1
|
Pierzynowska K, Morcinek-Orłowska J, Gaffke L, Jaroszewicz W, Skowron PM, Węgrzyn G. Applications of the phage display technology in molecular biology, biotechnology and medicine. Crit Rev Microbiol 2024; 50:450-490. [PMID: 37270791 DOI: 10.1080/1040841x.2023.2219741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 10/17/2022] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
The phage display technology is based on the presentation of peptide sequences on the surface of virions of bacteriophages. Its development led to creation of sophisticated systems based on the possibility of the presentation of a huge variability of peptides, attached to one of proteins of bacteriophage capsids. The use of such systems allowed for achieving enormous advantages in the processes of selection of bioactive molecules. In fact, the phage display technology has been employed in numerous fields of biotechnology, as diverse as immunological and biomedical applications (in both diagnostics and therapy), the formation of novel materials, and many others. In this paper, contrary to many other review articles which were focussed on either specific display systems or the use of phage display in selected fields, we present a comprehensive overview of various possibilities of applications of this technology. We discuss an usefulness of the phage display technology in various fields of science, medicine and the broad sense of biotechnology. This overview indicates the spread and importance of applications of microbial systems (exemplified by the phage display technology), pointing to the possibility of developing such sophisticated tools when advanced molecular methods are used in microbiological studies, accompanied with understanding of details of structures and functions of microbial entities (bacteriophages in this case).
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Weronika Jaroszewicz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
2
|
Tan X, Jing L, Neal SM, Gupta MC, Buchowski JM, Setton LA, Huebsch N. IGF-1 Peptide Mimetic-functionalized Hydrogels Enhance MSC Survival and Immunomodulatory Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600680. [PMID: 39005297 PMCID: PMC11244900 DOI: 10.1101/2024.06.27.600680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Human mesenchymal stem cells (MSCs) have demonstrated promise when delivered to damaged tissue or tissue defects for their cytokine secretion and inflammation modulation behaviors that can promote repair. Insulin-like growth factor 1 (IGF-1) has been shown to augment MSCs' viability and survival and promote their secretion of cytokines that signal to endogenous cells, in the treatment of myocardial infarction, wound healing, and age-related diseases. Biomaterial cell carriers can be functionalized with growth factor-mimetic peptides to enhance MSC function while promoting cell retention and minimizing off-target effects seen with direct administration of soluble growth factors. Here, we functionalized alginate hydrogels with three distinct IGF-1 peptide mimetics and the integrin-binding peptide, cyclic RGD. One IGF-1 peptide mimetic (IGM-3) was found to activate Akt signaling and support survival of serum-deprived MSCs. MSCs encapsulated in alginate hydrogels that presented both IGM-3 and cRGD showed a significant reduction in pro-inflammatory cytokine secretion when challenged with interleukin-1β. Finally, MSCs cultured within the cRGD/IGM-3 hydrogels were able to blunt pro-inflammatory gene expression of human primary cells from degenerated intervertebral discs. These studies indicate the potential to leverage cell adhesive and IGF-1 growth factor peptide mimetics together to control therapeutic secretory behavior of MSCs. Significance Statement Insulin-like growth factor 1 (IGF-1) plays a multifaceted role in stem cell biology and may promote proliferation, survival, migration, and immunomodulation for MSCs. In this study, we functionalized alginate hydrogels with integrin-binding and IGF-1 peptide mimetics to investigate their impact on MSC function. Embedding MSCs in these hydrogels enhanced their ability to reduce inflammatory cytokine production and promote anti-inflammatory gene expression in cells from degenerative human intervertebral discs exposed to proteins secreted by the MSC. This approach suggests a new way to retain and augment MSC functionality using IGF-1 peptide mimetics, offering an alternative to co-delivery of cells and high dose soluble growth factors for tissue repair and immune- system modulation.
Collapse
|
3
|
Kim SM, Heo HR, Kim CS, Shin HH. Genetically engineered bacteriophages as novel nanomaterials: applications beyond antimicrobial agents. Front Bioeng Biotechnol 2024; 12:1319830. [PMID: 38725991 PMCID: PMC11079243 DOI: 10.3389/fbioe.2024.1319830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Bacteriophages, also known as phages, are viruses that replicate in bacteria and archaea. Phages were initially discovered as antimicrobial agents, and they have been used as therapeutic agents for bacterial infection in a process known as "phage therapy." Recently, phages have been investigated as functional nanomaterials in a variety of areas, as they can function not only as therapeutic agents but also as biosensors and tissue regenerative materials. Phages are nontoxic to humans, and they possess self-assembled nanostructures and functional properties. Additionally, phages can be easily genetically modified to display specific peptides or to screen for functional peptides via phage display. Here, we demonstrated the application of phage nanomaterials in the context of tissue engineering, sensing, and probing.
Collapse
Affiliation(s)
- Seong-Min Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Hye Ryoung Heo
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Chang Sup Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Hwa Hui Shin
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| |
Collapse
|
4
|
Redondo-Gómez C, Parreira P, Martins MCL, Azevedo HS. Peptide-based self-assembled monolayers (SAMs): what peptides can do for SAMs and vice versa. Chem Soc Rev 2024; 53:3714-3773. [PMID: 38456490 DOI: 10.1039/d3cs00921a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Self-assembled monolayers (SAMs) represent highly ordered molecular materials with versatile biochemical features and multidisciplinary applications. Research on SAMs has made much progress since the early begginings of Au substrates and alkanethiols, and numerous examples of peptide-displaying SAMs can be found in the literature. Peptides, presenting increasing structural complexity, stimuli-responsiveness, and biological relevance, represent versatile functional components in SAMs-based platforms. This review examines the major findings and progress made on the use of peptide building blocks displayed as part of SAMs with specific functions, such as selective cell adhesion, migration and differentiation, biomolecular binding, advanced biosensing, molecular electronics, antimicrobial, osteointegrative and antifouling surfaces, among others. Peptide selection and design, functionalisation strategies, as well as structural and functional characteristics from selected examples are discussed. Additionally, advanced fabrication methods for dynamic peptide spatiotemporal presentation are presented, as well as a number of characterisation techniques. All together, these features and approaches enable the preparation and use of increasingly complex peptide-based SAMs to mimic and study biological processes, and provide convergent platforms for high throughput screening discovery and validation of promising therapeutics and technologies.
