1
|
Ogasawara D, Konrad DB, Tan ZY, Carey KL, Luo J, Won SJ, Li H, Carter TR, DeMeester KE, Njomen E, Schreiber SL, Xavier RJ, Melillo B, Cravatt BF. Chemical tools to expand the ligandable proteome: Diversity-oriented synthesis-based photoreactive stereoprobes. Cell Chem Biol 2024; 31:2138-2155.e32. [PMID: 39547236 DOI: 10.1016/j.chembiol.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/09/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Chemical proteomics enables the global analysis of small molecule-protein interactions in native biological systems and has emerged as a versatile approach for ligand discovery. The range of small molecules explored by chemical proteomics has, however, remained limited. Here, we describe a diversity-oriented synthesis (DOS)-inspired library of stereochemically defined compounds bearing diazirine and alkyne units for UV light-induced covalent modification and click chemistry enrichment of interacting proteins, respectively. We find that these "photo-stereoprobes" interact in a stereoselective manner with hundreds of proteins from various structural and functional classes in human cells and demonstrate that these interactions can form the basis for high-throughput screening-compatible NanoBRET assays. Integrated phenotypic screening and chemical proteomics identified photo-stereoprobes that modulate autophagy by engaging the mitochondrial serine protease CLPP. Our findings show the utility of DOS-inspired photo-stereoprobes for expanding the ligandable proteome, furnishing target engagement assays, and facilitating the discovery and characterization of bioactive compounds in phenotypic screens.
Collapse
Affiliation(s)
- Daisuke Ogasawara
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - David B Konrad
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zher Yin Tan
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kimberly L Carey
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jessica Luo
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sang Joon Won
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Haoxin Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Trever R Carter
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kristen E DeMeester
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Evert Njomen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ramnik J Xavier
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Valerie NCK, Sanjiv K, Mortusewicz O, Zhang SM, Alam S, Pires MJ, Stigsdotter H, Rasti A, Langelier MF, Rehling D, Throup A, Purewal-Sidhu O, Desroses M, Onireti J, Wakchaure P, Almlöf I, Boström J, Bevc L, Benzi G, Stenmark P, Pascal JM, Helleday T, Page BDG, Altun M. Coupling cellular drug-target engagement to downstream pharmacology with CeTEAM. Nat Commun 2024; 15:10347. [PMID: 39643609 PMCID: PMC11624193 DOI: 10.1038/s41467-024-54415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/11/2024] [Indexed: 12/09/2024] Open
Abstract
Cellular target engagement technologies enable quantification of intracellular drug binding; however, simultaneous assessment of drug-associated phenotypes has proven challenging. Here, we present cellular target engagement by accumulation of mutant as a platform that can concomitantly evaluate drug-target interactions and phenotypic responses using conditionally stabilized drug biosensors. We observe that drug-responsive proteotypes are prevalent among reported mutants of known drug targets. Compatible mutants appear to follow structural and biophysical logic that permits intra-protein and paralogous expansion of the biosensor pool. We then apply our method to uncouple target engagement from divergent cellular activities of MutT homolog 1 (MTH1) inhibitors, dissect Nudix hydrolase 15 (NUDT15)-associated thiopurine metabolism with the R139C pharmacogenetic variant, and profile the dynamics of poly(ADP-ribose) polymerase 1/2 (PARP1/2) binding and DNA trapping by PARP inhibitors (PARPi). Further, PARP1-derived biosensors facilitated high-throughput screening for PARP1 binders, as well as multimodal ex vivo analysis and non-invasive tracking of PARPi binding in live animals. This approach can facilitate holistic assessment of drug-target engagement by bridging drug binding events and their biological consequences.
Collapse
Affiliation(s)
- Nicholas C K Valerie
- Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE-141 52, Sweden.
| | - Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Oliver Mortusewicz
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Si Min Zhang
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Seher Alam
- Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE-141 52, Sweden
| | - Maria J Pires
- Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE-141 52, Sweden
| | - Hannah Stigsdotter
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Azita Rasti
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Marie-France Langelier
- Département de Biochimie and Médecine Moléculaire, Faculté de Médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Daniel Rehling
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Adam Throup
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Oryn Purewal-Sidhu
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Matthieu Desroses
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Jacob Onireti
- Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE-141 52, Sweden
| | - Prasad Wakchaure
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Johan Boström
- Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE-141 52, Sweden
| | - Luka Bevc
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Giorgia Benzi
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-106 91, Sweden
| | - John M Pascal
- Département de Biochimie and Médecine Moléculaire, Faculté de Médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
| | - Brent D G Page
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 65, Sweden
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Mikael Altun
- Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE-141 52, Sweden
| |
Collapse
|
3
|
Ye M, Fang Y, Chen L, Song Z, Bao Q, Wang F, Huang H, Xu J, Wang Z, Xiao R, Han M, Gao S, Liu H, Jiang B, Qing G. Therapeutic targeting nudix hydrolase 1 creates a MYC-driven metabolic vulnerability. Nat Commun 2024; 15:2377. [PMID: 38493213 PMCID: PMC10944511 DOI: 10.1038/s41467-024-46572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
Tumor cells must rewire nucleotide synthesis to satisfy the demands of unbridled proliferation. Meanwhile, they exhibit augmented reactive oxygen species (ROS) production which paradoxically damages DNA and free deoxy-ribonucleoside triphosphates (dNTPs). How these metabolic processes are integrated to fuel tumorigenesis remains to be investigated. MYC family oncoproteins coordinate nucleotide synthesis and ROS generation to drive the development of numerous cancers. We herein perform a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based functional screen targeting metabolic genes and identified nudix hydrolase 1 (NUDT1) as a MYC-driven dependency. Mechanistically, MYC orchestrates the balance of two metabolic pathways that act in parallel, the NADPH oxidase 4 (NOX4)-ROS pathway and the Polo like kinase 1 (PLK1)-NUDT1 nucleotide-sanitizing pathway. We describe LC-1-40 as a potent, on-target degrader that depletes NUDT1 in vivo. Administration of LC-1-40 elicits excessive nucleotide oxidation, cytotoxicity and therapeutic responses in patient-derived xenografts. Thus, pharmacological targeting of NUDT1 represents an actionable MYC-driven metabolic liability.
Collapse
Affiliation(s)
- Minhui Ye
- Department of Urology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Yingzhe Fang
- Department of Urology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Lu Chen
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Zemin Song
- TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qing Bao
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Fei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hao Huang
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Jin Xu
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Ziwen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ruijing Xiao
- TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Meng Han
- Protein Chemistry and Proteomics Facility, Tsinghua University Technology Center for Protein Research, Beijing, 10084, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hudan Liu
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Baishan Jiang
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China.
| | - Guoliang Qing
- Department of Urology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China.
- TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
4
|
Helleday T. Mitotic MTH1 Inhibitors in Treatment of Cancer. Cancer Treat Res 2023; 186:223-237. [PMID: 37978139 DOI: 10.1007/978-3-031-30065-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The DNA damage response (DDR) protein MTH1 is sanitising the oxidized dNTP pool and preventing incorporation of oxidative damage into DNA and has an emerging role in mitosis. It is a stress-induced protein and often found to be overexpressed in cancer. Mitotic MTH1 inhibitors arrest cells in mitosis and result in incorporation of oxidative damage into DNA and selective killing of cancer cells. Here, I discuss the leading mitotic MTH1 inhibitor TH1579 (OXC-101, karonudib), now being evaluated in clinical trials, and describe its dual effect on mitosis and incorporation of oxidative DNA damage in cancer cells. I describe why MTH1 inhibitors that solely inhibits the enzyme activity fail to kill cancer cells and discuss if MTH1 is a valid target for cancer treatment. I discuss emerging roles of MTH1 in regulating tubulin polymerisation and mitosis and the necessity of developing the basic science insights along with translational efforts. I also give a perspective on how edgetic perturbation is making target validation difficult in the DDR field.
Collapse
Affiliation(s)
- Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK.
| |
Collapse
|
5
|
Marcos Santos L, da Silveira NJF. Current Fragment-to-lead Approaches Starting from the 7-azaindole: The Pharmacological Versatility of a Privileged Molecular Fragment. Curr Top Med Chem 2023; 23:2116-2130. [PMID: 37461366 DOI: 10.2174/1568026623666230718100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/03/2023] [Accepted: 06/15/2023] [Indexed: 09/09/2023]
Abstract
Fragment-based drug discovery is one of the most powerful paradigms in the recent context of medicinal chemistry and is being widely practiced by academic and industrial researchers. Currently, azaindoles are among the most exploited molecular fragments in pharmaceutical innovation projects inspired by fragment-to-lead strategies. The 7-azaindole is the most prominent representative within this remarkable family of pyrrolopyridine fragments, as it is present in the chemical structure of several approved antitumor drugs and also of numerous therapeutic candidates. In this paper, a brief overview on existing proofs of concept in the literature will be presented, as well as some recent works that corroborate 7-azaindole as a privileged and pharmacologically versatile molecular fragment.
