1
|
Nestoros E, Sharma A, Kim E, Kim JS, Vendrell M. Smart molecular designs and applications of activatable organic photosensitizers. Nat Rev Chem 2025; 9:46-60. [PMID: 39506088 DOI: 10.1038/s41570-024-00662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Photodynamic therapy (PDT) - which combines light, oxygen and photosensitizers (PS) to generate reactive oxygen species - has emerged as an effective approach for targeted ablation of pathogenic cells with reduced risk of inducing resistance. Some organic PS are now being applied for PDT in the clinic or undergoing evaluation in clinical trials. A limitation of the first-generation organic PS was their potential off-target toxicity. This shortcoming prompted the design of constructs that can be activated by the presence of specific biomolecules - from small biomolecules to large enzymes - in the target cells. Here, we review advances in the design and synthesis of activatable organic PS and their contribution to PDT in the past decade. Important areas of research include novel synthetic methodologies to engineer smart PS with tuneable singlet oxygen generation, their integration into larger constructs such as bioconjugates, and finally, representative examples of their translational potential as antimicrobial and anticancer therapies.
Collapse
Affiliation(s)
- Eleni Nestoros
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Amit Sharma
- Amity School of Chemical Sciences, Amity University Punjab, Mohali, India
| | - Eunji Kim
- Department of Chemistry, Korea University, Seoul, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, Korea.
| | - Marc Vendrell
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Shleeva MO, Demina GR, Savitsky AP. A systematic overview of strategies for photosensitizer and light delivery in antibacterial photodynamic therapy for lung infections. Adv Drug Deliv Rev 2024; 215:115472. [PMID: 39549920 DOI: 10.1016/j.addr.2024.115472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Antimicrobial photodynamic therapy (aPDT) emerges as a viable treatment strategy for infections resistant to conventional antibiotics. A complex interplay of factors, including intracellular photosensitizer (PS) accumulation, photochemical reaction type, and oxygen levels, determines the efficacy of aPDT. Recent progress includes the development of modified PSs with enhanced lipophilicity and target-specific strategies to improve bacterial cell wall penetration and targeting. Nanotechnology-based approaches, such as using nanomaterials for targeted PS delivery, have shown promise in enhancing aPDT efficacy. Advancements in light delivery methods for aPDT, such as transillumination of large lesions and local light delivery using fiber optic techniques, are also being explored to optimize treatment efficacy in clinical settings. The limited number of animal models and clinical trials specifically designed to assess the efficacy of aPDT for lung infections highlights the need for further research in this critical area. The potential prospects of aPDT for lung tissue infections originating from antibiotic-resistant bacterial infections are also discussed in this review.
Collapse
Affiliation(s)
- Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia.
| | - Galina R Demina
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander P Savitsky
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Kozobkova NV, Samtsov MP, Lugovski AP, Bel’ko NV, Tarasov DS, Kaprelyants AS, Savitsky AP, Shleeva MO. Photoinactivation of Mycobacterium tuberculosis and Mycobacterium smegmatis by Near-Infrared Radiation Using a Trehalose-Conjugated Heptamethine Cyanine. Int J Mol Sci 2024; 25:8505. [PMID: 39126073 PMCID: PMC11313374 DOI: 10.3390/ijms25158505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The spread of multidrug-resistant mycobacterium strains requires the development of new approaches to combat diseases caused by these pathogens. For that, photodynamic inactivation (PDI) is a promising approach. In this study, a tricarbocyanine (TCC) is used for the first time as a near-infrared (740 nm) activatable PDI photosensitizer to kill mycobacteria with deep light penetration. For better targeting, a novel tricarbocyanine dye functionalized with two trehalose units (TCC2Tre) is developed. The photodynamic effect of the conjugates against mycobacteria, including Mycobacterium tuberculosis, is evaluated. Under irradiation, TCC2Tre causes more effective killing of mycobacteria compared to the photosensitizer without trehalose conjugation, with 99.99% dead vegetative cells of M. tuberculosis and M. smegmatis. In addition, effective photoinactivation of dormant forms of M. smegmatis is observed after incubation with TCC2Tre. Mycobacteria treated with TCC2Tre are more sensitive to 740 nm light than the Gram-positive Micrococcus luteus and the Gram-negative Escherichia coli. For the first time, this study demonstrates the proof of principle of in vitro PDI of mycobacteria including the fast-growing M. smegmatis and the slow-growing M. tuberculosis using near-infrared activatable photosensitizers conjugated with trehalose. These findings are useful for the development of new efficient alternatives to antibiotic therapy.