Collapse
Affiliation(s)
- Carlos Redondo-Gómez
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| | - Paula Parreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| | - M Cristina L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Helena S Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| |
Collapse
|
5
|
Hao Z, Feng Q, Wang Y, Wang Y, Li H, Hu Y, Chen T, Wang J, Chen R, Lv X, Yang Z, Chen J, Guo X, Li J. A parathyroid hormone related supramolecular peptide for multi-functionalized osteoregeneration. Bioact Mater 2024; 34:181-203. [PMID: 38235308 PMCID: PMC10792172 DOI: 10.1016/j.bioactmat.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/30/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024] Open
Abstract
Supramolecular peptide nanofiber hydrogels are emerging biomaterials for tissue engineering, but it is difficult to fabricate multi-functional systems by simply mixing several short-motif-modified supramolecular peptides because relatively abundant motifs generally hinder nanofiber cross-linking or the formation of long nanofiber. Coupling bioactive factors to the assembling backbone is an ideal strategy to design multi-functional supramolecular peptides in spite of challenging synthesis and purification. Herein, a multi-functional supramolecular peptide, P1R16, is developed by coupling a bioactive factor, parathyroid hormone related peptide 1 (PTHrP-1), to the basic supramolecular peptide RADA16-Ⅰ via solid-phase synthesis. It is found that P1R16 self-assembles into long nanofibers and co-assembles with RADA16-Ⅰ to form nanofiber hydrogels, thus coupling PTHrP-1 to hydrogel matrix. P1R16 nanofiber retains osteoinductive activity in a dose-dependent manner, and P1R16/RADA16-Ⅰ nanofiber hydrogels promote osteogenesis, angiogenesis and osteoclastogenesis in vitro and induce multi-functionalized osteoregeneration by intramembranous ossification and bone remodeling in vivo when loaded to collagen (Col) scaffolds. Abundant red blood marrow formation, ideal osteointegration and adapted degradation are observed in the 50% P1R16/Col scaffold group. Therefore, this study provides a promising strategy to develop multi-functional supramolecular peptides and a new method to topically administrate parathyroid hormone or parathyroid hormone related peptides for non-healing bone defects.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qinyu Feng
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hanke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xuan Lv
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhiqiang Yang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiayao Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
6
|
Cao X, Liu T, Wang T, Wang X, Xu Z, Zhou L, Tian C, Sun D. De Novo Screening and Mirror Image Isomerization of Linear Peptides Targeting α7 Nicotinic Acetylcholine Receptor. ACS Chem Biol 2024; 19:592-598. [PMID: 38380973 DOI: 10.1021/acschembio.3c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
As ligand-gated ion channels, nicotinic acetylcholine receptors (nAChRs) are widely distributed in the central and peripheral nervous systems and are associated with the pathogenesis of various degenerative neurological diseases. Here, we report the results of phage display-based de novo screening of an 11-residue linear peptide (named LKP1794) that targets the α7 nAChR, which is among the most abundant nAChR subtypes in the brain. Moreover, two d-peptides were generated through mirror image and/or primary sequence inverso isomerization (termed DRKP1794 and DKP1794) and displayed improved inhibitory effects (IC50 = 0.86 and 0.35 μM, respectively) on α7 nAChR compared with the parent l-peptide LKP1794 (IC50 = 2.48 μM), which markedly enhanced serum stability. A peptide-based fluorescence probe was developed using proteolytically resistant DKP1794 to specifically image the α7 nAChR in living cells. This work provides a new peptide tool to achieve inhibitory modulation and specifically image the α7 nAChR.
Collapse
Affiliation(s)
- Xiuxiu Cao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tianqi Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xudong Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ziyan Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Li Zhou
- Anhui Provincial Peptide Drug Laboratory, Hefei 230026, P. R. China
| | - Changlin Tian
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
- Anhui Provincial Peptide Drug Laboratory, Hefei 230026, P. R. China
- School of Biomedical Engineering, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
- Beijing Life Science Academy, Beijing 102200, P. R. China
| | - Demeng Sun
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
- Anhui Provincial Peptide Drug Laboratory, Hefei 230026, P. R. China
| |
Collapse
|
7
|
Martins IM, Lima A, de Graaff W, Cristóvão JS, Brosens N, Aronica E, Kluskens LD, Gomes CM, Azeredo J, Kessels HW. M13 phage grafted with peptide motifs as a tool to detect amyloid-β oligomers in brain tissue. Commun Biol 2024; 7:134. [PMID: 38280942 PMCID: PMC10821927 DOI: 10.1038/s42003-024-05806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/11/2024] [Indexed: 01/29/2024] Open
Abstract
Oligomeric clusters of amyloid-β (Aβ) are one of the major biomarkers for Alzheimer's disease (AD). However, proficient methods to detect Aβ-oligomers in brain tissue are lacking. Here we show that synthetic M13 bacteriophages displaying Aβ-derived peptides on their surface preferentially interact with Aβ-oligomers. When exposed to brain tissue isolated from APP/PS1-transgenic mice, these bacteriophages detect small-sized Aβ-aggregates in hippocampus at an early age, prior to the occurrence of Aβ-plaques. Similarly, the bacteriophages reveal the presence of such small Aβ-aggregates in post-mortem hippocampus tissue of AD-patients. These results advocate bacteriophages displaying Aβ-peptides as a convenient and low-cost tool to identify Aβ-oligomers in post-mortem brain tissue of AD-model mice and AD-patients.
Collapse
Affiliation(s)
- Ivone M Martins
- CEB- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - Alexandre Lima
- CEB- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Wim de Graaff
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Joana S Cristóvão
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Niek Brosens
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Eleonora Aronica
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Leon D Kluskens
- CEB- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Cláudio M Gomes
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Azeredo
- CEB- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Helmut W Kessels
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Fadaie M, Dianat-Moghadam H, Ghafouri E, Naderi S, Darvishali MH, Ghovvati M, Khanahmad H, Boshtam M, Makvandi P. Unraveling the potential of M13 phages in biomedicine: Advancing drug nanodelivery and gene therapy. ENVIRONMENTAL RESEARCH 2023; 238:117132. [PMID: 37714365 DOI: 10.1016/j.envres.2023.117132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
M13 phages possessing filamentous phage genomes offer the benefits of selective display of molecular moieties and delivery of therapeutic agent payloads with a tolerable safety profile. M13 phage-displayed technology for resembling antigen portions led to the discovery of mimetic epitopes that applied to antibody-based therapy and could be useful in the design of anticancer vaccines. To date, the excremental experiences have engaged the M13 phage in the development of innovative biosensors for detecting biospecies, biomolecules, and human cells with an acceptable limit of detection. Addressing the emergence of antibiotic-resistant bacteria, M13 phages are potent for packaging the programmed gene editing tools, such as CRISPR/Cas, to target multiple antimicrobial genes. Moreover, their display potential in combination with nanoparticles inspires new approaches for engineering targeted theragnostic platforms targeting multiple cellular biomarkers in vivo. In this review, we present the available data on optimizing the use of bacteriophages with a focus on the to date experiences with M13 phages, either as monoagent or as part of combination regimens in the practices of biosensors, vaccines, bactericidal, modeling of specific antigen epitopes, and phage-guided nanoparticles for drug delivery systems. Despite increasing research interest, a deep understanding of the underlying biological and genetic behaviors of M13 phages is needed to enable the full potential of these bioagents in biomedicine, as discussed here. We also discuss some of the challenges that have thus far limited the development and practical marketing of M13 phages.
