1
|
Müller J, Bayer FP, Wilhelm M, Schuh MG, Kuster B, The M. PTMNavigator: interactive visualization of differentially regulated post-translational modifications in cellular signaling pathways. Nat Commun 2025; 16:510. [PMID: 39779715 PMCID: PMC11711753 DOI: 10.1038/s41467-024-55533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Post-translational modifications (PTMs) play pivotal roles in regulating cellular signaling, fine-tuning protein function, and orchestrating complex biological processes. Despite their importance, the lack of comprehensive tools for studying PTMs from a pathway-centric perspective has limited our ability to understand how PTMs modulate cellular pathways on a molecular level. Here, we present PTMNavigator, a tool integrated into the ProteomicsDB platform that offers an interactive interface for researchers to overlay experimental PTM data with pathway diagrams. PTMNavigator provides ~3000 canonical pathways from manually curated databases, enabling users to modify and create custom diagrams tailored to their data. Additionally, PTMNavigator automatically runs kinase and pathway enrichment algorithms whose results are directly integrated into the visualization. This offers a comprehensive view of the intricate relationship between PTMs and signaling pathways. We demonstrate the utility of PTMNavigator by applying it to two phosphoproteomics datasets, showing how it can enhance pathway enrichment analysis, visualize how drug treatments result in a discernable flow of PTM-driven signaling, and aid in proposing extensions to existing pathways. By enhancing our understanding of cellular signaling dynamics and facilitating the discovery of PTM-pathway interactions, PTMNavigator advances our knowledge of PTM biology and its implications in health and disease.
Collapse
Affiliation(s)
- Julian Müller
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Florian P Bayer
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mathias Wilhelm
- Computational Mass Spectrometry, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Maximilian G Schuh
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
- Organic Chemistry II, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Matthew The
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
2
|
Zhong H, Zhou Z, Wang H, Wang R, Shen K, Huang R, Wang Z. The Biological Roles and Clinical Applications of the PI3K/AKT Pathway in Targeted Therapy Resistance in HER2-Positive Breast Cancer: A Comprehensive Review. Int J Mol Sci 2024; 25:13376. [PMID: 39769140 PMCID: PMC11677710 DOI: 10.3390/ijms252413376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Epidermal growth factor receptor 2-positive breast cancer (HER2+ BC) is a highly invasive and malignant type of tumor. Due to its resistance to HER2-targeted therapy, HER2+ BC has a poor prognosis and a tendency for metastasis. Understanding the mechanisms underlying this resistance and developing effective treatments for HER2+ BC are major research challenges. The phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) pathway, which is frequently altered in cancers, plays a critical role in cellular proliferation and drug resistance. This signaling pathway activates various downstream pathways and exhibits complex interactions with other signaling networks. Given the significance of the PI3K/AKT pathway in HER2+ BC, several targeted drugs are currently in development. Multiple drugs have entered clinical trials or gained market approval, bringing new hope for HER2+ BC therapy. However, new drugs and therapies raise concerns related to safety, regulation, and ethics. Populations of different races and disease statuses exhibit varying responses to treatments. Therefore, in this review, we summarize current knowledge on the alteration and biological roles of the PI3K/AKT pathway, as well as its clinical applications and perspectives, providing new insights for advancing targeted therapies in HER2+ BC.
Collapse
Affiliation(s)
| | | | | | | | | | - Renhong Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.Z.); (Z.Z.); (H.W.); (R.W.); (K.S.)
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.Z.); (Z.Z.); (H.W.); (R.W.); (K.S.)
| |
Collapse
|
3
|
Needham EJ, Hingst JR, Onslev JD, Diaz-Vegas A, Leandersson MR, Huckstep H, Kristensen JM, Kido K, Richter EA, Højlund K, Parker BL, Cooke K, Yang G, Pehmøller C, Humphrey SJ, James DE, Wojtaszewski JFP. Personalized phosphoproteomics of skeletal muscle insulin resistance and exercise links MINDY1 to insulin action. Cell Metab 2024; 36:2542-2559.e6. [PMID: 39577414 DOI: 10.1016/j.cmet.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/05/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Type 2 diabetes is preceded by a defective insulin response, yet our knowledge of the precise mechanisms is incomplete. Here, we investigate how insulin resistance alters skeletal muscle signaling and how exercise partially counteracts this effect. We measured parallel phenotypes and phosphoproteomes of insulin-resistant (IR) and insulin-sensitive (IS) men as they responded to exercise and insulin (n = 19, 114 biopsies), quantifying over 12,000 phosphopeptides in each biopsy. Insulin resistance involves selective and time-dependent alterations to signaling, including reduced insulin-stimulated mTORC1 and non-canonical signaling responses. Prior exercise promotes insulin sensitivity even in IR individuals by "priming" a portion of insulin signaling prior to insulin infusion. This includes MINDY1 S441, which we show is an AKT substrate. We found that MINDY1 knockdown enhances insulin-stimulated glucose uptake in rat myotubes. This work delineates the signaling alterations in IR skeletal muscle and identifies MINDY1 as a regulator of insulin action.
Collapse
Affiliation(s)
- Elise J Needham
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Janne R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Johan D Onslev
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Alexis Diaz-Vegas
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Magnus R Leandersson
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Hannah Huckstep
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Jonas M Kristensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kohei Kido
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa, Japan
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Benjamin L Parker
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Kristen Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Guang Yang
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Christian Pehmøller
- Internal Medicine Research Unit, Pfizer Global Research and Development, Cambridge, MA, USA
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Hassan D, Menges CW, Testa JR, Bellacosa A. AKT kinases as therapeutic targets. J Exp Clin Cancer Res 2024; 43:313. [PMID: 39614261 PMCID: PMC11606119 DOI: 10.1186/s13046-024-03207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
AKT, or protein kinase B, is a central node of the PI3K signaling pathway that is pivotal for a range of normal cellular physiologies that also underlie several pathological conditions, including inflammatory and autoimmune diseases, overgrowth syndromes, and neoplastic transformation. These pathologies, notably cancer, arise if either the activity of AKT or its positive or negative upstream or downstream regulators or effectors goes unchecked, superimposed on by its intersection with a slew of other pathways. Targeting the PI3K/AKT pathway is, therefore, a prudent countermeasure. AKT inhibitors have been tested in many clinical trials, primarily in combination with other drugs. While some have recently garnered attention for their favorable profile, concern over resistance and off-target effects have continued to hinder their widespread adoption in the clinic, mandating a discussion on alternative modes of targeting. In this review, we discuss isoform-centric targeting that may be more effective and less toxic than traditional pan-AKT inhibitors and its significance for disease prevention and treatment, including immunotherapy. We also touch on the emerging mutant- or allele-selective covalent allosteric AKT inhibitors (CAAIs), as well as indirect, novel AKT-targeting approaches, and end with a briefing on the ongoing quest for more reliable biomarkers predicting sensitivity and response to AKT inhibitors, and their current state of affairs.