Collapse
Affiliation(s)
- Nataliya V. Kozobkova
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Michael P. Samtsov
- A.N. Sevchenko Institute of Applied Physical Problems of the Belarusian State University, 220045 Minsk, Belarus
| | - Anatol P. Lugovski
- A.N. Sevchenko Institute of Applied Physical Problems of the Belarusian State University, 220045 Minsk, Belarus
| | - Nikita V. Bel’ko
- A.N. Sevchenko Institute of Applied Physical Problems of the Belarusian State University, 220045 Minsk, Belarus
| | - Dmitri S. Tarasov
- A.N. Sevchenko Institute of Applied Physical Problems of the Belarusian State University, 220045 Minsk, Belarus
| | - Arseny S. Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Alexander P. Savitsky
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Margarita O. Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
4
|
Khan RMN, Ahn YM, Marriner GA, Via LE, D'Hooge F, Seo Lee S, Yang N, Basuli F, White AG, Tomko JA, Frye LJ, Scanga CA, Weiner DM, Sutphen ML, Schimel DM, Dayao E, Piazza MK, Gomez F, Dieckmann W, Herscovitch P, Mason NS, Swenson R, Kiesewetter DO, Backus KM, Geng Y, Raj R, Anthony DC, Flynn JL, Barry CE, Davis BG. Distributable, metabolic PET reporting of tuberculosis. Nat Commun 2024; 15:5239. [PMID: 38937448 PMCID: PMC11211441 DOI: 10.1038/s41467-024-48691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
Tuberculosis remains a large global disease burden for which treatment regimens are protracted and monitoring of disease activity difficult. Existing detection methods rely almost exclusively on bacterial culture from sputum which limits sampling to organisms on the pulmonary surface. Advances in monitoring tuberculous lesions have utilized the common glucoside [18F]FDG, yet lack specificity to the causative pathogen Mycobacterium tuberculosis (Mtb) and so do not directly correlate with pathogen viability. Here we show that a close mimic that is also positron-emitting of the non-mammalian Mtb disaccharide trehalose - 2-[18F]fluoro-2-deoxytrehalose ([18F]FDT) - is a mechanism-based reporter of Mycobacteria-selective enzyme activity in vivo. Use of [18F]FDT in the imaging of Mtb in diverse models of disease, including non-human primates, successfully co-opts Mtb-mediated processing of trehalose to allow the specific imaging of TB-associated lesions and to monitor the effects of treatment. A pyrogen-free, direct enzyme-catalyzed process for its radiochemical synthesis allows the ready production of [18F]FDT from the most globally-abundant organic 18F-containing molecule, [18F]FDG. The full, pre-clinical validation of both production method and [18F]FDT now creates a new, bacterium-selective candidate for clinical evaluation. We anticipate that this distributable technology to generate clinical-grade [18F]FDT directly from the widely-available clinical reagent [18F]FDG, without need for either custom-made radioisotope generation or specialist chemical methods and/or facilities, could now usher in global, democratized access to a TB-specific PET tracer.
Collapse
Affiliation(s)
- R M Naseer Khan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
- Clinical Pharmacology Lab, Clinical Center, NIHBC, NIH, Bethesda, MD, USA
| | - Yong-Mo Ahn
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Gwendolyn A Marriner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, USA
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Francois D'Hooge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Seung Seo Lee
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
- School of Chemistry, University of Southampton, Southampton, UK
| | - Nan Yang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
- The Rosalind Franklin Institute, Oxfordshire, UK
| | - Falguni Basuli
- Chemistry and Synthesis Center, NHLBI, NIH, Bethesda, MD, USA
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, USA
| | - Jaime A Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, USA
| | - L James Frye
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, USA
| | - Danielle M Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michelle L Sutphen
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel M Schimel
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Emmanuel Dayao
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Felipe Gomez
- Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, USA
| | - William Dieckmann
- Positron Emission Tomography Department, Clinical Center, NIH, Bethesda, MD, USA
| | - Peter Herscovitch
- Positron Emission Tomography Department, Clinical Center, NIH, Bethesda, MD, USA
| | - N Scott Mason
- Department of Radiology, University of Pittsburgh, Pittsburgh, USA
| | - Rolf Swenson
- Chemistry and Synthesis Center, NHLBI, NIH, Bethesda, MD, USA
| | - Dale O Kiesewetter
- Molecular Tracer and Imaging Core Facility, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, USA
| | - Keriann M Backus
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Yiqun Geng
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Ritu Raj
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | | | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | - Benjamin G Davis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK.
- The Rosalind Franklin Institute, Oxfordshire, UK.
- Department of Pharmacology, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Han J, Liu Y, Peng D, Liu J, Wu D. Biomedical Application of Porphyrin-Based Amphiphiles and Their Self-Assembled Nanomaterials. Bioconjug Chem 2023; 34:2155-2180. [PMID: 37955349 DOI: 10.1021/acs.bioconjchem.3c00432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Porphyrins have been vastly explored and applied in many cutting-edge fields with plenty of encouraging achievements because of their excellent properties. As important derivatives of porphyrins, porphyrin-based amphiphiles (PBAs) not only maintain the advanced properties of porphyrins (catalysis, imaging, and energy transfer) but also possess self-assembly and encapsulation capability in aqueous solution. Accordingly, PBAs and their self-assembles have had important roles in diagnosing and treating tumors and inflammation lesions in vivo, but not limited to these. In this article, we introduce the research progress of PBAs, including their constitution, structure design strategies, and performances in tumor and inflammation lesion diagnosis and treatments. On that basis, the defects of synthesized PBAs during their application and the possible effective strategies to overcome the limitations are also proposed. Finally, perspectives on PBAs exploration are updated based on our knowledge. We hope this review will bring researchers from various domains insights about PBAs.