Collapse
Affiliation(s)
- Mahmood Fadaie
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Ghafouri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shamsi Naderi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Darvishali
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
| |
Collapse
|
9
|
Ihlenburg RBJ, Petracek D, Schrank P, Davari MD, Taubert A, Rothenstein D. Identification of the First Sulfobetaine Hydrogel-Binding Peptides via Phage Display Assay. Macromol Rapid Commun 2023; 44:e2200896. [PMID: 36703485 DOI: 10.1002/marc.202200896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Indexed: 01/28/2023]
Abstract
Using the M13 phage display, a series of 7- and 12-mer peptides which interact with new sulfobetaine hydrogels are identified. Two peptides each from the 7- and 12-mer peptide libraries bind to the new sulfobetaine hydrogels with high affinity compared to the wild-type phage lacking a dedicated hydrogel binding peptide. This is the first report of peptides binding to zwitterionic sulfobetaine hydrogels and the study therefore opens up the pathway toward new phage or peptide/hydrogel hybrids with high application potential.
Collapse
Affiliation(s)
- Ramona B J Ihlenburg
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - David Petracek
- Department Bioinspired Materials, Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, D-70569, Stuttgart, Germany
| | - Paul Schrank
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - Dirk Rothenstein
- Department Bioinspired Materials, Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, D-70569, Stuttgart, Germany
| |
Collapse
|
10
|
Ligorio C, Mata A. Synthetic extracellular matrices with function-encoding peptides. NATURE REVIEWS BIOENGINEERING 2023; 1:1-19. [PMID: 37359773 PMCID: PMC10127181 DOI: 10.1038/s44222-023-00055-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 06/28/2023]
Abstract
The communication of cells with their surroundings is mostly encoded in the epitopes of structural and signalling proteins present in the extracellular matrix (ECM). These peptide epitopes can be incorporated in biomaterials to serve as function-encoding molecules to modulate cell-cell and cell-ECM interactions. In this Review, we discuss natural and synthetic peptide epitopes as molecular tools to bioengineer bioactive hydrogel materials. We present a library of functional peptide sequences that selectively communicate with cells and the ECM to coordinate biological processes, including epitopes that directly signal to cells, that bind ECM components that subsequently signal to cells, and that regulate ECM turnover. We highlight how these epitopes can be incorporated in different biomaterials as individual or multiple signals, working synergistically or additively. This molecular toolbox can be applied in the design of biomaterials aimed at regulating or controlling cellular and tissue function, repair and regeneration.
Collapse
Affiliation(s)
- Cosimo Ligorio
- Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK
| | - Alvaro Mata
- Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK
- School of Pharmacy, University of Nottingham, Nottingham, UK
| |
Collapse
|
11
|
Bui NL, Nguyen MA, Nguyen ML, Bui QC, Chu DT. Phage for regenerative medicine and cosmetics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:241-259. [PMID: 37770175 DOI: 10.1016/bs.pmbts.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Phage or bacteriophage is a specific virus with the ability to defeat bacteria. Because of the rising prevalence of antimicrobial-resistant bacteria, the bacteriophage is now receiving interest again, with it application in skin infection or acne treatment. Moreover, bacteriophages also express their efficacy in wound healing or skin regeneration. Thanks to the development of bioengineering technology, phage display, which is a technique using bacteriophage as a tool, has recently been applied in many biotechnological and medical fields, especially in regenerative medicines. Bacteriophages can be used as nanomaterials, delivery vectors, growth factor alternatives, or in several bacteriophage display-derived therapeutics and stem cell technology. Although bacteriophage is no doubt to be a potential and effective alternative in modern medicine, there are still controversial evidence about the antibacterial efficacy as well as the affinity to expected targets of bacteriophage. Future mission is to optimize the specificity, stability, affinity and biodistribution of phage-derived substances. In this chapter, we focused on introducing several mechanisms and applications of bacteriophage and analyzing its future potential in regenerative medicines as well as cosmetics via previous research's results.
Collapse
Affiliation(s)
- Nhat-Le Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Mai Anh Nguyen
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Manh-Long Nguyen
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Quoc-Cuong Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
12
|
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023; 15:856. [PMID: 36986717 PMCID: PMC10057434 DOI: 10.3390/pharmaceutics15030856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10019, USA
| | - Abraham J. Domb
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Victoria Nahum
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
13
|
Sinha A, Simnani FZ, Singh D, Nandi A, Choudhury A, Patel P, Jha E, chouhan RS, Kaushik NK, Mishra YK, Panda PK, Suar M, Verma SK. The translational paradigm of nanobiomaterials: Biological chemistry to modern applications. Mater Today Bio 2022; 17:100463. [PMID: 36310541 PMCID: PMC9615318 DOI: 10.1016/j.mtbio.2022.100463] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Recently nanotechnology has evolved as one of the most revolutionary technologies in the world. It has now become a multi-trillion-dollar business that covers the production of physical, chemical, and biological systems at scales ranging from atomic and molecular levels to a wide range of industrial applications, such as electronics, medicine, and cosmetics. Nanobiomaterials synthesis are promising approaches produced from various biological elements be it plants, bacteria, peptides, nucleic acids, etc. Owing to the better biocompatibility and biological approach of synthesis, they have gained immense attention in the biomedical field. Moreover, due to their scaled-down sized property, nanobiomaterials exhibit remarkable features which make them the potential candidate for different domains of tissue engineering, materials science, pharmacology, biosensors, etc. Miscellaneous characterization techniques have been utilized for the characterization of nanobiomaterials. Currently, the commercial transition of nanotechnology from the research level to the industrial level in the form of nano-scaffolds, implants, and biosensors is stimulating the whole biomedical field starting from bio-mimetic nacres to 3D printing, multiple nanofibers like silk fibers functionalizing as drug delivery systems and in cancer therapy. The contribution of single quantum dot nanoparticles in biological tagging typically in the discipline of genomics and proteomics is noteworthy. This review focuses on the diverse emerging applications of Nanobiomaterials and their mechanistic advancements owing to their physiochemical properties leading to the growth of industries on different biomedical measures. Alongside the implementation of such nanobiomaterials in several drug and gene delivery approaches, optical coding, photodynamic cancer therapy, and vapor sensing have been elaborately discussed in this review. Different parameters based on current challenges and future perspectives are also discussed here.