Collapse
Affiliation(s)
- Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Thomas Jefferson University, 901 Walnut St, Philadelphia, PA, 19107, USA
| | - Craig W Menges
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
5
|
Hossain MA. Targeting the RAS upstream and downstream signaling pathway for cancer treatment. Eur J Pharmacol 2024; 979:176727. [PMID: 38866361 DOI: 10.1016/j.ejphar.2024.176727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Cancer often involves the overactivation of RAS/RAF/MEK/ERK (MAPK) and PI3K-Akt-mTOR pathways due to mutations in genes like RAS, RAF, PTEN, and PIK3CA. Various strategies are employed to address the overactivation of these pathways, among which targeted therapy emerges as a promising approach. Directly targeting specific proteins, leads to encouraging results in cancer treatment. For instance, RTK inhibitors such as imatinib and afatinib selectively target these receptors, hindering ligand binding and reducing signaling initiation. These inhibitors have shown potent efficacy against Non-Small Cell Lung Cancer. Other inhibitors, like lonafarnib targeting Farnesyltransferase and GGTI 2418 targeting geranylgeranyl Transferase, disrupt post-translational modifications of proteins. Additionally, inhibition of proteins like SOS, SH2 domain, and Ras demonstrate promising anti-tumor activity both in vivo and in vitro. Targeting downstream components with RAF inhibitors such as vemurafenib, dabrafenib, and sorafenib, along with MEK inhibitors like trametinib and binimetinib, has shown promising outcomes in treating cancers with BRAF-V600E mutations, including myeloma, colorectal, and thyroid cancers. Furthermore, inhibitors of PI3K (e.g., apitolisib, copanlisib), AKT (e.g., ipatasertib, perifosine), and mTOR (e.g., sirolimus, temsirolimus) exhibit promising efficacy against various cancers such as Invasive Breast Cancer, Lymphoma, Neoplasms, and Hematological malignancies. This review offers an overview of small molecule inhibitors targeting specific proteins within the RAS upstream and downstream signaling pathways in cancer.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
6
|
Ong SS, Ho PJ, Khng AJ, Tan BKT, Tan QT, Tan EY, Tan SM, Putti TC, Lim SH, Tang ELS, Li J, Hartman M. Genomic Insights into Idiopathic Granulomatous Mastitis through Whole-Exome Sequencing: A Case Report of Eight Patients. Int J Mol Sci 2024; 25:9058. [PMID: 39201744 PMCID: PMC11354296 DOI: 10.3390/ijms25169058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Idiopathic granulomatous mastitis (IGM) is a rare condition characterised by chronic inflammation and granuloma formation in the breast. The aetiology of IGM is unclear. By focusing on the protein-coding regions of the genome, where most disease-related mutations often occur, whole-exome sequencing (WES) is a powerful approach for investigating rare and complex conditions, like IGM. We report WES results on paired blood and tissue samples from eight IGM patients. Samples were processed using standard genomic protocols. Somatic variants were called with two analytical pipelines: nf-core/sarek with Strelka2 and GATK4 with Mutect2. Our WES study of eight patients did not find evidence supporting a clear genetic component. The discrepancies between variant calling algorithms, along with the considerable genetic heterogeneity observed amongst the eight IGM cases, indicate that common genetic drivers are not readily identifiable. With only three genes, CHIT1, CEP170, and CTR9, recurrently altering in multiple cases, the genetic basis of IGM remains uncertain. The absence of validation for somatic variants by Sanger sequencing raises further questions about the role of genetic mutations in the disease. Other potential contributors to the disease should be explored.
Collapse
Affiliation(s)
- Seeu Si Ong
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.S.O.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Peh Joo Ho
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.S.O.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore
| | - Alexis Jiaying Khng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.S.O.)
| | - Benita Kiat Tee Tan
- Department of General Surgery, Sengkang General Hospital, Singapore 544886, Singapore
- Department of Breast Surgery, Singapore General Hospital, Singapore 169608, Singapore
- Division of Surgical Oncology, National Cancer Centre, Singapore 169610, Singapore
| | - Qing Ting Tan
- Breast Department, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Su-Ming Tan
- Division of Breast Surgery, Changi General Hospital, Singapore 529889, Singapore
| | - Thomas Choudary Putti
- Department of Pathology, National University Health System, Singapore 119228, Singapore
| | - Swee Ho Lim
- Breast Department, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | | | - Jingmei Li
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.S.O.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Mikael Hartman
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| |
Collapse
|
7
|
Bullock KK, Richmond A. Beyond Anti-PD-1/PD-L1: Improving Immune Checkpoint Inhibitor Responses in Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:2189. [PMID: 38927895 PMCID: PMC11201651 DOI: 10.3390/cancers16122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
The introduction of anti-programmed cell death protein-1 (anti-PD-1) to the clinical management of triple-negative breast cancer (TNBC) represents a breakthrough for a disease whose treatment has long relied on the standards of chemotherapy and surgery. Nevertheless, few TNBC patients achieve a durable remission in response to anti-PD-1, and there is a need to develop strategies to maximize the potential benefit of immune checkpoint inhibition (ICI) for TNBC patients. In the present review, we discuss three conceptual strategies to improve ICI response rates in TNBC patients. The first effort involves improving patient selection. We discuss proposed biomarkers of response and resistance to anti-PD-1, concluding that an optimal biomarker will likely be multifaceted. The second effort involves identifying existing targeted therapies or chemotherapies that may synergize with ICI. In particular, we describe recent efforts to use inhibitors of the PI3K/AKT or RAS/MAPK/ERK pathways in combination with ICI. Third, considering the possibility that targeting the PD-1 axis is not the most promising strategy for TNBC treatment, we describe ongoing efforts to identify novel immunotherapy strategies.
