1
|
Kellermeier M, Scheck J, Drechsler M, Rosenberg R, Stawski TM, Fernandez-Martinez A, Gebauer D, Van Driessche AES. From Ions to Crystals: A Comprehensive View of the Non-Classical Nucleation of Calcium Sulfate. Angew Chem Int Ed Engl 2024:e202408429. [PMID: 39373012 DOI: 10.1002/anie.202408429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
The early stages of mineralization continue to be in the focus of intensive research due to their inherent importance for natural and engineered environments. While numerous observations have been reported for single steps in the pathways of various crystallizing phases in previous studies, the complexity of the underlying processes and their elusive character have left central questions unanswered in most cases. In the present work, we provide a detailed view on the nucleation of calcium sulfate mineralization-an abundant mineral with broad use in construction industry-in aqueous systems at ambient conditions. As experimental basis, a co-titration procedure with potentiometric, turbidimetric and conductometric detection was developed, allowing solution speciation and the formation of crystallization precursors to be monitored quantitatively as the level of nominal (super)saturation gradually increases. The nature and spatiotemporal evolution of these precursors was further elucidated by time-resolved small-angle X-ray scattering (SAXS) and analytical ultracentrifugation (AUC) experiments, complemented by cryogenic transmission electron microscopy (cryo-TEM) as a direct imaging technique. The results reveal how ions associate into nanometric primary species, which subsequently aggregate and develop anisotropic order by intrinsic structural reorganization. Our observations challenge the common understanding of fundamental notions such as the nucleation barrier or the meaning of supersaturation, with broad implications for mineralization phenomena in general and the formation of calcium sulfate in geochemical settings and industrial applications in particular.
Collapse
Affiliation(s)
| | - Johanna Scheck
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, D-78464, Konstanz, Germany
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI), Keylab "Electron and Optical Microscopy", University of Bayreuth, Universitätsstraße 30, D-95440, Bayreuth, Germany
| | - Rose Rosenberg
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, D-78464, Konstanz, Germany
| | - Tomasz M Stawski
- Materials Chemistry, Federal Institute for Materials and Testing (BAM), Richard-Willstätter-Straße 11, D-12489, Berlin, Germany
| | - Alejandro Fernandez-Martinez
- ISTerre, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, 1381 Rue de la Piscine, F-38000, Grenoble, France
| | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstraße 9, D-30167, Hannover, Deutschland
| | - Alexander E S Van Driessche
- Instituto Andaluz de Ciencias de la Tierra (IACT), CSIC-University of Granada, E-18100, Armilla, Granada, Spain
| |
Collapse
|
2
|
Paul S, Gayen K, Cantavella PG, Escuder B, Singh N. Complex Pathways Drive Pluripotent Fmoc-Leucine Self-Assemblies. Angew Chem Int Ed Engl 2024; 63:e202406220. [PMID: 38825832 DOI: 10.1002/anie.202406220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Nature uses complex self-assembly pathways to access distinct functional non-equilibrium self-assemblies. This remarkable ability to steer same set of biomolecules into different self-assembly states is done by avoiding thermodynamic pit. In synthetic systems, on demand control over 'Pathway Complexity' to access self-assemblies different from equilibrium structures remains challenging. Here we show versatile non-equilibrium assemblies of the same monomer via alternate assembly pathways. The assemblies nucleate using non-classical or classical nucleation routes into distinct metastable (transient hydrogels), kinetic (stable hydrogels) and thermodynamic structures [(poly)-crystals and 2D sheets]. Initial chemical and thermal inputs force the monomers to follow different assembly pathways and form soft-materials with distinct molecular arrangements than at equilibrium. In many cases, equilibrium structures act as thermodynamic sink which consume monomers from metastable structures giving transiently formed materials. This dynamics can be tuned chemically or thermally to slow down the dissolution of transient hydrogel, or skip the intermediate hydrogel altogether to reach final equilibrium assemblies. If required this metastable state can be kinetically trapped to give strong hydrogel stable over days. This method to control different self-assembly states can find potential use in similar biomimetic systems to access new materials for various applications.
Collapse
Affiliation(s)
- Subir Paul
- Institute of Advanced Materials, Universitat Jaume I, Avinguda de Vicent Sos Baynat, s/n, 12006, Castelló de la Plana, Castelló, Spain
| | - Kousik Gayen
- Institute of Advanced Materials, Universitat Jaume I, Avinguda de Vicent Sos Baynat, s/n, 12006, Castelló de la Plana, Castelló, Spain
| | - Pau Gil Cantavella
- Institute of Advanced Materials, Universitat Jaume I, Avinguda de Vicent Sos Baynat, s/n, 12006, Castelló de la Plana, Castelló, Spain
| | - Beatriu Escuder
- Institute of Advanced Materials, Universitat Jaume I, Avinguda de Vicent Sos Baynat, s/n, 12006, Castelló de la Plana, Castelló, Spain
| | - Nishant Singh
- Institute of Advanced Materials, Universitat Jaume I, Avinguda de Vicent Sos Baynat, s/n, 12006, Castelló de la Plana, Castelló, Spain
| |
Collapse
|
3
|
Yerragunta M, Tiwari A, Chakrabarti R, Rimer JD, Kahr B, Vekilov PG. A dual growth mode unique for organic crystals relies on mesoscopic liquid precursors. Commun Chem 2024; 7:190. [PMID: 39198705 PMCID: PMC11358147 DOI: 10.1038/s42004-024-01275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Organic solvents host the synthesis of high-value crystals used as pharmaceuticals and optical devices, among other applications. A knowledge gap persists on how replacing the hydrogen bonds and polar attraction that dominate aqueous environments with the weaker van der Waals forces affects the growth mechanism, including its defining feature, whether crystals grow classically or nonclassically. Here we demonstrate a rare dual growth mode of etioporphyrin I crystals, enabled by liquid precursors that associate with crystal surfaces to generate stacks of layers, which then grow laterally by incorporating solute molecules. Our findings reveal the precursors as mesoscopic solute-rich clusters, a unique phase favored by weak bonds such as those between organic solutes. The lateral spreading of the precursor-initiated stacks of layers crucially relies on abundant solute supply directly from the solution, bypassing diffusion along the crystal surface; the direct incorporation pathway may, again, be unique to organic solvents. Clusters that evolve to amorphous particles do not seamlessly integrate into crystal lattices. Crystals growing fast and mostly nonclassically at high supersaturations are not excessively strained. Our findings demonstrate that the weak interactions typical of organic systems promote nonclassical growth modes by supporting liquid precursors and enabling the spreading of multilayer stacks.
Collapse
Affiliation(s)
- Manasa Yerragunta
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX, 77204-4004, USA
- Welch Center for Advanced Bioactive Materials Crystallization, University of Houston, 4226 M.L. King Blvd., Houston, TX, 77204-4004, USA
| | - Akash Tiwari
- Department of Chemistry, Molecular Design Institute, New York University, New York, NY, 10003, USA
| | - Rajshree Chakrabarti
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX, 77204-4004, USA
| | - Jeffrey D Rimer
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX, 77204-4004, USA
- Welch Center for Advanced Bioactive Materials Crystallization, University of Houston, 4226 M.L. King Blvd., Houston, TX, 77204-4004, USA
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, TX, 77204-5003, USA
| | - Bart Kahr
- Department of Chemistry, Molecular Design Institute, New York University, New York, NY, 10003, USA
| | - Peter G Vekilov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX, 77204-4004, USA.
- Welch Center for Advanced Bioactive Materials Crystallization, University of Houston, 4226 M.L. King Blvd., Houston, TX, 77204-4004, USA.
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, TX, 77204-5003, USA.
| |
Collapse
|
4
|
Liao Z, Das A, Robb CG, Beveridge R, Wynne K. Amorphous aggregates with a very wide size distribution play a central role in crystal nucleation. Chem Sci 2024; 15:12420-12430. [PMID: 39118639 PMCID: PMC11304771 DOI: 10.1039/d4sc00452c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
There is mounting evidence that crystal nucleation from supersaturated solution involves the formation and reorganization of prenucleation clusters, contradicting classical nucleation theory. One of the key unresolved issues pertains to the origin, composition, and structure of these clusters. Here, a range of amino acids and peptides is investigated using light scattering, mass spectrometry, and in situ terahertz Raman spectroscopy, showing that the presence of amorphous aggregates is a general phenomenon in supersaturated solutions. Significantly, these aggregates are found on a vast range of length scales from dimers to 30-mers to the nanometre and even micrometre scale, implying a continuous distribution throughout this range. Larger amorphous aggregates are sites of spontaneous crystal nucleation and act as intermediates for laser-induced crystal nucleation. These results are shown to be consistent with a nonclassical nucleation model in which barrierless (homogeneous) nucleation of amorphous aggregates is followed by the nucleation of crystals from solute-enriched aggregates. This provides a novel perspective on crystal nucleation and the role of nonclassical pathways.