Collapse
Affiliation(s)
- Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Ealisha Jha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Raghuraj Singh chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
14
|
Porosk L, Langel Ü. Approaches for evaluation of novel CPP-based cargo delivery systems. Front Pharmacol 2022; 13:1056467. [PMID: 36339538 PMCID: PMC9634181 DOI: 10.3389/fphar.2022.1056467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 08/05/2023] Open
Abstract
Cell penetrating peptides (CPPs) can be broadly defined as relatively short synthetic, protein derived or chimeric peptides. Their most remarkable property is their ability to cross cell barriers and facilitate the translocation of cargo, such as drugs, nucleic acids, peptides, small molecules, dyes, and many others across the plasma membrane. Over the years there have been several approaches used, adapted, and developed for the evaluation of CPP efficacies as delivery systems, with the fluorophore attachment as the most widely used approach. It has become progressively evident, that the evaluation method, in order to lead to successful outcome, should concede with the specialties of the delivery. For characterization and assessment of CPP-cargo a combination of research tools of chemistry, physics, molecular biology, engineering, and other fields have been applied. In this review, we summarize the diverse, in silico, in vitro and in vivo approaches used for evaluation and characterization of CPP-based cargo delivery systems.
Collapse
Affiliation(s)
- Ly Porosk
- Laboratory of Drug Delivery, Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Ülo Langel
- Laboratory of Drug Delivery, Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
15
|
de Freitas LS, Queiroz MAF, Machado LFA, Vallinoto ACR, Ishak MDOG, Santos FDAA, Goulart LR, Ishak R. Bioprospecting by Phage Display of Mimetic Peptides of Chlamydia trachomatis for Use in Laboratory Diagnosis. Infect Drug Resist 2022; 15:4935-4945. [PMID: 36065279 PMCID: PMC9440705 DOI: 10.2147/idr.s369339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background Chlamydia trachomatis infection is a major public health problem and the most common sexually transmitted infection in the world. Although highly prevalent, 70% to 80% of cases are asymptomatic and undiagnosed. Purpose To overcome some limitations in terms of rapid diagnosis, phage display technology was used to bioprospect peptide mimetics of C. trachomatis immunoreactive and immunogenic antigens to be selected for the production of synthetic peptides. Methods Initially, IgG from 22 individuals with C. trachomatis and 30 negative controls was coupled to G protein magnetic beads. The phage display technique consisted of biopanning, genetic sequencing, bioinformatics analysis and phage ELISA. Results Clones G1, H5, C6 and H7 were selected for testing with individual samples positive and negative for C. trachomatis. Reactions were statistically significant (p < 0.05), with a sensitivity of 90.91, a specificity of 54.55, and AUC values >0.8. One-dimensional analysis with C. trachomatis components indicated that the G1 clone aligned with cell wall-associated hydrolase domain-containing protein, the H5 clone aligned with glycerol-3-phosphate acyltransferase PlsX protein, the C6 clone aligned with a transposase and inactivated derivatives, and the H7 clone aligned with GTP-binding protein. Molecular modeling and three-dimensional analysis indicated the best fit of the four clones with a protein known as chlamydial protease/proteasome-like activity factor (CPAF), an important virulence factor of the bacterium. Conclusion The peptides produced by phage display are related to the metabolic pathways of C. trachomatis, indicating that they can be used to understand the pathogenesis of the infection. Because of their high sensitivity and AUC values, the peptides present considerable potential for use in platforms for screening C. trachomatis infections.
Collapse
Affiliation(s)
- Larissa Silva de Freitas
- Laboratory of Virology, Biological Sciences Institute, Federal University of Pará, Belém, Pará, Brazil
| | - Maria Alice Freitas Queiroz
- Laboratory of Virology, Biological Sciences Institute, Federal University of Pará, Belém, Pará, Brazil
- Correspondence: Maria Alice Freitas Queiroz, Laboratory of Virology, Biological Sciences Institute, Federal University of Pará, Belém, Pará, Brazil, Tel +55 91 3201-7587, Email
| | | | | | | | - Fabiana de Almeida Araújo Santos
- Laboratory of Nanobiotechnology, Genetics and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Genetics and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ricardo Ishak
- Laboratory of Virology, Biological Sciences Institute, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
16
|
Machado LFA, Filho LRG, Santos FAA, Siravenha LQ, Silva ANMR, Queiroz MAF, Vallinoto ACR, Ishak MOG, Ishak R. Bioprospection and Selection of Peptides by Phage Display as Novel Epitope-Based Diagnostic Probes for Serological Detection of HTLV-1 and Use in Future Vaccines. Front Med (Lausanne) 2022; 9:884738. [PMID: 35755076 PMCID: PMC9218527 DOI: 10.3389/fmed.2022.884738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Human T-lymphotropic virus 1 (HTLV-1) is endemic worldwide and the infection results in severe diseases, including Adult T-cell Leukemia (ATL) and HTLV-1 associated myelopathy (HAM). There are some limitations of employing the present commercial serological assays for both diagnostic and epidemiological purposes in different geographical areas of the Brazil, such as the Amazon Region. Currently, methods for diagnosis are usually expensive to adapt for routine use. The aim of this work was to identify and characterize specific ligands to IgG that mimic HTLV-1 epitopes through the Phage Display technique, which could be used for diagnosis and as future vaccine candidates. Initially, IgG from 10 patients with HTLV-1 and 20 negative controls were covalently coupled to protein G-magnetic beads. After biopanning, genetic sequencing, bioinformatics analysis and Phage-ELISA were performed. The technique allowed the identification of 4 clones with HTLV-1 mimetic peptides, three aligned with gp46, A6 (SPYW), B6 (SQLP) and D7 (PLIL), and one with the protease and Tax, A8 (SPPR). Clones A6 and B6 showed higher values of accessibility, antigenicity and hydrophilicity. The reactivity of the clones evaluated by the Receiver Operating Characteristic (ROC) curve showed that the B6 clone had the highest Area Under Curve (0.83) and sensitivity and specificity values (both were 77.27 %; p < 0.001). The study showed that the Phage Display technique is effective for the identification of HTLV-1-related peptides. Clone B6 indicated to be a good marker for bioprospecting diagnostic test for HTLV-1 infection and could be used as a possible vaccine candidate for future studies.