Collapse
Affiliation(s)
- Jialei Han
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Danfeng Peng
- Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong 518119, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| |
Collapse
|
6
|
Gaidhane IV, Biegas KJ, Erickson HE, Agarwal P, Chhonker YS, Ronning DR, Swarts BM. Chemical remodeling of the mycomembrane with chain-truncated lipids sensitizes mycobacteria to rifampicin. Chem Commun (Camb) 2023; 59:13859-13862. [PMID: 37929833 PMCID: PMC10872977 DOI: 10.1039/d3cc02364h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The outer mycomembrane of Mycobacterium tuberculosis and related pathogens is a robust permeability barrier that protects against antibiotic treatment. Here, we demonstrate that synthetic analogues of the mycomembrane biosynthetic precursor trehalose monomycolate bearing truncated lipid chains increase permeability of Mycobacterium smegmatis cells and sensitize them to treatment with the first-line anti-tubercular drug rifampicin. The reported strategy may be useful for enhancing entry of drugs and other molecules to mycobacterial cells, and represents a new way to study mycomembrane structure and function.
Collapse
Affiliation(s)
- Ishani V Gaidhane
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| | - Kyle J Biegas
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI, USA
| | - Helen E Erickson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prachi Agarwal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yashpal S Chhonker
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, USA
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
7
|
Grimmeisen M, Jessen-Trefzer C. Increasing the Selectivity of Light-Active Antimicrobial Agents - Or How To Get a Photosensitizer to the Desired Target. Chembiochem 2023; 24:e202300177. [PMID: 37132365 DOI: 10.1002/cbic.202300177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/04/2023]
Abstract
Photosensitizers combine the inherent reactivity of reactive oxygen species with the sophisticated reaction control of light. Through selective targeting, these light-active molecules have the potential to overcome certain limitations in drug discovery. Ongoing advances in the synthesis and evaluation of photosensitizer conjugates with biomolecules such as antibodies, peptides, or small-molecule drugs are leading to increasingly powerful agents for the eradication of a growing number of microbial species. This review article, therefore, summarizes challenges and opportunities in the development of selective photosensitizers and their conjugates described in recent literature. This provides adequate insight for newcomers and those interested in this field.
Collapse
Affiliation(s)
- Michael Grimmeisen
- University of Freiburg, Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Claudia Jessen-Trefzer
- University of Freiburg, Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| |
Collapse
|
8
|
Dzigba P, Rylski AK, Angera IJ, Banahene N, Kavunja HW, Greenlee-Wacker MC, Swarts BM. Immune Targeting of Mycobacteria through Cell Surface Glycan Engineering. ACS Chem Biol 2023; 18:1548-1556. [PMID: 37306676 PMCID: PMC10782841 DOI: 10.1021/acschembio.3c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mycobacteria and other organisms in the order Mycobacteriales cause a range of significant human diseases, including tuberculosis, leprosy, diphtheria, Buruli ulcer, and non-tuberculous mycobacterial (NTM) disease. However, the intrinsic drug tolerance engendered by the mycobacterial cell envelope undermines conventional antibiotic treatment and contributes to acquired drug resistance. Motivated by the need to augment antibiotics with novel therapeutic approaches, we developed a strategy to specifically decorate mycobacterial cell surface glycans with antibody-recruiting molecules (ARMs), which flag bacteria for binding to human-endogenous antibodies that enhance macrophage effector functions. Mycobacterium-specific ARMs consisting of a trehalose targeting moiety and a dinitrophenyl hapten (Tre-DNPs) were synthesized and shown to specifically incorporate into outer-membrane glycolipids of Mycobacterium smegmatis via trehalose metabolism, enabling recruitment of anti-DNP antibodies to the mycobacterial cell surface. Phagocytosis of Tre-DNP-modified M. smegmatis by macrophages was significantly enhanced in the presence of anti-DNP antibodies, demonstrating proof-of-concept that our strategy can augment the host immune response. Because the metabolic pathways responsible for cell surface incorporation of Tre-DNPs are conserved in all Mycobacteriales organisms but absent from other bacteria and humans, the reported tools may be enlisted to interrogate host-pathogen interactions and develop immune-targeting strategies for diverse mycobacterial pathogens.
Collapse
Affiliation(s)
- Priscilla Dzigba
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Department of Biology, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI, 48859 United States
| | - Adrian K. Rylski
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Isaac J. Angera
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI, 48859 United States
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Mallary C. Greenlee-Wacker
- Department of Biology, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Benjamin M. Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI, 48859 United States
| |
Collapse
|
9
|
Liyanage S, Raviranga NGH, Ryan JG, Shell SS, Ramström O, Kalscheuer R, Yan M. Azide-Masked Fluorescence Turn-On Probe for Imaging Mycobacteria. JACS AU 2023; 3:1017-1028. [PMID: 37124305 PMCID: PMC10131213 DOI: 10.1021/jacsau.2c00449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 05/03/2023]
Abstract
A fluorescence turn-on probe, an azide-masked and trehalose-derivatized carbazole (Tre-Cz), was developed to image mycobacteria. The fluorescence turn-on is achieved by photoactivation of the azide, which generates a fluorescent product through an efficient intramolecular C-H insertion reaction. The probe is highly specific for mycobacteria and could image mycobacteria in the presence of other Gram-positive and Gram-negative bacteria. Both the photoactivation and detection can be accomplished using a handheld UV lamp, giving a limit of detection of 103 CFU/mL, which can be visualized by the naked eye. The probe was also able to image mycobacteria spiked in sputum samples, although the detection sensitivity was lower. Studies using heat-killed, stationary-phase, and isoniazid-treated mycobacteria showed that metabolically active bacteria are required for the uptake of Tre-Cz. The uptake decreased in the presence of trehalose in a concentration-dependent manner, indicating that Tre-Cz hijacked the trehalose uptake pathway. Mechanistic studies demonstrated that the trehalose transporter LpqY-SugABC was the primary pathway for the uptake of Tre-Cz. The uptake decreased in the LpqY-SugABC deletion mutants ΔlpqY, ΔsugA, ΔsugB, and ΔsugC and fully recovered in the complemented strain of ΔsugC. For the mycolyl transferase antigen 85 complex (Ag85), however, only a slight reduction of uptake was observed in the Ag85 deletion mutant ΔAg85C, and no incorporation of Tre-Cz into the outer membrane was observed. The unique intracellular incorporation mechanism of Tre-Cz through the LpqY-SugABC transporter, which differs from other trehalose-based fluorescence probes, unlocks potential opportunities to bring molecular cargoes to mycobacteria for both fundamental studies and theranostic applications.