Collapse
Affiliation(s)
- Zhiyu Liao
- School of Chemistry, University of Glasgow G12 8QQ UK
| | - Ankita Das
- School of Chemistry, University of Glasgow G12 8QQ UK
| | - Christina Glen Robb
- Dept. of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL UK
| | - Rebecca Beveridge
- Dept. of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL UK
| | - Klaas Wynne
- School of Chemistry, University of Glasgow G12 8QQ UK
| |
Collapse
|
5
|
Jeon D, Seo B, Yang J, Shim WS, Kang NG, Park D, Kim JW. Substantial Confinement of Crystal Growth of Organic Crystalline Materials in Metal-Organic Membrane Microshells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8225-8232. [PMID: 38584357 DOI: 10.1021/acs.langmuir.4c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
This study proposes a robust microshell encapsulation system in which a metal-organic membrane (MOM), consisting of phytic acids (PAs) and metal ions, intrinsically prevents the molecular crystal growth of organic crystalline materials (OCMs). To develop this system, OCM-containing oil-in-water (O/W) Pickering emulsions were enveloped with the MOM, in which anionic pulp cellulose nanofiber (PCNF) primers electrostatically captured zinc ions at the O/W interface and chelated with PA, thus producing the MOM with a controlled shell thickness at the micron scale. We ascertained that the MOM formation fills and covers ∼75% of the surface pore size of PCNF films, which enhances the interfacial modulus by 2 orders of magnitude compared to that when treated with bare PCNFs. Through a feasibility test using a series of common OCMs, including ethylhexyl triazone, avobenzone, and ceramide, we demonstrated the excellent ability of our MOM microshell system to stably encapsulate OCMs while retaining their original molecular structures over time. These findings indicate that our MOM-reinforced microshell technology can be applied as a platform to substantially confine the crystal growth of various types of OCMs.
Collapse
Affiliation(s)
- Dongyoung Jeon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bokgi Seo
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongryeol Yang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Woo Sun Shim
- R&D Campus, LG Household & Health Care, Seoul 07795, Republic of Korea
| | - Nae-Gyu Kang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Daehwan Park
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Barua H, Svärd M, Rasmuson ÅC, Hudson SP, Cookman J. Mesoscale Clusters in the Crystallisation of Organic Molecules. Angew Chem Int Ed Engl 2024; 63:e202312100. [PMID: 38055699 DOI: 10.1002/anie.202312100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
The early stages of the molecular self-assembly pathway leading to crystal nucleation have a significant influence on the properties and purity of organic materials. This mini review collates the work on organic mesoscale clusters and discusses their importance in nucleation processes, with a particular focus on their critical properties and susceptibility to sample treatment parameters. This is accomplished by a review of detection methods, including dynamic light scattering, nanoparticle tracking analysis, small angle X-ray scattering, and transmission electron microscopy. Considering the challenges associated with crystallisation of flexible and large-molecule active pharmaceutical ingredients, the dynamic nature of mesoscale clusters has the potential to expand the discovery of novel crystal forms. By collating literature on mesoscale clusters for organic molecules, a more comprehensive understanding of their role in nucleation will evolve and can guide further research efforts.
Collapse
Affiliation(s)
- Harsh Barua
- Chemical Sciences Department, SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick Castletroy, Limerick, V94 T9PX, Ireland
| | - Michael Svärd
- KTH Royal Institute of Technology, Department of Chemical Engineering, 10044, Stockholm, Sweden
| | - Åke C Rasmuson
- Chemical Sciences Department, SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick Castletroy, Limerick, V94 T9PX, Ireland
- KTH Royal Institute of Technology, Department of Chemical Engineering, 10044, Stockholm, Sweden
| | - Sarah P Hudson
- Chemical Sciences Department, SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick Castletroy, Limerick, V94 T9PX, Ireland
| | - Jennifer Cookman
- Chemical Sciences Department, SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick Castletroy, Limerick, V94 T9PX, Ireland
| |
Collapse
|
7
|
Yang X, Al-Handawi MB, Li L, Naumov P, Zhang H. Hybrid and composite materials of organic crystals. Chem Sci 2024; 15:2684-2696. [PMID: 38404393 PMCID: PMC10884791 DOI: 10.1039/d3sc06469g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/07/2024] [Indexed: 02/27/2024] Open
Abstract
Organic molecular crystals have historically been viewed as delicate and fragile materials. However, recent studies have revealed that many organic crystals, especially those with high aspect ratios, can display significant flexibility, elasticity, and shape adaptability. The discovery of mechanical compliance in organic crystals has recently enabled their integration with responsive polymers and other components to create novel hybrid and composite materials. These hybrids exhibit unique structure-property relationships and synergistic effects that not only combine, but occasionally also enhance the advantages of the constituent crystals and polymers. Such organic crystal composites rapidly emerge as a promising new class of materials for diverse applications in optics, electronics, sensing, soft robotics, and beyond. While specific, mostly practical challenges remain regarding scalability and manufacturability, being endowed with both structurally ordered and disordered components, the crystal-polymer composite materials set a hitherto unexplored yet very promising platform for the next-generation adaptive devices. This Perspective provides an in-depth analysis of the state-of-the-art in design strategies, dynamic properties and applications of hybrid and composite materials centered on organic crystals. It addresses the current challenges and provides a future outlook on this emerging class of multifunctional, stimuli-responsive, and mechanically robust class of materials.
Collapse
Affiliation(s)
- Xuesong Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Marieh B Al-Handawi
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi PO Box 38044 Abu Dhabi UAE
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Center for Smart Engineering Materials, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts Bul. Krste Misirkov 2 MK-1000 Skopje Macedonia
- Molecular Design Institute, Department of Chemistry, New York University 100 Washington Square East New York NY 10003 USA
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
8
|
Elizebath D, Lim JH, Nishiyama Y, Vedhanarayanan B, Saeki A, Ogawa Y, Praveen VK. Nonclassical Crystal Growth of Supramolecular Polymers in Aqueous Medium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306175. [PMID: 37771173 DOI: 10.1002/smll.202306175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/08/2023] [Indexed: 09/30/2023]
Abstract
A mechanistic understanding of the principles governing the hierarchical organization of supramolecular polymers offers a paradigm for tailoring synthetic molecular architectures at the nano to micrometric scales. Herein, the unconventional crystal growth mechanism of a supramolecular polymer of superbenzene(coronene)-diphenylalanine conjugate (Cr-FFOEt ) is demonstrated. 3D electron diffraction (3D ED), a technique underexplored in supramolecular chemistry, is effectively utilized to gain a molecular-level understanding of the gradual growth of the initially formed poorly crystalline hairy, fibril-like supramolecular polymers into the ribbon-like crystallites. The further evolution of these nanosized flat ribbons into microcrystals by oriented attachment and lateral fusion is probed by time-resolved microscopy and electron diffraction. The gradual morphological and structural changes reveal the nonclassical crystal growth pathway, where the balance of strong and weak intermolecular interactions led to a structure beyond the nanoscale. The role of distinct π-stacking and H-bonding interactions that drive the nonclassical crystallization process of Cr-FFOEt supramolecular polymers is analyzed in comparison to analogous molecules, Py-FFOEt and Cr-FF forming helical and twisted fibers, respectively. Furthermore, the Cr-FFOEt crystals formed through nonclassical crystallization are found to improve the functional properties.
Collapse
Affiliation(s)
- Drishya Elizebath
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jia Hui Lim
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble, 38000, France
| | | | - Balaraman Vedhanarayanan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yu Ogawa
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble, 38000, France
| | - Vakayil K Praveen
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
9
|
Lee T, Mo JY, Edy Pratama D, Lin Lee H, Chen YH, Huang YH, Castillo Henríquez L, Corvis Y. Preparation of Nanosized Clusters of Irinotecan Hydrochloride Trihydrate for Injection Concentrate to Reduce Carbon Footprint. Int J Pharm 2023; 648:123558. [PMID: 39492433 DOI: 10.1016/j.ijpharm.2023.123558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
The surprisingly stable irinotecan hydrochloride trihydrate injection concentrate having a supersaturated concentration of 20 mg/mL at 25 °C was due to the frustration of 150-nm sized liquid-like nanosized clusters formed by the aggregation of dimers of 1.5 nm in an aqueous phase, evidenced by the non-linearity of van't Hoff plot and dynamic light scattering measurement. The adoption of this stable supersaturated solution at 20 mg/mL by manufacturers as the commercial concentration was beneficial due to the less volume being involved throughout the manufacturing, handling, storage and transportation of the commercial product, while also enabling a versatile on-site concentration adjustment by dilution prior to intravenous administration. Regarding the physical characteristic of the solid state of irinotecan hydrochloride trihydrate, it was found to exist as a channel hydrate as evidenced by single-crystal, and high-temperature X-ray diffraction experiments. Dehydration takes place at approximately 35 °C as demonstrated by thermogravimetric analysis. Because of its non-stoichiometric nature under various RH values revealed by dynamic vapor sorption, the irinotecan hydrate salt raw material must be kept at 25 °C or below, and under the relative humidity of 40% to 60% to maintain the original stoichiometric ratio of the raw material.