Collapse
Affiliation(s)
- Leandro Marcos Santos
- Laboratory of Molecular Modeling and Computer Simulation / MolMod-CS (D311-F), Institute of Chemistry, Federal University of Alfenas / UNIFAL-MG, Alfenas, Minas Gerais, 37130-001, Brazil
- Pharmaceutical Chemistry Research Laboratory / LQFar (D202A), Department of Food and Medicines, Faculty of Pharmaceutical Sciences, Federal University of Alfenas / UNIFAL-MG, Alfenas, Minas Gerais, 37130-001, Brazil
| | - Nelson José Freitas da Silveira
- Laboratory of Molecular Modeling and Computer Simulation / MolMod-CS (D311-F), Institute of Chemistry, Federal University of Alfenas / UNIFAL-MG, Alfenas, Minas Gerais, 37130-001, Brazil
| |
Collapse
|
6
|
Lee Y, Onishi Y, McPherson L, Kietrys AM, Hebenbrock M, Jun YW, Das I, Adimoolam S, Ji D, Mohsen MG, Ford JM, Kool ET. Enhancing Repair of Oxidative DNA Damage with Small-Molecule Activators of MTH1. ACS Chem Biol 2022; 17:2074-2087. [PMID: 35830623 PMCID: PMC11163517 DOI: 10.1021/acschembio.2c00038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Impaired DNA repair activity has been shown to greatly increase rates of cancer clinically. It has been hypothesized that upregulating repair activity in susceptible individuals may be a useful strategy for inhibiting tumorigenesis. Here, we report that selected tyrosine kinase (TK) inhibitors including nilotinib, employed clinically in the treatment of chronic myeloid leukemia, are activators of the repair enzyme Human MutT Homolog 1 (MTH1). MTH1 cleanses the oxidatively damaged cellular nucleotide pool by hydrolyzing the oxidized nucleotide 8-oxo-2'-deoxyguanosine (8-oxo-dG)TP, which is a highly mutagenic lesion when incorporated into DNA. Structural optimization of analogues of TK inhibitors resulted in compounds such as SU0448, which induces 1000 ± 100% activation of MTH1 at 10 μM and 410 ± 60% at 5 μM. The compounds are found to increase the activity of the endogenous enzyme, and at least one (SU0448) decreases levels of 8-oxo-dG in cellular DNA. The results suggest the possibility of using MTH1 activators to decrease the frequency of mutagenic nucleotides entering DNA, which may be a promising strategy to suppress tumorigenesis in individuals with elevated cancer risks.
Collapse
Affiliation(s)
- Yujeong Lee
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - Yoshiyuki Onishi
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - Lisa McPherson
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Anna M. Kietrys
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - Marian Hebenbrock
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - Yong Woong Jun
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - Ishani Das
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Shanthi Adimoolam
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Debin Ji
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - Michael G. Mohsen
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - James M. Ford
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Eric T. Kool
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| |
Collapse
|
7
|
Centio A, Estruch M, Reckzeh K, Sanjiv K, Vittori C, Engelhard S, Warpman Berglund U, Helleday T, Theilgaard-Mönch K. Inhibition of Oxidized Nucleotide Sanitation By TH1579 and Conventional Chemotherapy Cooperatively Enhance Oxidative DNA Damage and Survival in AML. Mol Cancer Ther 2022; 21:703-714. [PMID: 35247918 DOI: 10.1158/1535-7163.mct-21-0185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 11/16/2022]
Abstract
Currently, the majority of patients with acute myeloid leukemia (AML) still die of their disease due to primary resistance or relapse toward conventional reactive oxygen species (ROS)- and DNA damage-inducing chemotherapy regimens. Herein, we explored the therapeutic potential to enhance chemotherapy response in AML, by targeting the ROS scavenger enzyme MutT homolog 1 (MTH1, NUDT1), which protects cellular integrity through prevention of fatal chemotherapy-induced oxidative DNA damage. We demonstrate that MTH1 is a potential druggable target expressed by the majority of patients with AML and the inv(16)/KITD816Y AML mouse model mimicking the genetics of patients with AML exhibiting poor response to standard chemotherapy (i.e., anthracycline & cytarabine). Strikingly, combinatorial treatment of inv(16)/KITD816Y AML cells with the MTH1 inhibitor TH1579 and ROS- and DNA damage-inducing standard chemotherapy induced growth arrest and incorporated oxidized nucleotides into DNA leading to significantly increased DNA damage. Consistently, TH1579 and chemotherapy synergistically inhibited growth of clonogenic inv(16)/KITD816Y AML cells without substantially inhibiting normal clonogenic bone marrow cells. In addition, combinatorial treatment of inv(16)/KITD816Y AML mice with TH1579 and chemotherapy significantly reduced AML burden and prolonged survival compared with untreated or single treated mice. In conclusion, our study provides a rationale for future clinical studies combining standard AML chemotherapy with TH1579 to boost standard chemotherapy response in patients with AML. Moreover, other cancer entities treated with ROS- and DNA damage-inducing chemo- or radiotherapies might benefit therapeutically from complementary treatment with TH1579.
Collapse
Affiliation(s)
- Anders Centio
- The Finsen Laboratory, Centre for Cancer and Organ Diseases, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Montserrat Estruch
- The Finsen Laboratory, Centre for Cancer and Organ Diseases, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Kristian Reckzeh
- The Finsen Laboratory, Centre for Cancer and Organ Diseases, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences (BRIC), University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, Centre for Stem Cell Research and Developmental Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Camilla Vittori
- The Finsen Laboratory, Centre for Cancer and Organ Diseases, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Sophia Engelhard
- The Finsen Laboratory, Centre for Cancer and Organ Diseases, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Kim Theilgaard-Mönch
- The Finsen Laboratory, Centre for Cancer and Organ Diseases, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences (BRIC), University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, Centre for Stem Cell Research and Developmental Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Hematology, Rigshospitalet/National University Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, Cooke MS. Biomarkers of nucleic acid oxidation - A summary state-of-the-art. Redox Biol 2021; 42:101872. [PMID: 33579665 PMCID: PMC8113048 DOI: 10.1016/j.redox.2021.101872] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2′-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2′-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 μL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease. Oxidatively damaged nucleic acids are implicated in the pathogenesis of disease. LC-MS/MS, comet assay and ELISA are often used to study oxidatively damaged DNA. Urinary oxidatively damaged nucleic acids non-invasively reflect oxidative stress. DNA adductomics will aid understanding the role of ROS damaged DNA in disease.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Mark D Evans
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yunhee Ji
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK, 1014, Copenhagen K, Denmark
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, 142 20, Prague, Czech Republic
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
10
|
Zhang L, Misiara L, Samaranayake GJ, Sharma N, Nguyen DM, Tahara YK, Kool ET, Rai P. OGG1 co-inhibition antagonizes the tumor-inhibitory effects of targeting MTH1. Redox Biol 2021; 40:101848. [PMID: 33450725 PMCID: PMC7810763 DOI: 10.1016/j.redox.2020.101848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022] Open
Abstract
Cancer cells develop protective adaptations against oxidative DNA damage, providing a strong rationale for targeting DNA repair proteins. There has been a high degree of recent interest in inhibiting the mammalian Nudix pyrophosphatase MutT Homolog 1 (MTH1). MTH1 degrades 8-oxo-dGTP, thus limiting its incorporation into genomic DNA. MTH1 inhibition has variously been shown to induce genomic 8-oxo-dG elevation, genotoxic strand breaks in p53-functional cells, and tumor-inhibitory outcomes. Genomically incorporated 8-oxo-dG is excised by the base excision repair enzyme, 8-oxo-dG glycosylase 1 (OGG1). Thus, OGG1 inhibitors have been developed with the idea that their combination with MTH1 inhibitors will have anti-tumor effects by increasing genomic oxidative DNA damage. However, contradictory to this idea, we found that human lung adenocarcinoma with low OGG1 and MTH1 were robustly represented in patient datasets. Furthermore, OGG1 co-depletion mitigated the extent of DNA strand breaks and cellular senescence in MTH1-depleted p53-wildtype lung adenocarcinoma cells. Similarly, shMTH1-transduced cells were less sensitive to the OGG1 inhibitor, SU0268, than shGFP-transduced counterparts. Although the dual OGG1/MTH1 inhibitor, SU0383, induced greater cytotoxicity than equivalent combined or single doses of its parent scaffold MTH1 and OGG1 inhibitors, IACS-4759 and SU0268, this effect was only observed at the highest concentration assessed. Collectively, using both genetic depletion as well as small molecule inhibitors, our findings suggest that OGG1/MTH1 co-inhibition is unlikely to yield significant tumor-suppressive benefit. Instead such co-inhibition may exert tumor-protective effects by preventing base excision repair-induced DNA nicks and p53 induction, thus potentially conferring a survival advantage to the treated tumors. Low MTH1/low OGG1 tumors are robustly represented in patient lung adenocarcinoma datasets but low MTH1/high OGG1 are not. Co-depletion of OGG1 in lung adenocarcinoma cells mitigates shMTH1-induced DNA strand breaks and p53-induced senescence. p53-null tumor cells have lower OGG1 vs. wt p53 counterparts and are more resistant to MTH1 loss-induced anti-tumor effects. Pharmacologic co-inhibition of OGG1 and MTH1 does not enhance cytotoxicity over the respective single inhibitors.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Radiation Oncology, University of Miami Medical School, FL 33136, USA
| | - Laura Misiara
- College of Arts and Sciences, University of Miami, FL 33146, USA
| | - Govindi J Samaranayake
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Medical School, FL 33136, USA
| | - Nisha Sharma
- College of Arts and Sciences, University of Miami, FL 33146, USA
| | - Dao M Nguyen
- Department of Surgery, University of Miami Medical School, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Yu-Ki Tahara
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Priyamvada Rai
- Department of Radiation Oncology, University of Miami Medical School, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA.
| |
Collapse
|
11
|
Yin Y, Chen F. Targeting human MutT homolog 1 (MTH1) for cancer eradication: current progress and perspectives. Acta Pharm Sin B 2020; 10:2259-2271. [PMID: 33354500 PMCID: PMC7745060 DOI: 10.1016/j.apsb.2020.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 01/20/2023] Open
Abstract
Since accelerated metabolism produces much higher levels of reactive oxygen species (ROS) in cancer cells compared to ROS levels found in normal cells, human MutT homolog 1 (MTH1), which sanitizes oxidized nucleotide pools, was recently demonstrated to be crucial for the survival of cancer cells, but not required for the proliferation of normal cells. Therefore, dozens of MTH1 inhibitors have been developed with the aim of suppressing cancer growth by accumulating oxidative damage in cancer cells. While several inhibitors were indeed confirmed to be effective, some inhibitors failed to kill cancer cells, complicating MTH1 as a viable target for cancer eradication. In this review, we summarize the current status of developing MTH1 inhibitors as drug candidates, classify the MTH1 inhibitors based on their structures, and offer our perspectives toward the therapeutic potential against cancer through the targeting of MTH1.