Collapse
Affiliation(s)
- Sajani
H. Liyanage
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - N. G. Hasitha Raviranga
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Julia G. Ryan
- Department
of Biology and Biotechnology, Worcester
Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Scarlet S. Shell
- Department
of Biology and Biotechnology, Worcester
Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Olof Ramström
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Department
of Chemistry and Biomedical Sciences, Linnaeus
University, SE-39182 Kalmar, Sweden
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | - Mingdi Yan
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| |
Collapse
|
10
|
Naseer Khan R, Ahn YM, Marriner GA, Via LE, D’Hooge F, Lee SS, Yang N, Basuli F, White AG, Tomko JA, Frye LJ, Scanga CA, Weiner DM, Sutphen ML, Schimel DM, Dayao E, Piazza MK, Gomez F, Dieckmann W, Herscovitch P, Mason NS, Swenson R, Kiesewetter DO, Backus KM, Geng Y, Raj R, Anthony DC, Flynn JL, Barry CE, Davis BG. Distributable, Metabolic PET Reporting of Tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535218. [PMID: 37333343 PMCID: PMC10274857 DOI: 10.1101/2023.04.03.535218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Tuberculosis remains a large global disease burden for which treatment regimens are protracted and monitoring of disease activity difficult. Existing detection methods rely almost exclusively on bacterial culture from sputum which limits sampling to organisms on the pulmonary surface. Advances in monitoring tuberculous lesions have utilized the common glucoside [18F]FDG, yet lack specificity to the causative pathogen Mycobacterium tuberculosis (Mtb) and so do not directly correlate with pathogen viability. Here we show that a close mimic that is also positron-emitting of the non-mammalian Mtb disaccharide trehalose - 2-[18F]fluoro-2-deoxytrehalose ([18F]FDT) - can act as a mechanism-based enzyme reporter in vivo. Use of [18F]FDT in the imaging of Mtb in diverse models of disease, including non-human primates, successfully co-opts Mtb-specific processing of trehalose to allow the specific imaging of TB-associated lesions and to monitor the effects of treatment. A pyrogen-free, direct enzyme-catalyzed process for its radiochemical synthesis allows the ready production of [18F]FDT from the most globally-abundant organic 18F-containing molecule, [18F]FDG. The full, pre-clinical validation of both production method and [18F]FDT now creates a new, bacterium-specific, clinical diagnostic candidate. We anticipate that this distributable technology to generate clinical-grade [18F]FDT directly from the widely-available clinical reagent [18F]FDG, without need for either bespoke radioisotope generation or specialist chemical methods and/or facilities, could now usher in global, democratized access to a TB-specific PET tracer.
Collapse
Affiliation(s)
- R.M. Naseer Khan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Yong-Mo Ahn
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD USA
| | - Gwendolyn A. Marriner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD USA
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD USA
- Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD 20892
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Francois D’Hooge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Seung Seo Lee
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
- School of Chemistry, University of Southampton, Southampton, UK
| | - Nan Yang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
- The Rosalind Franklin Institute, Oxfordshire, OX11 0FA, UK
| | - Falguni Basuli
- Chemistry and Synthesis Center, NHLBI, NIH, Bethesda, MD USA
| | - Alexander G. White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh
| | - Jaime A. Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh
| | - L. James Frye
- Department of Microbiology and Molecular Genetics, University of Pittsburgh
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh
| | - Danielle M. Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD USA
| | - Michelle L. Sutphen
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD USA
| | - Daniel M. Schimel
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD USA
| | - Emmanuel Dayao
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD USA
| | | | - Felipe Gomez
- Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD 20892
| | - William Dieckmann
- Positron Emission Tomography Department, Clinical Center, NIH, Bethesda, MD USA 20892
| | - Peter Herscovitch
- Positron Emission Tomography Department, Clinical Center, NIH, Bethesda, MD USA 20892
| | | | - Rolf Swenson
- Chemistry and Synthesis Center, NHLBI, NIH, Bethesda, MD USA
| | - Dale O. Kiesewetter
- Molecular Tracer and Imaging Core Facility, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892
| | - Keriann M. Backus
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Yiqun Geng
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Ritu Raj
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Daniel C. Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD USA
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Benjamin G. Davis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
- The Rosalind Franklin Institute, Oxfordshire, OX11 0FA, UK
| |
Collapse
|
11
|
