol-Zinc phthalocyanine (ZnMintPc) into MWCNTs and GO, and the third phase, encapsulation in poly (N-vinylcaprolactam-co-poly(ethylene glycol diacrylate)) poly (VCL-co-PEGDA) polymer VCL/PEGDA a biocompatible hydrogel, to obtain the magnetic nanocomposites VCL/PEGDA-MNPs-MWCNTs-ZnMintPc and VCL/PEGDA-MNPs-GO-ZnMintPc. In vitro studies were carried out using Escherichia coli and Staphylococcus aureus bacteria and the Candida albicans yeast based on the Photodynamic/Photothermal (PTT/PDT) effect. This research describes the nanocomposites' optical, morphological, magnetic, and photophysical characteristics and their application as antimicrobial agents. The antimicrobial effect of magnetics nanocomposites was evaluated based on the PDT/PTT effect. For this purpose, doses of 65 mW·cm-2 with 630 nm light were used. The VCL/PEGDA-MNPs-GO-ZnMintPc nanocomposite eliminated E. coli and S. aureus colonies, while the VCL/PEGDA-MNPs-MWCNTs-ZnMintPc nanocomposite was able to kill the three types of microorganisms. Consequently, the latter is considered a broad-spectrum antimicrobial agent in PDT and PTT.
Collapse
Affiliation(s)
- Coralia Fabiola Cuadrado
- Laboratorio de Nuevos Materiales, Departamento de Materiales, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito 170525, Ecuador; (K.O.C.); (M.P.R.)
| | - Antonio Díaz-Barrios
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador;
| | - Kleber Orlando Campaña
- Laboratorio de Nuevos Materiales, Departamento de Materiales, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito 170525, Ecuador; (K.O.C.); (M.P.R.)
| | - Eric Cardona Romani
- Instituto SENAI de Inovação, Serviço Nacional de Aprendizagem Industrial (Firjan SENAI), Rio de Janeiro 999074, Brazil;
| | - Francisco Quiroz
- Departamento de Ciencia de Alimentos y Biotecnología DECAB, Escuela Politécnica Nacional, Quito 170525, Ecuador;
| | - Stefania Nardecchia
- Magnetic Soft Matter Group, Department of Applied Physics, Faculty of Sciences, University of Granada, 18071 Granada, Spain;
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (A.D.); (K.V.)
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (A.D.); (K.V.)
| | - Dario Niebieskikwiat
- Departamento de Física, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Quito 170901, Ecuador;
| | - Camilo Ernesto Ávila
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina—CISeAL, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador; (C.E.Á.); (M.A.S.); (C.G.-R.); (A.B.-Z.)
| | - Mateo Alejandro Salazar
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina—CISeAL, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador; (C.E.Á.); (M.A.S.); (C.G.-R.); (A.B.-Z.)
| | - Cristina Garzón-Romero
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina—CISeAL, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador; (C.E.Á.); (M.A.S.); (C.G.-R.); (A.B.-Z.)
| | - Ailín Blasco-Zúñiga
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina—CISeAL, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador; (C.E.Á.); (M.A.S.); (C.G.-R.); (A.B.-Z.)
| | - Miryan Rosita Rivera
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina—CISeAL, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador; (C.E.Á.); (M.A.S.); (C.G.-R.); (A.B.-Z.)
| | - María Paulina Romero
- Laboratorio de Nuevos Materiales, Departamento de Materiales, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito 170525, Ecuador; (K.O.C.); (M.P.R.)
| |
Collapse
|
42
|
Zhang C, Huang L, Sun DW, Pu H. Interfacing metal-polyphenolic networks upon photothermal gold nanorods for triplex-evolved biocompatible bactericidal activity. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127824. [PMID: 34838354 DOI: 10.1016/j.jhazmat.2021.127824] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Gold nanorods (GNRs) outstand in photothermal disinfection but are faced with severe surface chemistry and dose relevant biotoxicity. Herein, a naturally green building block, metal-phenolic networks (MPNs), was employed to functionalize GNRs via coordination reaction, yielding a tunable and biocompatible core-shell photothermal nano-bactericide (GNRs@MPNs). The bioactive GNRs@MPNs built with iron and polyphenols (tannic acid, epigallocatechin gallate, and procyanidins) exhibited superior light-to-heat conversion efficiencies with η = 29.29-44.00%, remarkably preceding that of GNRs (η = 12.24%), which could rapidly ablate 99.8% of Escherichia coli O157: H7 and 98.6% of Staphylococcus aureus bacteria in relatively low efficacy doses (10 ppm of Au). Moreover, local heat triggered by GNRs@MPNs accelerated the healing of the cutaneous wound of a mice model infected by methicillin-resistant S. aureus. The facile synthesis, photothermal synergy, polyphenolic bioactivity, and significantly low efficacy dose of GNRs@MPNs empower them satisfactory efficiency and biosafety in the future broad-spectrum photothermal sterilization applications.