Collapse
Affiliation(s)
- Luiz Fernando Almeida Machado
- Biology of Infectious and Parasitic Agents Post-Graduate Program, Federal University of Pará, Belém, Brazil
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belem, Brazil
- *Correspondence: Luiz Fernando Almeida Machado
| | - Luiz Ricardo Goulart Filho
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil
| | | | - Leonardo Quintão Siravenha
- Biology of Infectious and Parasitic Agents Post-Graduate Program, Federal University of Pará, Belém, Brazil
| | | | | | - Antonio Carlos Rosário Vallinoto
- Biology of Infectious and Parasitic Agents Post-Graduate Program, Federal University of Pará, Belém, Brazil
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belem, Brazil
| | | | - Ricardo Ishak
- Biology of Infectious and Parasitic Agents Post-Graduate Program, Federal University of Pará, Belém, Brazil
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belem, Brazil
| |
Collapse
|
17
|
Pina AS, Morgado L, Duncan KL, Carvalho S, Carvalho HF, Barbosa AJM, de P. Mariz B, Moreira IP, Kalafatovic D, Morais Faustino BM, Narang V, Wang T, Pappas CG, Ferreira I, Roque ACA, Ulijn RV. Discovery of phosphotyrosine-binding oligopeptides with supramolecular target selectivity. Chem Sci 2022; 13:210-217. [PMID: 35059169 PMCID: PMC8694286 DOI: 10.1039/d1sc04420f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/05/2021] [Indexed: 12/16/2022] Open
Abstract
Phage-display screening on self-assembled tyrosine-phosphate ligands enables the identification of oligopeptides selective to dynamic supramolecular targets, with the lead peptide showing a preferred hairpin-like conformation and catalytic activity.
Collapse
Affiliation(s)
- Ana S. Pina
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), NY 10031, USA
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Leonor Morgado
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Krystyna L. Duncan
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), NY 10031, USA
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Sara Carvalho
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Henrique F. Carvalho
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Arménio J. M. Barbosa
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Beatriz de P. Mariz
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Inês P. Moreira
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Daniela Kalafatovic
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), NY 10031, USA
| | - Bruno M. Morais Faustino
- CENIMAT/I3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Vishal Narang
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), NY 10031, USA
| | - Tong Wang
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), NY 10031, USA
- Imaging Facility of CUNY ASRC, 85 St Nicholas Terrace, New York 10031, USA
| | - Charalampos G. Pappas
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), NY 10031, USA
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Isabel Ferreira
- CENIMAT/I3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - A. Cecília A. Roque
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Rein V. Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), NY 10031, USA
- Hunter College of CUNY, Department of Chemistry and Biochemistry, 695 Park Avenue, New York 10065, USA
- PhD Programs in Chemistry and Biochemistry, The Graduate Center of CUNY, New York 10016, USA
| |
Collapse
|
18
|
He B, Yang S, Long J, Chen X, Zhang Q, Gao H, Chen H, Huang J. TUPDB: Target-Unrelated Peptide Data Bank. Interdiscip Sci 2021; 13:426-432. [PMID: 33993461 DOI: 10.1007/s12539-021-00436-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/29/2022]
Abstract
The isolation of target-unrelated peptides (TUPs) through biopanning remains as a major problem of phage display selection experiments. These TUPs do not have any actual affinity toward targets of interest, which tend to be mistakenly identified as target-binding peptides. Therefore, an information portal for storing TUP data is urgently needed. Here, we present a TUP data bank (TUPDB), which is a comprehensive, manually curated database of approximately 73 experimentally verified TUPs and 1963 potential TUPs collected from TUPScan, the BDB database, and public research articles. The TUPScan tool has been integrated in TUPDB to facilitate TUP analysis. We believe that TUPDB can help identify and remove TUPs in future reports in the biopanning community. The database is of great importance to improving the quality of phage display-based epitope mapping and promoting the development of vaccines, diagnostics, and therapeutics. The TUPDB database is available at http://i.uestc.edu.cn/tupdb .
Collapse
Affiliation(s)
- Bifang He
- School of Medicine, Guizhou University, Guiyang, 550025, China. .,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Shanshan Yang
- School of Medicine, Guizhou University, Guiyang, 550025, China
| | - Jinjin Long
- School of Medicine, Guizhou University, Guiyang, 550025, China
| | - Xue Chen
- School of Medicine, Guizhou University, Guiyang, 550025, China
| | - Qianyue Zhang
- School of Medicine, Guizhou University, Guiyang, 550025, China
| | - Hui Gao
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Heng Chen
- School of Medicine, Guizhou University, Guiyang, 550025, China.
| | - Jian Huang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
19
|
Webber MJ, Pashuck ET. (Macro)molecular self-assembly for hydrogel drug delivery. Adv Drug Deliv Rev 2021; 172:275-295. [PMID: 33450330 PMCID: PMC8107146 DOI: 10.1016/j.addr.2021.01.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023]
Abstract
Hydrogels prepared via self-assembly offer scalable and tunable platforms for drug delivery applications. Molecular-scale self-assembly leverages an interplay of attractive and repulsive forces; drugs and other active molecules can be incorporated into such materials by partitioning in hydrophobic domains, affinity-mediated binding, or covalent integration. Peptides have been widely used as building blocks for self-assembly due to facile synthesis, ease of modification with bioactive molecules, and precise molecular-scale control over material properties through tunable interactions. Additional opportunities are manifest in stimuli-responsive self-assembly for more precise drug action. Hydrogels can likewise be fabricated from macromolecular self-assembly, with both synthetic polymers and biopolymers used to prepare materials with controlled mechanical properties and tunable drug release. These include clinical approaches for solubilization and delivery of hydrophobic drugs. To further enhance mechanical properties of hydrogels prepared through self-assembly, recent work has integrated self-assembly motifs with polymeric networks. For example, double-network hydrogels capture the beneficial properties of both self-assembled and covalent networks. The expanding ability to fabricate complex and precise materials, coupled with an improved understanding of biology, will lead to new classes of hydrogels specifically tailored for drug delivery applications.