Collapse
Affiliation(s)
- Tu Lee
- Department of Chemical and Materials Engineering, National Central University 300 Zhongda Road, Zhongli District, Taoyuan City 320317, Taiwan R.O.C.
| | - Jen-Yun Mo
- Department of Chemical and Materials Engineering, National Central University 300 Zhongda Road, Zhongli District, Taoyuan City 320317, Taiwan R.O.C
| | - Dhanang Edy Pratama
- Department of Chemical and Materials Engineering, National Central University 300 Zhongda Road, Zhongli District, Taoyuan City 320317, Taiwan R.O.C
| | - Hung Lin Lee
- Department of Chemical and Materials Engineering, National Central University 300 Zhongda Road, Zhongli District, Taoyuan City 320317, Taiwan R.O.C; Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yu-Hsuan Chen
- Department of Chemical and Materials Engineering, National Central University 300 Zhongda Road, Zhongli District, Taoyuan City 320317, Taiwan R.O.C
| | - Ya-Hsuan Huang
- Department of Chemical and Materials Engineering, National Central University 300 Zhongda Road, Zhongli District, Taoyuan City 320317, Taiwan R.O.C
| | - Luis Castillo Henríquez
- CNRS, INSERM, UTCBS, Chemical and Biological Technologies for Health Group, Université Paris Cité, F-75006 Paris, France
| | - Yohann Corvis
- CNRS, INSERM, UTCBS, Chemical and Biological Technologies for Health Group, Université Paris Cité, F-75006 Paris, France
| |
Collapse
|
10
|
Aloisio L, Moschetta M, Boschi A, Fleitas AG, Zangoli M, Venturino I, Vurro V, Magni A, Mazzaro R, Morandi V, Candini A, D'Andrea C, Paternò GM, Gazzano M, Lanzani G, Di Maria F. Insight on the Intracellular Supramolecular Assembly of DTTO: A Peculiar Example of Cell-Driven Polymorphism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302756. [PMID: 37364565 DOI: 10.1002/adma.202302756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/07/2023] [Indexed: 06/28/2023]
Abstract
The assembly of supramolecular structures within living systems is an innovative approach for introducing artificial constructs and developing biomaterials capable of influencing and/or regulating the biological responses of living organisms. By integrating chemical, photophysical, morphological, and structural characterizations, it is shown that the cell-driven assembly of 2,6-diphenyl-3,5-dimethyl-dithieno[3,2-b:2',3'-d]thiophene-4,4-dioxide (DTTO) molecules into fibers results in the formation of a "biologically assisted" polymorphic form, hence the term bio-polymorph. Indeed, X-ray diffraction reveals that cell-grown DTTO fibers present a unique molecular packing leading to specific morphological, optical, and electrical properties. Monitoring the process of fiber formation in cells with time-resolved photoluminescence, it is established that cellular machinery is necessary for fiber production and a non-classical nucleation mechanism for their growth is postulated. These biomaterials may have disruptive applications in the stimulation and sense of living cells, but more crucially, the study of their genesis and properties broadens the understanding of life beyond the native components of cells.
Collapse
Affiliation(s)
- Ludovico Aloisio
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Matteo Moschetta
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Alex Boschi
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza S. Silvestro 12, Pisa, 56127, Italy
| | - Ariel García Fleitas
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Mattia Zangoli
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| | - Ilaria Venturino
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Vito Vurro
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Arianna Magni
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Raffaello Mazzaro
- Dipartimento di Fisica e Astronomia "Augusto Righi", Università di Bologna, Via C. Berti Pichat 6/2, Bologna, 40127, Italy
| | - Vittorio Morandi
- Institute for Microelectronics and Microsystems (IMM), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, 40129, Italy
| | - Andrea Candini
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| | - Cosimo D'Andrea
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Giuseppe Maria Paternò
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Massimo Gazzano
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| | - Guglielmo Lanzani
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Francesca Di Maria
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| |
Collapse
|
11
|
Fu J, He Z, Schott E, Fei H, Tu M, Wu YN. Sequential Sol-Gel Self-Assembly and Nonclassical Gel-Crystal Transformation of the Metal-Organic Framework Gel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206718. [PMID: 36737849 DOI: 10.1002/smll.202206718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/05/2023] [Indexed: 05/04/2023]
Abstract
Metal-organic framework (MOF) gel, an emerging subtype of MOF structure, is unique in formation and function; however, its evolutionary process remains elusive. Here, the evolution of a model gel-based MOF, UiO-66(Zr) gel, is explored by demonstrating its sequential sol-gel self-assembly and nonclassical gel-crystal transformation. The control of the sol-gel process enables the observation and characterization of structures in each assembly stage (phase-separation, polycondensation, and hindered-crystallization) and facilitates the preparation of hierarchical materials with giant mesopores. The gelation mechanism is tentatively attributed to the formation of zirconium oligomers. By further utilizing the pre-synthesized gel, the nonclassical gel-crystal transformation is achieved by the modulation in an unconventional manner, which sheds light on crystal intermediates and distinct crystallization motions ("growth and splitting" and "aggregation and fusion"). The overall sol-gel and gel-crystal evolutions of UiO-66(Zr) enrich self-assembly and crystallization domains, inspire the design of functional structures, and demand more in-depth research on the intermediates in the future.
Collapse
Affiliation(s)
- Jiarui Fu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Ziyan He
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Eduardo Schott
- Department of Inorganic Chemistry of the Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Min Tu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| |
Collapse
|
12
|
Guo M, Jones MJ, Goh R, Verma V, Guinn E, Heng JYY. The Effect of Chain Length and Conformation on the Nucleation of Glycine Homopeptides during the Crystallization Process. CRYSTAL GROWTH & DESIGN 2023; 23:1668-1675. [PMID: 36879769 PMCID: PMC9983003 DOI: 10.1021/acs.cgd.2c01229] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/09/2023] [Indexed: 05/14/2023]
Abstract
To explore the effect of chain length and conformation on the nucleation of peptides, the primary nucleation induction time of glycine homopeptides in pure water at different supersaturation levels under various temperatures has been determined. Nucleation data suggest that longer chains will prolong the induction time, especially for chains longer than three, where nucleation will occur over several days. In contrast, the nucleation rate increased with an increase in the supersaturation for all homopeptides. Induction time and nucleation difficulty increase at lower temperatures. However, for triglycine, the dihydrate form was produced with an unfolded peptide conformation (pPII) at low temperature. The interfacial energy and activation Gibbs energy of this dihydrate form are both lower than those at high temperature, while the induction time is longer, indicating the classical nucleation theory is not suitable to explain the nucleation phenomenon of triglycine dihydrate. Moreover, gelation and liquid-liquid separation of longer chain glycine homopeptides were observed, which was normally classified to nonclassical nucleation theory. This work provides insight into how the nucleation process evolves with increasing chain length and variable conformation, thereby offering a fundamental understanding of the critical peptide chain length for the classical nucleation theory and complex nucleation process for peptides.
Collapse
Affiliation(s)
- Mingxia Guo
- Department
of Chemical Engineering, Imperial
College London, South Kensington
Campus, LondonSW7 2AZ, U.K.
| | - Marie J. Jones
- Department
of Chemical Engineering, Imperial
College London, South Kensington
Campus, LondonSW7 2AZ, U.K.
| | - Racheal Goh
- Department
of Chemical Engineering, Imperial
College London, South Kensington
Campus, LondonSW7 2AZ, U.K.
| | - Vivek Verma
- Department
of Chemical Engineering, Imperial
College London, South Kensington
Campus, LondonSW7 2AZ, U.K.
| | - Emily Guinn
- Synthetic
Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana46221, United States
| | - Jerry Y. Y. Heng
- Department
of Chemical Engineering, Imperial
College London, South Kensington
Campus, LondonSW7 2AZ, U.K.