Collapse
Key Words
- AI, 7-azaindole
- AID, 7-azaindazole
- AP, aminopyrimidine
- AQ, amidoquinolines
- AZ, 2-aminoquinazoline
- Anticancer
- CETSA, cellular thermal shift assay
- CR, cyclometalated ruthenium
- DDR, DNA damage response
- DNA repair
- F, fragment
- FP, farnesyl phenolic
- IC50, half-maximal inhibitory concentrations
- Inhibitor
- MMR, DNA mismatch repair
- MTH1
- MTH1, human MutT homolog 1
- NSCLC, non-small cell lung cancer
- Oxidized nucleotide
- P, purinone
- PDT, photodynamic therapy
- PM, purinone macrocycle
- Pu, purine
- ROS, reactive oxygen species
- TLR7, Toll-like receptor 7
- TPP, thermal proteome profiling
- TS-FITGE, thermal stability shift-based fluorescence difference in two-dimensional gel electrophoresis
Collapse
Affiliation(s)
- Yizhen Yin
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- Corresponding author. Tel./fax: +86 21 65643811.
| |
Collapse
|
12
|
Radiolabeled 6-(2, 3-Dichlorophenyl)-N4-methylpyrimidine-2, 4-diamine (TH287): A Potential Radiotracer for Measuring and Imaging MTH1. Int J Mol Sci 2020; 21:ijms21228860. [PMID: 33238630 PMCID: PMC7700685 DOI: 10.3390/ijms21228860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
MTH1 (MutT homolog 1) or NUDT1 (Nudix Hydrolase 1), also known as oxidized purine nucleoside triphosphatase, has potential as a biomarker for monitoring cancer progression and quantifying target engagement for relevant therapies. In this study, we validate one MTH1 inhibitor TH287 as a PET MTH1 radiotracer. TH287 was radiolabeled with tritium and the binding of [3H]TH287 to MTH1 was evaluated in live glioblastoma cells (U251MG) through saturation and competitive binding assays, together with in vitro enzymatic assays. Furthermore, TH287 was radiolabeled with carbon-11 for in vivo microPET studies. Saturation binding assays show that [3H]TH287 has a dissociation constant (Kd) of 1.97 ± 0.18 nM, Bmax of 2676 ± 122 fmol/mg protein for U251MG cells, and nH of 0.98 ± 0.02. Competitive binding assays show that TH287 (Ki: 3.04 ± 0.14 nM) has a higher affinity for MTH1 in U251MG cells compared to another well studied MTH1 inhibitor: (S)-crizotinib (Ki: 153.90 ± 20.48 nM). In vitro enzymatic assays show that TH287 has an IC50 of 2.2 nM in inhibiting MTH1 hydrolase activity and a Ki of 1.3 nM from kinetics assays, these results are consistent with our radioligand binding assays. Furthermore, MicroPET imaging shows that [11C]TH287 gets into the brain with rapid clearance from the brain, kidney, and heart. The results presented here indicate that radiolabeled TH287 has favorable properties to be a useful tool for measuring MTH1 in vitro and for further evaluation for in vivo PET imaging MTH1 of brain tumors and other central nervous system disorders.
Collapse
|
13
|
Arczewska KD, Krasuska W, Stachurska A, Karpińska K, Sikorska J, Kiedrowski M, Lange D, Stępień T, Czarnocka B. hMTH1 and GPX1 expression in human thyroid tissue is interrelated to prevent oxidative DNA damage. DNA Repair (Amst) 2020; 95:102954. [PMID: 32877752 DOI: 10.1016/j.dnarep.2020.102954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Oxidative stress (OS) is recognized as disturbance of cellular equilibrium between reactive oxygen species (ROS) formation and their elimination by antioxidant defense systems. One example of ROS-mediated damage is generation of potentially mutagenic DNA precursor, 8-oxodGTP. In human cells genomic 8-oxodGTP incorporation is prevented by the MutT homologue 1 (MTH1 or hMTH1 for human MTH1) protein. It is well established that malignant cells, including thyroid cancer cells, require hMTH1 for maintaining proliferation and cancerous transformation phenotype. Above observations led to the development of hMTH1 inhibitors as novel anticancer therapeutics. In the current study we present extensive analysis of oxidative stress responses determining sensitivity to hMTH1 deficiency in cultured thyroid cells. We observe here that hMTH1 depletion results in downregulation of several glutathione-dependent OS defense system factors, including GPX1 and GCLM, making some of the tested thyroid cell lines highly dependent on glutathione levels. This is evidenced by the increased ROS burden and enhanced proliferation defect after combination of hMTH1 siRNA and glutathione synthesis inhibition. Moreover, due to the lack of data on hMTH1 expression in human thyroid tumor specimens we decided to perform detailed analysis of hMTH1 expression in thyroid tumor and peri-tumoral tissues from human patients. Our results allow us to propose here that anticancer activity of hMTH1 suppression may be boosted by combination with agents modulating glutathione pool, but further studies are necessary to precisely identify backgrounds susceptible to such combination treatment.
Collapse
Affiliation(s)
- Katarzyna D Arczewska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Wanda Krasuska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Anna Stachurska
- Department of Immunohematology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Kamila Karpińska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Justyna Sikorska
- Department of Immunohematology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Mirosław Kiedrowski
- Clinical Department of Oncology and Hematology, Central Clinical Hospital of the Ministry of Interior and Administration in Warsaw, Center of Postgraduate Medical Education, Wołowska 137, 02-507 Warsaw, Poland
| | - Dariusz Lange
- Tumor Pathology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland
| | - Tomasz Stępień
- Department of General and Endocrinological Surgery, Copernicus Memorial Hospital, Pabianicka 62, 93-036 Łódź, Poland
| | - Barbara Czarnocka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
14
|
Chen Z, Chen C, Zhou T, Duan C, Wang Q, Zhou X, Zhang X, Wu F, Hua Y, Lin F. A high-throughput drug combination screen identifies an anti-glioma synergism between TH588 and PI3K inhibitors. Cancer Cell Int 2020; 20:337. [PMID: 32714096 PMCID: PMC7376673 DOI: 10.1186/s12935-020-01427-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most common and lethal type of primary brain tumor. More than half of GBMs contain mutation(s) of PTEN/PI3K/AKT, making inhibitors targeting the PI3K pathway very attractive for clinical investigation. However, so far, PI3K/AKT/mTOR inhibitors have not achieved satisfactory therapeutic effects in clinical trials of GBM. In this study, we aimed to develop a high-throughput screening method for high-throughput identification of potential targeted agents that synergize with PI3K inhibitors in GBM. Methods A Sensitivity Index (SI)-based drug combination screening method was established to evaluate the interactions between BKM120, a pan-PI3K inhibitor, and compounds from a library of 606 target-selective inhibitors. Proliferation, colony and 3D spheroid formation assays, western blotting, comet assay, γ-H2AX staining were used to evaluate the anti-glioma effects of the top-ranked candidates. The drug combination effects were analyzed by the Chou-Talalay method. Results Six compounds were successfully identified from the drug screen, including three previously reported compounds that cause synergistic antitumor effects with PI3K/mTOR inhibitors. TH588, an putative MTH1 inhibitor exhibited significant synergy with BKM120 in suppressing the proliferation, colony formation and 3D spheroid formation of GBM cells. Further investigation revealed that both DNA damage and apoptosis were markedly enhanced upon combination treatment with TH588 and BKM120. Finally, activation of PI3K or overexpression of AKT compromised the anti-glioma efficacy of TH588. Conclusions The screening method developed in this study demonstrated its usefulness in the rapid identification of synergistic drug combinations of PI3K inhibitors and targeted agents.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Chao Chen
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Tingting Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Chao Duan
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Qianqian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaohui Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Xia Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Fangrong Wu
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Yunfen Hua
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Fan Lin
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China.,Institute for Brain Tumors, Key Laboratory of Rare Metabolic Diseases, The Affiliated Cancer Hospital of Nanjing Medical University; Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing, China
| |
Collapse
|
15
|
Michel M, Homan EJ, Wiita E, Pedersen K, Almlöf I, Gustavsson AL, Lundbäck T, Helleday T, Warpman Berglund U. In silico Druggability Assessment of the NUDIX Hydrolase Protein Family as a Workflow for Target Prioritization. Front Chem 2020; 8:443. [PMID: 32548091 PMCID: PMC7274155 DOI: 10.3389/fchem.2020.00443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/28/2020] [Indexed: 01/13/2023] Open
Abstract
Computational chemistry has now been widely accepted as a useful tool for shortening lead times in early drug discovery. When selecting new potential drug targets, it is important to assess the likelihood of finding suitable starting points for lead generation before pursuing costly high-throughput screening campaigns. By exploiting available high-resolution crystal structures, an in silico druggability assessment can facilitate the decision of whether, and in cases where several protein family members exist, which of these to pursue experimentally. Many of the algorithms and software suites commonly applied for in silico druggability assessment are complex, technically challenging and not always user-friendly. Here we applied the intuitive open access servers of DoGSite, FTMap and CryptoSite to comprehensively predict ligand binding pockets, druggability scores and conformationally active regions of the NUDIX protein family. In parallel we analyzed potential ligand binding sites, their druggability and pocket parameter using Schrödinger's SiteMap. Then an in silico docking cascade of a subset of the ZINC FragNow library using the Glide docking program was performed to assess identified pockets for large-scale small-molecule binding. Subsequently, this initial dual ranking of druggable sites within the NUDIX protein family was benchmarked against experimental hit rates obtained both in-house and by others from traditional biochemical and fragment screening campaigns. The observed correlation suggests that the presented user-friendly workflow of a dual parallel in silico druggability assessment is applicable as a standalone method for decision on target prioritization and exclusion in future screening campaigns.