Pohane AA, Moore DJ, Lepori I, Gordon RA, Nathan TO, Gepford DM, Kavunja HW, Gaidhane IV, Swarts BM, Siegrist MS. A Bifunctional Chemical Reporter for in Situ Analysis of Cell Envelope Glycan Recycling in Mycobacteria. ACS Infect Dis 2022; 8:2223-2231. [PMID: 36288262 PMCID: PMC9924612 DOI: 10.1021/acsinfecdis.2c00396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In mycobacteria, the glucose-based disaccharide trehalose cycles between the cytoplasm, where it is a stress protectant and carbon source, and the cell envelope, where it is released as a byproduct of outer mycomembrane glycan biosynthesis and turnover. Trehalose recycling via the LpqY-SugABC transporter promotes virulence, antibiotic recalcitrance, and efficient adaptation to nutrient deprivation. The source(s) of trehalose and the regulation of recycling under these and other stressors are unclear. A key technical gap in addressing these questions has been the inability to trace trehalose recycling in situ, directly from its site of liberation from the cell envelope. Here we describe a bifunctional chemical reporter that simultaneously marks mycomembrane biosynthesis and subsequent trehalose recycling with alkyne and azide groups. Using this probe, we discovered that the recycling efficiency for trehalose increases upon carbon starvation, concomitant with an increase in LpqY-SugABC expression. The ability of the bifunctional reporter to probe multiple, linked steps provides a more nuanced understanding of mycobacterial cell envelope metabolism and its plasticity under stress.
Collapse
Affiliation(s)
- Amol Arunrao Pohane
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003 USA
| | - Devin J. Moore
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Irene Lepori
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003 USA
| | - Rebecca A. Gordon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003 USA
| | - Temitope O. Nathan
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Dana M. Gepford
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Ishani V. Gaidhane
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Benjamin M. Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, 48859 United States
| | - M. Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003 USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003 USA
| |
Collapse
|
12
|
Volarić J, Buter J, Schulte AM, van den Berg KO, Santamaría-Aranda E, Szymanski W, Feringa BL. Design and Synthesis of Visible-Light-Responsive Azobenzene Building Blocks for Chemical Biology. J Org Chem 2022; 87:14319-14333. [PMID: 36285612 PMCID: PMC9639001 DOI: 10.1021/acs.joc.2c01777] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tetra-ortho-fluoro-azobenzenes are a class of photoswitches useful for the construction of visible-light-controlled molecular systems. They can be used to achieve spatio-temporal control over the properties of a chosen bioactive molecule. However, the introduction of different substituents to the tetra-fluoro-azobenzene core can significantly affect the photochemical properties of the switch and compromise biocompatibility. Herein, we explored the effect of useful substituents, such as functionalization points, attachment handles, and water-solubilizing groups, on the photochemical properties of this photochromic system. In general, all the tested fluorinated azobenzenes exhibited favorable photochemical properties, such as high photostationary state distribution and long half-lives, both in organic solvents and in water. One of the azobenzene building blocks was functionalized with a trehalose group to enable the uptake of the photoswitch into mycobacteria. Following metabolic uptake and incorporation of the trehalose-based azobenzene in the mycobacterial cell wall, we demonstrated photoswitching of the azobenzene in the isolated total lipid extract.
Collapse
Affiliation(s)
- Jana Volarić
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jeffrey Buter
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Albert M. Schulte
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | - Eduardo Santamaría-Aranda
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands,Departamento
de Química, Universidad de la Rioja, Centro de investigación en Síntesis Química, Madre de Dios 53, 26006 Logroño, Spain
| | - Wiktor Szymanski
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands,Department
of Radiology, Medical Imaging, Center, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands,
| | - Ben L. Feringa
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands,
| |
Collapse
|
13
|
Call SN, Andrews LB. CRISPR-Based Approaches for Gene Regulation in Non-Model Bacteria. Front Genome Ed 2022; 4:892304. [PMID: 35813973 PMCID: PMC9260158 DOI: 10.3389/fgeed.2022.892304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 01/08/2023] Open
Abstract
CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) have become ubiquitous approaches to control gene expression in bacteria due to their simple design and effectiveness. By regulating transcription of a target gene(s), CRISPRi/a can dynamically engineer cellular metabolism, implement transcriptional regulation circuitry, or elucidate genotype-phenotype relationships from smaller targeted libraries up to whole genome-wide libraries. While CRISPRi/a has been primarily established in the model bacteria Escherichia coli and Bacillus subtilis, a growing numbering of studies have demonstrated the extension of these tools to other species of bacteria (here broadly referred to as non-model bacteria). In this mini-review, we discuss the challenges that contribute to the slower creation of CRISPRi/a tools in diverse, non-model bacteria and summarize the current state of these approaches across bacterial phyla. We find that despite the potential difficulties in establishing novel CRISPRi/a in non-model microbes, over 190 recent examples across eight bacterial phyla have been reported in the literature. Most studies have focused on tool development or used these CRISPRi/a approaches to interrogate gene function, with fewer examples applying CRISPRi/a gene regulation for metabolic engineering or high-throughput screens and selections. To date, most CRISPRi/a reports have been developed for common strains of non-model bacterial species, suggesting barriers remain to establish these genetic tools in undomesticated bacteria. More efficient and generalizable methods will help realize the immense potential of programmable CRISPR-based transcriptional control in diverse bacteria.