Collapse
Affiliation(s)
- Matthew J Webber
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556, USA.
| | - E Thomas Pashuck
- Lehigh University, Department of Bioengineering, Bethlehem, PA 18015, USA.
| |
Collapse
|
20
|
Phage Display Technique as a Tool for Diagnosis and Antibody Selection for Coronaviruses. Curr Microbiol 2021; 78:1124-1134. [PMID: 33687511 PMCID: PMC7941128 DOI: 10.1007/s00284-021-02398-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Phage display is one of the important and effective molecular biology techniques and has remained indispensable for research community since its discovery in the year 1985. As a large number of nucleotide fragments may be cloned into the phage genome, a phage library may harbour millions or sometimes billions of unique and distinctive displayed peptide ligands. The ligand–receptor interactions forming the basis of phage display have been well utilized in epitope mapping and antigen presentation on the surface of bacteriophages for screening novel vaccine candidates by using affinity selection-based strategy called biopanning. This versatile technique has been modified tremendously over last three decades, leading to generation of different platforms for combinatorial peptide display. The translation of new diagnostic tools thus developed has been used in situations arising due to pathogenic microbes, including bacteria and deadly viruses, such as Zika, Ebola, Hendra, Nipah, Hanta, MERS and SARS. In the current situation of pandemic of Coronavirus disease (COVID-19), a search for neutralizing antibodies is motivating the researchers to find therapeutic candidates against novel SARS-CoV-2. As phage display is an important technique for antibody selection, this review presents a concise summary of the very recent applications of phage display technique with a special reference to progress in diagnostics and therapeutics for coronavirus diseases. Hopefully, this technique can complement studies on host–pathogen interactions and assist novel strategies of drug discovery for coronaviruses.
Collapse
|
21
|
Fernandes CSM, Pina AS, Roque ACA. Affinity-triggered hydrogels: Developments and prospects in biomaterials science. Biomaterials 2020; 268:120563. [PMID: 33276200 DOI: 10.1016/j.biomaterials.2020.120563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Cláudia S M Fernandes
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2829-516, Caparica, Portugal
| | - Ana Sofia Pina
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2829-516, Caparica, Portugal
| | - Ana Cecília A Roque
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2829-516, Caparica, Portugal.
| |
Collapse
|
22
|
Li C, Li J, Xu Y, Zhan Y, Li Y, Song T, Zheng J, Yang H. Application of Phage-Displayed Peptides in Tumor Imaging Diagnosis and Targeting Therapy. Int J Pept Res Ther 2020; 27:587-595. [PMID: 32901205 PMCID: PMC7471523 DOI: 10.1007/s10989-020-10108-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
Phage display is an effective and powerful technique that provides a route to discovery unique peptides targeting to tumor cells. Specifically binding peptides are considered as the valuable target directing molecule fragments with potential efficiency to improve the current tumor clinic, and offer new approaches for tumor prevention, diagnosis and treatment. We focus on the recent advances in the isolation of tumor-targeting peptides by biopanning methods, with particular emphasis on molecular imaging, and pharmaceutical targeting therapy.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Ying Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Ying Zhan
- 518 Hospital of PLA, Xi'an, 710043 Shaanxi China
| | - Yu Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Tingting Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Jiao Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Hong Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| |
Collapse
|
23
|
He B, Dzisoo AM, Derda R, Huang J. Development and Application of Computational Methods in Phage Display Technology. Curr Med Chem 2020; 26:7672-7693. [PMID: 29956612 DOI: 10.2174/0929867325666180629123117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/08/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Phage display is a powerful and versatile technology for the identification of peptide ligands binding to multiple targets, which has been successfully employed in various fields, such as diagnostics and therapeutics, drug-delivery and material science. The integration of next generation sequencing technology with phage display makes this methodology more productive. With the widespread use of this technique and the fast accumulation of phage display data, databases for these data and computational methods have become an indispensable part in this community. This review aims to summarize and discuss recent progress in the development and application of computational methods in the field of phage display. METHODS We undertook a comprehensive search of bioinformatics resources and computational methods for phage display data via Google Scholar and PubMed. The methods and tools were further divided into different categories according to their uses. RESULTS We described seven special or relevant databases for phage display data, which provided an evidence-based source for phage display researchers to clean their biopanning results. These databases can identify and report possible target-unrelated peptides (TUPs), thereby excluding false-positive data from peptides obtained from phage display screening experiments. More than 20 computational methods for analyzing biopanning data were also reviewed. These methods were classified into computational methods for reporting TUPs, for predicting epitopes and for analyzing next generation phage display data. CONCLUSION The current bioinformatics archives, methods and tools reviewed here have benefitted the biopanning community. To develop better or new computational tools, some promising directions are also discussed.
Collapse
Affiliation(s)
- Bifang He
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China.,School of Medicine, Guizhou University, Guiyang 550025, China
| | - Anthony Mackitz Dzisoo
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Jian Huang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
24
|
Stellwagen SD, Sarkes DA, Adams BL, Hunt MA, Renberg RL, Hurley MM, Stratis-Cullum DN. The next generation of biopanning: next gen sequencing improves analysis of bacterial display libraries. BMC Biotechnol 2019; 19:100. [PMID: 31864334 PMCID: PMC6925417 DOI: 10.1186/s12896-019-0577-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/12/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Bacterial surface display libraries are a popular tool for novel ligand discovery due to their ease of manipulation and rapid growth rates. These libraries typically express a scaffold protein embedded within the outer membrane with a short, surface-exposed peptide that is either terminal or is incorporated into an outer loop, and can therefore interact with and bind to substrates of interest. RESULTS In this study, we employed a novel bacterial peptide display library which incorporates short 15-mer peptides on the surface of E. coli, co-expressed with the inducible red fluorescent protein DsRed in the cytosol, to investigate population diversity over two rounds of biopanning. The naive library was used in panning trials to select for binding affinity against 3D printing plastic coupons made from polylactic acid (PLA). Resulting libraries were then deep-sequenced using next generation sequencing (NGS) to investigate selection and diversity. CONCLUSIONS We demonstrated enrichment for PLA binding versus a sapphire control surface, analyzed population composition, and compared sorting rounds using a binding assay and fluorescence microscopy. The capability to produce and describe display libraries through NGS across rounds of selection allows a deeper understanding of population dynamics that can be better directed towards peptide discovery.