Collapse
Affiliation(s)
| | - Ann Richmond
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA;
| |
Collapse
|
8
|
Bullock KK, Shattuck-Brandt R, Scalise C, Luo W, Chen SC, Saleh N, Gonzalez-Ericsson PI, Garcia G, Sanders ME, Ayers GD, Yan C, Richmond A. Endogenous pAKT activity is associated with response to AKT inhibition alone and in combination with immune checkpoint inhibition in murine models of TNBC. Cancer Lett 2024; 586:216681. [PMID: 38311054 PMCID: PMC11622984 DOI: 10.1016/j.canlet.2024.216681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous and challenging-to-treat breast cancer subtype. The clinical introduction of immune checkpoint inhibitors (ICI) for TNBC has had mixed results, and very few patients achieved a durable response. The PI3K/AKT pathway is frequently mutated in breast cancer. Given the important roles of the PI3K pathway in immune and tumor cell signaling, there is an interest in using inhibitors of this pathway to increase the response to ICI. This study sought to determine if AKT inhibition could enhance the response to ICI in murine TNBC models. We further sought to understand underlying mechanisms of response or non-response to AKT inhibition in combination with ICI. Using four murine TNBC-like cell lines and corresponding orthotopic mouse tumor models, we found that hyperactivity of the PI3K pathway, as evidenced by levels of phospho-AKT rather than PI3K pathway mutational status, was associated with response to AKT inhibition alone and in combination with ICI. Additional mutations in other growth regulatory pathways could override the response of PI3K pathway mutant tumors to AKT inhibition. Furthermore, we observed that AKT inhibition enhanced the response to ICI in an already sensitive model. However, AKT inhibition failed to convert ICI-resistant tumors, to responsive tumors. These findings suggest that analysis of both the mutational status and phospho-AKT protein levels may be beneficial in predicting which TNBC tumors will respond to AKT inhibition in combination with ICI.
Collapse
Affiliation(s)
- Kennady K Bullock
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Rebecca Shattuck-Brandt
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Carly Scalise
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Weifeng Luo
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Sheau-Chiann Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nabil Saleh
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Paula I Gonzalez-Ericsson
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Guadalupe Garcia
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melinda E Sanders
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gregory D Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chi Yan
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA.
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
9
|
Saltzman AB, Chan DW, Holt MV, Wang J, Jaehnig EJ, Anurag M, Singh P, Malovannaya A, Kim BJ, Ellis MJ. Kinase inhibitor pulldown assay (KiP) for clinical proteomics. Clin Proteomics 2024; 21:3. [PMID: 38225548 PMCID: PMC10790396 DOI: 10.1186/s12014-023-09448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/07/2023] [Indexed: 01/17/2024] Open
Abstract
Protein kinases are frequently dysregulated and/or mutated in cancer and represent essential targets for therapy. Accurate quantification is essential. For breast cancer treatment, the identification and quantification of the protein kinase ERBB2 is critical for therapeutic decisions. While immunohistochemistry (IHC) is the current clinical diagnostic approach, it is only semiquantitative. Mass spectrometry-based proteomics offers quantitative assays that, unlike IHC, can be used to accurately evaluate hundreds of kinases simultaneously. The enrichment of less abundant kinase targets for quantification, along with depletion of interfering proteins, improves sensitivity and thus promotes more effective downstream analyses. Multiple kinase inhibitors were therefore deployed as a capture matrix for kinase inhibitor pulldown (KiP) assays designed to profile the human protein kinome as broadly as possible. Optimized assays were initially evaluated in 16 patient derived xenograft models (PDX) where KiP identified multiple differentially expressed and biologically relevant kinases. From these analyses, an optimized single-shot parallel reaction monitoring (PRM) method was developed to improve quantitative fidelity. The PRM KiP approach was then reapplied to low quantities of proteins typical of yields from core needle biopsies of human cancers. The initial prototype targeting 100 kinases recapitulated intrinsic subtyping of PDX models obtained from comprehensive proteomic and transcriptomic profiling. Luminal and HER2 enriched OCT-frozen patient biopsies subsequently analyzed through KiP-PRM also clustered by subtype. Finally, stable isotope labeled peptide standards were developed to define a prototype clinical method. Data are available via ProteomeXchange with identifiers PXD044655 and PXD046169.
Collapse
Affiliation(s)
- Alexander B Saltzman
- Mass Spectrometry Proteomics Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
| | - Doug W Chan
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Matthew V Holt
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Junkai Wang
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Purba Singh
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Johnson & Johnson, Springhouse, PA, USA
| | - Anna Malovannaya
- Mass Spectrometry Proteomics Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Beom-Jun Kim
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- AstraZeneca, Gaithersburg, MD, 20878, USA.