Collapse
Affiliation(s)
- Maurice Michel
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Evert J Homan
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Elisée Wiita
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kia Pedersen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anna-Lena Gustavsson
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Oncology and Metabolism, Sheffield Cancer Centre, University of Sheffield, Sheffield, United Kingdom
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Farand J, Kropf JE, Blomgren P, Xu J, Schmitt AC, Newby ZE, Wang T, Murakami E, Barauskas O, Sudhamsu J, Feng JY, Niedziela-Majka A, Schultz BE, Schwartz K, Viatchenko-Karpinski S, Kornyeyev D, Kashishian A, Fan P, Chen X, Lansdon EB, Ports MO, Currie KS, Watkins WJ, Notte GT. Discovery of Potent and Selective MTH1 Inhibitors for Oncology: Enabling Rapid Target (In)Validation. ACS Med Chem Lett 2020; 11:358-364. [PMID: 32184970 DOI: 10.1021/acsmedchemlett.9b00420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
We describe the discovery of three structurally differentiated potent and selective MTH1 inhibitors and their subsequent use to investigate MTH1 as an oncology target, culminating in target (in)validation. Tetrahydronaphthyridine 5 was rapidly identified as a highly potent MTH1 inhibitor (IC50 = 0.043 nM). Cocrystallization of 5 with MTH1 revealed the ligand in a Φ-cis-N-(pyridin-2-yl)acetamide conformation enabling a key intramolecular hydrogen bond and polar interactions with residues Gly34 and Asp120. Modification of literature compound TH287 with O- and N-linked aryl and alkyl aryl substituents led to the discovery of potent pyrimidine-2,4,6-triamine 25 (IC50 = 0.49 nM). Triazolopyridine 32 emerged as a highly selective lead compound with a suitable in vitro profile and desirable pharmacokinetic properties in rat. Elucidation of the DNA damage response, cell viability, and intracellular concentrations of oxo-NTPs (oxidized nucleoside triphosphates) as a function of MTH1 knockdown and/or small molecule inhibition was studied. Based on our findings, we were unable to provide evidence to further pursue MTH1 as an oncology target.
Collapse
Affiliation(s)
- Julie Farand
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jeffrey E. Kropf
- Gilead Sciences, Inc. 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Peter Blomgren
- Gilead Sciences, Inc. 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Jianjun Xu
- Gilead Sciences, Inc. 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Aaron C. Schmitt
- Gilead Sciences, Inc. 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Zachary E. Newby
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, California 94404, United States
| | - Ting Wang
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, California 94404, United States
| | - Eisuke Murakami
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, California 94404, United States
| | - Ona Barauskas
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jawahar Sudhamsu
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, California 94404, United States
| | - Joy Y. Feng
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, California 94404, United States
| | - Anita Niedziela-Majka
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, California 94404, United States
| | - Brian E. Schultz
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, California 94404, United States
| | - Karen Schwartz
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, California 94404, United States
| | | | - Dmytro Kornyeyev
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, California 94404, United States
| | - Adam Kashishian
- Gilead Sciences, Inc. 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Peidong Fan
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, California 94404, United States
| | - Xiaowu Chen
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, California 94404, United States
| | - Eric B. Lansdon
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, California 94404, United States
| | - Michael O. Ports
- Gilead Sciences, Inc. 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Kevin S. Currie
- Gilead Sciences, Inc. 199 East Blaine Street, Seattle, Washington 98102, United States
| | - William J. Watkins
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, California 94404, United States
| | - Gregory T. Notte
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, California 94404, United States
| |
Collapse
|
17
|
Henderson MJ, Holbert MA, Simeonov A, Kallal LA. High-Throughput Cellular Thermal Shift Assays in Research and Drug Discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:137-147. [PMID: 31566060 PMCID: PMC10915787 DOI: 10.1177/2472555219877183] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Thermal shift assays (TSAs) can reveal changes in protein structure, due to a resultant change in protein thermal stability. Since proteins are often stabilized upon binding of ligand molecules, these assays can provide a readout for protein target engagement. TSA has traditionally been applied using purified proteins and more recently has been extended to study target engagement in cellular environments with the emergence of cellular thermal shift assays (CETSAs). The utility of CETSA in confirming molecular interaction with targets in a more native context, and the desire to apply this technique more broadly, has fueled the emergence of higher-throughput techniques for CETSA (HT-CETSA). Recent studies have demonstrated that HT-CETSA can be performed in standard 96-, 384-, and 1536-well microtiter plate formats using methods such as beta-galactosidase and NanoLuciferase reporters and AlphaLISA assays. HT-CETSA methods can be used to select and characterize compounds from high-throughput screens and to prioritize compounds in lead optimization by facilitating dose-response experiments. In conjunction with cellular and biochemical activity assays for targets, HT-CETSA can be a valuable addition to the suite of assays available to characterize molecules of interest. Despite the successes in implementing HT-CETSA for a diverse set of targets, caveats and challenges must also be recognized to avoid overinterpretation of results. Here, we review the current landscape of HT-CETSA and discuss the methodologies, practical considerations, challenges, and applications of this approach in research and drug discovery. Additionally, a perspective on potential future directions for the technology is presented.
Collapse
Affiliation(s)
- Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Marc A Holbert
- Protein, Cellular, & Structural Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Lorena A Kallal
- Screening, Profiling, and Mechanistic Biology, GlaxoSmithKline, Collegeville, PA, USA
| |
Collapse
|
18
|
Samaranayake GJ, Troccoli CI, Zhang L, Huynh M, Jayaraj CJ, Ji D, McPherson L, Onishi Y, Nguyen DM, Robbins DJ, Karbaschi M, Cooke MS, Barrientos A, Kool ET, Rai P. The Existence of MTH1-independent 8-oxodGTPase Activity in Cancer Cells as a Compensatory Mechanism against On-target Effects of MTH1 Inhibitors. Mol Cancer Ther 2019; 19:432-446. [PMID: 31744893 DOI: 10.1158/1535-7163.mct-19-0437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/20/2019] [Accepted: 11/12/2019] [Indexed: 01/28/2023]
Abstract
Investigations into the human 8-oxodGTPase, MutT Homolog 1 (MTH1), have risen sharply since the first-in-class MTH1 inhibitors were reported to be highly tumoricidal. However, MTH1 as a cancer therapeutic target is currently controversial because subsequently developed inhibitors did not exhibit similar cytotoxic effects. Here, we provide the first direct evidence for MTH1-independent 8-oxodGTPase function in human cancer cells and human tumors, using a novel ATP-releasing guanine-oxidized (ARGO) chemical probe. Our studies show that this functionally redundant 8-oxodGTPase activity is not decreased by five different published MTH1-targeting small molecules or by MTH1 depletion. Significantly, while only the two first-in-class inhibitors, TH588 and TH287, reduced cancer cell viability, all five inhibitors evaluated in our studies decreased 8-oxodGTPase activity to a similar extent. Thus, the reported efficacy of the first-in-class MTH1 inhibitors does not arise from their inhibition of MTH1-specific 8-oxodGTPase activity. Comparison of DNA strand breaks, genomic 8-oxoguanine incorporation, or alterations in cellular oxidative state by TH287 versus the noncytotoxic inhibitor, IACS-4759, contradict that the cytotoxicity of the former results solely from increased levels of oxidatively damaged genomic DNA. Thus, our findings indicate that mechanisms unrelated to oxidative stress or DNA damage likely underlie the reported efficacy of the first-in-class inhibitors. Our study suggests that MTH1 functional redundancy, existing to different extents in all cancer lines and human tumors evaluated in our study, is a thus far undefined factor which is likely to be critical in understanding the importance of MTH1 and its clinical targeting in cancer.
Collapse
Affiliation(s)
- Govindi J Samaranayake
- Department of Medicine/Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, Florida
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Clara I Troccoli
- Department of Medicine/Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, Florida
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Ling Zhang
- Department of Medicine/Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, Florida
| | - Mai Huynh
- University of Miami, Coral Gables, Florida
| | | | - Debin Ji
- Department of Chemistry, Stanford University, Stanford, California
| | - Lisa McPherson
- Department of Medicine/Oncology, Stanford University, Stanford, California
| | - Yoshiyuki Onishi
- Department of Chemistry, Stanford University, Stanford, California
| | - Dao M Nguyen
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - David J Robbins
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Mahsa Karbaschi
- Department of Human and Molecular Genetics, Florida International University, Miami, Florida
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, Florida
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, Florida
| | - Antonio Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, California
| | - Priyamvada Rai
- Department of Medicine/Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, Florida.