Collapse
Affiliation(s)
- Sarah D. Stellwagen
- Biotechnology Branch, CCDC US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, 20783 MD USA
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, 21250 MD USA
| | - Deborah A. Sarkes
- Biotechnology Branch, CCDC US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, 20783 MD USA
| | - Bryn L. Adams
- Biotechnology Branch, CCDC US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, 20783 MD USA
| | - Mia A. Hunt
- Biotechnology Branch, CCDC US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, 20783 MD USA
- General Technical Services, Suite 301, 1451 Route 34 South, Wall Township, 07727 NJ USA
| | - Rebecca L. Renberg
- Biotechnology Branch, CCDC US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, 20783 MD USA
- General Technical Services, Suite 301, 1451 Route 34 South, Wall Township, 07727 NJ USA
| | - Margaret M. Hurley
- Biotechnology Branch, CCDC US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, 20783 MD USA
| | | |
Collapse
|
25
|
Pang X, O'Malley C, Borges J, Rahman MM, Collis DWP, Mano JF, Mackenzie IC, S. Azevedo H. Supramolecular Presentation of Hyaluronan onto Model Surfaces for Studying the Behavior of Cancer Stem Cells. ACTA ACUST UNITED AC 2019; 3:e1900017. [DOI: 10.1002/adbi.201900017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/15/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xinqing Pang
- School of Engineering and Materials ScienceInstitute of BioengineeringQueen Mary University of London E1 4NS UK
| | - Clare O'Malley
- School of Engineering and Materials ScienceInstitute of BioengineeringQueen Mary University of London E1 4NS UK
| | - João Borges
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of Aveiro 3810‐193 Aveiro Portugal
| | - Muhammad M. Rahman
- Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of London E1 2AT UK
| | - Dominic W. P. Collis
- School of Engineering and Materials ScienceInstitute of BioengineeringQueen Mary University of London E1 4NS UK
| | - João F. Mano
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of Aveiro 3810‐193 Aveiro Portugal
| | - Ian C. Mackenzie
- Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of London E1 2AT UK
| | - Helena S. Azevedo
- School of Engineering and Materials ScienceInstitute of BioengineeringQueen Mary University of London E1 4NS UK
| |
Collapse
|
26
|
Zimmermann JA, Schaffer DV. Engineering biomaterials to control the neural differentiation of stem cells. Brain Res Bull 2019; 150:50-60. [DOI: 10.1016/j.brainresbull.2019.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/09/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
|
27
|
Lima AC, Ferreira H, Reis RL, Neves NM. Biodegradable polymers: an update on drug delivery in bone and cartilage diseases. Expert Opin Drug Deliv 2019; 16:795-813. [DOI: 10.1080/17425247.2019.1635117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ana Cláudia Lima
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helena Ferreira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
28
|
Wang T, Nguyen A, Zhang L, Turko IV. Mass spectrometry enumeration of filamentous M13 bacteriophage. Anal Biochem 2019; 582:113354. [PMID: 31276652 DOI: 10.1016/j.ab.2019.113354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/11/2019] [Accepted: 06/29/2019] [Indexed: 11/18/2022]
Abstract
In the last decade, filamentous M13 bacteriophage has emerged into numerous biotechnological applications as a promising nontoxic and self-assembling biomaterial with specific binding properties. This raises a question about its upscale production that consequently requires an accurate phage enumeration during the various protocol developments. However, traditional methods of measuring phage concentration are mainly biological in nature and therefore time and labor intensive. These traditional methods also demonstrate poor reproducibility and are semi-quantitative at best. In the present work, we capitalized on mass spectrometry based absolute protein quantitation. We have optimized the quantitation conditions for a major coat protein, pVIII. Enumeration of M13 bacteriophage can be further performed using the determined molar concentration of pVIII, Avogadro's number, and known copy number of pVIII per phage. Since many different phages have well-defined copy number of capsid proteins, the proposed approach can be simply applied to any phage with known copy number of a specific capsid protein.
Collapse
Affiliation(s)
- Tingting Wang
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States; Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, United States; Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32601, United States
| | - Ai Nguyen
- Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, United States
| | - Linwen Zhang
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States; Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, United States
| | - Illarion V Turko
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States; Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, United States.
| |
Collapse
|
29
|
Nguyen AH, Marsh P, Schmiess-Heine L, Burke PJ, Lee A, Lee J, Cao H. Cardiac tissue engineering: state-of-the-art methods and outlook. J Biol Eng 2019; 13:57. [PMID: 31297148 PMCID: PMC6599291 DOI: 10.1186/s13036-019-0185-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to assess the state-of-the-art fabrication methods, advances in genome editing, and the use of machine learning to shape the prospective growth in cardiac tissue engineering. Those interdisciplinary emerging innovations would move forward basic research in this field and their clinical applications. The long-entrenched challenges in this field could be addressed by novel 3-dimensional (3D) scaffold substrates for cardiomyocyte (CM) growth and maturation. Stem cell-based therapy through genome editing techniques can repair gene mutation, control better maturation of CMs or even reveal its molecular clock. Finally, machine learning and precision control for improvements of the construct fabrication process and optimization in tissue-specific clonal selections with an outlook of cardiac tissue engineering are also presented.
Collapse
Affiliation(s)
- Anh H. Nguyen
- Electrical and Computer Engineering Department, University of Alberta, Edmonton, Alberta Canada
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
| | - Paul Marsh
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
| | - Lauren Schmiess-Heine
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
| | - Peter J. Burke
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
- Biomedical Engineering Department, University of California Irvine, Irvine, CA USA
- Chemical Engineering and Materials Science Department, University of California Irvine, Irvine, CA USA
| | - Abraham Lee
- Biomedical Engineering Department, University of California Irvine, Irvine, CA USA
- Mechanical and Aerospace Engineering Department, University of California Irvine, Irvine, CA USA
| | - Juhyun Lee
- Bioengineering Department, University of Texas at Arlington, Arlington, TX USA
| | - Hung Cao
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
- Biomedical Engineering Department, University of California Irvine, Irvine, CA USA
- Henry Samueli School of Engineering, University of California, Irvine, USA
| |
Collapse
|
30
|
He B, Chen H, Huang J. PhD7Faster 2.0: predicting clones propagating faster from the Ph.D.-7 phage display library by coupling PseAAC and tripeptide composition. PeerJ 2019; 7:e7131. [PMID: 31245183 PMCID: PMC6585900 DOI: 10.7717/peerj.7131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/15/2019] [Indexed: 01/08/2023] Open
Abstract
Selection from phage display libraries empowers isolation of high-affinity ligands for various targets. However, this method also identifies propagation-related target-unrelated peptides (PrTUPs). These false positive hits appear because of their amplification advantages. In this report, we present PhD7Faster 2.0 for predicting fast-propagating clones from the Ph.D.-7 phage display library, which was developed based on the support vector machine. Feature selection was performed against PseAAC and tripeptide composition using the incremental feature selection method. Ten-fold cross-validation results show that PhD7Faster 2.0 succeeds a decent performance with the accuracy of 81.84%, the Matthews correlation coefficient of 0.64 and the area under the ROC curve of 0.90. The permutation test with 1,000 shuffles resulted in p < 0.001. We implemented PhD7Faster 2.0 into a publicly accessible web tool (http://i.uestc.edu.cn/sarotup3/cgi-bin/PhD7Faster.pl) and constructed standalone graphical user interface and command-line versions for different systems. The standalone PhD7Faster 2.0 is able to detect PrTUPs within small datasets as well as large-scale datasets. This makes PhD7Faster 2.0 an enhanced and powerful tool for scanning and reporting faster-growing clones from the Ph.D.-7 phage display library.