Collapse
Affiliation(s)
- Stephanie N. Call
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Lauren B. Andrews
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
14
|
Banahene N, Kavunja HW, Swarts BM. Chemical Reporters for Bacterial Glycans: Development and Applications. Chem Rev 2022; 122:3336-3413. [PMID: 34905344 PMCID: PMC8958928 DOI: 10.1021/acs.chemrev.1c00729] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacteria possess an extraordinary repertoire of cell envelope glycans that have critical physiological functions. Pathogenic bacteria have glycans that are essential for growth and virulence but are absent from humans, making them high-priority targets for antibiotic, vaccine, and diagnostic development. The advent of metabolic labeling with bioorthogonal chemical reporters and small-molecule fluorescent reporters has enabled the investigation and targeting of specific bacterial glycans in their native environments. These tools have opened the door to imaging glycan dynamics, assaying and inhibiting glycan biosynthesis, profiling glycoproteins and glycan-binding proteins, and targeting pathogens with diagnostic and therapeutic payload. These capabilities have been wielded in diverse commensal and pathogenic Gram-positive, Gram-negative, and mycobacterial species─including within live host organisms. Here, we review the development and applications of chemical reporters for bacterial glycans, including peptidoglycan, lipopolysaccharide, glycoproteins, teichoic acids, and capsular polysaccharides, as well as mycobacterial glycans, including trehalose glycolipids and arabinan-containing glycoconjugates. We cover in detail how bacteria-targeting chemical reporters are designed, synthesized, and evaluated, how they operate from a mechanistic standpoint, and how this information informs their judicious and innovative application. We also provide a perspective on the current state and future directions of the field, underscoring the need for interdisciplinary teams to create novel tools and extend existing tools to support fundamental and translational research on bacterial glycans.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | | |
Collapse
|
15
|
Prabhu P, Fernandes T, Damani M, Chaubey P, Narayanan S, Sawarkar S. 2Receptor Specific Ligand conjugated Nanocarriers: an Effective Strategy for Targeted Therapy of Tuberculosis. Curr Drug Deliv 2021; 19:830-845. [PMID: 34915835 DOI: 10.2174/1567201819666211216141942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/09/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) is an ancient chronic disease caused by the bacillus Mycobacterium tuberculosis, which has affected mankind for more than 4,000 years. Compliance with the standard conventional treatment can assure recovery from tuberculosis, but emergence of drug resistant strains pose a great challenge for effective management of tuberculosis. The process of discovery and development of new therapeutic entities with better specificity and efficacy is unpredictable and time consuming. Hence, delivery of pre-existing drugs with improved targetability is the need of the hour. Enhanced delivery and targetability can ascertain improved bioavailability, reduced toxicity, decreased frequency of dosing and therefore better patient compliance. Nanoformulations are being explored for effective delivery of therapeutic agents, however optimum specificity is not guaranteed. In order to achieve specificity, ligands specific to receptors or cellular components of macrophage and Mycobacteria can be conjugatedto nanocarriers. This approach can improve localization of existing drug molecules at the intramacrophageal site where the parasites reside, improve targeting to the unique cell wall structure of Mycobacterium or improve adhesion to epithelial surface of intestine or alveolar tissue (lectins). Present review focuses on the investigation of various ligands like Mannose, Mycolic acid, Lectin, Aptamers etc. installed nanocarriers that are being envisaged for targeting antitubercular drugs.
Collapse
Affiliation(s)
- Pratiksha Prabhu
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai. Saudi Arabia
| | - Trinette Fernandes
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai. Saudi Arabia
| | - Mansi Damani
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai. Saudi Arabia
| | - Pramila Chaubey
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Al-Dawadmi. Saudi Arabia
| | - Shridhar Narayanan
- Foundation for Neglected Disease Research, 20A, KIADB Industrial Area Veerapura, Doddaballapur, Bengaluru, Karnataka 561203. India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai. Saudi Arabia
| |
Collapse
|
16
|
Wang X, Bittner T, Milanov M, Kaul L, Mundinger S, Koch HG, Jessen-Trefzer C, Jessen HJ. Pyridinium Modified Anthracenes and Their Endoperoxides Provide a Tunable Scaffold with Activity against Gram-Positive and Gram-Negative Bacteria. ACS Infect Dis 2021; 7:2073-2080. [PMID: 34291902 DOI: 10.1021/acsinfecdis.1c00263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Due to the emergence of multidrug resistant bacteria, the development of new antibiotics is required. We introduce here asymmetrically modified positively charged bis(methylpyridinium) anthracenes as a novel tunable scaffold, in which the two positive charges can be placed at a defined distance and angle. Our structure-activity relationship reveals that coupling the methylpyridiniums with alkynyl linkers to the central anthracene unit yields antibacterial compounds against a wide range of bacteria, including Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. Also, different mycobacteria, such as Mycobacterium smegmatis and Mycobacterium tuberculosis, are efficiently targeted by these compounds. The antibacterial activity depends on the number of alkynyl linkers and consequently also on the distance of the positive charges in the rigid anthracene scaffold. Additionally, the formation of an anthracene endoperoxide further increases the antibacterial activity, likely due to the release of toxic singlet oxygen that converts the endoperoxide back to the antibacterial anthracene scaffold with half-lives of several hours.