- Sylvester Comprehensive Cancer Center, Miami, Florida
| |
Collapse
|
19
|
The MTH1 inhibitor TH588 is a microtubule-modulating agent that eliminates cancer cells by activating the mitotic surveillance pathway. Sci Rep 2019; 9:14667. [PMID: 31604991 PMCID: PMC6789014 DOI: 10.1038/s41598-019-51205-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
The mut-T homolog-1 (MTH1) inhibitor TH588 has shown promise in preclinical cancer studies but its targeting specificity has been questioned. Alternative mechanisms for the anti-cancer effects of TH588 have been suggested but the question remains unresolved. Here, we performed an unbiased CRISPR screen on human lung cancer cells to identify potential mechanisms behind the cytotoxic effect of TH588. The screen identified pathways and complexes involved in mitotic spindle regulation. Using immunofluorescence and live cell imaging, we showed that TH588 rapidly reduced microtubule plus-end mobility, disrupted mitotic spindles, and prolonged mitosis in a concentration-dependent but MTH1-independent manner. These effects activated a USP28-p53 pathway – the mitotic surveillance pathway – that blocked cell cycle reentry after prolonged mitosis; USP28 acted upstream of p53 to arrest TH588-treated cells in the G1-phase of the cell cycle. We conclude that TH588 is a microtubule-modulating agent that activates the mitotic surveillance pathway and thus prevents cancer cells from re-entering the cell cycle.
Collapse
|
20
|
Wiedmer L, Schärer C, Spiliotopoulos D, Hürzeler M, Śledź P, Caflisch A. Ligand retargeting by binding site analogy. Eur J Med Chem 2019; 175:107-113. [DOI: 10.1016/j.ejmech.2019.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/27/2022]
|
21
|
Michel M, Visnes T, Homan EJ, Seashore-Ludlow B, Hedenström M, Wiita E, Vallin K, Paulin CBJ, Zhang J, Wallner O, Scobie M, Schmidt A, Jenmalm-Jensen A, Warpman Berglund U, Helleday T. Computational and Experimental Druggability Assessment of Human DNA Glycosylases. ACS OMEGA 2019; 4:11642-11656. [PMID: 31460271 PMCID: PMC6682003 DOI: 10.1021/acsomega.9b00162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/21/2019] [Indexed: 06/10/2023]
Abstract
Due to a polar or even charged binding interface, DNA-binding proteins are considered extraordinarily difficult targets for development of small-molecule ligands and only a handful of proteins have been targeted successfully to date. Recently, however, it has been shown that development of selective and efficient inhibitors of 8-oxoguanine DNA glycosylase is possible. Here, we describe the initial druggability assessment of DNA glycosylases in a computational setting and experimentally investigate several methods to target endonuclease VIII-like 1 (NEIL1) with small-molecule inhibitors. We find that DNA glycosylases exhibit good predicted druggability in both DNA-bound and -unbound states. Furthermore, we find catalytic sites to be highly flexible, allowing for a range of interactions and binding partners. One flexible catalytic site was rationalized for NEIL1 and further investigated experimentally using both a biochemical assay in the presence of DNA and a thermal shift assay in the absence of DNA.
Collapse
Affiliation(s)
- Maurice Michel
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Torkild Visnes
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Department
of Biotechnology and Nanomedicine, SINTEF
Industry, N-7465 Trondheim, Norway
| | - Evert J. Homan
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Brinton Seashore-Ludlow
- Chemical
Biology Consortium Sweden, Science for Life Laboratory, Division of
Translational Medicine and Chemical Biology, Department of Medical
Biochemistry and Biophysics, Karolinska
Institutet, S-171 21 Stockholm, Sweden
| | | | - Elisée Wiita
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Karl Vallin
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Cynthia B. J. Paulin
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Jiaxi Zhang
- Institute
of Organic Chemistry, Clausthal University
of Technology, Leibnizstrasse
6, D-38678 Clausthal-Zellerfeld, Germany
| | - Olov Wallner
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Martin Scobie
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Andreas Schmidt
- Institute
of Organic Chemistry, Clausthal University
of Technology, Leibnizstrasse
6, D-38678 Clausthal-Zellerfeld, Germany
| | - Annika Jenmalm-Jensen
- Chemical
Biology Consortium Sweden, Science for Life Laboratory, Division of
Translational Medicine and Chemical Biology, Department of Medical
Biochemistry and Biophysics, Karolinska
Institutet, S-171 21 Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Thomas Helleday
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Sheffield
Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, S10 2RX Sheffield, U.K.
| |
Collapse
|
22
|
Patterson JC, Joughin BA, Prota AE, Mühlethaler T, Jonas OH, Whitman MA, Varmeh S, Chen S, Balk SP, Steinmetz MO, Lauffenburger DA, Yaffe MB. VISAGE Reveals a Targetable Mitotic Spindle Vulnerability in Cancer Cells. Cell Syst 2019; 9:74-92.e8. [PMID: 31302152 PMCID: PMC6688637 DOI: 10.1016/j.cels.2019.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 08/30/2018] [Accepted: 05/22/2019] [Indexed: 12/21/2022]
Abstract
There is an unmet need for new antimitotic drug combinations that target cancer-specific vulnerabilities. Based on our finding of elevated biomolecule oxidation in mitotically arrested cancer cells, we combined Plk1 inhibitors with TH588, an MTH1 inhibitor that prevents detoxification of oxidized nucleotide triphosphates. This combination showed robust synergistic killing of cancer, but not normal, cells that, surprisingly, was MTH1-independent. To dissect the underlying synergistic mechanism, we developed VISAGE, a strategy integrating experimental synergy quantification with computational-pathway-based gene expression analysis. VISAGE predicted, and we experimentally confirmed, that this synergistic combination treatment targeted the mitotic spindle. Specifically, TH588 binding to β-tubulin impaired microtubule assembly, which when combined with Plk1 blockade, synergistically disrupted mitotic chromosome positioning to the spindle midzone. These findings identify a cancer-specific mitotic vulnerability that is targetable using Plk1 inhibitors with microtubule-destabilizing agents and highlight the general utility of the VISAGE approach to elucidate molecular mechanisms of drug synergy.
Collapse
Affiliation(s)
- Jesse C Patterson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian A Joughin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Tobias Mühlethaler
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Oliver H Jonas
- Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Matthew A Whitman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shohreh Varmeh
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sen Chen
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Steven P Balk
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland; Biozentrum, University of Basel 4056 Basel, Switzerland
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B Yaffe
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
23
|
Mayank, Kaur N, Singh N. Structural insights and influence of V599 mutations on the overall dynamics of BRAF protein against its kinase domains. Integr Biol (Camb) 2019; 10:646-657. [PMID: 30229251 DOI: 10.1039/c8ib00095f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutations in the BRAF gene are well known for their oncogenic effects. Point mutations in V599 are particularly oncogenic and are considered important for therapeutic purposes. Along with wild type, other V599 mutated BRAF variants viz. V599E, V599D and V599R are reported and crystals of the former two with inhibitor (BAY43-9006) are further detailed. Both wild-type and mutated BRAF forms show similar interaction patterns with BAY43-9006, but the 599th residue did not show any involvement in the interactions. Upon BAY43-9006 binding, kinase domains of both forms were found adopting essentially identical conformations. However, BAY43-9006 shows a varied activity profile in the case of the wild and V599E variant of the BRAF protein. Furthermore, MMGBSA binding energy results for all four BRAF variants, further revealed the importance of the 599th residue. In-depth analysis viz. molecular dynamics, residue correlation studies and residue interaction network (RIN) analyses were conducted, providing a deep insight into the 599th residue and its impact on the overall dynamics of BRAF protein. Our findings reveal that the mutated residue at the 599th position not only changed the BAY43-9006-BRAF binding behaviour but also produced a massive impact on the overall dynamic behaviour of the protein. The insights obtained herein could be of great relevance for designing new BRAF inhibitors aimed at getting ideal activity against all BRAF forms.
Collapse
Affiliation(s)
- Mayank
- Department of Chemistry, Indian Institute of Technology Ropar, Punjab 140001, India.
| | - Navneet Kaur
- Department of Chemistry, Punjab University Chandigarh, Punjab, India.
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Punjab 140001, India.
| |
Collapse
|
24
|
McPherson LA, Troccoli CI, Ji D, Bowles AE, Gardiner ML, Mohsen MG, Nagathihalli NS, Nguyen DM, Robbins DJ, Merchant NB, Kool ET, Rai P, Ford JM. Increased MTH1-specific 8-oxodGTPase activity is a hallmark of cancer in colon, lung and pancreatic tissue. DNA Repair (Amst) 2019; 83:102644. [PMID: 31311767 DOI: 10.1016/j.dnarep.2019.102644] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/24/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Cellular homeostasis is dependent on a balance between DNA damage and DNA repair mechanisms. Cells are constantly assaulted by both exogenous and endogenous stimuli leading to high levels of reactive oxygen species (ROS) that cause oxidation of the nucleotide dGTP to 8-oxodGTP. If this base is incorporated into DNA and goes unrepaired, it can result in G > T transversions, leading to genomic DNA damage. MutT Homolog 1 (MTH1) is a nucleoside diphosphate X (Nudix) pyrophosphatase that can remove 8-oxodGTP from the nucleotide pool before it is incorporated into DNA by hydrolyzing it into 8-oxodGMP. MTH1 expression has been shown to be elevated in many cancer cells and is thought to be a survival mechanism by which a cancer cell can stave off the effects of high ROS that can result in cell senescence or death. It has recently become a target of interest in cancer because it is thought that inhibiting MTH1 can increase genotoxic damage and cytotoxicity. Determining the role of MTH1 in normal and cancer cells is confounded by an inability to reliably and directly measure its native enzymatic activity. We have used the chimeric ATP-releasing guanine-oxidized (ARGO) probe that combines 8-oxodGTP and ATP to measure MTH1 enzymatic activity in colorectal cancer (CRC), non-small cell lung cancer (NSCLC) and pancreatic ductal adenocarcinoma (PDAC) along with patient-matched normal tissue. MTH1 8-oxodGTPase activity is significantly increased in tumors across all three tissue types, indicating that MTH1 is a marker of cancer. MTH1 activity measured by ARGO assay was compared to mRNA and protein expression measured by RT-qPCR and Western blot in the CRC tissue pairs, revealing a positive correlation between ARGO assay and Western blot, but little correlation with RT-qPCR in these samples. The adoption of the ARGO assay will help in establishing the level of MTH1 activity in model systems and in assessing the effects of MTH1 modulation in the treatment of cancer.