- Institute
for Molecular Science and Engineering, Imperial
College London, South Kensington
Campus, LondonSW7 2AZ, U.K.
| |
Collapse
|
13
|
Mani R, Peltonen L, Strachan CJ, Karppinen M, Louhi-Kultanen M. Nonclassical Crystallization and Core-Shell Structure Formation of Ibuprofen from Binary Solvent Solutions. CRYSTAL GROWTH & DESIGN 2023; 23:236-245. [PMID: 36624777 PMCID: PMC9817074 DOI: 10.1021/acs.cgd.2c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Liquid-liquidphase separation (LLPS) or dense liquid intermediates during the crystallization of pharmaceutical molecules is common; however, their role in alternative nucleation mechanisms is less understood. Herein, we report the formation of a dense liquid intermediate followed by a core-shell structure of ibuprofen crystals via nonclassical crystallization. The Raman and SAXS results of the dense phase uncover the molecular structural ordering and its role in nucleation. In addition to the dimer formation of ibuprofen, which is commonly observed in the solution phase, methyl group vibrations in the Raman spectra show intermolecular interactions similar to those in the solid phase. The SAXS data validate the cluster size differences in the supersaturated solution and dense phase. The focused-ion beam cut image shows the attachment of nanoparticles, and we proposed a possible mechanism for the transformation from the dense phase into a core-shell structure. The unstable phase or polycrystalline core and its subsequent dissolution from inside to outside or recrystallization by reversed crystal growth produces the core-shell structure. The LLPS intermediate followed by the core-shell structure and its dissolution enhancement unfold a new perspective of ibuprofen crystallization.
Collapse
Affiliation(s)
- Rajaboopathi Mani
- Department
of Chemical and Metallurgical Engineering, Aalto University, FI-00076 Aalto (Espoo), Finland
- Department
of Physics & Nanotechnology, SRM Institute
of Science & Technology, Kattankulathur 603203, Tamilnadu, India
| | - Leena Peltonen
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, 00014 Helsinki, Finland
| | - Clare J. Strachan
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, 00014 Helsinki, Finland
| | - Maarit Karppinen
- Department
of Chemistry and Materials Science, Aalto
University, FI-00076 Aalto (Espoo), Finland
| | - Marjatta Louhi-Kultanen
- Department
of Chemical and Metallurgical Engineering, Aalto University, FI-00076 Aalto (Espoo), Finland
| |
Collapse
|
14
|
Sakakibara M, Nada H, Nakamuro T, Nakamura E. Cinematographic Recording of a Metastable Floating Island in Two- and Three-Dimensional Crystal Growth. ACS CENTRAL SCIENCE 2022; 8:1704-1710. [PMID: 36589889 PMCID: PMC9801501 DOI: 10.1021/acscentsci.2c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 06/17/2023]
Abstract
Many chemical reactions go through a cascade of events in which a series of metastable intermediates appear, and crystal nucleation is no exception. Although the consensus on the energetics of nucleation suggests the formation of metastable states preceding the crystal growth, little experimental evidence has been reported for their dynamics at an atomistic level. Operando imaging of two-dimensional nucleation on a defect-free NaCl nanocrystal in carbon nanotubes using a millisecond angstrom-resolution transmission electron microscope revealed the formation of a metastable "floating island" (FI) that migrates thermally on the (100) facet of NaCl as the first intermediate of epitaxy. The speed of the migration at 298 K is estimated to be larger than 0.3 nm ms-1. When a crystal tumbles in a container, a space repeatedly forms between the crystal and the container wall that hosts the FI. Tumbling changes the surface energy repeatedly and promotes the conversion of the FI into a new epitaxial layer. We anticipate that this surface catalysis mechanism found on the nanoscale also operates in bulk heterogeneous nucleation where agitation and attrition accelerate crystallization.
Collapse
Affiliation(s)
- Masaya Sakakibara
- Department
of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Nada
- Environmental
Management Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
| | - Takayuki Nakamuro
- Department
of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department
of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Green synthesis of metal nanoparticles mediated by a versatile medicinal plant extract. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Molecular crowding induced loss of native conformation and aggregation of α-chymotrypsinogen A. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Chen Z, Higashi K, Ueda K, Moribe K. Multistep Crystallization of Pharmaceutical Amorphous Nanoparticles via a Cognate Pathway of Oriented Attachment: Direct Evidence of Nonclassical Crystallization for Organic Molecules. NANO LETTERS 2022; 22:6841-6846. [PMID: 35830610 DOI: 10.1021/acs.nanolett.2c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Crystallization of organic molecules is important in a wide range of scientific disciplines. However, in contrast to maturely studied crystallization of inorganic materials, the crystallization mechanisms of organic molecules involving nucleation and crystal growth are still poorly understood. Here, we used time-resolved cryogenic transmission electron microscopy to directly map the morphological evolution of amorphous cyclosporin A (CyA) nanoparticles during CyA crystallization. We successfully observed its initial nucleation and found that the amorphous CyA nanoparticles crystallized via a pathway cognate with oriented attachment, which is the nonclassical crystallization mechanism usually reported for inorganic compounds. Crystalline mesostructured intermediates (mesocrystals) were formed during crystallization. This study revealed clear and direct evidence of mesocrystal formation and oriented attachment in organic pharmaceuticals, providing new insights into the crystallization of organic molecules and theories of nonclassical crystallization.
Collapse
Affiliation(s)
- Ziqiao Chen
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
18
|
Yang J, Guo L, Yong X, Zhang T, Wang B, Song H, Zhao YS, Hou H, Yang B, Ding J, Lu S. Simulating the Structure of Carbon Dots via Crystalline π‐Aggregated Organic Nanodots Prepared by Kinetically Trapped Self‐Assembly. Angew Chem Int Ed Engl 2022; 61:e202207817. [DOI: 10.1002/anie.202207817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Jianye Yang
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Like Guo
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Xue Yong
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Tongjin Zhang
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Boyang Wang
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Haoqiang Song
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Hongwei Hou
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Bai Yang
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Jie Ding
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
| |
Collapse
|
19
|
Wagner A, Ezersky V, Maria R, Upcher A, Lemcoff T, Aflalo ED, Lubin Y, Palmer BA. The Non-Classical Crystallization Mechanism of a Composite Biogenic Guanine Crystal. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202242. [PMID: 35608485 DOI: 10.1002/adma.202202242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Spectacular colors and visual phenomena in animals are produced by light interference from highly reflective guanine crystals. Little is known about how organisms regulate crystal morphology to tune the optics of these systems. By following guanine crystal formation in developing spiders, a crystallization mechanism is elucidated. Guanine crystallization is a "non-classical," multistep process involving a progressive ordering of states. Crystallization begins with nucleation of partially ordered nanogranules from a disordered precursor phase. Growth proceeds by orientated attachment of the nanogranules into platelets which coalesce into single crystals, via progressive relaxation of structural defects. Despite their prismatic morphology, the platelet texture is retained in the final crystals, which are composites of crystal lamellae and interlamellar sheets. Interactions between the macromolecular sheets and the planar face of guanine appear to direct nucleation, favoring platelet formation. These findings provide insights on how organisms control the morphology and optical properties of molecular crystals.
Collapse
Affiliation(s)
- Avital Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Vladimir Ezersky
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Raquel Maria
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Alexander Upcher
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Tali Lemcoff
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Department of Life Sciences, Achva Academic College, Mobile Post Shikmim, Beer-Sheba, 79800, Israel
| | - Yael Lubin
- Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Southern Israel, 8499000, Israel
| | - Benjamin A Palmer
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| |
Collapse
|
20
|
Trinh TTH, Nguyen TKP, Khuu CQ, Wolf SE, Nguyen AT. Influence of Taylor Vortex Flow on the Crystallization of l-Glutamic Acid as an Organic Model Compound. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thi Thanh Huyen Trinh
- Vietnamese-German University (VGU), Le Lai Street, Hoa Phu Ward, Thu Dau Mot City, Binh Duong Province 820000, Vietnam
- Department of Materials Science and Engineering (WW), Institute of Glass and Ceramics (WW3), Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Martensstrasse 5, Erlangen 91058, Germany
| | - Thi Kim Phuong Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology (VAST), 1A-TL29 Street, District 12th,
Thanh Loc Ward, Ho Chi Minh City 700000, Vietnam
| | - Chau Quang Khuu
- Institute of Chemical Technology, Vietnam Academy of Science and Technology (VAST), 1A-TL29 Street, District 12th,
Thanh Loc Ward, Ho Chi Minh City 700000, Vietnam
| | - Stephan E. Wolf
- Department of Materials Science and Engineering (WW), Institute of Glass and Ceramics (WW3), Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Martensstrasse 5, Erlangen 91058, Germany
- Interdisciplinary Centre for Functional Particle Systems (FPS), Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Anh-Tuan Nguyen
- Department of Materials Science and Engineering (WW), Institute of Glass and Ceramics (WW3), Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Martensstrasse 5, Erlangen 91058, Germany
- Institute of Chemical Technology, Vietnam Academy of Science and Technology (VAST), 1A-TL29 Street, District 12th,
Thanh Loc Ward, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
21
|
Molecular Mechanism of Organic Crystal Nucleation: A Perspective of Solution Chemistry and Polymorphism. CRYSTALS 2022. [DOI: 10.3390/cryst12070980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Crystal nucleation determining the formation and assembly pathway of first organic materials is the central science of various scientific disciplines such as chemical, geochemical, biological, and synthetic materials. However, our current understanding of the molecular mechanisms of nucleation remains limited. Over the past decades, the advancements of new experimental and computational techniques have renewed numerous interests in detailed molecular mechanisms of crystal nucleation, especially structure evolution and solution chemistry. These efforts bifurcate into two categories: (modified) classical nucleation theory (CNT) and non-classical nucleation mechanisms. In this review, we briefly introduce the two nucleation mechanisms and summarize current molecular understandings of crystal nucleation that are specifically applied in polymorphic crystallization systems of small organic molecules. Many important aspects of crystal nucleation including molecular association, solvation, aromatic interactions, and hierarchy in intermolecular interactions were examined and discussed for a series of organic molecular systems. The new understandings relating to molecular self-assembly in nucleating systems have suggested more complex multiple nucleation pathways that are associated with the formation and evolution of molecular aggregates in solution.