Collapse
Affiliation(s)
- Xuan Wang
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Tamara Bittner
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Martin Milanov
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Laurine Kaul
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, 79104 Freiburg, Germany
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia
| | - Stephan Mundinger
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Claudia Jessen-Trefzer
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
17
|
Abstract
The mycobacterial cell envelope includes a unique outer membrane, also known as the mycomembrane, which is the major defense barrier that confers intrinsic drug tolerance to Mycobacterium tuberculosis (Mtb) and related bacteria. The mycomembrane is typified by long-chain mycolic acids that are esterified to various acceptors, including: (1) trehalose, forming trehalose mono- and di-mycolate; (2) arabinogalactan, forming arabinogalactan-linked mycolates; and (3) in some species, protein serine residues, forming O-mycoloylated proteins. Synthetic trehalose and trehalose monomycolate analogs have been shown to specifically and metabolically incorporate into mycomembrane components, facilitating their analysis in native contexts and opening new avenues for the specific detection and therapeutic targeting of mycobacterial pathogens in complex settings. This chapter highlights trehalose-based probes that have been developed to date, briefly discusses their applications, and describes protocols for their use in mycobacteria research.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
18
|
Biegas KJ, Swarts BM. Chemical probes for tagging mycobacterial lipids. Curr Opin Chem Biol 2021; 65:57-65. [PMID: 34216933 DOI: 10.1016/j.cbpa.2021.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Mycobacteria, which cause tuberculosis and related diseases, possess a diverse set of complex envelope lipids that provide remarkable tolerance to antibiotics and are major virulence factors that drive pathogenesis. Recently, metabolic labeling and bio-orthogonal chemistry have been harnessed to develop chemical probes for tagging specific lipids in live mycobacteria, enabling a range of new basic and translational research avenues. A toolbox of probes has been developed for labeling mycolic acids and their derivatives, including trehalose-, arabinogalactan-, and protein-linked mycolates, as well as newer probes for labeling phthiocerol dimycocerosates (PDIMs) and potentially other envelope lipids. These lipid-centric tools have yielded fresh insights into mycobacterial growth and host interactions, provided new avenues for drug target discovery and characterization, and inspired innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Kyle J Biegas
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
19
|
Photoinactivation of mycobacteria to combat infection diseases: current state and perspectives. Appl Microbiol Biotechnol 2021; 105:4099-4109. [PMID: 33997929 PMCID: PMC8126513 DOI: 10.1007/s00253-021-11349-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 12/11/2022]
Abstract
Abstract The spread of multi-drug-resistant bacterial strains causing serious infectious diseases dictates the development of new approaches to combat these diseases. In addition to drug resistance, the important causative agent of tuberculosis (Mycobacterium tuberculosis (Mtb)) is able to persist asymptomatically in individuals for many years, causing latent forms of tuberculosis. In such a dormant state, Mtb cells are also resistant to known antibiotics. In this regard, photodynamic inactivation (PDI) could be an effective alternative to antibiotics as its action is based on the generation of active forms of oxygen independently on the presence of specific antibiotic targets, thereby inactivating both drug-resistant and dormant bacteria. In this review, we summarise examples of the application of PDI for the elimination of representatives of the genus Mycobacteria, both in vitro and in vivo. According to published results, including photosensitisers in the PDI regime results in a significantly higher lethal effect. Such experiments were mainly performed using chemically synthesised photosensitisers, which need to be transported to the areas of bacterial infections, limiting PDI usage by surface (skin) diseases. In this regard, endogenous photosensitisers (mainly porphyrins) could be used to solve the problem of transportation. In vitro experiments demonstrate the effective application of PDI for mycobacteria, including Mtb, using endogenous porphyrins; the intracellular contents of these substances can be elevated by administration of 5-aminolevulenic acid, a precursor of porphyrin synthesis. Photodynamic inactivation can also be used for dormant mycobacteria, which are characterised by high levels of endogenous porphyrins. Thus, PDI can effectively eliminate drug-resistant mycobacteria. The exploitation of modern light-transmitting techniques opens new possibilities to use PDI in clinical settings. Key points •The potential effects of photodynamic inactivation of mycobacteria are critically reviewed. •Approaches to photoinactivation of mycobacteria using exogenous and endogenous photosensitisers are described. •Prospects for the use of photodynamic inactivation in the treatment of tuberculosis are discussed.