Collapse
Affiliation(s)
- Lisa A McPherson
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305-5151, United States
| | - Clara I Troccoli
- Department of Medicine/Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Debin Ji
- Department of Chemistry, Stanford University, Stanford, CA 94305-4401, United States
| | - Annie E Bowles
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305-5151, United States
| | - Makelle L Gardiner
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305-5151, United States
| | - Michael G Mohsen
- Department of Chemistry, Stanford University, Stanford, CA 94305-4401, United States
| | - Nagaraj S Nagathihalli
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, United States; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Dao M Nguyen
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, United States; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - David J Robbins
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, United States; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Nipun B Merchant
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, United States; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305-4401, United States
| | - Priyamvada Rai
- Department of Medicine/Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Sylvester Comprehensive Cancer Center, Miami, FL 33136, United States.
| | - James M Ford
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305-5151, United States.
| |
Collapse
|
25
|
Zhou W, Ma L, Yang J, Qiao H, Li L, Guo Q, Ma J, Zhao L, Wang J, Jiang G, Wan X, Adam Goscinski M, Ding L, Zheng Y, Li W, Liu H, Suo Z, Zhao W. Potent and specific MTH1 inhibitors targeting gastric cancer. Cell Death Dis 2019; 10:434. [PMID: 31164636 PMCID: PMC6547740 DOI: 10.1038/s41419-019-1665-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 01/22/2023]
Abstract
Human mutT homolog 1(MTH1), the oxidized dNTP pool sanitizer enzyme, has been reported to be highly expressed in various malignant tumors. However, the oncogenic role of MTH1 in gastric cancer remains to be determined. In the current study, we found that MTH1 was overexpressed in human gastric cancer tissues and cells. Using an in vitro MTH1 inhibitor screening system, the compounds available in our laboratory were screened and the small molecules containing 5-cyano-6-phenylpyrimidine structure were firstly found to show potently and specifically inhibitory effect on MTH1, especially compound MI-743 with IC50 = 91.44 ± 1.45 nM. Both molecular docking and target engagement experiments proved that MI-743 can directly bind to MTH1. Moreover, MI-743 could not only inhibit cell proliferation in up to 16 cancer cell lines, especially gastric cancer cells HGC-27 and MGC-803, but also significantly induce MTH1-related 8-oxo-dG accumulation and DNA damage. Furthermore, the growth of xenograft tumours derived by injection of MGC-803 cells in nude mice was also significantly inhibited by MI-743 treatment. Importantly, MTH1 knockdown by siRNA in those two gastric cancer cells exhibited the similar findings. Our findings indicate that MTH1 is highly expressed in human gastric cancer tissues and cell lines. Small molecule MI-743 with 5-cyano-6-phenylpyrimidine structure may serve as a novel lead compound targeting the overexpressed MTH1 for gastric cancer treatment.
Collapse
Affiliation(s)
- Wenjuan Zhou
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
- Department of Pathology, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, 0379, Norway
| | - Liying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Jing Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Hui Qiao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Lingyu Li
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Qian Guo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Jinlian Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Lijuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Junwei Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Guozhong Jiang
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiangbin Wan
- Department of General Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan, 450001, China
| | - Mariusz Adam Goscinski
- Department of Urology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0379, Norway
| | - Lina Ding
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yichao Zheng
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Zhenhe Suo
- Department of Pathology, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, 0379, Norway.
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
26
|
Çağlayan M. Interplay between DNA Polymerases and DNA Ligases: Influence on Substrate Channeling and the Fidelity of DNA Ligation. J Mol Biol 2019; 431:2068-2081. [PMID: 31034893 DOI: 10.1016/j.jmb.2019.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
DNA ligases are a highly conserved group of nucleic acid enzymes that play an essential role in DNA repair, replication, and recombination. This review focuses on functional interaction between DNA polymerases and DNA ligases in the repair of single- and double-strand DNA breaks, and discusses the notion that the substrate channeling during DNA polymerase-mediated nucleotide insertion coupled to DNA ligation could be a mechanism to minimize the release of potentially mutagenic repair intermediates. Evidence suggesting that DNA ligases are essential for cell viability includes the fact that defects or insufficiency in DNA ligase are casually linked to genome instability. In the future, it may be possible to develop small molecule inhibitors of mammalian DNA ligases and/or their functional protein partners that potentiate the effects of chemotherapeutic compounds and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
27
|
Smith MR, Shock DD, Beard WA, Greenberg MM, Freudenthal BD, Wilson SH. A guardian residue hinders insertion of a Fapy•dGTP analog by modulating the open-closed DNA polymerase transition. Nucleic Acids Res 2019; 47:3197-3207. [PMID: 30649431 PMCID: PMC6451102 DOI: 10.1093/nar/gkz002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/17/2018] [Accepted: 01/03/2019] [Indexed: 01/07/2023] Open
Abstract
4,6-Diamino-5-formamidopyrimidine (Fapy•dG) is an abundant form of oxidative DNA damage that is mutagenic and contributes to the pathogenesis of human disease. When Fapy•dG is in its nucleotide triphosphate form, Fapy•dGTP, it is inefficiently cleansed from the nucleotide pool by the responsible enzyme in Escherichia coli MutT and its mammalian homolog MTH1. Therefore, under oxidative stress conditions, Fapy•dGTP could become a pro-mutagenic substrate for insertion into the genome by DNA polymerases. Here, we evaluated insertion kinetics and high-resolution ternary complex crystal structures of a configurationally stable Fapy•dGTP analog, β-C-Fapy•dGTP, with DNA polymerase β. The crystallographic snapshots and kinetic data indicate that binding of β-C-Fapy•dGTP impedes enzyme closure, thus hindering insertion. The structures reveal that an active site residue, Asp276, positions β-C-Fapy•dGTP so that it distorts the geometry of critical catalytic atoms. Removal of this guardian side chain permits enzyme closure and increases the efficiency of β-C-Fapy•dG insertion opposite dC. These results highlight the stringent requirements necessary to achieve a closed DNA polymerase active site poised for efficient nucleotide incorporation and illustrate how DNA polymerase β has evolved to hinder Fapy•dGTP insertion.
Collapse
Affiliation(s)
- Mallory R Smith
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd Mail Stop #3030, Kansas City, KS 66160, USA
| | - David D Shock
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA
| | - William A Beard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd Mail Stop #3030, Kansas City, KS 66160, USA,Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA,To whom correspondence should be addressed. Tel: +1 913 588 5560;
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA,Correspondence may also be addressed to Samuel H. Wilson. Tel: +1 984 287 3451;
| |
Collapse
|
28
|
Discovery of a new class of MTH1 inhibitor by X-ray crystallographic screening. Eur J Med Chem 2019; 167:153-160. [DOI: 10.1016/j.ejmech.2019.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 11/19/2022]
|
29
|
Kunig V, Potowski M, Gohla A, Brunschweiger A. DNA-encoded libraries - an efficient small molecule discovery technology for the biomedical sciences. Biol Chem 2019; 399:691-710. [PMID: 29894294 DOI: 10.1515/hsz-2018-0119] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022]
Abstract
DNA-encoded compound libraries are a highly attractive technology for the discovery of small molecule protein ligands. These compound collections consist of small molecules covalently connected to individual DNA sequences carrying readable information about the compound structure. DNA-tagging allows for efficient synthesis, handling and interrogation of vast numbers of chemically synthesized, drug-like compounds. They are screened on proteins by an efficient, generic assay based on Darwinian principles of selection. To date, selection of DNA-encoded libraries allowed for the identification of numerous bioactive compounds. Some of these compounds uncovered hitherto unknown allosteric binding sites on target proteins; several compounds proved their value as chemical biology probes unraveling complex biology; and the first examples of clinical candidates that trace their ancestry to a DNA-encoded library were reported. Thus, DNA-encoded libraries proved their value for the biomedical sciences as a generic technology for the identification of bioactive drug-like molecules numerous times. However, large scale experiments showed that even the selection of billions of compounds failed to deliver bioactive compounds for the majority of proteins in an unbiased panel of target proteins. This raises the question of compound library design.
Collapse
Affiliation(s)
- Verena Kunig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Marco Potowski
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Anne Gohla
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Andreas Brunschweiger
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| |
Collapse
|
30
|
Rai P, Sobol RW. Mechanisms of MTH1 inhibition-induced DNA strand breaks: The slippery slope from the oxidized nucleotide pool to genotoxic damage. DNA Repair (Amst) 2019; 77:18-26. [PMID: 30852368 DOI: 10.1016/j.dnarep.2019.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Unlike normal tissues, tumor cells possess a propensity for genomic instability, resulting from elevated oxidant levels produced by oncogenic signaling and aberrant cellular metabolism. Thus, targeting mechanisms that protect cancer cells from the tumor-inhibitory consequences of their redox imbalance and spontaneous DNA-damaging events is expected to have broad-spectrum efficacy and a high therapeutic index. One critical mechanism for tumor cell protection from oxidant stress is the hydrolysis of oxidized nucleotides. Human MutT homolog 1 (MTH1), the mammalian nudix (nucleoside diphosphate X) pyrophosphatase (NUDT1), protects tumor cells from oxidative stress-induced genomic DNA damage by cleansing the nucleotide pool of oxidized purine nucleotides. Depletion or pharmacologic inhibition of MTH1 results in genomic DNA strand breaks in many cancer cells. However, the mechanisms underlying how oxidized nucleotides, thought mainly to be mutagenic rather than genotoxic, induce DNA strand breaks are largely unknown. Given the recent therapeutic interest in targeting MTH1, a better understanding of such mechanisms is crucial to its successful translation into the clinic and in identifying the molecular contexts under which its inhibition is likely to be beneficial. Here we provide a comprehensive perspective on MTH1 function and its importance in protecting genome integrity, in the context of tumor-associated oxidative stress and the mechanisms that likely lead to irreparable DNA strand breaks as a result of MTH1 inhibition.