Collapse
Affiliation(s)
- Cuiyun Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Lunjie Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield Dublin 4, Ireland.
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
43
|
Zhang Y, An Q, Zhang S, Ma Z, Hu X, Feng M, Zhang Y, Zhao Y. A healing promoting wound dressing with tailor-made antibacterial potency employing piezocatalytic processes in multi-functional nanocomposites. NANOSCALE 2022; 14:2649-2659. [PMID: 35134104 DOI: 10.1039/d1nr07386a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing a novel antibiotics-free antibacterial strategy is essential for minimizing bacterial resistance. Materials that not only kill bacteria but also promote tissue healing are especially challenging to achieve. Inspired by chemical conversion processes in living organisms, we develop a piezoelectrically active antibacterial device that converts ambient O2 and H2O to ROS by piezocatalytic processes. The device is achieved by mounting nanoscopic polypyrrole/carbon nanotube catalyst multilayers onto piezoelectric-dielectric films. Under stimuli by a hand-held massage device, the sterilizing rates for S. aureus and E. coli reach 84.11% and 94.85% after 10 minutes of operation, respectively. The antibacterial substrate at the same time preserves and releases drugs and presents negligible cytotoxicity. Animal experiments demonstrate that daily treatment for 10 minutes using the device effectively accelerates the healing of infected wounds on the backs of mice, promoting hair follicle generation and collagen deposition. We believe that this report provides a novel design approach for antibacterial strategies in medical treatment.
Collapse
Affiliation(s)
- Yi Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Shuting Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Zequn Ma
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215000, PR China
| | - Xiantong Hu
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China.
- Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, China
| | - Mengchun Feng
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China.
- Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Yantao Zhao
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China.
- Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, China
| |
Collapse
|
44
|
Wen S, Qin C, Shen L, Liu D, Zhu S, Lin Q. Surface Self-Assembly Construction of Therapeutic Contact Lens with Bacterial "Kill-Releasing" and Drug-Reloading Capabilities for Efficient Bacterial Keratitis Treatment. ACS Biomater Sci Eng 2022; 8:1329-1341. [PMID: 35129952 DOI: 10.1021/acsbiomaterials.1c01557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacterial keratitis, an ophthalmic emergency, can cause corneal perforation and even endophthalmitis, thus leading to severe visual impairment. To achieve effective treatment of bacterial keratitis, good bioavailability of antimicrobial drugs on the ocular surface is desired. In this investigation, a layer-by-layer (LBL) self-assembly combined with the host-guest recognition was used to construct an antibacterial coating on the surface of corneal contact lens (CLs) to improve drug bioavailability and achieve successful treatment of bacterial keratitis. First, a radical copolymerization of acrylic acid (AA) and 1-adamantan-1-ylmethyl acrylate (AdA) was carried out to synthesize a polyanionic copolymer P(AA-co-AdA) (defined as PAcA). Then, PAcA copolymer combined with poly(ethyleneimine) (PEI) was used for a layer-by-layer (LBL) self-assembly to fabricate multilayer films on the surface of CLs. An antibacterial conjugate, β-cyclodextrin-levofloxacin (β-CD-LEV), was successfully synthesized and utilized to generate antibacterial coating through a host-guest interaction between AdA and β-CD-LEV. The antibacterial ability and treatment effect of bacterial keratitis was evaluated by in vitro assay and in vivo test in an animal model of staphylococcal keratitis, demonstrating that the antibacterial coating had good antibacterial and germicidal efficacy both in vivo and in vitro. We believe that this work will provide a promising strategy for the treatment of bacterial keratitis.