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Singh N, Khan FM, Bala L, Vera J, Wolkenhauer O, Pützer B, Logotheti S, Gupta SK. Logic-based modeling and drug repurposing for the prediction of novel therapeutic targets and combination regimens against E2F1-driven melanoma progression. BMC Chem 2023; 17:161. [PMID: 37993971 PMCID: PMC10666365 DOI: 10.1186/s13065-023-01082-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
Melanoma presents increasing prevalence and poor outcomes. Progression to aggressive stages is characterized by overexpression of the transcription factor E2F1 and activation of downstream prometastatic gene regulatory networks (GRNs). Appropriate therapeutic manipulation of the E2F1-governed GRNs holds the potential to prevent metastasis however, these networks entail complex feedback and feedforward regulatory motifs among various regulatory layers, which make it difficult to identify druggable components. To this end, computational approaches such as mathematical modeling and virtual screening are important tools to unveil the dynamics of these signaling networks and identify critical components that could be further explored as therapeutic targets. Herein, we integrated a well-established E2F1-mediated epithelial-mesenchymal transition (EMT) map with transcriptomics data from E2F1-expressing melanoma cells to reconstruct a core regulatory network underlying aggressive melanoma. Using logic-based in silico perturbation experiments of a core regulatory network, we identified that simultaneous perturbation of Protein kinase B (AKT1) and oncoprotein murine double minute 2 (MDM2) drastically reduces EMT in melanoma. Using the structures of the two protein signatures, virtual screening strategies were performed with the FDA-approved drug library. Furthermore, by combining drug repurposing and computer-aided drug design techniques, followed by molecular dynamics simulation analysis, we identified two potent drugs (Tadalafil and Finasteride) that can efficiently inhibit AKT1 and MDM2 proteins. We propose that these two drugs could be considered for the development of therapeutic strategies for the management of aggressive melanoma.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Biochemistry, BBDCODS, BBD University, Lucknow, Uttar Pradesh, India
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Faiz M Khan
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Lakshmi Bala
- Department of Biochemistry, BBDCODS, BBD University, Lucknow, Uttar Pradesh, India
| | - Julio Vera
- Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Munich, Germany
- Chhattisgarh Swami Vivekanand Technical University, Bhilai, Chhattisgarh, India
- Stellenbosch Institute of Advanced Study, Wallenberg Research Centre, Stellenbosch University, Stellenbosch, South Africa
| | - Brigitte Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Stella Logotheti
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, Athens, Greece
| | - Shailendra K Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.
- Chhattisgarh Swami Vivekanand Technical University, Bhilai, Chhattisgarh, India.
| |
Collapse
|
11
|
Wehle DT, Bass CS, Sulc J, Mirzaa G, Smith SEP. Protein interaction network analysis of mTOR signaling reveals modular organization. J Biol Chem 2023; 299:105271. [PMID: 37741456 PMCID: PMC10594569 DOI: 10.1016/j.jbc.2023.105271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a serine-threonine kinase that acts as a central mediator of translation and plays important roles in cell growth, synaptic plasticity, cancer, and a wide range of developmental disorders. The signaling cascade linking lipid kinases (phosphoinositide 3-kinases), protein kinases (AKT), and translation initiation complexes (EIFs) to mTOR has been extensively modeled, but does not fully describe mTOR system behavior. Here, we use quantitative multiplex coimmunoprecipitation to monitor a protein interaction network (PIN) composed of 300+ binary interactions among mTOR-related proteins. Using a simple model system of serum-deprived or fresh-media-fed mouse 3T3 fibroblasts, we observed extensive PIN remodeling involving 27+ individual protein interactions after 1 h, despite phosphorylation changes observed after only 5 min. Using small molecule inhibitors of phosphoinositide 3-kinase, AKT, mTOR, MEK and ERK, we define subsets of the PIN, termed "modules", that respond differently to each inhibitor. Using primary fibroblasts from individuals with overgrowth disorders caused by pathogenic PIK3CA or MTOR variants, we find that hyperactivation of mTOR pathway components is reflected in a hyperactive PIN. Our data define a "modular" organization of the mTOR PIN in which coordinated groups of interactions respond to the activation or inhibition of distinct nodes, and demonstrate that kinase inhibitors affect the modular network architecture in a complex manner, inconsistent with simple linear models of signal transduction.
Collapse
Affiliation(s)
- Devin T Wehle
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Carter S Bass
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Josef Sulc
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA; Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Stephen E P Smith
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
12
|
Wehle DT, Bass CS, Sulc J, Mirzaa G, Smith SEP. Protein interaction network analysis of mTOR signaling reveals modular organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552011. [PMID: 37577705 PMCID: PMC10418199 DOI: 10.1101/2023.08.04.552011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The mammalian target of rapamycin (mTOR) is a serine-threonine kinase that acts as a central mediator of translation, and plays important roles in cell growth, synaptic plasticity, cancer, and a wide range of developmental disorders. The signaling cascade linking lipid kinases (PI3Ks), protein kinases (AKT) and translation initiation complexes (EIFs) to mTOR has been extensively modeled, but does not fully describe mTOR system behavior. Here, we use quantitative multiplex co-immunoprecipitation to monitor a protein interaction network (PIN) composed of 300+ binary interactions among mTOR-related proteins. Using a simple model system of serum deprived or fresh-media-fed mouse 3T3 fibroblasts, we observed extensive PIN remodeling involving 27+ individual protein interactions after one hour, despite phosphorylation changes observed after only five minutes. Using small molecule inhibitors of PI3K, AKT, mTOR, MEK and ERK, we define subsets of the PIN, termed 'modules', that respond differently to each inhibitor. Using primary fibroblasts from individuals with overgrowth disorders caused by pathogenic PIK3CA or MTOR variants, we find that hyperactivation of mTOR pathway components is reflected in a hyperactive PIN. Our data define a "modular" organization of the mTOR PIN in which coordinated groups of interactions respond to activation or inhibition of distinct nodes, and demonstrate that kinase inhibitors affect the modular network architecture in a complex manner, inconsistent with simple linear models of signal transduction.