Collapse
Affiliation(s)
- Priyamvada Rai
- Department of Medicine/Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, FL, 33136, United States; Sylvester Comprehensive Cancer Center, Miami, FL, 33136, United States.
| | - Robert W Sobol
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, United States.
| |
Collapse
|
31
|
van der Waals LM, Laoukili J, Jongen JMJ, Raats DA, Borel Rinkes IHM, Kranenburg O. Differential anti-tumour effects of MTH1 inhibitors in patient-derived 3D colorectal cancer cultures. Sci Rep 2019; 9:819. [PMID: 30692572 PMCID: PMC6349914 DOI: 10.1038/s41598-018-37316-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/30/2018] [Indexed: 12/23/2022] Open
Abstract
Reactive oxygen species (ROS) function as second messengers in signal transduction, but high ROS levels can also cause cell death. MTH1 dephosphorylates oxidized nucleotides, thereby preventing their incorporation into DNA and protecting tumour cells from oxidative DNA damage. Inhibitors of MTH1 (TH588 and (S)-crizotinib) were shown to reduce cancer cell viability. However, the MTH1-dependency of the anti-cancer effects of these drugs has recently been questioned. Here, we have assessed anti-tumour effects of TH588 and (S)-crizotinib in patient-derived 3D colorectal cancer cultures. Hypoxia and reoxygenation – conditions that increase intracellular ROS levels – increased sensitivity to (S)-crizotinib, but not to TH588. (S)-crizotinib reduced tyrosine phosphorylation of c-MET and ErbB3 whereas TH588 induced a mitotic cell cycle arrest, which was not affected by adding ROS-modulating compounds. Furthermore, we show that both compounds induced DNA damage that could not be prevented by adding the ROS inhibitor N-acetyl-L-cysteine. Moreover, adding ROS-modulating compounds did not alter the reduction in viability in response to TH588 and (S)-crizotinib. We conclude that TH588 and (S)-crizotinib have very clear and distinct anti-tumour effects in 3D colorectal cancer cultures, but that these effects most likely occur through distinct and ROS-independent mechanisms.
Collapse
Affiliation(s)
- Lizet M van der Waals
- Laboratory Translational Oncology, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - Jamila Laoukili
- Laboratory Translational Oncology, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - Jennifer M J Jongen
- Laboratory Translational Oncology, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - Danielle A Raats
- Laboratory Translational Oncology, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - Inne H M Borel Rinkes
- Laboratory Translational Oncology, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - Onno Kranenburg
- Laboratory Translational Oncology, UMC Utrecht Cancer Center, Utrecht, The Netherlands.
| |
Collapse
|
32
|
Nguyen D, Lemos C, Wortmann L, Eis K, Holton SJ, Boemer U, Moosmayer D, Eberspaecher U, Weiske J, Lechner C, Prechtl S, Suelzle D, Siegel F, Prinz F, Lesche R, Nicke B, Nowak-Reppel K, Himmel H, Mumberg D, von Nussbaum F, Nising CF, Bauser M, Haegebarth A. Discovery and Characterization of the Potent and Highly Selective (Piperidin-4-yl)pyrido[3,2- d]pyrimidine Based in Vitro Probe BAY-885 for the Kinase ERK5. J Med Chem 2019; 62:928-940. [PMID: 30563338 DOI: 10.1021/acs.jmedchem.8b01606] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The availability of a chemical probe to study the role of a specific domain of a protein in a concentration- and time-dependent manner is of high value. Herein, we report the identification of a highly potent and selective ERK5 inhibitor BAY-885 by high-throughput screening and subsequent structure-based optimization. ERK5 is a key integrator of cellular signal transduction, and it has been shown to play a role in various cellular processes such as proliferation, differentiation, apoptosis, and cell survival. We could demonstrate that inhibition of ERK5 kinase and transcriptional activity with a small molecule did not translate into antiproliferative activity in different relevant cell models, which is in contrast to the results obtained by RNAi technology.
Collapse
Affiliation(s)
- Duy Nguyen
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Clara Lemos
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Lars Wortmann
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Knut Eis
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Simon J Holton
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Ulf Boemer
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Dieter Moosmayer
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Uwe Eberspaecher
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Joerg Weiske
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Christian Lechner
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Stefan Prechtl
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Detlev Suelzle
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Franziska Siegel
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Florian Prinz
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Ralf Lesche
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Barbara Nicke
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | | | - Herbert Himmel
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Dominik Mumberg
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Franz von Nussbaum
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Carl F Nising
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Marcus Bauser
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Andrea Haegebarth
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| |
Collapse
|
33
|
Pompsch M, Vogel J, Classen F, Kranz P, Iliakis G, Riffkin H, Brockmeier U, Metzen E. The presumed MTH1-inhibitor TH588 sensitizes colorectal carcinoma cells to ionizing radiation in hypoxia. BMC Cancer 2018; 18:1190. [PMID: 30497423 PMCID: PMC6267833 DOI: 10.1186/s12885-018-5095-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
Background The nudix family member enzyme MutT homologue-1 (MTH1) hydrolyses the oxidized nucleotides 8-oxo-dGTP and 2-hydroxy-dATP and thus prevents the incorporation of damaged nucleotides into nuclear and mitochondrial DNA. Therefore MTH1 was proposed to protect cancer cells from oxidative DNA lesions and subsequent cell death. We investigated whether the bona fide MTH1 inhibitor TH588 affects responses of cultured colorectal tumor cells to ionizing radiation (IR) in normoxia and in moderate or severe hypoxia. Methods TH588 was tested in cell viability and survival assays (tetrazolium dye (MTT), propidium iodide staining, caspase-3 activity, and colony formation assays (CFA)) in colorectal carcinoma cells (HCT116 and SW480) in combination with IR in normoxia and in hypoxia. Additionally, MTH1 was targeted by lentiviral shRNA expression. Human umbilical vein endothelial cells (HUVEC) were assessed in MTT assays. Results In all cell lines tested, TH588 dose-dependently impaired cell survival. In CFAs, TH588 and IR effects on carcinoma cells were additive in normoxia and in hypoxia. Using 3 different shRNAs, the lentiviral approach was detrimental to SW480, but not to HCT116. Conclusions TH588 has cytotoxic effects on transformed and untransformed cells and synergizes with IR in normoxia and in hypoxia. TH588 toxicity is not fully explained by MTH1 inhibition as HCT116 were unaffected by lentiviral suppression of MTH1 expression. TH588 should be explored further because it has radiosensitizing effects in hypoxia.
Collapse
Affiliation(s)
- Mosche Pompsch
- Institut für Physiologie, Universität Duisburg-Essen, Hufelandstraße 55, D45122, Essen, Germany
| | - Julia Vogel
- Institut für Physiologie, Universität Duisburg-Essen, Hufelandstraße 55, D45122, Essen, Germany
| | - Fabian Classen
- Institut für Physiologie, Universität Duisburg-Essen, Hufelandstraße 55, D45122, Essen, Germany
| | - Philip Kranz
- Institut für Physiologie, Universität Duisburg-Essen, Hufelandstraße 55, D45122, Essen, Germany
| | - George Iliakis
- Institut für Medizinische Strahlenbiologie, Universität Duisburg-Essen, Hufelandstraße 55, D45122, Essen, Germany
| | - Helena Riffkin
- Institut für Physiologie, Universität Duisburg-Essen, Hufelandstraße 55, D45122, Essen, Germany
| | - Ulf Brockmeier
- Institut für Physiologie, Universität Duisburg-Essen, Hufelandstraße 55, D45122, Essen, Germany
| | - Eric Metzen
- Institut für Physiologie, Universität Duisburg-Essen, Hufelandstraße 55, D45122, Essen, Germany.
| |
Collapse
|
34
|
Visnes T, Grube M, Hanna BMF, Benitez-Buelga C, Cázares-Körner A, Helleday T. Targeting BER enzymes in cancer therapy. DNA Repair (Amst) 2018; 71:118-126. [PMID: 30228084 DOI: 10.1016/j.dnarep.2018.08.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Base excision repair (BER) repairs mutagenic or genotoxic DNA base lesions, thought to be important for both the etiology and treatment of cancer. Cancer phenotypic stress induces oxidative lesions, and deamination products are responsible for one of the most prevalent mutational signatures in cancer. Chemotherapeutic agents induce genotoxic DNA base damage that are substrates for BER, while synthetic lethal approaches targeting BER-related factors are making their way into the clinic. Thus, there are three strategies by which BER is envisioned to be relevant in cancer chemotherapy: (i) to maintain cellular growth in the presence of endogenous DNA damage in stressed cancer cells, (ii) to maintain viability after exogenous DNA damage is introduced by therapeutic intervention, or (iii) to confer synthetic lethality in cancer cells that have lost one or more additional DNA repair pathways. Here, we discuss the potential treatment strategies, and briefly summarize the progress that has been made in developing inhibitors to core BER-proteins and related factors.