Collapse
Affiliation(s)
- Bifang He
- School of Medicine, Guizhou University, Guiyang, Guizhou, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Heng Chen
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
| | - Jian Huang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Cao B, Li Y, Yang T, Bao Q, Yang M, Mao C. Bacteriophage-based biomaterials for tissue regeneration. Adv Drug Deliv Rev 2019; 145:73-95. [PMID: 30452949 PMCID: PMC6522342 DOI: 10.1016/j.addr.2018.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 07/24/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
Abstract
Bacteriophage, also called phage, is a human-safe bacteria-specific virus. It is a monodisperse biological nanostructure made of proteins (forming the outside surface) and nucleic acids (encased in the protein capsid). Among different types of phages, filamentous phages have received great attention in tissue regeneration research due to their unique nanofiber-like morphology. They can be produced in an error-free format, self-assemble into ordered scaffolds, display multiple signaling peptides site-specifically, and serve as a platform for identifying novel signaling or homing peptides. They can direct stem cell differentiation into specific cell types when they are organized into proper patterns or display suitable peptides. These unusual features have allowed scientists to employ them to regenerate a variety of tissues, including bone, nerves, cartilage, skin, and heart. This review will summarize the progress in the field of phage-based tissue regeneration and the future directions in this field.
Collapse
Affiliation(s)
- Binrui Cao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States
| | - Yan Li
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Zhejiang, Hangzhou 310058, China.
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States; School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| |
Collapse
|
32
|
Current state of in vivo panning technologies: Designing specificity and affinity into the future of drug targeting. Adv Drug Deliv Rev 2018; 130:39-49. [PMID: 29964079 DOI: 10.1016/j.addr.2018.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/24/2018] [Accepted: 06/22/2018] [Indexed: 11/20/2022]
Abstract
Targeting ligands are used in drug delivery to improve drug distribution to desired cells or tissues and to facilitate cellular entry. In vivo biopanning, whereby billions of potential ligand sequences are screened in biologically-relevant and complex conditions, is a powerful method for identification of novel target ligands. This tool has impacted drug delivery technologies and expanded our arsenal of therapeutics and diagnostics. Within this review we will discuss current in vivo panning technologies and ways that these technologies can be improved to advance next-generation drug delivery strategies.
Collapse
|
33
|
He B, Tjhung KF, Bennett NJ, Chou Y, Rau A, Huang J, Derda R. Compositional Bias in Naïve and Chemically-modified Phage-Displayed Libraries uncovered by Paired-end Deep Sequencing. Sci Rep 2018; 8:1214. [PMID: 29352178 PMCID: PMC5775325 DOI: 10.1038/s41598-018-19439-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/02/2018] [Indexed: 01/09/2023] Open
Abstract
Understanding the composition of a genetically-encoded (GE) library is instrumental to the success of ligand discovery. In this manuscript, we investigate the bias in GE-libraries of linear, macrocyclic and chemically post-translationally modified (cPTM) tetrapeptides displayed on the M13KE platform, which are produced via trinucleotide cassette synthesis (19 codons) and NNK-randomized codon. Differential enrichment of synthetic DNA {S}, ligated vector {L} (extension and ligation of synthetic DNA into the vector), naïve libraries {N} (transformation of the ligated vector into the bacteria followed by expression of the library for 4.5 hours to yield a "naïve" library), and libraries chemically modified by aldehyde ligation and cysteine macrocyclization {M} characterized by paired-end deep sequencing, detected a significant drop in diversity in {L} → {N}, but only a minor compositional difference in {S} → {L} and {N} → {M}. Libraries expressed at the N-terminus of phage protein pIII censored positively charged amino acids Arg and Lys; libraries expressed between pIII domains N1 and N2 overcame Arg/Lys-censorship but introduced new bias towards Gly and Ser. Interrogation of biases arising from cPTM by aldehyde ligation and cysteine macrocyclization unveiled censorship of sequences with Ser/Phe. Analogous analysis can be used to explore library diversity in new display platforms and optimize cPTM of these libraries.
Collapse
Affiliation(s)
- Bifang He
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Katrina F Tjhung
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
- The Salk Institute, 10010 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - Nicholas J Bennett
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ying Chou
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Andrea Rau
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jian Huang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ratmir Derda
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
34
|
Fermin G, Rampersad S, Tennant P. Viruses as Tools of Biotechnology. Viruses 2018. [DOI: 10.1016/b978-0-12-811257-1.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
35
|
Mata A, Azevedo HS, Botto L, Gavara N, Su L. New Bioengineering Breakthroughs and Enabling Tools in Regenerative Medicine. CURRENT STEM CELL REPORTS 2017; 3:83-97. [PMID: 28596936 PMCID: PMC5445180 DOI: 10.1007/s40778-017-0081-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW In this review, we provide a general overview of recent bioengineering breakthroughs and enabling tools that are transforming the field of regenerative medicine (RM). We focus on five key areas that are evolving and increasingly interacting including mechanobiology, biomaterials and scaffolds, intracellular delivery strategies, imaging techniques, and computational and mathematical modeling. RECENT FINDINGS Mechanobiology plays an increasingly important role in tissue regeneration and design of therapies. This knowledge is aiding the design of more precise and effective biomaterials and scaffolds. Likewise, this enhanced precision is enabling ways to communicate with and stimulate cells down to their genome. Novel imaging technologies are permitting visualization and monitoring of all these events with increasing resolution from the research stages up to the clinic. Finally, algorithmic mining of data and soft matter physics and engineering are creating growing opportunities to predict biological scenarios, device performance, and therapeutic outcomes. SUMMARY We have found that the development of these areas is not only leading to revolutionary technological advances but also enabling a conceptual leap focused on targeting regenerative strategies in a holistic manner. This approach is bringing us ever more closer to the reality of personalized and precise RM.
Collapse
Affiliation(s)
- Alvaro Mata
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| | - Helena S. Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| | - Lorenzo Botto
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| | - Nuria Gavara
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| | - Lei Su
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| |
Collapse
|