Collapse
Affiliation(s)
- Devin T Wehle
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Carter S Bass
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Josef Sulc
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Stephen E P Smith
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
13
|
Zhou W, Li W, Wang S, Salovska B, Hu Z, Tao B, Di Y, Punyamurtula U, Turk BE, Sessa WC, Liu Y. An optogenetic-phosphoproteomic study reveals dynamic Akt1 signaling profiles in endothelial cells. Nat Commun 2023; 14:3803. [PMID: 37365174 PMCID: PMC10293293 DOI: 10.1038/s41467-023-39514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
The serine/threonine kinase AKT is a central node in cell signaling. While aberrant AKT activation underlies the development of a variety of human diseases, how different patterns of AKT-dependent phosphorylation dictate downstream signaling and phenotypic outcomes remains largely enigmatic. Herein, we perform a systems-level analysis that integrates methodological advances in optogenetics, mass spectrometry-based phosphoproteomics, and bioinformatics to elucidate how different intensity, duration, and pattern of Akt1 stimulation lead to distinct temporal phosphorylation profiles in vascular endothelial cells. Through the analysis of ~35,000 phosphorylation sites across multiple conditions precisely controlled by light stimulation, we identify a series of signaling circuits activated downstream of Akt1 and interrogate how Akt1 signaling integrates with growth factor signaling in endothelial cells. Furthermore, our results categorize kinase substrates that are preferably activated by oscillating, transient, and sustained Akt1 signals. We validate a list of phosphorylation sites that covaried with Akt1 phosphorylation across experimental conditions as potential Akt1 substrates. Our resulting dataset provides a rich resource for future studies on AKT signaling and dynamics.
Collapse
Affiliation(s)
- Wenping Zhou
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
| | - Shisheng Wang
- Department of Pulmonary and Critical Care Medicine, and Proteomics-Metabolomics Analysis Platform, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Barbora Salovska
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
| | - Zhenyi Hu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
| | - Bo Tao
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yi Di
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
| | - Ujwal Punyamurtula
- Master of Biotechnology ScM Program, Brown University, Providence, RI, 02912, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - William C Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA.
| |
Collapse
|
14
|
Fricke AL, Mühlhäuser WWD, Reimann L, Zimmermann JP, Reichenbach C, Knapp B, Peikert CD, Heberle AM, Faessler E, Schäuble S, Hahn U, Thedieck K, Radziwill G, Warscheid B. Phosphoproteomics Profiling Defines a Target Landscape of the Basophilic Protein Kinases AKT, S6K, and RSK in Skeletal Myotubes. J Proteome Res 2023; 22:768-789. [PMID: 36763541 DOI: 10.1021/acs.jproteome.2c00505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Phosphorylation-dependent signal transduction plays an important role in regulating the functions and fate of skeletal muscle cells. Central players in the phospho-signaling network are the protein kinases AKT, S6K, and RSK as part of the PI3K-AKT-mTOR-S6K and RAF-MEK-ERK-RSK pathways. However, despite their functional importance, knowledge about their specific targets is incomplete because these kinases share the same basophilic substrate motif RxRxxp[ST]. To address this, we performed a multifaceted quantitative phosphoproteomics study of skeletal myotubes following kinase inhibition. Our data corroborate a cross talk between AKT and RAF, a negative feedback loop of RSK on ERK, and a putative connection between RSK and PI3K signaling. Altogether, we report a kinase target landscape containing 49 so far unknown target sites. AKT, S6K, and RSK phosphorylate numerous proteins involved in muscle development, integrity, and functions, and signaling converges on factors that are central for the skeletal muscle cytoskeleton. Whereas AKT controls insulin signaling and impinges on GTPase signaling, nuclear signaling is characteristic for RSK. Our data further support a role of RSK in glucose metabolism. Shared targets have functions in RNA maturation, stability, and translation, which suggests that these basophilic kinases establish an intricate signaling network to orchestrate and regulate processes involved in translation.
Collapse
Affiliation(s)
- Anna L Fricke
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Wignand W D Mühlhäuser
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lena Reimann
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Johannes P Zimmermann
- Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Christa Reichenbach
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Knapp
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christian D Peikert
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Alexander M Heberle
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - Erik Faessler
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sascha Schäuble
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich Schiller University Jena, 07743 Jena, Germany.,Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology─Leibniz-HKI, 07745 Jena, Germany
| | - Udo Hahn
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria.,Department of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands.,Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Gerald Radziwill
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
15
|
Connolly EA, Grimison PS, Horvath LG, Robinson PJ, Reddel RR. Quantitative proteomic studies addressing unmet clinical needs in sarcoma. Front Oncol 2023; 13:1126736. [PMID: 37197427 PMCID: PMC10183589 DOI: 10.3389/fonc.2023.1126736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/31/2023] [Indexed: 05/19/2023] Open
Abstract
Sarcoma is a rare and complex disease comprising over 80 malignant subtypes that is frequently characterized by poor prognosis. Challenges in clinical management include uncertainties in diagnosis and disease classification, limited prognostic and predictive biomarkers, incompletely understood disease heterogeneity among and within subtypes, lack of effective treatment options, and limited progress in identifying new drug targets and novel therapeutics. Proteomics refers to the study of the entire complement of proteins expressed in specific cells or tissues. Advances in proteomics have included the development of quantitative mass spectrometry (MS)-based technologies which enable analysis of large numbers of proteins with relatively high throughput, enabling proteomics to be studied on a scale that has not previously been possible. Cellular function is determined by the levels of various proteins and their interactions, so proteomics offers the possibility of new insights into cancer biology. Sarcoma proteomics therefore has the potential to address some of the key current challenges described above, but it is still in its infancy. This review covers key quantitative proteomic sarcoma studies with findings that pertain to clinical utility. Proteomic methodologies that have been applied to human sarcoma research are briefly described, including recent advances in MS-based proteomic technology. We highlight studies that illustrate how proteomics may aid diagnosis and improve disease classification by distinguishing sarcoma histologies and identify distinct profiles within histological subtypes which may aid understanding of disease heterogeneity. We also review studies where proteomics has been applied to identify prognostic, predictive and therapeutic biomarkers. These studies traverse a range of histological subtypes including chordoma, Ewing sarcoma, gastrointestinal stromal tumors, leiomyosarcoma, liposarcoma, malignant peripheral nerve sheath tumors, myxofibrosarcoma, rhabdomyosarcoma, synovial sarcoma, osteosarcoma, and undifferentiated pleomorphic sarcoma. Critical questions and unmet needs in sarcoma which can potentially be addressed with proteomics are outlined.