Collapse
|
22
|
Yang J, Guo L, Yong X, Zhang T, Wang B, Song H, Zhao Y, Hou H, Yang B, Ding J, Lu S. Simulating the Structure of Carbon Dots via Crystalline π ‐aggregated Organic Nanodots Prepared by Kinetically Trapped Self‐assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianye Yang
- Zhengzhou University Green Catalysis Center, and College of Chemistry CHINA
| | - Like Guo
- Zhengzhou University Green Catalysis Center, and College of Chemistry CHINA
| | - Xue Yong
- Zhengzhou University Green Catalysis Center, and College of Chemistry CHINA
| | - Tongjin Zhang
- Chinese Academy of Sciences Key Laboratory of Photochemistry, Institute of Chemistry CHINA
| | - Boyang Wang
- Zhengzhou University Green Catalysis Center, and College of Chemistry CHINA
| | - Haoqiang Song
- Zhengzhou University Green Catalysis Center, and College of Chemistry CHINA
| | - YongSheng Zhao
- Chinese Academy of Sciences Key Laboratory of Photochemistry, Institute of Chemistry CHINA
| | - Hongwei Hou
- Zhengzhou University Green Catalysis Center, and College of Chemistry CHINA
| | - Bai Yang
- Jilin University College of Chemistry CHINA
| | - Jie Ding
- Zhengzhou University Green Catalysis Center, and College of Chemistry CHINA
| | - Siyu Lu
- Zhengzhou University College of Chemistry and Molecular Engineering No.100 Science Avenue, Zhengzhou City, Henan Province P.R.China. Zhengzhou, Henan CHINA
| |
Collapse
|
23
|
Urquidi O, Brazard J, LeMessurier N, Simine L, Adachi TBM. In situ optical spectroscopy of crystallization: One crystal nucleation at a time. Proc Natl Acad Sci U S A 2022; 119:e2122990119. [PMID: 35394901 PMCID: PMC9169808 DOI: 10.1073/pnas.2122990119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
While crystallization is a ubiquitous and an important process, the microscopic picture of crystal nucleation is yet to be established. Recent studies suggest that the nucleation process can be more complex than the view offered by the classical nucleation theory. Here, we implement single crystal nucleation spectroscopy (SCNS) by combining Raman microspectroscopy and optical trapping induced crystallization to spectroscopically investigate one crystal nucleation at a time. Raman spectral evolution during a single glycine crystal nucleation from water, measured by SCNS and analyzed by a nonsupervised spectral decomposition technique, uncovered the Raman spectrum of prenucleation aggregates and their critical role as an intermediate species in the dynamics. The agreement between the spectral feature of prenucleation aggregates and our simulation suggests that their structural order emerges through the dynamic formation of linear hydrogen-bonded networks. The present work provides a strong impetus for accelerating the investigation of crystal nucleation by optical spectroscopy.
Collapse
Affiliation(s)
- Oscar Urquidi
- Department of Physical Chemistry, Sciences II, University of Geneva, 1211 Geneva, Switzerland
| | - Johanna Brazard
- Department of Physical Chemistry, Sciences II, University of Geneva, 1211 Geneva, Switzerland
| | | | - Lena Simine
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Takuji B. M. Adachi
- Department of Physical Chemistry, Sciences II, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
24
|
Bulutoglu PS, Wang S, Boukerche M, Nere NK, Corti DS, Ramkrishna D. An investigation of the kinetics and thermodynamics of NaCl nucleation through composite clusters. PNAS NEXUS 2022; 1:pgac033. [PMID: 36713321 PMCID: PMC9802385 DOI: 10.1093/pnasnexus/pgac033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023]
Abstract
Having a good understanding of nucleation is critical for the control of many important processes, such as polymorph selection during crystallization. However, a complete picture of the molecular-level mechanisms of nucleation remains elusive. In this work, we take an in-depth look at the NaCl homogeneous nucleation mechanism through thermodynamics. Distinguished from the classical nucleation theory, we calculate the free energy of nucleation as a function of two nucleus size coordinates: crystalline and amorphous cluster sizes. The free energy surface reveals a thermodynamic preference for a nonclassical mechanism of nucleation through a composite cluster, where the crystalline nucleus is surrounded by an amorphous layer. The thickness of the amorphous layer increases with an increase in supersaturation. The computed free energy landscape agrees well with the composite cluster-free energy model, through which phase specific thermodynamic properties are evaluated. As the supersaturation increases, there is a change in stability of the amorphous phase relative to the solution phase, resulting in a change from one-step to two-step mechanism, seen clearly from the free energy profile along the minimum free energy path crossing the transition curve. By obtaining phase-specific diffusion coefficients, we construct the full mesoscopic model and present a clear roadmap for NaCl nucleation.
Collapse
Affiliation(s)
- Pelin S Bulutoglu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-2100, USA
| | - Shiyan Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-2100, USA
| | - Moussa Boukerche
- Process Research and Development , AbbVie Inc, North Chicago, IL 60064, USA
| | - Nandkishor K Nere
- Process Research and Development , AbbVie Inc, North Chicago, IL 60064, USA
| | - David S Corti
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-2100, USA
| | | |
Collapse
|
25
|
Svärd M. Mesoscale clusters of organic solutes in solution and their role in crystal nucleation. CrystEngComm 2022. [DOI: 10.1039/d2ce00718e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is becoming evident that primary nucleation of crystals of organic molecules from solution is often anything but ‘classical’ in its complexity. It is also becoming increasingly clear that mesoscopic...
Collapse
|
26
|
Soussana TN, Weissman H, Rybtchinski B, Drori R. Adsorption-Inhibition of Clathrate Hydrates by Self-Assembled Nanostructures. Chemphyschem 2021; 22:2182-2189. [PMID: 34407283 DOI: 10.1002/cphc.202100463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Indexed: 11/11/2022]
Abstract
The mechanism by which safranine O (SFO), an ice growth inhibitor, halts the growth of single crystal tetrahydrofuran (THF) clathrate hydrates was explored using microfluidics coupled with cold stages and fluorescence microscopy. THF hydrates grown in SFO solutions exhibited morphology changes and were shaped as truncated octahedrons or hexagons. Fluorescence microscopy and microfluidics demonstrated that SFO binds to the surface of THF hydrates on specific crystal planes. Cryo-TEM experiments of aqueous solutions containing millimolar concentrations of SFO exhibited the formation of bilayered lamellae with an average thickness of 4.2±0.2 nm covering several μm2 . Altogether, these results indicate that SFO forms supramolecular lamellae in solution, which might bind to the surface of the hydrate and inhibit further growth. As an ice and hydrate inhibitor, SFO may bind to the surface of these crystals via ordered water molecules near its amine and methyl groups, similar to some antifreeze proteins.
Collapse
Affiliation(s)
- Tamar Nicole Soussana
- Department of Chemistry and Biochemistry, Yeshiva University, 245 Lexington Avenue, New York, NY, 10016, USA
| | - Haim Weissman
- Department of Organic Chemistry, Weizmann Institute of Science, 234 Hertzel Street, PO Box 26, Rehovot, 7610001, Israel
| | - Boris Rybtchinski
- Department of Organic Chemistry, Weizmann Institute of Science, 234 Hertzel Street, PO Box 26, Rehovot, 7610001, Israel
| | - Ran Drori
- Department of Chemistry and Biochemistry, Yeshiva University, 245 Lexington Avenue, New York, NY, 10016, USA
| |
Collapse
|
27
|
Iyer R, Petrovska Jovanovska V, Berginc K, Jaklič M, Fabiani F, Harlacher C, Huzjak T, Sanchez-Felix MV. Amorphous Solid Dispersions (ASDs): The Influence of Material Properties, Manufacturing Processes and Analytical Technologies in Drug Product Development. Pharmaceutics 2021; 13:1682. [PMID: 34683975 PMCID: PMC8540358 DOI: 10.3390/pharmaceutics13101682] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Poorly water-soluble drugs pose a significant challenge to developability due to poor oral absorption leading to poor bioavailability. Several approaches exist that improve the oral absorption of such compounds by enhancing the aqueous solubility and/or dissolution rate of the drug. These include chemical modifications such as salts, co-crystals or prodrugs and physical modifications such as complexation, nanocrystals or conversion to amorphous form. Among these formulation strategies, the conversion to amorphous form has been successfully deployed across the pharmaceutical industry, accounting for approximately 30% of the marketed products that require solubility enhancement and making it the most frequently used technology from 2000 to 2020. This article discusses the underlying scientific theory and influence of the active compound, the material properties and manufacturing processes on the selection and design of amorphous solid dispersion (ASD) products as marketed products. Recent advances in the analytical tools to characterize ASDs stability and ability to be processed into suitable, patient-centric dosage forms are also described. The unmet need and regulatory path for the development of novel ASD polymers is finally discussed, including a description of the experimental data that can be used to establish if a new polymer offers sufficient differentiation from the established polymers to warrant advancement.