Collapse
Affiliation(s)
- Shimin Wen
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Chen Qin
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Liangliang Shen
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Dong Liu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Siqing Zhu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Quankui Lin
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
45
|
Zhuo Y, Cheng X, Fang H, Zhang Y, Wang B, Jia S, Li W, Yang X, Zhang Y, Wang X. Medical gloves modified by a one-minute spraying process with blood-repellent, antibacterial and wound-healing abilities. Biomater Sci 2022; 10:939-946. [PMID: 35037011 DOI: 10.1039/d1bm01212f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
During clinical surgery, bleeding that occurs in the operative region is inevitable. Due to the blood adhesion on ordinary medical gloves, it reduces surgery quality to a certain extent and even prolongs operation time. Herein, we show that medical blood-repellent gloves (MBRG) can be obtained by spraying the blood-repellent mist spray (MS) on the surface of ordinary medical gloves, which are available for immediate use in around one minute. After the modification, MBRG not only have a significantly higher blood repellent rate than that of ordinary medical gloves, but also can effectively inhibit the growth of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), and even promote the healing of infected wounds. MS is easy to prepare, low-toxic, and can be widely used on the surface of various medical gloves, such as rubber gloves, polyethylene film gloves, and nitrile gloves, which may have an impact on the development of future medical gloves.
Collapse
Affiliation(s)
- Yi Zhuo
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330088, China.
| | - Xinyan Cheng
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330088, China
| | - Hua Fang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330088, China.
| | - Yi Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330088, China.
| | - Bing Wang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330088, China.
| | - Shuang Jia
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, China
| | - Weihao Li
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, China
| | - Xuetao Yang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, China
| | - Yan Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330088, China.
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, China.,College of Chemistry, Nanchang University, Nanchang, Jiangxi 330088, China.
| |
Collapse
|
46
|
Yu Z, Sun J, Deng H, Kan H, Xu C, Dong K. Skin-permissible NIR-actuated hyperthermia using a photothermally responsive hydrogel membrane for the effective treatment of antibiotic-resistant bacterial infection. Biomater Sci 2022; 10:960-969. [PMID: 35014629 DOI: 10.1039/d1bm01819a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the long-term widespread overuse of antibiotics, a large number of antibiotic-resistant bacteria have emerged and become a serious threat to healthcare systems. As an alternative strategy, near-infrared light (NIR)-actuated photothermal treatment has been developed for killing antibiotic-resistant bacteria. Although promising, the widespread applications of photothermal antibacterial platforms face great challenges due to the skin-harmful high laser irradiation. In this work, a novel NIR-responsive hydrogel membrane for effective photothermal sterilization upon light irradiation at skin-permissible intensity has been successfully prepared using a sodium alginate-based hydrogel membrane containing tannic acid-Fe(III) compounds (STF). The as-prepared STF displayed excellent mechanical capacity and fabricability. More importantly, the as-prepared STF revealed superior photothermal efficiency under a low-intensity NIR irradiation (0.3 W cm-2), which was below the maximum permissible exposure of skin (0.33 W cm-2). In addition, the STF showed the excellent performance of photothermal sterilization for MRSA both in vitro and in vivo. Furthermore, the STF showed good biocompatibility. Based on the simple synthesis method, outstanding mechanical properties, excellent photothermal sterilization performance and good biocompatibility, the STF could be a promising wound dressing for antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhongpeng Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, PR China. .,School of Chemical Engineering, Changchun University of Technology, Changchun Jilin 130012, PR China
| | - Jie Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun Jilin 130012, PR China
| | - Hongling Deng
- School of Chemical Engineering, Changchun University of Technology, Changchun Jilin 130012, PR China
| | - Hong Kan
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, PR China. .,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, PR China
| | - Chen Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, PR China. .,School of Chemical Engineering, Changchun University of Technology, Changchun Jilin 130012, PR China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, PR China
| | - Kai Dong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, PR China. .,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, PR China
| |
Collapse
|
47
|
Sathishkumar G, Kasi G, Zhang K, Kang ET, Xu L, Yu Y. Recent progress in Tannic Acid-driven antimicrobial/antifouling surface coating strategies. J Mater Chem B 2022; 10:2296-2315. [DOI: 10.1039/d1tb02073k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Medical devices and surgical implants are a necessary part of tissue engineering and regenerative medicines. However, the biofouling and microbial colonization on the implant surface continues to be a major...