Collapse
Affiliation(s)
- Elizabeth A. Connolly
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW, Australia
- *Correspondence: Elizabeth A. Connolly,
| | - Peter S. Grimison
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Lisa G. Horvath
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Phillip J. Robinson
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Roger R. Reddel
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
16
|
Emdal KB, Palacio-Escat N, Wigerup C, Eguchi A, Nilsson H, Bekker-Jensen DB, Rönnstrand L, Kazi JU, Puissant A, Itzykson R, Saez-Rodriguez J, Masson K, Blume-Jensen P, Olsen JV. Phosphoproteomics of primary AML patient samples reveals rationale for AKT combination therapy and p53 context to overcome selinexor resistance. Cell Rep 2022; 40:111177. [PMID: 35947955 PMCID: PMC9380259 DOI: 10.1016/j.celrep.2022.111177] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 05/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with variable patient responses to therapy. Selinexor, an inhibitor of nuclear export, has shown promising clinical activity for AML. To identify the molecular context for monotherapy sensitivity as well as rational drug combinations, we profile selinexor signaling responses using phosphoproteomics in primary AML patient samples and cell lines. Functional phosphosite scoring reveals that p53 function is required for selinexor sensitivity consistent with enhanced efficacy of selinexor in combination with the MDM2 inhibitor nutlin-3a. Moreover, combining selinexor with the AKT inhibitor MK-2206 overcomes dysregulated AKT-FOXO3 signaling in resistant cells, resulting in synergistic anti-proliferative effects. Using high-throughput spatial proteomics to profile subcellular compartments, we measure global proteome and phospho-proteome dynamics, providing direct evidence of nuclear translocation of FOXO3 upon combination treatment. Our data demonstrate the potential of phosphoproteomics and functional phosphorylation site scoring to successfully pinpoint key targetable signaling hubs for rational drug combinations. Phosphoproteomics with functional scoring uncovers context for selinexor sensitivity Functional p53 correlates with selinexor sensitivity, which is enhanced by nutlin-3a Dysregulated AKT-FOXO3 drives selinexor resistance, which is overcome with MK-2206 Spatial proteomics reveals selinexor-induced nucleocytoplasmic protein shuttling
Collapse
Affiliation(s)
- Kristina B Emdal
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolàs Palacio-Escat
- Heidelberg University, Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant-Zentrum, Heidelberg, Germany; Heidelberg University, Faculty of Biosciences, Heidelberg, Germany; RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine, Aachen, Germany
| | | | - Akihiro Eguchi
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Dorte B Bekker-Jensen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant-Zentrum, Heidelberg, Germany; RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine, Aachen, Germany.
| | | | | | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Crowl S, Jordan BT, Ahmed H, Ma CX, Naegle KM. KSTAR: An algorithm to predict patient-specific kinase activities from phosphoproteomic data. Nat Commun 2022; 13:4283. [PMID: 35879309 PMCID: PMC9314348 DOI: 10.1038/s41467-022-32017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/13/2022] [Indexed: 01/09/2023] Open
Abstract
Kinase inhibitors as targeted therapies have played an important role in improving cancer outcomes. However, there are still considerable challenges, such as resistance, non-response, patient stratification, polypharmacology, and identifying combination therapy where understanding a tumor kinase activity profile could be transformative. Here, we develop a graph- and statistics-based algorithm, called KSTAR, to convert phosphoproteomic measurements of cells and tissues into a kinase activity score that is generalizable and useful for clinical pipelines, requiring no quantification of the phosphorylation sites. In this work, we demonstrate that KSTAR reliably captures expected kinase activity differences across different tissues and stimulation contexts, allows for the direct comparison of samples from independent experiments, and is robust across a wide range of dataset sizes. Finally, we apply KSTAR to clinical breast cancer phosphoproteomic data and find that there is potential for kinase activity inference from KSTAR to complement the current clinical diagnosis of HER2 status in breast cancer patients.
Collapse
Affiliation(s)
- Sam Crowl
- grid.27755.320000 0000 9136 933XUniversity of Virginia, Department of Biomedical Engineering and the Center for Public Health Genomics, Charlottesville, VA 22903 USA
| | - Ben T. Jordan
- grid.27755.320000 0000 9136 933XUniversity of Virginia, Department of Biomedical Engineering and the Center for Public Health Genomics, Charlottesville, VA 22903 USA
| | - Hamza Ahmed
- grid.27755.320000 0000 9136 933XUniversity of Virginia, Department of Biomedical Engineering and the Center for Public Health Genomics, Charlottesville, VA 22903 USA
| | - Cynthia X. Ma
- grid.4367.60000 0001 2355 7002Department of Medicine and Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63108 USA
| | - Kristen M. Naegle
- grid.27755.320000 0000 9136 933XUniversity of Virginia, Department of Biomedical Engineering and the Center for Public Health Genomics, Charlottesville, VA 22903 USA
| |
Collapse
|
18
|
Grassilli S, Brugnoli F, Cairo S, Bianchi N, Judde JG, Bertagnolo V. Vav1 Selectively Down-Regulates Akt2 through miR-29b in Certain Breast Tumors with Triple Negative Phenotype. J Pers Med 2022; 12:jpm12060993. [PMID: 35743776 PMCID: PMC9224635 DOI: 10.3390/jpm12060993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast cancer (TNBC) represents the most aggressive breast tumor, showing a high intrinsic variability in terms of both histopathological features and response to therapies. Blocking the Akt signaling pathway is a well-studied approach in the treatment of aggressive breast tumors. The high homology among the Akt isoforms and their distinct, and possibly opposite, oncogenic functions made it difficult to develop effective drugs. Here we investigated the role of Vav1 as a potential down-regulator of individual Akt isozymes. We revealed that the over-expression of Vav1 in triple negative MDA-MB-231 cells reduced only the Akt2 isoform, acting at the post-transcriptional level through the up-modulation of miR-29b. The Vav1/miR-29b dependent decrease in Akt2 was correlated with a reduced lung colonization of circulating MDA-MB-231 cells. In cell lines established from PDX, the Vav1 induced down-modulation of Akt2 is strongly dependent on miR-29b and occurs only in some TNBC tumors. These findings may contribute to better classify breast tumors having the triple negative phenotype, and suggest that the activation of the Vav1/miR-29b axis, precisely regulating the amount of an Akt isozyme crucial for tumor dissemination, could have great potential for driving more accurate therapies to TNBCs, often not eligible or resistant to treatments.