Collapse
|
20
|
Dixon CF, Nottingham AN, Lozano AF, Sizemore JA, Russell LA, Valiton C, Newell KL, Babin D, Bridges WT, Parris MR, Shchirov DV, Snyder NL, Ruppel JV. Synthesis and evaluation of porphyrin glycoconjugates varying in linker length: preliminary effects on the photodynamic inactivation of Mycobacterium smegmatis. RSC Adv 2021; 2021:7037-7042. [PMID: 34336191 PMCID: PMC8320722 DOI: 10.1039/d0ra10793j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 11/21/2022] Open
Abstract
Porphyrins have served as common photosensitizing agents in photomedicine due to their unique properties and broad therapeutic potential. While photodynamic therapy (PDT) offers a promising avenue for novel drug development, limitations in application due to selectivity, and the inherent hydrophobicity and poor solubility of porphyrins and other organic photosensitizers has been noted. Porphyrin glycoconjugates have recently gained attention for their potential to overcome these limitations. However, little has been done to explore the effects of the linker between the carbohydrate and porphyrin analog. Here we report the synthesis of over 30 new carbohydrate-porphyrin conjugates which vary in the nature of the sugar (Gal, Glc, GalNAc, GlcNAc, Lac and Tre) and the distance between the porphyrin macrocycle and the carbohydrate. Porphyrin glycoconjugates were synthesized in three steps from a readily available meso-brominated diphenylporphyrin analog by (i) C-O coupling of an appropriate TMS-protected alkynol consisting of two to six carbon spacers (ii) removal of the TMS protecting group, and (iii) CuAAC conjugation with an appropriate glycosyl azide. First studies with trehalose-based glycoporphyrins and M. smeg were used to determine the effects of the linker in photodynamic inactivation (PDI) studies. Preliminary results demonstrated an increase in photodynamic inactivation with a decrease in linker length. Investigations are underway to determine the mechanism for these results.
Collapse
Affiliation(s)
| | - Ana N. Nottingham
- Davidson College, Department of ChemistryBox 7120DavidsonNC 28035USA
| | | | | | - Logan A. Russell
- Davidson College, Department of ChemistryBox 7120DavidsonNC 28035USA
| | | | | | - Dominique Babin
- Davidson College, Department of ChemistryBox 7120DavidsonNC 28035USA
| | | | | | | | - Nicole L. Snyder
- Davidson College, Department of ChemistryBox 7120DavidsonNC 28035USA
| | | |
Collapse
|
21
|
Molecular mechanism underlying the selective attack of trehalose lipids on cancer cells as revealed by coarse-grained molecular dynamics simulations. Biochem Biophys Rep 2021; 25:100913. [PMID: 33521337 PMCID: PMC7820381 DOI: 10.1016/j.bbrep.2021.100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
The present study indicated that the mixed lipid bilayer of dimyristoylphosphatidylcholine (DMPC) and trehalosemonomyristate (TreC14) interacted strongly with the plasma membrane of cancer cells, and not that of normal cells, when the composition of TreC14 was 70%, as revealed by coarse-grained molecular dynamics simulations. These results were consistent with those of previous experimental studies, indicating that DMPC/TreC14 mixed liposomes (DMTreC14) with TreC14 composition at 70% exhibited a strong anti-cancer effect without affecting normal cells. The simulations also revealed that lipids with highly hydrophilic and bulky head groups, such as TreC14, phosphatidylinositol (PI), and phosphatidylserine (PS), showed the tendency to accumulate. This caused both the DMTreC14 and cancer cell membranes to bend into large positive curvatures, resulting in tight contact between them. In contrast, no apparent interaction between the DMTreC14 and normal cell membranes was observed because PI and PS did not exist in the extracellular monolayer of the normal cell membrane. The mixed lipid bilayer (DMTreC14) of dimyristoylphosphatidylcholine (DMPC) and trehalosemonomyristate (TreC14) interacted strongly with the plasma membrane of a cancer cell, but did not interact with that of a normal cell. TreC14 was shown to interact preferentially with phosphatidylinositol (PI) and phosphatidylserine (PS), which existed in the extracellular side of the cancer cell. This interaction was inferred to cause the physical contact between DMTreC14 and the cancer cell, leading to their membrane fusion.
Collapse
|
22
|
Construction of a novel CRISPRi-based tool for silencing of multiple genes in Mycobacterium tuberculosis. Plasmid 2020; 110:102515. [DOI: 10.1016/j.plasmid.2020.102515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022]
|
23
|
Parbhoo T, Sampson SL, Mouton JM. Recent Developments in the Application of Flow Cytometry to Advance our Understanding of Mycobacterium tuberculosis Physiology and Pathogenesis. Cytometry A 2020; 97:683-693. [PMID: 32437069 PMCID: PMC7496436 DOI: 10.1002/cyto.a.24030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
The ability of the bacterial pathogen Mycobacterium tuberculosis to adapt and survive within human cells to disseminate to other individuals and cause active disease is poorly understood. Research supports that as M. tuberculosis adapts to stressors encountered in the host, it exhibits variable physiological and metabolic states that are time and niche-dependent. Challenges associated with effective treatment and eradication of tuberculosis (TB) are in part attributed to our lack of understanding of these different mycobacterial phenotypes. This is mainly due to a lack of suitable tools to effectively identify/detect heterogeneous bacterial populations, which may include small, difficult-to-culture subpopulations. Importantly, flow cytometry allows rapid and affordable multiparametric measurements of physical and chemical characteristics of single cells, without the need to preculture cells. Here, we summarize current knowledge of flow cytometry applications that have advanced our understanding of the physiology of M. tuberculosis during TB disease. Specifically, we review how host-associated stressors influence bacterial characteristics such as metabolic activity, membrane potential, redox status and the mycobacterial cell wall. Further, we highlight that flow cytometry offers unprecedented opportunities for insight into bacterial population heterogeneity, which is increasingly appreciated as an important determinant of disease outcome. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Trisha Parbhoo
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Samantha L. Sampson
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Jacoba M. Mouton
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|