Collapse
|
48
|
Zhang X, Yang X, Chen Y, Wang G, Ding P, Zhao Z, Bi H. Clinical study on orthopaedic treatment of chronic osteomyelitis with soft tissue defect in adults. Int Wound J 2021; 19:1349-1356. [PMID: 34935287 PMCID: PMC9493237 DOI: 10.1111/iwj.13729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022] Open
Abstract
To investigate the clinical application value of different flap transfer and repair techniques in adult patients with chronic osteomyelitis of limbs complicated with soft tissue defects. According to the characteristics and defects of 21 cases, different plastic surgery was applied, including debridement, negative pressure device, and tissue flap to cover wound. Among 21 cases of chronic osteomyelitis complicated with local soft tissue defect, 15 patients were repaired with sural neurotrophic musculocutaneous flap transfer, 2 patients were repaired with medial plantar skin flap transfer, 2 patients were repaired with ilioinguinal skin flap transfer, 1 patient was repaired with z‐forming wound, and 1 patient was repaired with soleus muscle flap combined with full‐thickness skin graft. All the 21 patients underwent bone cement implantation after dead bone osteotomy. Among them, 19 patients underwent bone cement replacement with 3D prosthesis within 6 months to 1 year after surgery, and 2 patients carried bone cement for a long time. Early intervention, thorough debridement, removal of necrotic or infection, and then selecting the appropriate wound skin flap coverage are important means of guarantee slow osteomyelitis wound healing and for providing a possible way to permanent prosthesis implantation subsequently.
Collapse
Affiliation(s)
- Xinling Zhang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Xin Yang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yujie Chen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Pengbing Ding
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
49
|
Lin X, Fang Y, Hao Z, Wu H, Zhao M, Wang S, Liu Y. Bacteria-Triggered Multifunctional Hydrogel for Localized Chemodynamic and Low-Temperature Photothermal Sterilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103303. [PMID: 34643054 DOI: 10.1002/smll.202103303] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Pathogenic infections seriously threaten public health and have been considered as one of the most critical challenges in clinical therapy. Construction of a safe and efficient photothermal antibacterial platform is a promising strategy for treatment of bacterial infections. Considering that high temperature does harm to the normal tissues and cells, herein, a bacteria-triggered multifunctional hydrogel is constructed for low-temperature photothermal sterilization with high efficiency by integrating localized chemodynamic therapy (L-CDT). The hydrogel is constructed by incorporating copper sulfide nanoparticles (CuSNPs ) with photothermal profile into the network of hyaluronic acid (HA) and Fe3+ -EDTA complexes, named as CHFH (CuSNPs -HA-Fe3+ -EDTA hydrogel). Bacteria can be accumulated on the surface of CHFH, which secretes hyaluronidase to decompose the HA and release Fe3+ . The Fe3+ is reduced into Fe2+ in microenvironment of bacteria to trigger Fenton reaction. The generated hydroxyl radicals result in sterilization based on L-CDT within short range. By integrating with photothermal property of CuSNPs , low-temperature photothermal therapy (LT-PTT) for sterilization is realized, which improves the antibacterial efficiency while minimizes damage to normal tissues. The CHFH is further used to prepare Band aid which effectively promotes the Staphylococcus aureus-infected wound healing process in vivo, confirming the great potential for clinical application.
Collapse
Affiliation(s)
- Xiaodong Lin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yuan Fang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Zhe Hao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Haotian Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Minyang Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
50
|
Wang D, Kuzma ML, Tan X, He TC, Dong C, Liu Z, Yang J. Phototherapy and optical waveguides for the treatment of infection. Adv Drug Deliv Rev 2021; 179:114036. [PMID: 34740763 PMCID: PMC8665112 DOI: 10.1016/j.addr.2021.114036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
With rapid emergence of multi-drug resistant microbes, it is imperative to seek alternative means for infection control. Optical waveguides are an auspicious delivery method for precise administration of phototherapy. Studies have shown that phototherapy is promising in fighting against a myriad of infectious pathogens (i.e. viruses, bacteria, fungi, and protozoa) including biofilm-forming species and drug-resistant strains while evading treatment resistance. When administered via optical waveguides, phototherapy can treat both superficial and deep-tissue infections while minimizing off-site effects that afflict conventional phototherapy and pharmacotherapy. Despite great therapeutic potential, exact mechanisms, materials, and fabrication designs to optimize this promising treatment option are underexplored. This review outlines principles and applications of phototherapy and optical waveguides for infection control. Research advances, challenges, and outlook regarding this delivery system are rigorously discussed in a hope to inspire future developments of optical waveguide-mediated phototherapy for the management of infection and beyond.
Collapse
Affiliation(s)
- Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle Laurel Kuzma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xinyu Tan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Academy of Orthopedics, Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510280, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|