Collapse
Affiliation(s)
- Raman Iyer
- Technical Research and Development, c/o Global Drug Development, Novartis Pharmaceuticals Corp., One Health Plaza, East Hanover, NJ 07936, USA
| | - Vesna Petrovska Jovanovska
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Katja Berginc
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Miha Jaklič
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Flavio Fabiani
- Technical Research and Development, c/o Global Drug Development, Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland; (F.F.); (C.H.)
| | - Cornelius Harlacher
- Technical Research and Development, c/o Global Drug Development, Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland; (F.F.); (C.H.)
| | - Tilen Huzjak
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | | |
Collapse
|
28
|
Bäumer N, Matern J, Fernández G. Recent progress and future challenges in the supramolecular polymerization of metal-containing monomers. Chem Sci 2021; 12:12248-12265. [PMID: 34603655 PMCID: PMC8480320 DOI: 10.1039/d1sc03388c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of discrete molecular entities into functional nanomaterials has become a major research area in the past decades. The library of investigated compounds has diversified significantly, while the field as a whole has matured. The incorporation of metal ions in the molecular design of the (supra-)molecular building blocks greatly expands the potential applications, while also offering a promising approach to control molecular recognition and attractive and/or repulsive intermolecular binding events. Hence, supramolecular polymerization of metal-containing monomers has emerged as a major research focus in the field. In this perspective article, we highlight recent significant advances in supramolecular polymerization of metal-containing monomers and discuss their implications for future research. Additionally, we also outline some major challenges that metallosupramolecular chemists (will) have to face to produce metallosupramolecular polymers (MSPs) with advanced applications and functionalities.
Collapse
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Jonas Matern
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
29
|
|
30
|
|
31
|
Ito F, Naganawa R, Fujimoto Y, Takimoto M, Mochiduki Y, Katsumi S. Real-Time Fluorescence Visualization of Nanoparticle Aggregation and the Polymorph-Transition Process of a Mechanofluorochromic Difluoroboron-β-Diketone Derivative. Chemphyschem 2021; 22:1662-1666. [PMID: 34181311 DOI: 10.1002/cphc.202100370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Indexed: 12/16/2022]
Abstract
The use of organic nanomaterials in biomedical and optical devices has been widely studied. The key to improving the performance and stability of these devices is to control the fabrication process, which determines the phase stability and photophysical properties. In this study, fluorescence changes were observed during the reprecipitation process of mechanofluorochromic molecules of dibenzoyl(methanato)boron difluoride. The cyan-emission phase (C-phase) was first identified. The time evolution of the resolved fluorescence spectra revealed that the green-emission phase (G-phase) was formed from the amorphous phase with yellow emission via the C-phase, in addition to the direct formation of the G-phase. Combined with the results of the investigation into the thermal properties, the fluorescence changes clearly indicate a two-step nucleation process and Ostwald's rule of stages for polymorph transition, which enables us to not only provide guidance for controlling the fabrication process but also propose the ripening process for organic nanoparticle formation.
Collapse
Affiliation(s)
- Fuyuki Ito
- Department of Chemistry, Institution of Education, Shinshu University, 6-ro, Nishinagano, Nagano, 380-8544, Japan
| | - Ryuji Naganawa
- Department of Chemistry, Institution of Education, Shinshu University, 6-ro, Nishinagano, Nagano, 380-8544, Japan
| | - Yushi Fujimoto
- Department of Chemistry, Institution of Education, Shinshu University, 6-ro, Nishinagano, Nagano, 380-8544, Japan
| | - Maori Takimoto
- Department of Chemistry, Institution of Education, Shinshu University, 6-ro, Nishinagano, Nagano, 380-8544, Japan
| | - Yoshifumi Mochiduki
- Department of Chemistry, Institution of Education, Shinshu University, 6-ro, Nishinagano, Nagano, 380-8544, Japan
| | - Shiho Katsumi
- Graduate School of Science and Technology, Shinshu University, Institution 3-15-1, Tokida, Ueda, 386-8567, Japan
| |
Collapse
|
32
|
Tsarfati Y, Biran I, Wiedenbeck E, Houben L, Cölfen H, Rybtchinski B. Continuum Crystallization Model Derived from Pharmaceutical Crystallization Mechanisms. ACS CENTRAL SCIENCE 2021; 7:900-908. [PMID: 34079905 PMCID: PMC8161475 DOI: 10.1021/acscentsci.1c00254] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The crystallization mechanisms of organic molecules in solution are not well-understood. The mechanistic scenarios where crystalline order evolves directly from the molecularly dissolved state ("classical") and from initially formed amorphous intermediates ("nonclassical") are suggested and debated. Here, we studied crystallization mechanisms of two widely used analgesics, ibuprofen (IbuH) and etoricoxib (ETO), using direct cryogenic transmission electron microscopy (cryo-TEM) imaging. In the IbuH case, parallel crystallization pathways involved diverse phases of high and low density, in which the instantaneous formation of final crystalline order was observed. ETO crystallization started from well-defined round-shaped amorphous intermediates that gradually evolved into crystals. This mechanistic diversity is rationalized by introducing a continuum crystallization paradigm: order evolution depends on ordering in the initially formed intermediates and efficiency of molecular rearrangements within them, and there is a continuum of states related to the initial order and rearrangement rates. This model provides a unified view of crystallization mechanisms, encompassing classical and nonclassical pictures.
Collapse
Affiliation(s)
- Yael Tsarfati
- Department
of Molecular Chemistry and Materials Science and Department of
Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Idan Biran
- Department
of Molecular Chemistry and Materials Science and Department of
Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Eduard Wiedenbeck
- Physical
Chemistry, Department of Chemistry, University
of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Lothar Houben
- Department
of Molecular Chemistry and Materials Science and Department of
Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Helmut Cölfen
- Physical
Chemistry, Department of Chemistry, University
of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Boris Rybtchinski
- Department
of Molecular Chemistry and Materials Science and Department of
Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| |
Collapse
|
33
|
Trinh TTH, Schodder PI, Demmert B, Nguyen AT. Crystallization of l-glutamic acid under microfluidic conditions and levitation. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Matern J, Bäumer N, Fernández G. Unraveling Halogen Effects in Supramolecular Polymerization. J Am Chem Soc 2021; 143:7164-7175. [PMID: 33913728 DOI: 10.1021/jacs.1c02384] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Halogens play a crucial role in numerous natural processes and synthetic materials due to their unique physicochemical properties and the diverse interactions they can engage in. In the field of supramolecular polymerization, however, halogen effects remain poorly understood, and investigations have been restricted to halogen bonding or the inclusion of polyfluorinated side groups. Recent contributions from our group have revealed that chlorine ligands greatly influence molecular packing and pathway complexity phenomena of various metal complexes. These results prompted us to explore the role of the halogen nature on supramolecular polymerization, a phenomenon that has remained unexplored to date. To address this issue, we have designed a series of archetypal bispyridyldihalogen PtII complexes bearing chlorine (1), bromine (2), or iodine (3) and systematically compared their supramolecular polymerization in nonpolar media using various experimental methods and theory. Our studies reveal a remarkably different supramolecular polymerization for the three compounds, which can undergo two competing pathways with either slipped (kinetic) or parallel (thermodynamic) molecular packing. The halogen exerts an inverse effect on the energetic levels of the two self-assembled states, resulting in a single thermodynamic pathway for 3, a transient kinetic species for 2, and a hidden thermodynamic state for 1. This seesaw-like bias of the energy landscape can be traced back to the involvement of the halogens in weak N-H···X hydrogen-bonding interactions in the kinetic pathway, whereas in the thermodynamic pathway the halogens are not engaged in the stabilizing interaction motif but rather amplify solvophobic effects.