Collapse
Affiliation(s)
- Silvia Grassilli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.G.); (F.B.); (N.B.)
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.G.); (F.B.); (N.B.)
| | - Stefano Cairo
- Xentech, 91000 Evry, France; (S.C.); (J.-G.J.)
- Istituto di Ricerca Pediatrica, 35127 Padova, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.G.); (F.B.); (N.B.)
| | | | - Valeria Bertagnolo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.G.); (F.B.); (N.B.)
- Correspondence:
| |
Collapse
|
19
|
Fu J, Yang Y, Zhu L, Chen Y, Liu B. Unraveling the Roles of Protein Kinases in Autophagy: An Update on Small-Molecule Compounds for Targeted Therapy. J Med Chem 2022; 65:5870-5885. [PMID: 35390258 DOI: 10.1021/acs.jmedchem.1c02053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinases, which catalyze the phosphorylation of proteins, are involved in several important cellular processes, such as autophagy. Of note, autophagy, originally described as a mechanism for intracellular waste disposal and recovery, has been becoming a crucial biological process closely related to many types of human diseases. More recently, the roles of protein kinases in autophagy have been gradually elucidated, and the design of small-molecule compounds to modulate targets to positively or negatively interfere with the cytoprotective autophagy or autophagy-associated cell death may provide a new clue on the current targeted therapy. Thus, in this Perspective, we focus on summarizing the different roles of protein kinases, including positive, negative, and bidirectional regulations of autophagy. Moreover, we discuss several small-molecule compounds targeting these protein kinases in human diseases, highlighting their pivotal roles in autophagy for targeted therapeutic purposes.
Collapse
Affiliation(s)
- Jiahui Fu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yushang Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingjuan Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Kors S, Hacker C, Bolton C, Maier R, Reimann L, Kitchener EJA, Warscheid B, Costello JL, Schrader M. Regulating peroxisome-ER contacts via the ACBD5-VAPB tether by FFAT motif phosphorylation and GSK3β. J Cell Biol 2022; 221:212956. [PMID: 35019937 DOI: 10.1083/jcb.202003143/212956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 05/25/2023] Open
Abstract
Peroxisomes and the endoplasmic reticulum (ER) cooperate in cellular lipid metabolism. They form membrane contacts through interaction of the peroxisomal membrane protein ACBD5 (acyl-coenzyme A-binding domain protein 5) and the ER-resident protein VAPB (vesicle-associated membrane protein-associated protein B). ACBD5 binds to the major sperm protein domain of VAPB via its FFAT-like (two phenylalanines [FF] in an acidic tract) motif. However, molecular mechanisms, which regulate formation of these membrane contact sites, are unknown. Here, we reveal that peroxisome-ER associations via the ACBD5-VAPB tether are regulated by phosphorylation. We show that ACBD5-VAPB binding is phosphatase-sensitive and identify phosphorylation sites in the flanking regions and core of the FFAT-like motif, which alter interaction with VAPB-and thus peroxisome-ER contact sites-differently. Moreover, we demonstrate that GSK3β (glycogen synthase kinase-3 β) regulates this interaction. Our findings reveal for the first time a molecular mechanism for the regulation of peroxisome-ER contacts in mammalian cells and expand the current model of FFAT motifs and VAP interaction.
Collapse
Affiliation(s)
- Suzan Kors
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Christian Hacker
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Chloe Bolton
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Renate Maier
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lena Reimann
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Emily J A Kitchener
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Bettina Warscheid
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Joseph L Costello
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
21
|
Kors S, Hacker C, Bolton C, Maier R, Reimann L, Kitchener EJA, Warscheid B, Costello JL, Schrader M. Regulating peroxisome-ER contacts via the ACBD5-VAPB tether by FFAT motif phosphorylation and GSK3β. J Cell Biol 2022; 221:212956. [PMID: 35019937 PMCID: PMC8759595 DOI: 10.1083/jcb.202003143] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Peroxisomes and the endoplasmic reticulum (ER) cooperate in cellular lipid metabolism. They form membrane contacts through interaction of the peroxisomal membrane protein ACBD5 (acyl-coenzyme A–binding domain protein 5) and the ER-resident protein VAPB (vesicle-associated membrane protein–associated protein B). ACBD5 binds to the major sperm protein domain of VAPB via its FFAT-like (two phenylalanines [FF] in an acidic tract) motif. However, molecular mechanisms, which regulate formation of these membrane contact sites, are unknown. Here, we reveal that peroxisome–ER associations via the ACBD5-VAPB tether are regulated by phosphorylation. We show that ACBD5-VAPB binding is phosphatase-sensitive and identify phosphorylation sites in the flanking regions and core of the FFAT-like motif, which alter interaction with VAPB—and thus peroxisome–ER contact sites—differently. Moreover, we demonstrate that GSK3β (glycogen synthase kinase-3 β) regulates this interaction. Our findings reveal for the first time a molecular mechanism for the regulation of peroxisome–ER contacts in mammalian cells and expand the current model of FFAT motifs and VAP interaction.