Collapse
Affiliation(s)
- Torkild Visnes
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden; Department of Biotechnology and Nanomedicine, SINTEF Industry, N-7034 Trondheim, Norway
| | - Maurice Grube
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Bishoy Magdy Fekry Hanna
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Carlos Benitez-Buelga
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Armando Cázares-Körner
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden; Sheffield Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK.
| |
Collapse
|
35
|
Niu RJ, Zheng QC, Zhang HX. The influence of residue in the position of 116 on the inhibitory potency of TH588 for MTH1. J Mol Graph Model 2018; 85:75-83. [PMID: 30103119 DOI: 10.1016/j.jmgm.2018.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/23/2018] [Accepted: 08/03/2018] [Indexed: 11/29/2022]
Abstract
As one of the first-in-class inhibitor, TH588 was found to be efficient in the suppression of MutT homolog1 (MTH1). A recent work shows that the inhibitory potency of TH588 against human MTH1 (hsMTH1) is approximately 20-fold over that of mouse MTH1 (mmMTH1) and identifies residue in position 116 in MTH1 has an important contribution to TH588 affinity. But the effect of residue Leu or Met in position 116 on the binding affinity remains unclear. In this study, molecular dynamics (MD) simulations and free energy calculations were used to elucidate the mechanism about the effect of residue 116 to the different inhibitory potency of TH588 against MTH1. The binding free energy of TH588 in M116 complexes predicated by the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) is much lower than that in L116 complexes, which is consistent with the experiment results. The analysis of the individual energy terms suggests that the non-polar interactions are important for distinguishing the binding of TH588. The MD results show that the Leu116 disrupts the interactions between Asn33 and TH588, thus induces the conformational changes of Asn33 as well as TH588. The altered interactions between TH588 and mmMTH1 change the flexibility of TH588, which could induce the remarkable conformational fluctuation of mmMTH1. The conformations of the two loops covering the binding pocket have obvious influence on the opening or closure of the active site. The more open binding site may explain the lower inhibitor potency of TH588 against mmMTH1 than hsMTH1. Our results provide mechanistic insight into the effect of different residue Leu or Met in position 116 on the binding affinity of TH588 for MTH1, which is expected to contribute to the further rational design of more potent inhibitors.
Collapse
Affiliation(s)
- Rui-Juan Niu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, PR China
| | - Qing-Chuan Zheng
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, PR China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130023, PR China.
| | - Hong-Xing Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, PR China.
| |
Collapse
|
36
|
Arczewska KD, Stachurska A, Wojewódzka M, Karpińska K, Kruszewski M, Nilsen H, Czarnocka B. hMTH1 is required for maintaining migration and invasion potential of human thyroid cancer cells. DNA Repair (Amst) 2018; 69:53-62. [PMID: 30055508 DOI: 10.1016/j.dnarep.2018.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022]
Abstract
Cancer cells, including thyroid cancer cells, suffer from oxidative stress damaging multiple cellular targets, such as DNA and the nucleotide pool. The human MutT homologue 1 (hMTH1) controls the oxidative DNA damage load by sanitizing the nucleotide pool from the oxidized DNA precursor, 8-oxodGTP. It has previously been shown that hMTH1 is essential for cancer cell proliferation and survival, therefore hMTH1 inhibition has been proposed as a novel anticancer therapeutic strategy. Here we show that thyroid cancer cells respond to siRNA mediated hMTH1 depletion with increased DNA damage load and moderately reduced proliferation rates, but without detectable apoptosis, cell-cycle arrest or senescence. Importantly, however, hMTH1 depletion significantly reduced migration and invasion potential of the thyroid cancer cells. Accordingly, our results allow us to propose that hMTH1 may be a therapeutic target in thyroid malignancy, especially for controlling metastasis.
Collapse
Affiliation(s)
- Katarzyna D Arczewska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Anna Stachurska
- Department of Immunohematology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Maria Wojewódzka
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland.
| | - Kamila Karpińska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland.
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, Sykehusveien 25, Lørenskog, Norway.
| | - Barbara Czarnocka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
37
|
Comess KM, McLoughlin SM, Oyer JA, Richardson PL, Stöckmann H, Vasudevan A, Warder SE. Emerging Approaches for the Identification of Protein Targets of Small Molecules - A Practitioners’ Perspective. J Med Chem 2018; 61:8504-8535. [DOI: 10.1021/acs.jmedchem.7b01921] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kenneth M. Comess
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Shaun M. McLoughlin
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Jon A. Oyer
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Paul L. Richardson
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Henning Stöckmann
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Anil Vasudevan
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Scott E. Warder
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| |
Collapse
|
38
|
Rahm F, Viklund J, Trésaugues L, Ellermann M, Giese A, Ericsson U, Forsblom R, Ginman T, Günther J, Hallberg K, Lindström J, Persson LB, Silvander C, Talagas A, Díaz-Sáez L, Fedorov O, Huber KVM, Panagakou I, Siejka P, Gorjánácz M, Bauser M, Andersson M. Creation of a Novel Class of Potent and Selective MutT Homologue 1 (MTH1) Inhibitors Using Fragment-Based Screening and Structure-Based Drug Design. J Med Chem 2018; 61:2533-2551. [DOI: 10.1021/acs.jmedchem.7b01884] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fredrik Rahm
- Sprint Bioscience AB, Novum, 14157 Huddinge, Sweden
| | | | | | | | - Anja Giese
- Bayer AG, Muellerstrasse 178, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | - Laura Díaz-Sáez
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Oleg Fedorov
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Kilian V. M. Huber
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Ioanna Panagakou
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Paulina Siejka
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | | | | | | |
Collapse
|
39
|
Narwal M, Jemth AS, Gustafsson R, Almlöf I, Warpman Berglund U, Helleday T, Stenmark P. Crystal Structures and Inhibitor Interactions of Mouse and Dog MTH1 Reveal Species-Specific Differences in Affinity. Biochemistry 2018; 57:593-603. [PMID: 29281266 DOI: 10.1021/acs.biochem.7b01163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MTH1 hydrolyzes oxidized nucleoside triphosphates, thereby sanitizing the nucleotide pool from oxidative damage. This prevents incorporation of damaged nucleotides into DNA, which otherwise would lead to mutations and cell death. The high level of reactive oxygen species in cancer cells leads to a higher level of oxidized nucleotides in cancer cells compared to that in nonmalignant cells, making cancer cells more dependent on MTH1 for survival. The possibility of specifically targeting cancer cells by inhibiting MTH1 has highlighted MTH1 as a promising cancer target. The progression of MTH1 inhibitors into the clinic requires animal studies, and knowledge of species differences in the potency of inhibitors is vitally important. We here show that the human MTH1 inhibitor TH588 is approximately 20-fold less potent with respect to inhibition of mouse MTH1 than the human, rat, pig, and dog MTH1 proteins are. We present the crystal structures of mouse MTH1 in complex with TH588 and dog MTH1 and elucidate the structural and sequence basis for the observed difference in affinity for TH588. We identify amino acid residue 116 in MTH1 as an important determinant of TH588 affinity. Furthermore, we present the structure of mouse MTH1 in complex with the substrate 8-oxo-dGTP. The crystal structures provide insight into the high degree of structural conservation between MTH1 proteins from different organisms and provide a detailed view of interactions between MTH1 and the inhibitor, revealing that minute structural differences can have a large impact on affinity and specificity.
Collapse
Affiliation(s)
- Mohit Narwal
- Department of Biochemistry and Biophysics, Stockholm University , S-106 91 Stockholm, Sweden
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , S-171 21 Stockholm, Sweden
| | - Robert Gustafsson
- Department of Biochemistry and Biophysics, Stockholm University , S-106 91 Stockholm, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , S-171 21 Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , S-171 21 Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , S-171 21 Stockholm, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University , S-106 91 Stockholm, Sweden
| |
Collapse
|
40
|
Markkanen E. Not breathing is not an option: How to deal with oxidative DNA damage. DNA Repair (Amst) 2017; 59:82-105. [PMID: 28963982 DOI: 10.1016/j.dnarep.2017.09.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
Oxidative DNA damage constitutes a major threat to genetic integrity, and has thus been implicated in the pathogenesis of a wide variety of diseases, including cancer and neurodegeneration. 7,8-dihydro-8oxo-deoxyGuanine (8-oxo-G) is one of the best characterised oxidative DNA lesions, and it can give rise to point mutations due to its miscoding potential that instructs most DNA polymerases (Pols) to preferentially insert Adenine (A) opposite 8-oxo-G instead of the correct Cytosine (C). If uncorrected, A:8-oxo-G mispairs can give rise to C:G→A:T transversion mutations. Cells have evolved a variety of pathways to mitigate the mutational potential of 8-oxo-G that include i) mechanisms to avoid incorporation of oxidized nucleotides into DNA through nucleotide pool sanitisation enzymes (by MTH1, MTH2, MTH3 and NUDT5), ii) base excision repair (BER) of 8-oxo-G in DNA (involving MUTYH, OGG1, Pol λ, and other components of the BER machinery), and iii) faithful bypass of 8-oxo-G lesions during replication (using a switch between replicative Pols and Pol λ). In the following, the fate of 8-oxo-G in mammalian cells is reviewed in detail. The differential origins of 8-oxo-G in DNA and its consequences for genetic stability will be covered. This will be followed by a thorough discussion of the different mechanisms in place to cope with 8-oxo-G with an emphasis on Pol λ-mediated correct bypass of 8-oxo-G during MUTYH-initiated BER as well as replication across 8-oxo-G. Furthermore, the multitude of mechanisms in place to regulate key proteins involved in 8-oxo-G repair will be reviewed. Novel functions of 8-oxo-G as an epigenetic-like regulator and insights into the repair of 8-oxo-G within the cellular context will be touched upon. Finally, a discussion will outline the relevance of 8-oxo-G and the proteins involved in dealing with 8-oxo-G to human diseases with a special emphasis on cancer.
Collapse
Affiliation(s)
- Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Winterthurerstr. 260, 8057 Zürich, Switzerland.
| |
Collapse
|