Collapse
Affiliation(s)
- Jonas Matern
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Nils Bäumer
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
35
|
Gong Y, Hou GL, Bi X, Kuthirummal N, Teklu AA, Koenemann J, Harris N, Wei P, Devera K, Hu M. Enhanced Two-Photon Absorption in Two Triphenylamine-Based All-Organic Compounds. J Phys Chem A 2021; 125:1870-1879. [PMID: 33635065 DOI: 10.1021/acs.jpca.0c10567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-photon absorption (TPA) enables the excitation of molecules by comparatively lower energy photons with longer penetration depth and higher spatial precision control, which advances the uses of organic molecules in various applications. In this work, we report two simple all-organic molecules C42H33N (compound 3) and C138H168N4 (compound 14) with strong TPA and fluorescent emission activity. Density functional theory calculations show that the enhanced oscillator strengths could be responsible for improved TPA and emission activity for compound 14 compared to those for 3. The degradation of C138H168N4 under focused laser illumination without circulation is almost negligible within 5 h, making it a candidate for laser dyes. Solid-state measurements confirm the presence of a direct band gap for electron transition that determines the channel to release the absorbed energy and functionality of the studied molecules. This work emphasizes that a high TPA cross-section and selectable energy relaxation (fluorescent emission or heat dissipation) are equally important to the design of advanced functional TPA molecules.
Collapse
Affiliation(s)
- Yu Gong
- Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston 29407, South Carolina, United States
| | - Gao-Lei Hou
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Leuven 3001, Belgium
| | - Xiangdong Bi
- Department of Chemistry, Charleston Southern University, 9200 University Blvd, Charleston 29485, South Carolina, United States
| | - Narayanan Kuthirummal
- Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston 29407, South Carolina, United States
| | - Alem Abraha Teklu
- Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston 29407, South Carolina, United States
| | - Jacob Koenemann
- Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston 29407, South Carolina, United States
| | - Nico Harris
- Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston 29407, South Carolina, United States
| | - Peng Wei
- Affinity Research Chemicals, Inc., 406 Meco Dr., Wilmington 19804, Delaware, United States
| | - Krystal Devera
- Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston 29407, South Carolina, United States
| | - Ming Hu
- Department of Mechanical Engineering, University of South Carolina, 541 Main Street, Columbia 29208, South Carolina, United States
| |
Collapse
|
36
|
Abstract
Metal-organic frameworks (MOFs) are crystalline nanoporous materials with great potential for a wide range of industrial applications. Understanding the nucleation and early growth stages of these materials from a solution is critical for their design and synthesis. Despite their importance, the pathways through which MOFs nucleate are largely unknown. Using a combination of in situ liquid-phase and cryogenic transmission electron microscopy, we show that zeolitic imidazolate framework-8 MOF nanocrystals nucleate from precursor solution via three distinct steps: 1) liquid-liquid phase separation into solute-rich and solute-poor regions, followed by 2) direct condensation of the solute-rich region into an amorphous aggregate and 3) crystallization of the aggregate into a MOF. The three-step pathway for MOF nucleation shown here cannot be accounted for by conventional nucleation models and provides direct evidence for the nonclassical nucleation pathways in open-framework materials, suggesting that a solute-rich phase is a common precursor for crystallization from a solution.
Collapse
|
37
|
Complex structures arising from the self-assembly of a simple organic salt. Nature 2021; 590:275-278. [PMID: 33568820 DOI: 10.1038/s41586-021-03194-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/12/2020] [Indexed: 11/08/2022]
Abstract
Molecular self-assembly is the spontaneous association of simple molecules into larger and ordered structures1. It is the basis of several natural processes, such as the formation of colloids, crystals, proteins, viruses and double-helical DNA2. Molecular self-assembly has inspired strategies for the rational design of materials with specific chemical and physical properties3, and is one of the most important concepts in supramolecular chemistry. Although molecular self-assembly has been extensively investigated, understanding the rules governing this phenomenon remains challenging. Here we report on a simple hydrochloride salt of fampridine that crystallizes as four different structures, two of which adopt unusual self-assemblies consisting of polyhedral clusters of chloride and pyridinium ions. These two structures represent Frank-Kasper (FK) phases of a small and rigid organic molecule. Although discovered in metal alloys4,5 more than 60 years ago, FK phases have recently been observed in several classes of supramolecular soft matter6-11 and in gold nanocrystal superlattices12 and remain the object of recent discoveries13. In these systems, atoms or spherical assemblies of molecules are packed to form polyhedra with coordination numbers 12, 14, 15 or 16. The two FK structures reported here crystallize from a dense liquid phase and show a complexity that is generally not observed in small rigid organic molecules. Investigation of the precursor dense liquid phase by cryogenic electron microscopy reveals the presence of spherical aggregates with sizes ranging between 1.5 and 4.6 nanometres. These structures, together with the experimental procedure used for their preparation, invite interesting speculation about their formation and open different perspectives for the design of organic crystalline materials.
Collapse
|
38
|
Shahar C, Tidhar Y, Jung Y, Weissman H, Cohen SR, Bitton R, Pinkas I, Haran G, Rybtchinski B. Control over size, shape, and photonics of self-assembled organic nanocrystals. Beilstein J Org Chem 2021; 17:42-51. [PMID: 33488830 PMCID: PMC7801800 DOI: 10.3762/bjoc.17.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/03/2020] [Indexed: 11/23/2022] Open
Abstract
The facile fabrication of free-floating organic nanocrystals (ONCs) was achieved via the kinetically controlled self-assembly of simple perylene diimide building blocks in aqueous medium. The ONCs have a thin rectangular shape, with an aspect ratio that is controlled by the content of the organic cosolvent (THF). The nanocrystals were characterized in solution by cryogenic transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering. The ONCs retain their structure upon drying, as was evidenced by TEM and atom force microscopy. Photophysical studies, including femtosecond transient absorption spectroscopy, revealed a distinct influence of the ONC morphology on their photonic properties (excitation energy transfer was observed only in the high-aspect ONCs). Convenient control over the structure and function of organic nanocrystals can enhance their utility in new and developed technologies.
Collapse
Affiliation(s)
- Chen Shahar
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaron Tidhar
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yunmin Jung
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
- Current address: Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, U.S.A
| | - Haim Weissman
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sidney R Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronit Bitton
- Department of Chemical Engineering, Ben-Gurion University, Beer Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Nanotechnology, Ben-Gurion University, Beer Sheva 84105, Israel
| | - Iddo Pinkas
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gilad Haran
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Boris Rybtchinski
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
39
|
Affiliation(s)
- Efi Efrati
- Department of Physics of Complex systems Weizmann Institute of Science P.O. box 26 Rehovot 7610001 Israel
| |
Collapse
|
40
|
Cookman J, Hamilton V, Hall SR, Bangert U. Non-classical crystallisation pathway directly observed for a pharmaceutical crystal via liquid phase electron microscopy. Sci Rep 2020; 10:19156. [PMID: 33154480 PMCID: PMC7644682 DOI: 10.1038/s41598-020-75937-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022] Open
Abstract
Non-classical crystallisation (NCC) pathways are widely accepted, however there is conflicting evidence regarding the intermediate stages of crystallisation, how they manifest and further develop into crystals. Evidence from direct observations is especially lacking for small organic molecules, as distinguishing these low-electron dense entities from their similar liquid-phase surroundings presents signal-to-noise ratio and contrast challenges. Here, Liquid Phase Electron Microscopy (LPEM) captures the intermediate pre-crystalline stages of a small organic molecule, flufenamic acid (FFA), a common pharmaceutical. High temporospatial imaging of FFA in its native environment, an organic solvent, suggests that in this system a Pre-Nucleation Cluster (PNC) pathway is followed by features exhibiting two-step nucleation. This work adds to the growing body of evidence that suggests nucleation pathways are likely an amalgamation of multiple existing non-classical theories and highlights the need for the direct evidence presented by in situ techniques such as LPEM.
Collapse
Affiliation(s)
- J Cookman
- Physics Department & Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland
| | - V Hamilton
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - S R Hall
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - U Bangert
- Physics Department & Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland.
| |
Collapse
|
41
|
Photochemical Methods for the Real-Time Observation of Phase Transition Processes upon Crystallization. Symmetry (Basel) 2020. [DOI: 10.3390/sym12101726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We have used the fluorescence detection of phase transformation dynamics of organic compounds by photochemical methods to observe a real-time symmetry breaking process. The organic fluorescent molecules vary the fluorescence spectra depending on molecular aggregated states, implying fluorescence spectroscopy can be applied to probe the evolution of the molecular-assembling process. As an example, the amorphous-to-crystal phase transformation and crystallization with symmetry breaking at droplet during the solvent evaporation of mechanofluorochromic molecules are represented in this review.