Collapse
Affiliation(s)
- Suzan Kors
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Christian Hacker
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Chloe Bolton
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Renate Maier
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lena Reimann
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Emily J A Kitchener
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Bettina Warscheid
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Joseph L Costello
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
22
|
Hua H, Zhang H, Chen J, Wang J, Liu J, Jiang Y. Targeting Akt in cancer for precision therapy. J Hematol Oncol 2021; 14:128. [PMID: 34419139 PMCID: PMC8379749 DOI: 10.1186/s13045-021-01137-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Biomarkers-guided precision therapeutics has revolutionized the clinical development and administration of molecular-targeted anticancer agents. Tailored precision cancer therapy exhibits better response rate compared to unselective treatment. Protein kinases have critical roles in cell signaling, metabolism, proliferation, survival and migration. Aberrant activation of protein kinases is critical for tumor growth and progression. Hence, protein kinases are key targets for molecular targeted cancer therapy. The serine/threonine kinase Akt is frequently activated in various types of cancer. Activation of Akt promotes tumor progression and drug resistance. Since the first Akt inhibitor was reported in 2000, many Akt inhibitors have been developed and evaluated in either early or late stage of clinical trials, which take advantage of liquid biopsy and genomic or molecular profiling to realize personalized cancer therapy. Two inhibitors, capivasertib and ipatasertib, are being tested in phase III clinical trials for cancer therapy. Here, we highlight recent progress of Akt signaling pathway, review the up-to-date data from clinical studies of Akt inhibitors and discuss the potential biomarkers that may help personalized treatment of cancer with Akt inhibitors. In addition, we also discuss how Akt may confer the vulnerability of cancer cells to some kinds of anticancer agents.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingzhu Chen
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jieya Liu
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
23
|
Gassen NC, Papies J, Bajaj T, Emanuel J, Dethloff F, Chua RL, Trimpert J, Heinemann N, Niemeyer C, Weege F, Hönzke K, Aschman T, Heinz DE, Weckmann K, Ebert T, Zellner A, Lennarz M, Wyler E, Schroeder S, Richter A, Niemeyer D, Hoffmann K, Meyer TF, Heppner FL, Corman VM, Landthaler M, Hocke AC, Morkel M, Osterrieder N, Conrad C, Eils R, Radbruch H, Giavalisco P, Drosten C, Müller MA. SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals. Nat Commun 2021; 12:3818. [PMID: 34155207 PMCID: PMC8217552 DOI: 10.1038/s41467-021-24007-w] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
Viruses manipulate cellular metabolism and macromolecule recycling processes like autophagy. Dysregulated metabolism might lead to excessive inflammatory and autoimmune responses as observed in severe and long COVID-19 patients. Here we show that SARS-CoV-2 modulates cellular metabolism and reduces autophagy. Accordingly, compound-driven induction of autophagy limits SARS-CoV-2 propagation. In detail, SARS-CoV-2-infected cells show accumulation of key metabolites, activation of autophagy inhibitors (AKT1, SKP2) and reduction of proteins responsible for autophagy initiation (AMPK, TSC2, ULK1), membrane nucleation, and phagophore formation (BECN1, VPS34, ATG14), as well as autophagosome-lysosome fusion (BECN1, ATG14 oligomers). Consequently, phagophore-incorporated autophagy markers LC3B-II and P62 accumulate, which we confirm in a hamster model and lung samples of COVID-19 patients. Single-nucleus and single-cell sequencing of patient-derived lung and mucosal samples show differential transcriptional regulation of autophagy and immune genes depending on cell type, disease duration, and SARS-CoV-2 replication levels. Targeting of autophagic pathways by exogenous administration of the polyamines spermidine and spermine, the selective AKT1 inhibitor MK-2206, and the BECN1-stabilizing anthelmintic drug niclosamide inhibit SARS-CoV-2 propagation in vitro with IC50 values of 136.7, 7.67, 0.11, and 0.13 μM, respectively. Autophagy-inducing compounds reduce SARS-CoV-2 propagation in primary human lung cells and intestinal organoids emphasizing their potential as treatment options against COVID-19.
Collapse
Affiliation(s)
- Nils C Gassen
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany.
| | - Jan Papies
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Thomas Bajaj
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Jackson Emanuel
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | | | - Robert Lorenz Chua
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Nicolas Heinemann
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Christine Niemeyer
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Friderike Weege
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Katja Hönzke
- Molecular Imaging of Immunoregulation, Medizinische Klinik m.S. Infektiologie & Pneumologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tom Aschman
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel E Heinz
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Katja Weckmann
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Tim Ebert
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Andreas Zellner
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Martina Lennarz
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Simon Schroeder
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Anja Richter
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Karen Hoffmann
- Molecular Imaging of Immunoregulation, Medizinische Klinik m.S. Infektiologie & Pneumologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas F Meyer
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, UKSH, Christian Albrechts University of Kiel, Kiel, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- IRI Life Sciences, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas C Hocke
- Molecular Imaging of Immunoregulation, Medizinische Klinik m.S. Infektiologie & Pneumologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Morkel
- Institute for Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nikolaus Osterrieder
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Christian Conrad
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
- Data Science Unit, Heidelberg University Hospital and BioQuant, Heidelberg, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Marcel A Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany.
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.
| |
Collapse
|
24
|
Degan SE, Gelman IH. Emerging Roles for AKT Isoform Preference in Cancer Progression Pathways. Mol Cancer Res 2021; 19:1251-1257. [PMID: 33931488 DOI: 10.1158/1541-7786.mcr-20-1066] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/01/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
The phosphoinositol-3 kinase (PI3K)-AKT pathway is one of the most mutated in human cancers, predominantly associated with the loss of the signaling antagonist, PTEN, and to lesser extents, with gain-of-function mutations in PIK3CA (encoding PI3K-p110α) and AKT1. In addition, most oncogenic driver pathways activate PI3K/AKT signaling. Nonetheless, drugs targeting PI3K or AKT have fared poorly against solid tumors in clinical trials as monotherapies, yet some have shown efficacy when combined with inhibitors of other oncogenic drivers, such as receptor tyrosine kinases or nuclear hormone receptors. There is growing evidence that AKT isoforms, AKT1, AKT2, and AKT3, have different, often distinct roles in either promoting or suppressing specific parameters of oncogenic progression, yet few if any isoform-preferred substrates have been characterized. This review will describe recent data showing that the differential activation of AKT isoforms is mediated by complex interplays between PTEN, PI3K isoforms and upstream tyrosine kinases, and that the efficacy of PI3K/AKT inhibitors will likely depend on the successful targeting of specific AKT isoforms and their preferred pathways.
Collapse
Affiliation(s)
- Seamus E Degan
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|