Collapse
|
42
|
Kuroda Y, Tamaru M, Nakasato H, Nakamura K, Nakata M, Hisano K, Fujisawa K, Tsutsumi O. Observation of crystallisation dynamics by crystal-structure-sensitive room-temperature phosphorescence from Au(I) complexes. Commun Chem 2020; 3:139. [PMID: 36703373 PMCID: PMC9814381 DOI: 10.1038/s42004-020-00382-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/16/2020] [Indexed: 01/29/2023] Open
Abstract
The aggregation behaviour of Au(I) complexes in condensed phases can affect their emission properties. Herein, aggregation-induced room-temperature phosphorescence (RTP) is observed from the crystals of trinuclear Au(I) complexes. The RTP is highly sensitive to the crystal structure, with a slight difference in the alkyl side chains causing not only a change in the crystal structure but also a shift in the RTP maximum. Furthermore, in nanocrystals, reversible RTP colour changes are induced by phase transitions between crystal polymorphs during crystal growth from solution or the pulverisation of bulk crystals. The colour change mechanism is discussed in terms of intermolecular interactions in the crystal structure of the luminescent aggregates. The results suggest that the behaviour in nanocrystals may differ from that in bulk crystals. These insights will advance the fundamental understanding of crystallisation mechanisms and may aid in the discovery of new materials properties for solids with nano- to micrometre sizes.
Collapse
Affiliation(s)
- Yuki Kuroda
- grid.262576.20000 0000 8863 9909Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577 Japan
| | - Masakazu Tamaru
- grid.262576.20000 0000 8863 9909Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577 Japan
| | - Hitoya Nakasato
- grid.262576.20000 0000 8863 9909Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577 Japan
| | - Kyosuke Nakamura
- grid.262576.20000 0000 8863 9909Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577 Japan
| | - Manami Nakata
- grid.262576.20000 0000 8863 9909Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577 Japan
| | - Kyohei Hisano
- grid.262576.20000 0000 8863 9909Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577 Japan
| | - Kaori Fujisawa
- grid.262576.20000 0000 8863 9909Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577 Japan
| | - Osamu Tsutsumi
- grid.262576.20000 0000 8863 9909Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577 Japan
| |
Collapse
|
43
|
Zong S, Wang J, Huang X, Wang T, Liu Q, Tian B, Xie C, Hao H. Molecular evolution pathways during nucleation of small organic molecules: solute-rich pre-nucleation species enable control over the nucleation process. Phys Chem Chem Phys 2020; 22:18663-18671. [PMID: 32794537 DOI: 10.1039/d0cp03493b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Increasing evidence has shown that nucleation pathways involving disordered pre-nucleation species exist in the nucleation process of many types of solid state products, especially inorganic solid state products. Studying the thermodynamic and kinetic properties of these pre-nucleation species is crucial to understand and control the nucleation process of solid state products. In this work, the evolution pathway of molecular or supramolecular structures during the nucleation process was investigated by using 2-cyano-4'-methylbiphenyl (OTBN) as a model compound. In the resultant solutions, similar pre-nucleation clusters were analyzed and characterized by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS) and nanoparticle tracking analysis (NTA). It was found that the clusters were disordered and liquid-like and did not represent any of the known OTBN condensed phases. They were of interest since they may be the key sites for the formation of new crystal nuclei of OTBN. It was demonstrated that the change in the solvation effect would drive the pre-nucleation clusters to exhibit very different structures. How the clusters vary with concentration and temperature, and how they differ before and after nucleation have been systematically studied. In addition, the molecular dynamics of the evolution of clusters, the effect of initial mixing process on clusters and the nucleation dynamics were also investigated. The results suggested that the pre-nucleation clusters played a key role in the process of crystallization of organic small molecules, indicating that the dynamics of nucleation could be regulated by changing the structure and size of the pre-nulceation clusters.
Collapse
Affiliation(s)
- Shuyi Zong
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cao K, Biskupek J, Stoppiello CT, McSweeney RL, Chamberlain TW, Liu Z, Suenaga K, Skowron ST, Besley E, Khlobystov AN, Kaiser U. Atomic mechanism of metal crystal nucleus formation in a single-walled carbon nanotube. Nat Chem 2020; 12:921-928. [DOI: 10.1038/s41557-020-0538-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/31/2020] [Indexed: 11/09/2022]
|
45
|
Chen M, Luan C, Zhang M, Rowell N, Willis M, Zhang C, Wang S, Zhu X, Fan H, Huang W, Yu K, Liang B. Evolution of CdTe Magic-Size Clusters with Single Absorption Doublet Assisted by Adding Small Molecules during Prenucleation. JOURNAL OF PHYSICAL CHEMISTRY LETTERS 2020; 11:2230-2240. [PMID: 32134665 DOI: 10.1021/acs.jpclett.0c00258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An approach is reported for the exclusive production of CdTe magic-size clusters (MSCs) that exhibit an optical absorption doublet peaking at 385/427 nm, with an explanation of the synthesis procedure. The MSCs, defined as dMSC-427, were produced from the reaction of cadmium oleate (Cd(OA)2) and tri-n-octylphosphine telluride in octadecene at 100 °C, with the addition of acetic acid (HOAc) or acetate (M(OAc)2) during the prenucleation stage (40 °C). Without such an addition or when it was performed in the postnucleation stage (100 °C), quantum dots (QDs) developed. The production of dMSC-427 or QDs is hypothesized to be related to the solubility of the Cd precursor, such as Cd(OA)1(OAc)1 or Cd(OA)2, respectively. Also, the reactions that lead to Cd(OA)1(OAc)1 are proposed. The present study provides an in-depth understanding of the two-pathway model proposed for the prenucleation stage of binary colloidal QDs, as well as of the formation of MSCs and/or QDs.
Collapse
Affiliation(s)
- Meng Chen
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Chaoran Luan
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Meng Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Nelson Rowell
- Metrology Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Maureen Willis
- School of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Chunchun Zhang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Shanling Wang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Xiaohong Zhu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Hongsong Fan
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Wen Huang
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P.R. China.,Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, P.R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Bin Liang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| |
Collapse
|
46
|
Cookman J, Hamilton V, Price LS, Hall SR, Bangert U. Visualising early-stage liquid phase organic crystal growth via liquid cell electron microscopy. NANOSCALE 2020; 12:4636-4644. [PMID: 32044911 DOI: 10.1039/c9nr08126g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Here, we show that the development of nuclei and subsequent growth of a molecular organic crystal system can be induced by electron beam irradiation by exploiting the radiation chemistry of the carrier solvent. The technique of Liquid Cell Electron Microscopy was used to probe the crystal growth of flufenamic acid; a current commercialised active pharmaceutical ingredient. This work demonstrates liquid phase electron microscopy analysis as an essential tool for assessing pharmaceutical crystal growth in their native environment while giving insight into polymorph identification of nano-crystals at their very inception. Possible mechanisms of crystal nucleation due to the electron beam with a focus on radiolysis are discussed along with the innovations this technique offers to the study of pharmaceutical crystals and other low contrast materials.
Collapse
Affiliation(s)
- Jennifer Cookman
- Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland.
| | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Jim De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
48
|
Affiliation(s)
- Peter G. Vekilov
- Department of Chemical and Biomolecular Engineering and Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
49
|
Moris M, Van Den Eede MP, Koeckelberghs G, Deschaume O, Bartic C, Van Cleuvenbergen S, Clays K, Verbiest T. Harmonic light scattering study reveals structured clusters upon the supramolecular aggregation of regioregular poly(3-alkylthiophene). Commun Chem 2019. [DOI: 10.1038/s42004-019-0230-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Solubilized poly(3-alkylthiophene)s are known to self-assemble into well-ordered supramolecular aggregates upon lowering the solvent quality. This supramolecular organization largely determines the optical and electronic properties of these polymers. However, despite numerous studies the exact mechanism and kinetics of the aggregation process and the role of external stimuli are still poorly understood. Classical characterization techniques such as electronic spectroscopy, dynamic light scattering, and diffraction-based techniques have not been able to provide a full understanding. Here we use second-harmonic scattering (SHS) and third-harmonic scattering (THS) techniques to investigate this supramolecular aggregation mechanism. Our results indicate that the actual supramolecular aggregation is preceded by the formation of structured polymer-solvent clusters consistent with a nonclassical crystallization pathway.
Collapse
|
50
|
Wiedenbeck E, Kovermann M, Gebauer D, Cölfen H. Flüssige metastabile Vorstufen von Ibuprofen als Zwischenprodukt der Nukleation in wässriger Lösung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Eduard Wiedenbeck
- Physical ChemistryUniversity of Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| | - Michael Kovermann
- Physical ChemistryUniversity of Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| | - Denis Gebauer
- Leibniz University of Hannover, Institut für Anorganische Chemie Callinstraße 9 30167 Hannover Deutschland
| | - Helmut Cölfen
- Physical ChemistryUniversity of Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| |
Collapse
|